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Abstract—This brief deals with self-interference (SI) effects in
mobile communication radio frequency (RF) transceivers. The
basics of current communication standards, namely Long-Term
Evolution (LTE) and 5G, are outlined with a focus on carrier
aggregation (CA). RF transceivers that support frequency-
division duplex (FDD) and CA variants operate multiple receivers
and transmitters simultaneously. We illustrate the resulting SI
problems, present suitable models for different SI categories and
discuss the associated interference estimation tasks. Moreover, we
explain the basic architecture of two common countermeasures:
digital and mixed-signal SI cancellation.

Index Terms—Adaptive filters, interference cancellation, LTE,
RF transceivers.

I. INTRODUCTION

W IRELESS communication systems have gained increas-
ing importance over the past decades. Advances in

several areas including transmission and modulation schemes,
coding, but also semiconductor manufacturing, enabled the
remarkable development towards today’s gigabit links [1].
Spectral efficiency is a key aspect for high data rates supported
by current wireless communication standards such as Long-
Term Evolution Advanced (LTE-A) or 5G [2], [3]. Highly
integrated radio frequency (RF) transceivers [4], commonly
based on the direct-conversion architecture [5], allow for cost-
efficient mass production. Especially in mobile devices, they
have to satisfy constraints in terms of form factor and power
consumption. The integrated receive (Rx) and transmit (Tx)
chains offer a high configuration flexibility to support a power
efficient operation while simultaneously handling several com-
munication standards. A general overview on transceiver
implementations and their most important metrics is given
in [6] and specific examples are presented in [7]–[16]. While
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current standards mainly build upon frequency-division duplex
(FDD), in-band full-duplex (IBFD) transmission has become
an active research area to push the limits further [17]–[22].
Obviously, the lack of separation in frequency leads to severe
self-interference (SI) effects. The high interference power
levels demand a combination of analog and digital counter-
measures [23]–[26].

However, RF transceivers operating in FDD can also suf-
fer from signal degradation due to SI effects – a less obvious
fact. Basically, the Rx and Tx signals are separated by the
duplex spacing defined by the band specifications. In addi-
tion, the analog front-end (AFE) contains band selection filters
that achieve a limited isolation of typically 50 dB to 55 dB
between Tx and Rx signals [27]–[29]. Filters with higher iso-
lation are impractical due to several factors, such as insertion
loss, cost and area. Considering the enormous Tx-Rx power
difference of up to 120 dB, Tx leakage can still have a sub-
stantial power level in the Rx chains [30], [31]. Doubtlessly,
an ideal Rx would not down-convert this leakage signal to the
baseband (BB). Though, major building blocks of the Rx and
Tx chains are based on analog circuitry showing unwanted
nonlinear effects. This can generate new frequency compo-
nents, potentially leading to a down-conversion of the leakage
signal or a transformed version of it. In final consequence,
the non-idealities result in a distortion of the wanted Rx sig-
nal. The negative impact can be limited but not avoided by
design and, thus, is inherent to RF transceivers. Carrier aggre-
gation (CA) complicates the situation even more since several
Rx and Tx chains are operated simultaneously. This requires
careful consideration of crosstalk effects [32]. Furthermore,
CA results in even more stringent power and area constraints
of the individual chains which affect the linearity negatively.

This brief aims to provide an introduction to SI in FDD
transceivers. After recapitulating the basics of the LTE-A and
5G standards with a focus on CA in Section II, we explain
the most important SI mechanisms in Section III. Moreover, in
Section IV and Section V, respectively, suitable models and
exemplary performance figures for digital and mixed-signal
self-interference cancellation (SIC) architectures are discussed.

II. FUNDAMENTALS OF CURRENT MOBILE

COMMUNICATION STANDARDS

Current mobile communication standards build upon
the orthogonal frequency-division multiplexing (OFDM)
scheme. Long-Term Evolution (LTE) uses orthogonal
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Fig. 1. Carrier aggregation variants defined by the LTE-A standard: intra-
band contiguous (a), intra-band non-contiguous (b) and inter-band (c).

frequency-division multiple access (OFDMA) for the
downlink (DL) and single-carrier frequency-division multiple
access (SC-FDMA)1 for the uplink (UL). The second one
is a variant of OFDMA with an additional data pre-coding
to reduce the peak-to-average power ratio (PAPR). This is
beneficial for battery-powered devices. The same holds for
5G, though here OFDMA is an alternative variant for the UL,
too. Multi-carrier transmissions are advantageous because
they allow for a dynamic resource sharing among multiple
users. In case of LTE, frequency resources are managed in
form of resource blocks (RBs), where one RB corresponds
to 12 consecutive subcarriers. The overall number of RBs is
determined by the channel bandwidth, which can be up to
20 MHz. In the time domain, LTE groups 7 OFDM symbols
to form a slot. Many important parameters such as frequency
resources, Tx power and data acknowledgment are managed
on a slot basis. On a higher level, 20 slots form a radio frame.
5G keeps the basic topology but allows several parameters to
be controlled on a symbol-by-symbol basis, which enables
shorter latency and a more dynamic system. In addition, the
subcarrier spacing is more flexible and not fixed to 15 kHz,
like for LTE, and higher-order constellation mappings were
added [3].

To achieve maximum data rates, several channels can be
aggregated. This is termed CA and helps utilizing high band-
widths in the fragmented RF spectrum. Fig. 1 summarizes
the three CA variants. First, intra-band contiguous CA adds
secondary component carrier (SCC) in the same frequency
band directly next to the primary component carrier (PCC).
Second, intra-band non-contiguous CA allows to place the
SCC anywhere in the same band as the PCC. Third, in inter-
band CA, the PCC and the SCC can be placed flexibly in
different bands [2]. Especially, the last two variants have influ-
enced the implementation of RF transceivers by requiring the
simultaneous operation of multiple Rx and Tx chains. This
generated a new class of SI problems.

III. SELF-INTERFERENCE EFFECTS IN DETAIL

Fig. 2 shows the block diagram of a state-of-the-art FDD
RF transceiver with two Rx and two Tx paths, supporting CA.

1Also known as DFT-precoded OFDMA (discrete Fourier transform pre-
coded OFDMA) [3].

Fig. 2. Block diagram of FDD RF transceiver supporting CA.

In addition to the shown band filters, the AFE contains RF
switches to achieve the required flexibility. The basis for all
SI effects is the frequency-selective Tx-Rx leakage path in the
AFE highlighted in red. In the Tx chain, the power amplifier
(PA), colored green, shows a relevant nonlinearity. In con-
trast, in the Rx chain, the nonlinearities typically result from a
combination of the low-noise amplifier (LNA) and the mixer,
highlighted in blue. Furthermore, the local oscillators (LOs)
are usually fed by square waves, which together with crosstalk
issues facilitate the occurrence of spur frequencies, indicated
by the purple arrows. In the following, we will classify SI
effects according to the underlying non-idealities and outline
real-world cases. The focus is put on the resulting behavior
and not on the exact source at circuit level, which heavily
depends on the Rx and Tx topology. Reference [32] provides
further details.

A. Receiver Nonlinearity

For modulated signals, a nonlinearity in the Rx inevitably
generates intermodulation distortions (IMDs), such as IMD2
or IMD3. The nonlinearity is typically characterized by the
second-order and third-order input intercept point (IIP2 and
IIP3). Fig. 3(a) gives a schematic representation of this
effect. The left side illustrates the involved RF signals in the
frequency domain, whereas the right side shows the resulting
impact on the BB spectra in the affected Rx chain. The IMD
occurs regardless of a specific band or CA band combination,
thus the figure shows a generic band a, where Rx and Tx oper-
ate on the carriers fRx1 and fTx1, respectively. The rectangles
indicate the restricted UL and DL frequency span of the band
which typically is larger than the signal bandwidth. The BB
contains the Rx1 signal and any down-converted IMD prod-
ucts that overlay the wanted signal. All RF signal components
will produce this kind of distortion. Though, the overall IMD
will be dominated by the strongest component, which is likely
to be the Tx leakage.

B. Transmitter Nonlinearity

Besides other effects, a nonlinearity in the Tx creates signal
components at harmonics of the Tx carrier frequency which
might be a relevant problem in case of CA. Fig. 3(b) gives an
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Fig. 3. Examples for different self-interference effects resulting from: receiver
nonlinearity (a), transmitter nonlinearity (b) and spurious LOs (c).

example: Tx1 and Rx1 operate in band 8, whereas Rx2 oper-
ates in band 3. In fact, 2 fTx1 = 1810 MHz almost coincides
with fRx2 = 1815 MHz. As a result, the second harmonic of
Tx1 overlays the wanted Rx2 in the BB. Moreover, the n-th
harmonic has a bandwidth of n·B, with B being the bandwidth
of the undistorted signal. The problem even persists if only
one of the active bands used for CA is FDD and the other are
time-division duplex (TDD). Given the fact that LTE and 5G
are commonly deployed within bands ranging from 410 MHz
up to 7.1 GHz, the second and the third harmonic are most
relevant. An example for a harmful distortion by the third
harmonic would be CA operation in band 7 and 8.

C. Spurious LOs

Spurious LOs are a problem that specifically arises from the
simultaneous operation of multiple Rx and Tx chains. The con-
straints on the RF transceiver in terms of power consumption
and chip area make it hard to fully avoid crosstalk issues. In
addition, frequency conversion is usually implemented using
50 % or 25 % duty-cycle passive mixers, where the LO sig-
nal is a square wave. This signal type exhibits a high number
of harmonics with considerable power, which, in combination
with a nonlinearity, can lead to the creation of continuous wave
spurs. If such a spur in a down-conversion mixer LO signal is
close to one of the Tx frequencies, the leakage signal will be
down-converted unintentionally and distorts the wanted sig-
nal. This interference is known as modulated spur. Fig. 3(c)
gives an example for a CA scenario with band 5 and 7. A
spur frequency of fsp = 4 fRx1 − 1 fRx2 = 836 MHz can arise,
which almost coincides with fTx1 = 834 MHz. Consequently,
the down-converted Tx1 leakage signal overlays the wanted
Rx1 in BB. The same SI problem can result from a topology
named split-LNA, which has a considerably low reverse iso-
lation that facilitates problematic reflections and subsequent
down-conversion [33].

Fig. 4. Block diagram of FDD RF transceiver supporting CA. Additional
blocks necessary for mixed-signal and digital SIC architectures are shown.

IV. DIGITAL SELF-INTERFERENCE CANCELLATION

Despite the variety of effects, all SI signals are a function of
a known Tx signal. The digital interference cancellation (DIC)
architecture uses the Tx BB signal to replicate the interference.
The basic principle is depicted in Fig. 4. The left part of the
schematic shows the AFE and a typical RF transceiver sup-
porting CA. The auxiliary (Aux) Rx path can be ignored for
the moment and will be treated in Section V. The right part of
the schematic contains the DIC scheme operating in the BB.
All unknown parts of the interference mechanism, especially
the time-varying and frequency-selective leakage path, have to
be covered by an estimation process for a successful cancella-
tion. This estimation is accomplished by an adaptive algorithm
that uses the Tx BB and the Rx BB as input signals where
the latter one does not only contain the wanted Rx signal but
also the interference. Note that the adaptive algorithm has to
operate on complex-valued data because the BB signals result
from a double-sided spectrum in case of LTE or 5G.

A. Underlying Models and Estimation

Depending on the SI effect, an appropriate model has to
be chosen for most DIC schemes. Doubtlessly, the model
should fit the underlying interference effect by capturing all
main aspects without being too generic. Consequently, this
demands a precise understanding of the problem. Fig. 5 depicts
three models for the SI effects explained in Section III. The
model in Fig. 5a represents a linear finite impulse response
(FIR) filter with an additional frequency shift. With appropriate
filter weights, w1, . . . , wQ, the relevant part of the frequency-
selective leakage path can be replicated. This model is suitable
for a modulated spur interference, which is created by spuri-
ous LOs as addressed above [34]. Tx nonlinearity requires
a functional link model according to Fig. 5b. Here, a non-
linear function expansion f : C

P → C
Q is applied before the

signals are combined linearly [35]. A precise modeling of the
effect, e.g., spurious Tx emissions [36], [37] and Tx harmon-
ics, yields an appropriate set of basis functions to construct
this nonlinear mapping. Alternatively, a very generic set of
basis functions could be chosen, which unfortunately, com-
plicates the estimation process. The third variant is a Wiener
model according to Fig. 5c, where the signal passes a linear
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Fig. 5. Linear (a), functional link (b) and Wiener (c) models appropriate for
different SI effects.

FIR filter and is then transformed by a nonlinear mapping
f : C → C [38]. This model satisfies the requirements of Rx
nonlinearity interference effects, where the frequency-shaped
leakage signal undergoes a nonlinearity. The filter weights,
and possibly the parameters of the nonlinearity, have to be
estimated.

The parameter estimation is performed on a sample- or
block-adaptive basis. The linear model in Fig. 5a can be
estimated by sample-adaptive standard methods, such as the
least-mean squares (LMS) algorithm based on the stochas-
tic gradient descent (SGD) concept, or the recursive least
squares (RLS) algorithm [39], [40]. Block based solutions
usually build upon the standard least squares (LS) algorithm.
Besides SIC based on the normalized LMS (N-LMS) and
RLS, modified variants of the LMS have been used suc-
cessfully [34], [41]–[44]. The model shown in Fig. 5b, even
though being a nonlinear structure, represents a linear esti-
mation problem, too. Reference [36], [45] build upon this
kind of model and solve the estimation problem with the stan-
dard LS algorithm, whereas [46] employs a sample-adaptive
method. The Wiener model according to Fig. 5c is more dif-
ficult to handle. In [47], [48], nonlinear LMS and RLS like
adaptive algorithms are derived for IMD2 resulting from Rx
nonlinearity.

In contrast to model-based solutions, these problems
can also be solved by neural networks [49]–[52], kernel

methods [53], spline-interpolation based methods [54] or
support vector machines [55]. For general information on
methods for nonlinear system identification we refer the reader
to [56].

The performance of the estimation algorithm is only one
aspect; doubtlessly, a real-time capable implementation is of
equal importance. Consequently, low-cost algorithms like the
LMS are preferred because their low computational com-
plexity matches best with constraints in terms of chip area
and power consumption. However, LTE signals have chal-
lenging statistics for SGD-based algorithms [44]. RLS-based
algorithms are more robust in this respect, but require care-
ful consideration of numeric stability. Nonetheless, low-cost
implementations that fulfill this property are possible [57].
Another aspect is the feedback-based nature of the adaptive
filters, which complicates a pipelined hardware design. The
resulting delayed update has to be considered and imposes cer-
tain constraints on the parameters to guarantee stability [58].

B. Performance

The performance of SIC algorithms depends on many
system parameters, rendering it difficult to compare the
performance numbers found in literature (see Section IV-A).
In order to enable a fair comparison of SIC architectures,
we established a unified simulation setup for the modulated
spur problem [44], which is used as an example through-
out this brief. For comparisons of further SIC algorithms,
we refer to [59]–[61]. We start with the DIC scheme,
whereas mixed-signal interference cancellation (MSIC) fol-
lows in Section V-B. The adaptive filter order Q is set to 16,
which proved to be a suitable compromise in our simulations.
The leakage path models are based on measurements from
real-world duplexers. The SIC architecture is the same as in
Fig. 4, and four different adaptive filters are applied for com-
parison. Tx1 is chosen to be an LTE-20 signal with 10 RBs
allocated. The signal-to-interference-plus-noise ratio (SINR)
according to

SINR = E [|yRx[n]|2]

E [
∣
∣yInt[n] − ŷInt[n] + η[n]

∣
∣
2]

, (1)

is used as the performance metric. yRx[n] represents the wanted
Rx signal (in this example LTE-20, fully allocated). yInt[n],
ŷInt[n] and η[n] are the interference, the estimated interference
and the noise, respectively. In the ideal case, the interference
is either not present or is perfectly compensated by the esti-
mated interference and the SINR reduces to the signal-to-noise
ratio (SNR). In any other case, the SINR represents the SNR
degradation resulting from the remaining interference after
cancellation.

Fig. 6 shows the ensemble-averaged results in the steady-
state for varying interference-to-carrier-plus-noise (ICN) ratios

ICN = E [|yInt[n]|2]

E [|yRx[n] + η[n]|2]
. (2)

This metric relates the power of the interference to the com-
bined power of the wanted Rx and the noise. In addition to the
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Fig. 6. SINR improvement of different digital modulated spur SIC schemes
in the steady-state [44].

N-LMS and the RLS, Fig. 6 includes the model-based (MB)-
LMS and the Karhunen-Loève transform (KLT)-LMS, which
have specifically been designed for this application and incor-
porate LTE signal statistics [44]. Doubtlessly, a higher ICN
requires a better cancellation, which is challenging for SGD-
based algorithms. While the RLS gives the best performance,
it is not feasible for real-time implementation in this applica-
tion due to its computational complexity. It is only included
as a reference. The N-LMS shows the weakest cancellation,
especially for higher ICN values, but has the lowest computa-
tional complexity. The MB-LMS features considerably better
results for some increase in computational costs. Finally, the
KLT-LMS comes relatively close to the RLS at moderate com-
plexity. Consequently, these two specific LMS variants are
the best options in this comparison. On the contrary, the two
standard adaptive filters (N-LMS, RLS) are suboptimal in this
scenario.

V. MIXED-SIGNAL INTERFERENCE CANCELLATION

The basic principle of MSIC is depicted in Fig. 4. In con-
trast to DIC, an Aux Rx path is employed that feeds the
adaptive algorithm. The idea is to capture the leakage signal
including the frequency shaping of the Tx-Rx leakage path.
Consequently, the Aux Rx is typically tuned to the appropri-
ate frequency for the leakage effect. The Aux Rx also captures
phase noise resulting from the frequency conversion in the Tx
path, which cannot be achieved by DIC [33]. Several MSIC
approaches are not limited to SI but additionally target external
interferers.

A crucial factor for MSIC is designing the Aux Rx. Of
course, the circuit design of a main Rx chain could be reused.
However, the requirements can be relaxed to optimize area
and power consumption. A suitable Aux Rx design includ-
ing an experimental verification is provided in [62]. However,
the I/Q imbalance of this simplified Rx can limit the feasible
cancellation performance. This problem can be alleviated by
appropriate processing of the Aux Rx BB data [63].

Especially for the modulated spur problem, more specific
Aux Rx designs have been proposed that mimic the building
law for spurious LOs. The serial mixing concept down-
converts the RF signal by a series of mixers which are fed
by the involved LO signals [33], [64], [65].

Fig. 7. SINR improvement of different modulated spur SIC architectures in
the steady-state [70].

Another variant of MSIC is employing an Aux Tx. This
enables direct RF level cancellation and prevents the analog-
to-digital converter (ADC) in the Rx chain from saturation
even at high interference levels [66]. This concept is especially
vital for IBFD.

A. Underlying Models and Estimation

Employing an Aux Rx typically simplifies the estimation
problem compared to DIC architectures. The model in Fig. 5a
satisfies the requirements for the modulated spur problem. In
contrast to DIC, the filter order Q can be much lower because
the filter does not have to capture the frequency shaping of the
Tx-Rx leakage path. Instead, only minor amplitude and phase
mismatches between the main and the Aux Rx paths have
to be compensated. Standard LMS and RLS-based estimation
methods have been applied successfully [33], [62], [64]. The
multi-phase mixing concept builds upon the same principle
but chains multiple of these models and cancels the individual
interferers step by step [67].

MSIC has also been successfully used to cancel IMD result-
ing from Rx nonlinearities by employing a model according to
Fig. 5b. In [65], a modulated spur and resulting IMD2 com-
ponents are canceled simultaneously. In [68], [69], multiple
even-order IMD components in the Rx are canceled. The
proposed scheme can be applied to external interferers, too.

B. Performance

Again, we focus on the modulated spur problem to assess
the performance of MSIC schemes according to [70]. The
simulation setup is identical to the one used in Section IV.
MSIC employs the LMS and the RLS for comparison. Note
that, here, the RLS is a realistic option for implementation
due to the low adaptive filter order Q = 3. The MB-LMS
variant of the DIC architecture serves as the reference. Fig. 7
depicts the results. In addition, the dashed line shows the SINR
degradation without cancellation. Doubtlessly, even low ICN
values require countermeasures, otherwise throughput suffers
severely or decoding becomes challenging for negative SINR
values. The MSIC approach combined with an RLS gives best
performance, though the LMS gives reasonable performance,
too. For high ICN values both MSIC variants suffer from some
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performance degradation. In this region, the performance of
the Aux Rx, which was assumed to have an SNR of 30 dB, is
the limiting factor. In summary, both the DIC and the MSIC
architecture can provide a sufficient level of cancellation for
the modulated spur problem provided that an appropriate adap-
tive filter is chosen. The analysis highlights that, in general,
there is no single optimal solution to a given SI problem.

VI. CONCLUSION

In this brief, we explained the most important SI effects,
such as modulated spurs (caused by LO harmonics and
crosstalk), Rx IMD and Tx harmonics. In addition, we gave a
concise overview of suitable models and the underlying esti-
mation problems for SIC. Finally, we presented the basics
of digital as well as mixed-signal cancellation architectures
including performance and aspects of implementation.
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