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ABSTRACT While deep learning strategies achieve outstanding results in computer vision tasks, one issue

remains: The current strategies rely heavily on a huge amount of labeled data. In many real-world problems,

it is not feasible to create such an amount of labeled training data. Therefore, it is common to incorporate

unlabeled data into the training process to reach equal results with fewer labels. Due to a lot of concurrent

research, it is difficult to keep track of recent developments. In this survey, we provide an overview of often

used ideas and methods in image classification with fewer labels. We compare 34 methods in detail based

on their performance and their commonly used ideas rather than a fine-grained taxonomy. In our analysis,

we identify three major trends that lead to future research opportunities. 1. State-of-the-art methods are

scaleable to real-world applications in theory but issues like class imbalance, robustness, or fuzzy labels are

not considered. 2. The degree of supervision which is needed to achieve comparable results to the usage

of all labels is decreasing and therefore methods need to be extended to settings with a variable number

of classes. 3. All methods share some common ideas but we identify clusters of methods that do not share

many ideas. We show that combining ideas from different clusters can lead to better performance.

INDEX TERMS semi-supervised, self-supervised, unsupervised, image classification, deep learning,

survey

I. INTRODUCTION

Deep learning strategies achieve outstanding successes in

computer vision tasks. They reach the best performance in

a diverse range of tasks such as image classification [1]–[3],

object detection [4], [5] or semantic segmentation [6], [7].

The quality of a deep neural network is strongly influenced

by the number of labeled/supervised images [8]. ImageNet

[1] is a huge labeled dataset with over one million images

which allows the training of networks with impressive perfor-

mance. Recent research shows that even larger datasets than

ImageNet can improve these results [9]. However, in many

real-world applications it is not possible to create labeled

datasets with millions of images. A common strategy for

dealing with this problem is transfer learning. This strategy

improves results even on small and specialized datasets like

medical imaging [10]. This might be a practical workaround

for some applications but the fundamental issue remains: Un-

like humans, supervised learning needs enormous amounts of

labeled data.

For a given problem we often have access to a large dataset

of unlabeled data. How this unsupervised data could be used

for neural networks has been of research interest for many

years [11]. Xie et al. were among the first in 2016 to investi-

gate unsupervised deep learning image clustering strategies

to leverage this data [12]. Since then, the usage of unla-

beled data has been researched in numerous ways and has

created research fields like unsupervised, semi-supervised,

self-supervised, weakly-supervised, or metric learning [13].

Generally speaking, unsupervised learning uses no labeled

data, semi-supervised learning uses unlabeled and labeled

while self-supervised learning generates labeled data on its

own. Other research directions are even more different be-

cause weakly-supervised learning uses only partial informa-

tion about the label and metric learning aims at learning a

good distance metric. The idea that unifies these approaches

is that using unlabeled data is beneficial during the training

process (see Figure 1 for an illustration). It either makes the

training with fewer labels more robust or in some rare cases
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FIGURE 1: This image illustrates and simplifies the benefit

of using unlabeled data during deep learning training. The

red and dark blue circles represent labeled data points of

different classes. The light grey circles represent unlabeled

data points. If we have only a small number of labeled

samples available we can only make assumptions (dotted

line) over the underlying true distribution (solid line). This

true distribution can only be determined if we also consider

the unlabeled data points and clarify the decision boundary.

even surpasses the supervised cases [14].

Due to this benefit, many researchers and companies work

in the field of semi-, self-, and unsupervised learning. The

main goal is to close the gap between semi-supervised and

supervised learning or even surpass these results. Consider-

ing presented methods like [15], [16] we believe that research

is at the breaking point of achieving this goal. Hence, there is

a lot of research ongoing in this field. This survey provides an

overview to keep track of the major and recent developments

in semi-, self-, and unsupervised learning.

Most investigated research topics share a variety of com-

mon ideas while differing in goal, application contexts, and

implementation details. This survey gives an overview of this

wide range of research topics. The focus of this survey is

on describing the similarities and differences between the

methods.

Whereas we look at a broad range of learning strate-

gies, we compare these methods only based on the image

classification task. The addressed audience of this survey

consists of deep learning researchers or interested people

with comparable preliminary knowledge who want to keep

track of recent developments in the field of semi-, self- and

unsupervised learning.

A. RELATED WORK

In this subsection, we give a quick overview of previous

works and reference topics we will not address further to

maintain the focus of this survey.

The research of semi- and unsupervised techniques in

computer vision has a long history. A variety of research, sur-

veys, and books has been published on this topic [17]–[21].

Unsupervised cluster algorithms were researched before the

breakthrough of deep learning and are still widely used [22].

There are already extensive surveys that describe unsuper-

vised and semi-supervised strategies without deep learning

[18], [23]. We will focus only on techniques including deep

neural networks.

Many newer surveys focus only on self-, semi- or un-

supervised learning [19], [20], [24]. Min et al. wrote an

overview of unsupervised deep learning strategies [24]. They

presented the beginning in this field of research from a net-

work architecture perspective. The authors looked at a broad

range of architectures. We focus on only one architecture

which Min et al. refer to as "Clustering deep neural network

(CDNN)-based deep clustering" [24]. Even though the work

was published in 2018, it already misses the recent and major

developments in deep learning of the last years. We look at

these more recent developments and show the connections to

other research fields that Min et al. did not include.

Van Engelen and Hoos give a broad overview of general

and recent semi-supervised methods [20]. They cover some

recent developments but deep learning strategies such as

[14], [25]–[28] are not covered. Furthermore, the authors do

not explicitly compare the presented methods based on their

structure or performance.

Jing and Tian concentrated their survey on recent develop-

ments in self-supervised learning [19]. Like us, the authors

provide a performance comparison and a taxonomy. Their

taxonomy distinguishes between different kinds of pretext

tasks. We look at pretext tasks as one common idea and

compare the methods based on these underlying ideas. Jing

and Tian look at different tasks apart from classification but

do not include semi- and unsupervised methods without a

pretext task.

Qi and Luo are one of the few who look at self-, semi-

and unsupervised learning in one survey [29]. However, they

look at the different learning strategies separately and give

comparisons only inside the respective learning strategy. We

show that bridging these gaps leads to new insights, improved

performance, and future research approaches.

Some surveys focus not on the general overviews about

semi-, self-, and unsupervised learning but special details. In

their survey, Cheplygina et al. present a variety of methods

in the context of medical image analysis [30]. They include

deep learning and older machine learning approaches but

look at different strategies from a medical perspective. Mey

and Loog focused on the underlying theoretical assumptions

in semi-supervised learning [31]. We keep our survey lim-

ited to general image classification tasks and focus on their

practical application.

In this survey, we will focus on deep learning approaches

for image classification. We will investigate the different

learning strategies with a spotlight on loss functions. We

concentrate on recent methods because older one are already

adequately addressed in previous literature [17]–[21]. Keep-
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FIGURE 2: Overview of the structure of this survey – The learning strategies unsupervised, semi-supervised and supervised

are commonly used in the literature. Because semi-supervised learning is incorporating many methods we defined training

strategies which subdivides semi-supervised learning. For details about the training and learning strategies (including self-

supervised learning) see subsection II-A. Each method belongs to one training strategy and uses several common ideas. A

common idea can be a concept such as a pretext task or a loss such as cross-entropy. The definition of methods and common

ideas is given in section II. Details about the common ideas are defined in subsection II-B. All methods in this survey are shortly

described and categorized in section III. The methods are compared with each other based on this information concerning their

used common ideas and their performance in subsection IV-C. The results of the comparisons and three resulting trends are

discussed in subsection IV-D.

ing the above-mentioned limitations in mind, the topic of

self-, semi-, and unsupervised learning still includes a broad

range of research fields. We have to exclude some related

topics from this survey to keep the focus of this work for

example because other research have a different aim or are

evaluated on different datasets. Therefore, topics like metric

learning [13] and meta learning such as [32] will be excluded.

More specific networks like general adversarial networks

[33] and graph networks such as [34] will be excluded. Also,

other applications like pose estimation [35] and segmentation

[36] or other image sources like videos or sketches [37] are

excluded. Topics like few-shot or zero-shot learning methods

such as [38] are excluded in this survey. However, we will

see in subsection IV-D that topics like few-shot learning and

semi-supervised can learn from each other in the future like

in [39].

B. OUTLINE

The rest of the paper is structured in the following way. We

define and explain the terms which are used in this survey

such as method, training strategy and common idea in sec-

tion II. A visual representation of the terms and their depen-

dencies can be seen before the analysis part in Figure 2. All

methods are presented with a short description, their training

strategy and common idea in section III. In section IV, we

compare the methods based their used ideas and their per-

formance across four common image classification datasets.

This section also includes a description of the datasets and

evaluation metrics. Finally, we discuss the results of the

comparisons in subsection IV-D and identify three trends and

research opportunities. In Figure 2, a complete overview of

the structure of this survey can be seen.

II. UNDERLYING CONCEPTS
Throughout this survey, we use the terms training strat-

egy, common idea, and method in a specific meaning. The

training strategy is the general type/approach for using the

unsupervised data during training. The training strategies are

similar to the terms semi-supervised, self-supervised, or un-

supervised learning but provide a definition for corner cases

that the other terms do not. We will explain the differences

and similarities in detail in subsection II-A. The papers we

discuss in detail in this survey propose different elements

like an algorithm, a general idea, or an extension of previous

work. To be consistent in this survey, we call the main algo-

rithm, idea, or extension in each paper a method. All methods

are briefly described in section III. A method follows a

training strategy and is based on several common ideas. We

use the term common idea, or in short idea, for concepts and
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(a) Supervised (b) One-Stage-Semi-Supervised (c) One-Stage-Unsupervised (d) Multi-Stage-Semi-Supervised

FIGURE 3: Illustrations of supervised learning (a) and the three presented reduced training strategies (b-d) - The red and dark

blue circles represent labeled data points of different classes. The light grey circles represent unlabeled data points. The black

lines define the underlying decision boundaries between the classes. The striped circles represent data points that do not use

the label information in the first stage and can access this information in a second stage. For more details on stages and the

different learning strategies see subsection II-A.

approaches that are shared between different methods. We

roughly sort the methods based on their training strategy but

compare them in detail based on the used common ideas. See

subsection II-B for further information about common ideas.

In the rest of this chapter, we will use a shared definition

for the following variables. For an arbitrary set of images

X we define Xl and Xu with X = Xl∪̇Xu as the labeled

and unlabeled images, respectively. For an image x ∈ Xl

the corresponding label is defined as zx ∈ Z. An image

x ∈ Xu has no label otherwise it would belong to Xl. For

the distinction between Xu and Xl, only the usage of the

label information during training is important. For example,

an image x ∈ X might have a label that can be used during

evaluation but as long as the label is not used during training

we define x ∈ Xu. The learning strategy LSX for a dataset

X is either unsupervised (X = Xu), supervised (X = Xl)

or semi-supervised (Xu ∩ Xl 6= ∅). During different phases

of the training, different image datasets X1, X2, . . . Xn with

n ∈ N could be used. Two consecutive datasets Xi and Xi+1

with i ≤ n and i ∈ N are different as long as different

images (Xi 6= Xi+1) or different labels (XLi
6= XLi+1

)

are used. The learning strategy LSi up to the dataset Xi

during the training is calculated based on Xu = ∪i
j=1Xuj

and Xl = ∪i
j=1Xlj . Consecutive phases of the training are

grouped into stages. The stage changes during consecutive

datasets Xi and Xi+1 iff the learning strategy is different

(LSXi
6= LSXi+1

) and the overall learning strategy changes

(LSi 6= LSi+1). Due to this definition, only two stages can

occur during training and the seven possible combinations are

visualized in Figure 4. For more details see subsection II-A.

Let C be the number of classes for the labels Z. For a given

neural network f and input x ∈ X the output of the neural

network is f(x). For the below-defined formulations, f is an

arbitrary network with arbitrary weights and parameters.

A. TRAINING STRATEGIES

Terms like semi-supervised, self-supervised, and unsuper-

vised learning are often used in literature but have over-

lapping definitions for certain methods. We will summarize

the general understanding and definition of these terms and

highlight borderline cases that are difficult to classify. Due to

these borderline cases, we will define a new taxonomy based

on the stages during training for a precise distinction of the

methods. In subsection IV-C, we will see that this taxonomy

leads to a clear clustering of the methods regarding the

common ideas which further justifies this taxonomy. A visual

comparison between the learning-strategies semi-supervised

and unsupervised learning and the training strategies can be

found in Figure 4.

Unsupervised learning describes the training without any

labels. However, the goal can be a clustering (e.g. [14], [27])

or good representation (e.g. [25], [40]) of the data. Some

methods combine several unsupervised steps to achieve

firstly a good representation and then a clustering (e.g. [41]).

In most cases, this unsupervised training is achieved by

generating its own labels, and therefore the methods are

called self-supervised. A counterexample for an unsuper-

vised method without self-supervision would be k-means

[22]. Often, self-supervision is achieved on a pretext task

on the same or a different dataset and then the pretrained

network is fine-tuned on a downstream task [19]. Many

methods that follow this paradigm say their method is a

form of representation learning [25], [40], [42]–[44]. In this

survey, we focus on image classification, and therefore most

self-supervised or representation learning methods need to

fine-tune on labeled data. The combination of pretraining

and fine-tuning can neither be called unsupervised nor self-

supervised as external labeled information are used. Semi-

supervised learning describes methods that use labeled and

unlabeled data. However, semi-supervised methods like [16],

[26], [45]–[49] use the labeled and unlabeled data from the

beginning in comparison to representation learning methods

like [25], [40], [42]–[44] which use them in different stages

of their training. Some methods combine ideas from self-

supervised learning, semi-supervised learning and unsuper-

vised learning [15], [27] and are even more difficult to
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classify.

From the above explanation, we see that most methods

are either unsupervised or semi-supervised in the context of

image classification. The usage of labeled and unlabeled data

in semi-supervised methods varies and a clear distinction

in the common taxonomy is not obvious. Nevertheless, we

need to structure the methods in some way to keep an

overview, allow comparisons and acknowledge the difference

of research foci. We decided against providing a fine-grained

taxonomy as in previous literature [29] because we believe

future research will come up with new combinations that

were not thought of before. We separate the methods only

based on a rough distinction when the labeled or unlabeled

data is used during the training. For detailed comparisons,

we distinct the methods based on their common ideas that

are defined above and described in detail in subsection II-B.

We call all semi-, self-, and unsupervised (learning) strategies

together reduced supervised (learning) strategies.

We defined stages above (see section II) as the differ-

ent phases/time intervals during training when the differ-

ent learning strategies supervised (X = Xl), unsupervised

(X = Xu) or semi-supervised (Xu ∩Xl 6= ∅) are used. For

example, a method that uses a self-supervised pretraining on

Xu and then fine-tunes on the same images with labels has

two stages. A method that uses different algorithms, losses,

or datasets during the training but only uses unsupervised

data Xu has one stage (e.g. [41]). A method which uses

Xu and Xl during the complete training has one stage (e.g.

[26]). Based on the definition of stages during training, we

classify reduced supervised methods into the training strate-

gies: One-Stage-Semi-Supervised, One-Stage-Unsupervised,

and Multi-Stage-Semi-Supervised. An overview of the stage

combinations and the corresponding training strategy is given

in Figure 4. As we concentrate on reduced supervised learn-

ing in this survey, we will not discuss any methods which are

completely supervised.

Due to the above definition of stages a fifth combination of

data usage between the stages exists. This combination would

use only labeled data in the first stage and unlabeled data in

the second stage. In the rest of the survey, we will exclude

this training strategy for the following reasons. The case that

a stage of complete supervision is followed by a stage of

partial or no supervision is an unusual training strategy. Due

to this unusual usage, we only know of weight initialization

followed by other reduced supervised training steps where

this combination could occur. We see the initialization of a

network with pretrained weights from a supervised training

on a different dataset (e.g. Imagenet [1]) as an architectural

decision. It is not part of the reduced supervised training

process because it is used mainly as a more sophisticated

weight initialization. If we exclude weight initialization for

this reason, we know of no method which belongs to this

stage.

In the following paragraphs, we will describe all other

training strategies in detail and they are illustrated in Fig-

ure 3.

FIGURE 4: Illustration of the different training strategies –

Each row stands for a different combination of data usage

during the first and second stage (defined in section II). The

first column states the common learning strategy name in

the literature for this usage whereas the last column states

the training strategy name used in this survey. The second

column represents the used data overall. The third and fourth

column represent the used data in stage one or two. The blue

and grey (half-) circles represent the usage of the labeled data

Xl and the unlabeled data Xu respectively in each stage or

overall. A minus means that no further stage is used. The

dashed half circle in the last row represents that this dashed

part of the data can be used.

1) Supervised Learning

Supervised learning is the most common strategy in image

classification with deep neural networks. These methods only

use labeled data Xl and its corresponding labels Z. The goal

is to minimize a loss function between the output of the

network f(x) and the expected label zx ∈ Z for all x ∈ Xl.

2) One-Stage-Semi-Supervised Training

All methods which follow the one-stage-semi-supervised

training strategy are trained in one stage with the usage of

Xl, Xu, and Z. The main difference to all supervised learning

strategies is the usage of the additional unlabeled data Xu. A

common way to integrate the unlabeled data is to add one or

more unsupervised losses to the supervised loss.

3) One-Stage-Unsupervised Training

All methods which follow the one-stage-unsupervised train-

ing strategy are trained in one stage with the usage of only

the unlabeled samples Xu. Therefore, many authors in this

training strategy call their method unsupervised. A variety of

loss functions exist for unsupervised learning [12], [14], [50].

In most cases, the problem is rephrased in such a way that all

inputs for the loss can be generated, e.g. reconstruction loss

in autoencoders [12]. Due to this self-supervision, some call

also these methods self-supervised. We want to point out one

major difference to many self-supervised methods follow-

ing the multi-stage-semi-supervised training strategy below.

One-Stage-Unsupervised methods give image classifications

without any further usage of labeled data.
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4) Multi-Stage-Semi-Supervised Training

All methods which follow the multi-stage-semi-supervised

training strategy are trained in two stages with the usage of

Xu in the first stage and Xl and maybe Xu in the second

stage. Many methods that are called self-supervised by their

authors fall into this strategy. Commonly a pretext task is

used to learn representations on unlabeled data Xu. In the

second stage, these representations are fine-tuned to image

classification on Xl. An important difference to a one-stage

method is that these methods return useable classifications

only after an additional training stage.

B. COMMON IDEAS

Different common ideas are used to train models in semi-,

self-, and unsupervised learning. In this section, we present a

selection of these ideas that are used across multiple methods

in the literature.

It is important to notice that our usage of common ideas is

fuzzy and incomplete by definition. A common idea should

not be an identical implementation or approximation but

the underlying motivation. This fuzziness is needed for two

reasons. Firstly, a comparison would not be possible due

to so many small differences in the exact implementations.

Secondly, they allow us to abstract some core elements of

a method and therefore similarities can be detected. Also,

not all details, concepts, and motivations are captured by

common ideas. We will limit ourselves to the common ideas

described below since we believe they are enough to char-

acterize all recent methods. At the same time, we know that

these ideas need to be extended in the future as new common

ideas will arise, old ones will disappear, and focus will shift

to other ideas. In contrast to detailed taxonomies, these new

ideas can easily be integrated as new tags.

We sorted the ideas in alphabetical order and distinguish

loss functions and general concepts. Since ideas might refer-

ence each other, you may have to jump to the corresponding

entry if you would like to know more.

Loss Functions

Cross-entropy (CE)

A common loss function for image classification is cross-

entropy [51]. It is commonly used to measure the difference

between f(x) and the corresponding label zx for a given

x ∈ Xl. The loss is defined in Equation 1 and the goal is

to minimize the difference.

CE(zx, f(x)) = −
C∑

c=1

P (c|zx)log(P (c|f(x)))

= −
C∑

c=1

P (c|zx)log(P (c|zx))

−
C∑

c=1

P (c|zx)log(
P (c|f(x))

P (c|zx)
)

= H(P (·|zx))

+KL(P (·|zx) || P (·|f(x))

(1)

P is a probability distribution over all classes and is ap-

proximated with the (softmax-)output of the neural network

f(x) or the given label zx. H is the entropy of a probability

distribution and KL is the Kullback-Leibler divergence. It

is important to note that cross-entropy is the sum of entropy

over zx and a Kullback-Leibler divergence between f(x) and

zx. In general, the entropy H(P (·|zx)) is zero due to the one-

hot encoded label zx.

The loss function CE could also be used with a different

probability distribution than P based on the ground-truth

label. These distributions could be for example be based on

Pseudo-Labels or other targets in a self-supervised pretext

task. We abbreviate the used common idea with CE* if not

the ground-truth labels are used to highlight this specialty.

Contrastive Loss (CL)

A contrastive loss tries to distinguish positive and negative

pairs. The positive pair could be different views of the same

image and the negative pairs could be all other pairwise

combinations in a batch [25]. Hadsell et al. proposed to

learn representations based on contrasting [53]. In recent

years, the idea has been extended by self-supervised visual

representation learning methods [25], [54]–[57]. Examples

of contrastive loss functions are NT-Xent [25] and InfoNCE

[55] and both are based on Cross-Entropy. The loss NT-

Xent is computed across all positive pairs (xi, xj) in a fixed

subset of X with N elements e.g. a batch during training. The

definition of the loss for a positive pair is given in Equation 2.

The similarity sim between the outputs is measured with a

normalized dot product, τ is a temperature parameter and the

batch consists of N image pairs.

lxi,xj
= −log

exp(sim(f(xi), f(xj))/τ)∑2N
k=1 1k 6=iexp(sim(f(xi), f(xk))/τ)

(2)

Chen and Li generalize the loss NT-Xent into a broader

family of loss functions with an alignment and a distribution

part [58]. The alignment part encourages representations of

positive pairs to be similar whereas the distribution part "en-

courages representations to match a prior distribution" [58].

The loss InfoNCE is motivated like other contrastive losses

by maximizing the agreement / mutual information between

different views. Van der Oord et al. showed that InfoNCE is
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(a) VAT (b) Mixup (c) Overclustering (d) Pseudo-Label

FIGURE 5: Illustration of four selected common ideas – (a) The blue and red circles represent two different classes. The line is

the decision boundary between these classes. The ǫ spheres around the circles define the area of possible transformations. The

arrows represent the adversarial change vector r which pushes the decision boundary away from any data point. (b) The images

of a cat and a dog are combined with a parametrized blending. The labels are also combined with the same parameterization.

The shown images are taken from the dataset STL-10 [52] (c) Each circle represents a data point and the coloring of the circle

the ground-truth label. In this example, the images in the middle have fuzzy ground-truth labels. Classification can only draw

one arbitrary decision boundary (dashed line) in the datapoints whereas overclustering can create multiple subregions. This

method could also be applied to outliers rather than fuzzy labels. (d) This loop represents one version of Pseudo-Labeling. A

neural network predicts an output distribution. This distribution is cast into a hard Pseudo-Label which is then used for further

training the neural network.

a lower bound for the mutual information between the views

[55]. More details and different bounds for other losses can

be found in [59]. However, Tschannen et al. show evidence

that these lower bounds might not be the main reason for

the successes of these methods [60]. Due to this fact, we

count losses like InfoNCE as a mixture of the common ideas

contrastive loss and mutual information.

Entropy Minimization (EM)

Grandvalet and Bengio noticed that the distributions of pre-

dictions in semi-supervised learning tend to be distributed

over many or all classes instead of being sharp for one

or few classes [61]. They proposed to sharpen the output

predictions or in other words to force the network to make

more confident predictions by minimizing entropy [61]. They

minimized the entropy H(P (·|f(x))) for a probability dis-

tribution (P (·|f(x)) based on a certain neural output f(x)
and an image x ∈ X . This minimization leads to sharper /

more confident predictions. If this loss is used as the only

loss the network/predictions would degenerate to a trivial

minimization.

Kullback-Leibler divergence (KL)

The Kullback-Leiber divergence is also commonly used in

image classification since it can be interpreted as a part

of cross-entropy. In general, KL measures the difference

between two given distributions [62] and is therefore often

used to define an auxiliary loss between the output f(x) for

an image x ∈ X and a given secondary discrete probability

distribution Q over the classes C. The definition is given in

Equation 3. The second distribution could be another network

output distribution, a prior known distribution, or a ground-

truth distribution depending on the goal of the minimization.

KL(Q || P (·|f(x)) = −
C∑

c=1

Q(c)log(
P (c|f(x))

Q(c)
) (3)

Mean Squared Error (MSE)

MSE measures the Euclidean distance between two vectors

e.g. two neural network outputs f(x), f(y) for the images

x, y ∈ X . In contrast to the loss CE or KL, MSE is not

a probability measure and therefore the vectors can be in

an arbitrary Euclidean feature space (see Equation 4). The

minimization of the MSE will pull the two vectors or as

in the example the network outputs together. Similar to the

minimization of entropy, this would lead to a degeneration of

the network if this loss is used as the only loss on the network

outputs.

MSE(f(x), f(y)) = ||f(x)− f(y)||22 (4)

Mutual Information (MI)

MI is defined for two probability distributions P,Q as the

Kullback Leiber (KL) divergence between the joint distribu-

tion and the marginal distributions [63]. In many reduced

supervised methods, the goal is to maximize the mutual

information between the distributions. These distributions

could be based on the input, the output, or an intermediate

step of a neural network. In most cases, the conditional distri-

bution between P and Q and therefore the joint distribution

is not known. For example, we could use the outputs of a

neural network f(x), f(y) for two augmented views x, y of
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the same image as the distributions P,Q. In general, the

distributions could be dependent as x, y could be identical

or very similar and the distributions could be independent

if x, y they are crops of distinct classes e.g. the background

sky and the foreground object. Therefore, the mutual infor-

mation needs to be approximated. The used approximation

varies depending on the method and the definition of the

distributions P,Q. For further theoretical insights and several

approximations see [59], [64].

We show the definition of the mutual information between

two network outputs f(x), f(y) for images x, y ∈ X as

an example in Equation 5. This equation also shows an

alternative representation of mutual information: the sep-

aration in entropy H(P (·|f(x))) and conditional entropy

H(P (·|f(x)) | P (·|f(y))). Ji et al. argue that this repre-

sentation illustrates the benefits of using MI over CE in

unsupervised cases [14]. A degeneration is avoided because

MI balances the effects of maximizing the entropy with

a uniform distribution for P (·|f(x)) and minimizing the

conditional entropy by equalizing P (·|f(x)) and P (·|f(y)).
Both cases lead to a degeneration of the neural network on

their own.

I(P (·|f(x), P (·|f(y))

= KL(P (·|f(x), f(y)) || P (·|f(x) ∗ P (·|f(y))))

=
C∑

c=1,c′=1

P (c, c′|f(x), f(y))

log(
P (c, c′|f(x), f(y))

P (c|f(x) ∗ P (c′|f(y)))
)

= H(P (·|f(x)) +H(P (·|f(x)) | P (·|f(y)))

(5)

Virtual Adversarial Training (VAT)

VAT [65] tries to make predictions invariant to small transfor-

mations by minimizing the distance between an image and

a transformed version of the image. Miyato et al. showed

how a transformation can be chosen and approximated in an

adversarial way. This adversarial transformation maximizes

the distance between an image and a transformed version of

it over all possible transformations. The loss is defined in

Equation 6 with an image x ∈ X and the output of a given

neural network f(x).

V AT (f(x)) = D(P (·|f(x), P (·|f(x+ radv))

radv = argmax
r;||r||≤ǫ

D(P (·|f(x), P (·|f(x+ r)) (6)

P is the probability distribution over the outputs of the neural

network and D is a non-negative function that measures the

distance. As illustrated in Figure 5a r is a vector and ǫ the

maximum length of this vector. Two examples of used dis-

tance measures are cross-entropy [65] and Kullback-Leiber

divergence [15].

Concepts
Mixup (MU)

Mixup creates convex combinations of images by blending

them into each other. An illustration of the concept is given

in Figure 5b. The prediction of the convex combination of

the corresponding labels turned out to be beneficial because

the network needs to create consistent predictions for in-

termediate interpolations of the image. This approach has

been beneficial for supervised learning in general [66] and

is therefore also used in several semi-supervised learning

algorithms [26], [45], [46].

Overclustering (OC)

Normally, if we have k classes in the supervised case we also

use k clusters in the unsupervised case. Research showed

that it can be beneficial to use more clusters than actual

classes k exist [14], [27], [67]. We call this idea overclus-

tering. Overclustering can be beneficial in semi-supervised

or unsupervised cases due to the effect that neural networks

can decide ’on their own’ how to split the data. This separa-

tion can be helpful in noisy/fuzzy data or with intermediate

classes that were sorted into adjacent classes randomly [27].

An illustration of this idea is presented in Figure 5c

Pretext Task (PT)

A pretext task is a broad-ranged description of self-

supervised training a neural network on a different task than

the target task. This task can be for example predicting the

rotation of an image [40], solving a jigsaw puzzle [43],

using a contrastive loss [25], [55] or maximizing mutual

information [14], [27]. An overview of most pretext task in

this survey is given in Figure 6 and a complete overview is

given in Table 1. In most cases the self-supervised, pretext

task is used to learn representations which can then be fine-

tuned for image classification [25], [40], [42]–[44], [55],

[68]. In a semi-supervised context, some methods use this

pretext task to define an additional loss during training [45].

Pseudo-Labels (PL)

A simple approach for estimating labels of unknown data is

using Pseudo-Labels [47]. Lee proposed to classify unseen

data with a neural network and use the predictions as labels.

This process is illustrated in Figure 5d. What sounds at first

like a self-fulfilling assumption works reasonably well in

real-world image classification tasks. It is important to notice

that the network needs additional information to prevent

total random predictions. This additional information could

be some known labels or a weight initialization of other

supervised data or unsupervised on a pretext task. Several

modern methods are based on the same core idea of creating

labels by predicting them on their own [46], [48].

III. METHODS
This section shorty summarizes all methods in the survey in

roughly chronological order and separated by their training

strategy. Each summary states the used common ideas, ex-

plains their usage, and highlights special cases. The abbrevi-

ations for the common ideas are defined in subsection II-B.

We include a large number of recent methods but we do not

claim this list to be complete.
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(a) Main image (b) Different image (c) Jigsaw (d) Jigsaw++

(e) Exemplar (f) Rotation (g) Context (h) Contrastive Learning

FIGURE 6: Illustrations of 8 selected pretext tasks – (a) Example image for the pretext task (b) Negative/different example

image in the dataset or batch (c) The Jigsaw pretext task consists of solving a simple Jigsaw puzzle generated from the main

image. (d) Jigsaw++ augments the Jigsaw puzzle by adding in parts of a different image. (e) In the exemplar pretext task, the

distributions of a weakly augmented image (upper right corner) and several strongly augmented images should be aligned. (f)

An image is rotated around a fixed set of rotations e.g. 0, 90, 180, and 270 degrees. The network should predict the rotation

which has been applied. (g) A central patch and an adjacent patch from the same image are given. The task is to predict one

of the 8 possible relative positions of the second patch to the first one. In the example, the correct answer is upper center. (h)

The network receives a list of pairs and should predict the positive pairs. In this example, a positive pair consists of augmented

views from the same image. Some illustrations are inspired by [40], [42], [44].

A. ONE-STAGE-SEMI-SUPERVISED

Pseudo-Labels

Pseudo-Labels [47] describes a common idea in deep learn-

ing and a learning method on its own. For the description of

the common idea see above in subsection II-B. In contrast

to many other semi-supervised methods, Pseudo-Labels does

not use a combination of an unsupervised and a supervised

loss. The Pseudo-Labels approach uses the predictions of a

neural network as labels for unknown data as described in

the common idea. Therefore, the labeled and unlabeled data

are used in parallel to minimize the CE loss. Common ideas:

CE, CE*, PL

π-model and Temporal Ensembling

Laine & Aila present two similar learning methods with

the names π-model and Temporal Ensembling [49]. Both

methods use a combination of the supervised CE loss and the

unsupervised consistency loss MSE. The first input for the

consistency loss in both cases is the output of their network

from a randomly augmented input image. The second input

is different for each method. In the π-model an augmentation

of the same image is used. In Temporal Ensembling an expo-

nential moving average of previous predictions is evaluated.

Laine & Aila show that Temporal Ensembling is up to two

times faster and more stable in comparison to the π-model

[49]. Illustrations of these methods are given in Figure 7.

Common ideas: CE, MSE

Mean Teacher

With Mean Teacher Tarvainen & Valpola present a student-

teacher-approach for semi-supervised learning [48]. They de-

velop their approach based on the π-model and Temporal En-

sembling [49]. Therefore, they also use MSE as a consistency

loss between two predictions but create these predictions dif-

ferently. They argue that Temporal Ensembling incorporates

new information too slowly into predictions. The reason for

this is that the exponential moving average (EMA) is only

updated once per epoch. Therefore, they propose to use a

teacher based on the average weights of a student in each

update step. Tarvainen & Valpola show for their model that

the KL-divergence is an inferior consistency loss than MSE.

An illustration of this method is given in Figure 7. Common
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(a) π-model (b) Temporal Ensembling (c) Mean Teacher (d) UDA

FIGURE 7: Illustration of four selected one-stage-semi-supervised methods – The used method is given below each image.

The input including label information is given in the blue box on the left side. On the right side, an illustration of the method

is provided. In general, the process is organized from top to bottom. At first, the input images are preprocessed by none or two

different random transformations t. Special augmentation techniques like Autoaugment [69] are represented by a red box. The

following neural network uses these preprocessed images (x, y) as input. The calculation of the loss (dotted line) is different

for each method but shares common parts. All methods use the cross-entropy (CE) between label and predicted distribution

P (·|f(x)) on labeled examples. Details about the methods can be found in the corresponding entry in section III whereas

abbreviations for common methods are defined in subsection II-B. EMA stands for the exponential moving average.

ideas: CE, MSE

Virtual Adversarial Training (VAT)

VAT [65] is not just the name for a common idea but it is

also a one-stage-semi-supervised method. Miyato et al. used

a combination of VAT on unlabeled data and CE on labeled

data [65]. They showed that the adversarial transformation

leads to a lower error on image classification than random

transformations. Furthermore, they showed that adding Ent-

Min [61] to the loss increased accuracy even more. Common

ideas: CE, (EM), VAT

Interpolation Consistency Training (ICT)

ICT [70] uses linear interpolations of unlabeled data points to

regularize the consistency between images. Verma et al. use a

combination of the supervised loss CE and the unsupervised

loss MSE. The unsupervised loss is measured between the

prediction of the interpolation of two images and the interpo-

lation of their Pseudo-Labels. The interpolation is generated

with the mixup [66] algorithm from two unlabeled data

points. For these unlabeled data points, the Pseudo-Labels are

predicted by a Mean Teacher [48] network. Common ideas:

CE, MSE, MU, PL

Fast-Stochastic Weight Averaging (fast-SWA)

In contrast to other semi-supervised methods, Athiwaratkun

et al. do not change the loss but the optimization algorithm

[71]. They analyzed the learning process based on ideas and

concepts of SWA [72], π-model [49] and Mean Teacher [48].

Athiwaratkun et al. show that averaging and cycling learning

rates are beneficial in semi-supervised learning by stabilizing

the training. They call their improved version of SWA fast-

SWA due to faster convergence and lower performance vari-

ance [71]. The architecture and loss is either copied from π-

model [49] or Mean Teacher [48]. Common ideas: CE, MSE

MixMatch

MixMatch [46] uses a combination of a supervised and an un-

supervised loss. Berthelot et al. use CE as the supervised loss

and MSE between predictions and generated Pseudo-Labels

as their unsupervised loss. These Pseudo-Labels are created

from previous predictions of augmented images. They pro-

pose a novel sharping method over multiple predictions to

improve the quality of the Pseudo-Labels. This sharpening

also enforces implicitly a minimization of the entropy on

the unlabeled data. Furthermore, they extend the algorithm

mixup [66] to semi-supervised learning by incorporating the

generated labels. Common ideas: CE, (EM), MSE, MU, PL

Ensemple AutoEndocing Transformation (EnAET)

EnAET [73] combines the self-supervised pretext task Au-

toEncoding Transformations [74] with MixMatch [46]. Wang

et al. apply spatial transformations, such as translations and

rotations, and non-spatial transformations, such as color dis-

tortions, on input images in the pretext task. The transfor-

mations are then estimated with the original and augmented

image given. This is a difference to other pretext tasks where

the estimation is often based on the augmented image only

[40]. The loss is used together with the loss of MixMatch

and is extended with the Kullback Leiber divergence between

the predictions of the original and the augmented image.

Common ideas: CE, (EM), KL, MSE, MU, PL, PT

Unsupervised Data Augmentation (UDA)

Xie et al. present with UDA a semi-supervised learning

algorithm that concentrates on the usage of state-of-the-art

augmentation [16]. They use a supervised and an unsuper-
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(a) MixMatch (b) ReMixMatch (c) FixMatch (d) FOC

FIGURE 8: Illustration of four selected methods – The used method is given below each image. The input including label

information is given in the blue box on the left side. On the right side, an illustration of the method is provided. For FOC the

second stage is represented. In general, the process is organized from top to bottom. At first, the input images are preprocessed

by none or two different random transformations t. Special augmentation techniques like CTAugment [45] are represented by

a red box. The following neural network uses these preprocessed images (e.g. x, y) as input. The calculation of the loss (dotted

line) is different for each method but shares common parts. All methods use the cross-entropy (CE) between label and predicted

distribution P (·|f(x)) on labeled examples. Details about the methods can be found in the corresponding entry in section III

whereas abbreviations for common methods are defined in subsection II-B.

vised loss. The supervised loss is CE whereas the unsu-

pervised loss is the Kullback Leiber divergence between

output predictions. These output predictions are based on an

image and an augmented version of this image. For image

classification, they propose to use the augmentation scheme

generated by AutoAugment [69] in combination with Cutout

[75]. AutoAugment uses reinforcement learning to create

useful augmentations automatically. Cutout is an augmenta-

tion scheme where randomly selected regions of the image

are masked out. Xie et al. show that this combined augmen-

tation method achieves higher performance in comparison

to previous methods on their own like Cutout, Cropping,

or Flipping. In addition to the different augmentation, they

propose to use a variety of other regularization methods.

They proposed Training Signal Annealing which restricts the

influence of labeled examples during the training process

to prevent overfitting. They use EntMin [61] and a kind

of Pseudo-Labeling [47]. We use the term kind of Pseudo-

Labeling because they do not use the predictions as labels

but they use them to filter unsupervised data for outliers.

An illustration of this method is given in Figure 7. Common

ideas: CE, EM, KL, (PL)

Self-paced Multi-view Co-training (SpamCo)

Ma et al. propose a general framework for co-training across

multiple views [76]. In the context of image classification,

different neural networks can be used as different views. The

main idea of the co-training between different views is simi-

lar to using Pseudo-Labels. The main differences in SpamCo

are that the Pseudo-Labels are not used for all samples and

they influence each other across views. Each unlabeled image

has a weight value for each view. Based on an age parameter,

more unlabeled images are considered in each iteration. At

first only confident Pseudo-Labels are used and over time

also less confident ones are allowed. The proposed hard or

soft co-regularizers also influence the weighting of the unla-

beled images. The regularizers encourage to select unlabeled

images for training across views. Without this regularization

the training would degenerate to an independent training of

the different views/models. CE is used as loss on the labels

and Pseudo-Labels with additional L2 regularization. Ma et

al. show further applications including text classification and

object detection. Common ideas: CE, CE*, MSE, PL

ReMixMatch

ReMixMatch [45] is an extension of MixMatch with dis-

tribution alignment and augmentation anchoring. Berthelot

et al. motivate the distribution alignment with an analysis

of mutual information. They use entropy minimization via

"sharpening" but they do not use any prediction equaliza-

tion like in mutual information. They argue that an equal

distribution is also not desirable since the distribution of

the unlabeled data could be skewed. Therefore, they align

the predictions of the unlabeled data with a marginal class

distribution over the seen examples. Berthelot et al. exchange

the augmentation scheme of MixMatch with augmentation

anchoring. Instead of averaging the prediction over different

slight augmentations of an image they only use stronger

augmentations as regularization. All augmented predictions

of an image are encouraged to result in the same distribution

with CE instead of MSE. Furthermore, a self-supervised loss

based on the rotation pretext task [40] was added. Common

ideas: CE, CE* (EM), (MI), MU, PL, PT

FixMatch

FixMatch [26] is building on the ideas of ReMixMatch but is

dropping several ideas to make the framework more simple

while achieving a better performance. FixMatch is using the

VOLUME 4, 2016 11



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3084358, IEEE Access

Schmarje et al.: A Survey on Semi-, Self- and Unsupervised Learning for Image Classification

cross-entropy loss on the supervised and the unsupervised

data. For each image in the unlabeled data, one weakly-

and one strongly-augmented version is created. The Pseudo-

Label of the weakly-augmented version is used if a confi-

dence threshold is surpassed by the network. If a Pseudo-

Label is calculated the network output of the strongly-

augmented version is compared with this hard label via cross-

entropy which implicitly encourages low-entropy predictions

on the unlabeled data [26]. Sohn et al. do not use ideas like

Mixup, VAT, or distribution alignment but they state that

they can be used and provide ablations for some of these

extensions. Common ideas: CE, CE*, (EM), PL

B. MULTI-STAGE-SEMI-SUPERVISED

Exemplar

Dosovitskiy et al. proposed a self-supervised pretext task

with additional fine-tuning [68]. They randomly sample

patches from different images and augment these patches

heavily. Augmentations can be for example rotations, trans-

lations, color changes, or contrast adjustments. The classifi-

cation task is to map all augmented versions of a patch to

the correct original patch using cross-entropy loss. Common

ideas: CE, CE*, PT

Context

Doersch et al. propose to use context prediction as a pretext

task for visual representation learning [42]. A central patch

and an adjacent patch from an image are used as input. The

task is to predict one of the 8 possible relative positions of

the second patch to the first one using cross-entropy loss. An

illustration of the pretext task is given in Figure 6. Doersch

et al. argue that this task becomes easier if you recognize

the content of these patches. The authors fine-tune their

representations for other tasks and show their superiority in

comparison to the random initialization. Aside from fine-

tuning, Doersch et al. show how their method could be used

for Visual Data Mining. Common ideas: CE, CE*, PT

Jigsaw

Noroozi and Favaro propose to solve Jigsaw puzzles as a

pretext task [43]. The idea is that a network has to understand

the concept of a presented object to solve the puzzle using

the classification loss cross-entropy. They prevent simple

solutions that only look at edges or corners by including

small random margins between the puzzle patches. They

fine-tune on supervised data for image classification tasks.

Noroozi et al. extended the Jigsaw task by adding image parts

of a different image [44]. They call the extension Jigsaw++.

Examples for a Jigsaw or Jigsaw++ puzzle are given in

Figure 6. Common ideas: CE, CE*, PT

DeepCluster

DeepCluster [67] is a self-supervised method that generates

labels by k-means clustering. Caron et al. iterate between

clustering of predicted labels to generate Pseudo-Labels and

training with cross-entropy on these labels. They show that it

is beneficial to use overclustering in the pretext task. After

the pretext task, they fine-tune the network on all labels.

An illustration of this method is given in Figure 9. Common

ideas: CE, OC, PL, PT

Rotation

Gidaris et al. use a pretext task based on image rotation

prediction [40]. They propose to randomly rotate the input

image by 0, 90, 180, or 270 degrees and let the network

predict the chosen rotation degree. They train the network

with cross-entropy on this classification task. In their work,

they also evaluate different numbers of rotations but four

rotations score the best result. For image classification, they

fine-tune on labeled data. Common ideas: CE, CE*, PT

Contrastive Predictive Coding (CPC)

CPC [55], [56] is a self-supervised method that predicts

representations of local image regions based on previous

image regions. The authors determine the quality of these

predictions with a contrastive loss which identifies the correct

prediction out of randomly sampled negative ones. They call

their loss InfoNCE which is cross-entropy for the prediction

of positive examples [55]. Van den Oord et al. showed

that minimizing InfoNCE maximizes the lower bound for

MI between the previous image regions and the predicted

image region [55]. An illustration of this method is given in

Figure 9. The representations of the pretext task are then fine-

tuned. Common ideas: CE, (CE*), CL, (MI), PT

Constrastive Multiview Coding (CMC)

CMC [54] generalizes CPC [55] to an arbitrary collection of

views. Tian et al. try to learn an embedding that is different

for contrastive samples and equal for similar images. Like

Oord et al. they train their network by identifying the correct

prediction out of multiple negative ones [55]. However, Tian

et al. take different views of the same image such as color

channels, depth, and segmentation as similar images. For

common image classification datasets like STL-10, they use

patch-based similarity. After this pretext task, the represen-

tations are fine-tuned to the desired dataset. Common ideas:

CE, (CE*), CL, (MI), PT

Deep InfoMax (DIM)

DIM [77] maximizes the MI between local input regions and

output representations. Hjelm et al. show that maximizing

over local input regions rather than the complete image is

beneficial for image classification. Also, they use a discrim-

inator to match the output representations to a given prior

distribution. In the end, they fine-tune the network with an

additional small fully-connected neural network. Common

ideas: CE, MI, PT

Augmented Multiscale Deep InfoMax (AMDIM)

AMDIM [78] maximizes the MI between inputs and outputs

of a network. It is an extension of the method DIM [77]. DIM
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(a) AMDIM (b) CPC (c) DeepCluster (d) IIC

FIGURE 9: Illustration of four selected multi-stage-semi-supervised methods – The used method is given below each image.

The input is given in the red box on the left side. On the right side, an illustration of the method is provided. The fine-tuning

part is excluded and only the first stage/pretext task is represented. In general, the process is organized from top to bottom. At

first, the input images are either preprocessed by one or two random transformations t or are split up. The following neural

network uses these preprocessed images (x, y) as input. The calculation of the loss (dotted line) is different for each method.

AMDIM and CPC use internal elements of the network to calculate the loss. DeepCluster and IIC use the predicted output

distributions (P (·|f(x)), P (·|f(y))) to calculate a loss. Details about the methods can be found in the corresponding entry in

section III whereas abbreviations for common methods are defined in subsection II-B.

usually maximizes MI between local regions of an image and

a representation of the image. AMDIM extends the idea of

DIM in several ways. Firstly, the authors sample the local

regions and representations from different augmentations of

the same source image. Secondly, they maximize MI between

multiple scales of the local region and the representation.

They use a more powerful encoder and define mixture-based

representations to achieve higher accuracies. Bachman et al.

fine-tune the representations on labeled data to measure their

quality. An illustration of this method is given in Figure 9.

Common ideas: CE, MI, PT

Deep Metric Transfer (DMT)

DMT [79] learns a metric as a pretext task and then prop-

agates labels onto unlabeled data with this metric. Liu et

al. use self-supervised image colorization [80] or unsuper-

vised instance discrimination [81] to calculate a metric. In

the second stage, they propagate labels to unlabeled data

with spectral clustering and then fine-tune the network with

the new Pseudo-Labels. Additionally, they show that their

approach is complementary to previous methods. If they use

the most confident Pseudo-Labels for methods such as Mean

Teacher [48] or VAT [65], they can improve the accuracy with

very few labels by about 30%. Common ideas: CE, CE*, PL,

PT

Invariant Information Clustering (IIC)

IIC [14] maximizes the MI between augmented views of

an image. The idea is that images should belong to the

same class regardless of the augmentation. The augmentation

has to be a transformation to which the neural network

should be invariant. The authors do not maximize directly

over the output distributions but over the class distribution

which is approximated for every batch. Ji et al. use auxiliary

overclustering on a different output head to increase their

performance in the unsupervised case. This idea allows the

network to learn subclasses and handle noisy data. Ji et al.

use Sobel filtered images as input instead of the original

RGB images. Additionally, they show how to extend IIC

to image segmentation. Up to this point, the method is

completely unsupervised. To be comparable to other semi-

supervised methods they fine-tune their models on a subset

of available labels. An illustration of this method is given in

Figure 9. The first unsupervised stage can be seen as a self-

supervised pretext task. In contrast to other pretext tasks, this

task already predicts representations which can be seen as

classifications. Common ideas: CE, MI, OC, PT

Self-Supervised Semi-Supervised Learning (S4L)

S4L [15] is, as the name suggests, a combination of self-

supervised and semi-supervised methods. Zhai et al. split the

loss into a supervised and an unsupervised part. The super-

vised loss is CE whereas the unsupervised loss is based on

the self-supervised techniques using rotation and exemplar

prediction [40], [68]. The authors show that their method per-

forms better than other self-supervised and semi-supervised

techniques [40], [47], [61], [65], [68]. In their Mix Of All

Models (MOAM) they combine self-supervised rotation pre-

diction, VAT, entropy minimization, Pseudo-Labels, and fine-

tuning into a single model with multiple training steps. Since

we discuss the results of their MOAM we identify S4L as

a multi-stage-semi-supervised method. Common ideas: CE,

CE*, EM, PL, PT, VAT

Simple Framework for Contrastive Learning of Visual

Representation (SimCLR)

SimCLR [25] maximizes the agreement between two differ-

ent augmentations of the same image. The method is similiar
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(a) SimCLR (b) SimCLRv2 (c) MoCo (d) BYOL

FIGURE 10: Illustration of four selected multi-stage-semi-supervised methods – The used method is given below each image.

The input is given in the red (not using labels) or blue (using labels) box on the left side. On the right side, an illustration of

the method is provided. The fine-tuning part is excluded and only the first stage/pretext task is represented. For SimCLRv2

the second stage or distillation step is illustrated. In general, the process is organized from top to bottom. At first, the input

images are either preprocessed by one or two random transformations t or are split up. The following neural network uses these

preprocessed images (x, y) as input. Details about the methods can be found in the corresponding entry in section III whereas

abbreviations for common methods are defined in subsection II-B. EMA stands for the exponential moving average.

to CPC [55] and IIC [14]. In comparison to CPC Chen et

al. do not use the different inner representations. Contrary

to IIC they use normalized temperature-scaled cross-entropy

(NT-Xent) as their loss. Based on the cosine similarity of

the predictions, NT-Xent measures whether positive pairs are

similar and negative pairs are dissimilar. Augmented versions

of the same image are treated as positive pairs and pairs with

any other image as negative pair. The system is trained with

large batch sizes of up to 8192 instead of a memory bank

to create enough negative examples. Common ideas: CE,

(CE*), CL, PT

Fuzzy Overclustering (FOC)

Fuzzy Overclustering [27] is an extension of IIC [14]. FOC

focuses on using overclustering to subdivide fuzzy labels

in real-world datasets. Therefore, it unifies the used data

and losses proposed by IIC between the different stages

and extends it with new ideas such as the novel loss In-

verse Cross-Entropy (CE−1). This loss is inspired by Cross-

Entropy but can be used on the overclustering results of the

network where no ground truth labels are known. FOC is not

achieving state-of-the-art results on a common image classi-

fication dataset. However, on a real-world plankton dataset

with fuzzy labels, it surpasses FixMatch and shows that 5-

10% more consistent predictions can be achieved. Like IIC,

FOC can be viewed as a multi-stage-semi-supervised and an

one-stage-unsupervised method. In general, FOC is trained

in one unsupervised and one semi-supervised stage and can

be seen as a multi-stage-semi-supervised method. Like IIC,

it produces classifications already in the unsupervised stage

and can therefore also be seen as an one-stage-unsupervised

method. Common ideas: CE, (CE*) MI, OC, PT

Momentum Contrast (MoCo)

He et al. propose to use a momentum encoder for contrastive

learning [82]. In other methods [25], [55]–[57], the negative

examples for the contrastive loss are sampled from the same

mini-batch as the positive pair. A large batch size is needed to

ensure a great variety of negative examples. He et al. sample

their negative examples from a queue encoded by another

network whose weights are updated with an exponential

moving average of the main network. They solve the pretext

task proposed by [81] with negative examples samples from

their queue and fine-tune in a second stage on labeled data.

Chen et al. provide further ablations and baseline for the

MoCo Framework e.g. by using a MLP head for fine-tuning

[83]. Common ideas: CE, CL, PT

Bootstrap you own latent (BYOL)

Grill et al. use an online and a target network. In the pro-

posed pretext task, the online network predicts the image

representation of the target network for an image [28]. The

difference between the predictions is measured with MSE.

Normally, this approach would lead to a degeneration of the

network as a constant prediction over all images would also

achieve the goal. In contrastive learning, this degeneration

is avoided by selecting a positive pair of examples from

multiple negative ones [25], [55]–[57], [82], [83]. By using

a slow-moving average of the weights between the online

and target network, Grill et al. show empirically that the

degeneration to a constant prediction can be avoided. This

approach has the positive effect that BYOL performance is

depending less on hyperparameters like augmentation and

batch size [28]. In a follow-up work, Richemond et al. show

that BYOL even works when no batch normalization which

might have introduced kind of a contrastive learning effect in

the batches is used [84]. Common ideas: MSE, PT
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Simple Framework for Contrastive Learning of Visual

Representation (SimCLRv2)

Chen et al. extend the framework SimCLR by using larger

and deeper networks and by incorporating the memory mech-

anism from MoCo [57]. Moreover, they propose to use this

framework in three steps. The first is training a contrastive

learning pretext task with a deep neural network and the

SimCLRv2 method. The second step is fine-tuning this large

network with a small amount of labeled data. The third step

is self-training or distillation. The large pretrained network is

used to predict Pseudo-Labels on the complete (unlabeled)

data. These (soft) Pseudo-Labels are then used to train a

smaller neural network with CE. The distillation step could

be also performed on the same network as in the pretext

task. Chen et al. show that even this self-distillation leads to

performance improvements [57]. Common ideas: CE, (CE*),

CL, PL, PT

C. ONE-STAGE-UNSUPERVISED

Deep Adaptive Image Clustering (DAC)

DAC [50] reformulates unsupervised clustering as a pairwise

classification. Similar to the idea of Pseudo-Labels Chang

et al. predict clusters and use these to retrain the network.

The twist is that they calculate the cosine distance between

all cluster predictions. This distance is used to determine

whether the input images are similar or dissimilar with a

given certainty. The network is then trained with binary CE

on these certain similar and dissimilar input images. One

can interpret these similarities and dissimilarities as Pseudo-

Labels for the similarity classification task. During the train-

ing process, they lower the needed certainty to include more

images. As input Chang et al. use a combination of RGB and

extracted HOG features. Common ideas: PL

Information Maximizing Self-Augmented Training (IMSAT)

IMSAT [85] maximizes MI between the input and output

of the model. As a consistency regularization Hu et al. use

CE between an image prediction and an augmented image

prediction. They show that the best augmentation of the pre-

diction can be calculated with VAT [65]. The maximization

of MI directly on the image input leads to a problem. For

datasets like CIFAR-10, CIFAR-100 [86] and STL-10 [52]

the color information is too dominant in comparison to the

actual content or shape. As a workaround, Hu et al. use the

features generated by a pretrained CNN on ImageNet [1] as

input. Common ideas: MI, VAT

Invariant Information Clustering (IIC)

IIC [14] is described above as a multi-stage-semi-supervised

method. In comparison to other presented methods, IIC cre-

ates usable classifications without fine-tuning the model on

labeled data. The reason for this is that the pretext task is

constructed in such a way that label predictions can be ex-

tracted directly from the model. This leads to the conclusion

that IIC can also be interpreted as an unsupervised learning

method. Common ideas: MI, OC

Fuzzy Overclustering (FOC)

FOC [27] is described avbove as a multi-stage-semi-

supervised method. Like IIC, FOC can also be seen as an

one-stage-unsupervised method because the first stage yields

cluster predictions. Common ideas: MI, OC

Semantic Clustering by Adopting Nearest Neighbors (SCAN)

Gansbeke et al. calculate clustering assignments building on

self-supervised pretext task by mining the nearest neighbors

and using self-labeling. They propose to use SimCLR [25]

as a pretext task but show that other pretext tasks [40], [81]

could also be used for this step. For each sample, the k
nearest neighbors are selected in the gained feature space.

The novel semantic clustering loss encourages these samples

to be in the same cluster. Gansbeke et al. noticed that the

wrong nearest neighbors have a lower confidence and pro-

pose to create Pseudo-Labels on only confident examples for

further fine-tuning. They also show that Overclustering can

be successfully used if the number of clusters is not known

before. Common ideas: OC, PL, PT

IV. ANALYSIS

In this chapter, we will analyze which common ideas are

shared or differ between methods. We will compare the

performance of all methods with each other on common deep

learning datasets.

A. DATASETS

In this survey, we compare the presented methods on a variety

of datasets. We selected four datasets that were used in

multiple papers to allow a fair comparison. An overview of

example images is given in Figure 11.

CIFAR-10 and CIFAR-100

are large datasets of tiny color images with size 32x32 [86].

Both datasets contain 60,000 images belonging to 10 or 100

classes respectively. The 100 classes in CIFAR-100 can be

combined into 20 superclasses. Both sets provide 50,000

training examples and 10,000 validation examples (image

+ label). The presented results are only trained with 4,000

labels for CIFAR-10 and 10,000 labels for CIFAR-100 to

represent a semi-supervised case. If a method uses all labels

this is marked independently.

STL-10

is dataset designed for unsupervised and semi-supervised

learning [52]. The dataset is inspired by CIFAR-10 [86] but

provides fewer labels. It only consists of 5,000 training labels

and 8,000 validation labels. However, 100,000 unlabeled

example images are also provided. These unlabeled examples

belong to the training classes and some different classes.

The images are 96x96 color images and were acquired in

combination with their labels from ImageNet [1].
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(a) CIFAR-10 (b) STL-10 (c) ILSVRC-2012

FIGURE 11: Examples of four random cats in the different datasets to illustrate the difference in quality

ILSVRC-2012

is a subset of ImageNet [1]. The training set consists of

1.2 million images whereas the validation and the test set

include 150,000 images. These images belong to 1000 object

categories. Due to this large number of categories, it is

common to report Top-5 and Top-1 accuracy. Top-1 accuracy

is the classical accuracy where one prediction is compared

to one ground-truth label. Top-5 accuracy checks if a ground

truth label is in a set of at most five predictions. For further

details on accuracy see subsection IV-B. The presented re-

sults are only trained with 10% of labels to represent a semi-

supervised case. If a method uses all labels this is marked

independently.

B. EVALUATION METRICS

We compare the performance of all methods based on their

classification score. This score is defined differently for un-

supervised and all other settings. We follow standard pro-

tocol and use the classification accuracy in most cases. For

unsupervised learning, we use cluster accuracy because we

need to handle the missing labels during the training. We

need to find the best one-to-one permutations (σ) from the

network cluster predictions to the ground-truth classes. For

N images x1, . . . , xN ∈ Xl with labels zxi
and predictions

f(xi) ∈ R
C the accuracy is defined in Equation 7 whereas

the cluster accuracy is defined in Equation 8.

ACC(x1, . . . , xN ) =

∑N

i=1 1zxi
=argmax1≤j≤C f(xi)j

N
(7)

ACC(x1, . . . , xN ) = max
σ

∑N

i=1 1zxi
=σ(argmax1≤j≤C f(xi)j)

N
(8)

C. COMPARISON OF METHODS

In this subsection, we will compare the methods concerning

their used common ideas and performance. We will summa-

rize the presented results and discuss the underlying trends in

the next subsection.

Comparison concerning used common ideas

In Table 1 we present all methods and their used common

ideas. Following our definition of common ideas in subsec-

tion II-B, we evaluate only ideas that were used frequently

in different papers. Special details such as the different op-

timizer for fast-SWA or the used approximation for MI are

excluded. Please see section III for further details.

One might expect that common ideas are used equally

between methods and training strategies. We rather see a

tendency that common ideas differ between training strate-

gies. We will step through all common ideas based on the

significance of differentiating the training strategies.

A major separation between the training strategies can

be based on CE and pretext tasks. All one-stage-semi-

supervised methods use a cross-entropy loss during training

whereas only two use additional losses based on pretext tasks.

All multi-stage-semi-supervised methods use a pretext task

and use CE for fine-tuning. All one-stage-semi-supervised

methods use no CE and often use a pretext task. Due to our

definition of the training strategies this grouping is expected.
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TABLE 1: Overview of the methods and their used common ideas — On the left-hand side, the reviewed methods from

section III are sorted by the training strategy. The top row lists the common ideas. Details about the ideas and their abbreviations

are given in subsection II-B. The last column and some rows sum up the usage of ideas per method or training strategy. Legend:

(X) The idea is only used indirectly. The individual explanations are given in section III.

CE CE* EM CL KL MSE MU MI OC PT PL VAT
Overall

Sum

One-Stage-Semi-Supervised

Pseudo-Labels [47] X X X 3
π model [49] X X 2
Temporal Ensembling [49] X X 2
Mean Teacher [48] X X 2
VAT [65] X X 2
VAT + EntMin [65] X X X 3
ICT [70] X X X X 4
fast-SWA [71] X X 2
MixMatch [46] X (X) X X X 5
EnAET [73] X (X) X X X AET X 7
UDA [16] X X X (X) 4
SPamCO [76] X X X X 4
ReMixMatch [45] X X (X) X (X) Rotation X 7
FixMatch [26] X X (X) X 4

Sum 14 4 6 0 2 8 4 1 0 2 8 2 47

Multi-Stage-Semi-Supervised

Exemplar [68] X X Augmentation 3
Context [42] X X Context 3
Jigsaw [43] X X Jigsaw 3
DeepCluster [67] X X X Clustering X 5
Rotation [40] X X Rotation 3
CPC [55], [56] X (X) X (X) CL 5
CMC [54] X (X) X (X) CL 5
DIM [77] X X MI 3
AMDIM [78] X X MI 3
DMT [79] X X X Metric X 5
IIC [14] X X X MI 4

S4L [15] X X X Rotation X X 6
SimCLR [25] X (X) CL 3
MoCo [82] X X Metric 3
BYOL [28] X X Bootstrap 3
FOC [27] X (X) X X MI 5
SimCLRv2 [57] X (X) X CL X 5

Sum 17 11 1 5 0 1 0 6 3 17 4 1 66

One-Stage-Unsupervised

DAC [50] X 1
IMSAT [85] X X 2
IIC [14] X X MI 3
FOC [27] X X MI 3
SCAN [41] X CL X 3

Sum 0 0 0 0 0 0 0 3 3 3 2 1 12

Overall Sum 31 54 7 5 2 9 4 10 6 22 14 4 125
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TABLE 2: Overview of the reported accuracies — The first column states the used method. For the supervised baseline, we

used the best-reported results which were considered as baselines in the referenced papers. The original paper is given in

brackets after the score. The architecture is given in the second column. The last four columns report the Top-1 accuracy score

in % for the respective dataset (See subsection IV-B for further details). If the results are not reported in the original paper,

the reference is given after the result. A blank entry represents the fact that no result was reported. Be aware that different

architectures and frameworks are used which might impact the results. Please see subsection IV-C for a detailed explanation.

Legend: † 100% of the labels are used instead of the default value defined in subsection IV-A. ‡ Multilayer perceptron is used

for fine-tuning instead of one fully connected layer. Remarks on special architectures and evaluations: 1 Architecture includes

Shake-Shake regularization. 2 Network uses wider hidden layers. 3 Method uses ten random classes out of the default 1000

classes. 4 Network only predicts 20 superclasses instead of the default 100 classes. 5 Inputs are pretrained ImageNet features.
6 Method uses different copies of the network for each input. 7 The network uses selective kernels [87].

Architecture Publication CIFAR-10 CIFAR-100 STL-10 ILSVRC-2012 ILSVRC-2012 (Top-5)

Supervised (100% labels) Best reported - 98.01 [73] 79.82 [78] 68.7 [77] 85.7 [88] 97.6 [88]

One-Stage-Semi-Supervised

Pseudo-Label [47] ResNet50v2 [2] 2013 82.41 [15]
π model [49] CONV-13 2017 87.64
Temporal Ensembling [49] CONV-13 2017 87.84
Mean Teacher [48] CONV-13 2017 87.69
Mean Teacher [48] Wide ResNet-28 2017 89.64 90.9 [57]
VAT [65] CONV-13 2018 88.64
VAT [65] ResNet50v2 2018 82.78 [15]
VAT + EntMin [65] CONV-13 2018 89.45
VAT + EntMin [65] ResNet50v2 2018 86.41 [15] 83.3 [15]
ICT [70] Wide ResNet-28 2019 92.34
ICT [70] CONV-13 2019 92.71
fast-SWA [71] CONV-13 2019 90.95 66.38

fast-SWA [71] ResNet-261 2019 93.72
MixMatch [46] Wide ResNet-28 2019 95.05 74.12 94.41
EnAET [73] Wide ResNet-28 2019 94.65 73.07 95.48
UDA [16] Wide ResNet-28 2019 94.7 68.66 88.52
SPamCo [76] Wide ResNet-28 2020 92.95
ReMixMatch [45] Wide ResNet-28 2020 94.86 76.97 [26]
FixMatch [26] Wide ResNet-28 2020 95.74 77.40
FixMatch [26] ResNet-50 2020 71.46 89.13

Multi-Stage-Semi-Supervised

Exemplar [68] ResNet50 2015 46.0
† [89] 81.01 [15]

Context [42] ResNet50 2015 51.4
† [89]

Jigsaw [43] AlexNet 2016 44.6
† [89]

DeepCluster [67] AlexNet 2018 73.4 [14] 41
†

Rotation [40] AlexNet 2018 55.4
† [89]

Rotation [40] ResNet50v2 2018 78.53 [15]

CPC [56] ResNet-170 2020 77.45
† [77] 77.81

† [77] 61.0 84.88

CMC [54] AlexNet 2019 86.88
‡

CMC [54] ResNet-506 2019 70.6 89.7
⋆

DIM [77] AlexNet 2019 72.57
‡

DIM [77] GAN Discriminator 2019 75.21
†‡

49.74
†‡

AMDIM [78] ResNet18 2019 91.3
† / 93.6†‡ 70.2

† / 73.8†‡ 93.6 / 93.8‡ 60.2
† / 60.9†‡

DMT [79] Wide ResNet-28 2019 88.70

IIC [14] ResNet34 2019 85.76 [27] / 88.8‡

S4L [15] ResNet50v22 2019 73.21 91.23
⋆

SimCLR [25] ResNet50v22 2020 74.4 [57] / 76.5† 92.6 / 93.2†

MOCO [82] ResNet502 2020 68.6

MOCO [82] ResNet50 2020 60.6† / 71.1†‡ [83]

BYOL [28] ResNet2002 2020 77.7 93.7
FOC [27] ResNet34 2020 86.49

SimCLRv2 [57] ResNet-1522,7 2020 80.9‡ 95.5‡

One-Stage-Unsupervised

DAC [50] All-ConvNet 2017 52.18 23.75 46.99 52.723

IMSAT [85] Autoencoder5 2017 45.6 27.5 94.1

IIC [14] ResNet34 2019 61.7 25.7
4 59.6

FOC [27] ResNet34 2020 60.45

SCAN [41] ResNet18 2020 88.3 50.74 80.9
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However, further clusters of the common ideas are visible.

We notice that some common ideas are (almost) solely used

by one of the two semi-supervised strategies. These com-

mon ideas are EM, KL, MSE, and MU for one-stage-semi-

supervised methods and CL, MI, and OC for multi-stage-

semi-supervised methods. We hypothesize that this shared

and different usage of ideas exists due to the different usage

of unlabeled data. For example, one-stage-semi-supervised

methods use the unlabeled and labeled data in the same stage

and therefore might need to regularize the training with MSE.

If we compare multi-stage-semi-supervised and one-stage-

unsupervised training we notice that MI, OC, and PT are

often used in both. All three of them are not often used

with one-stage-semi-supervised training as stated above. We

hypothesize that this similarity arises because most multi-

stage-semi-supervised methods have an unsupervised stage

followed by a supervised stage. For the method IIC the

authors even proposed to fine-tune the unsupervised method

to surpass purely supervised results. CE*, PL, and VAT are

used in several different methods. Due to their simple and

complementary idea, they can be used in a variety of different

methods. UDA for example uses PL to filter the unlabeled

data for useful images. CE* seems to be more often used

by multi-stage-semi-supervised methods. The parentheses in

Table 1 indicate that they often also motivate another idea like

CE−1 [27] or the CL loss [25], [55]. All in all, we see that the

defined training strategies share common ideas inside each

strategy and differ in the usage of ideas between them. We

conclude that the definition of the training strategies is not

only logical but is also supported by their usage of common

ideas.

Comparison concerning performance

We compare the performance of the different methods based

on their respective reported results or cross-references in

other papers. For better comparability, we would have liked

to recreate every method in a unified setup but this was not

feasible. Whereas using reported values might be the only

possible approach, it leads to drawbacks in the analysis.

Kolesnikov et al. showed that changes in the architecture

can lead to significant performance boost or drops [89]. They

state that ’neither [...] the ranking of architectures [is] consis-

tent across different methods, nor is the ranking of methods

consistent across architectures’ [89]. Most methods try to

achieve comparability with previous ones by a similar setup

but over time small differences still aggregate and lead to a

variety of used architectures. Some methods use only early

convolutional networks such as AlexNet [1] but others use

more modern architectures like Wide ResNet-Architecture

[90] or Shake-Shake-Regularization [91].

Oliver et al. proposed guidelines to ensure more com-

parable evaluations in semi-supervised learning [92]. They

showed that not following these guidelines may lead to

changes in the performance [92]. Whereas some methods try

to follow these guidelines, we cannot guarantee that all meth-

ods do so. This impacts comparability further. Considering

the above-mentioned limitations, we do not focus on small

differences but look for general trends and specialties instead.

Table 2 shows the collected results for all presented meth-

ods. We also provide results for the respective supervised

baselines reported by the authors. To keep fair comparability

we did not add state-of-the-art baselines with more complex

architectures. Table 3 shows the results for even fewer labels

as normally defined in subsection IV-A.

In general, the used architectures become more complex

and the accuracies rise over time. This behavior is expected

as new results are often improvements of earlier works. The

changes in architecture may have led to these improvements.

However, many papers include ablation studies and com-

parisons to only supervised methods to show the impact

of their method. We believe that a combination of more

modern architecture and more advanced methods lead to

improvements.

For the CIFAR-10 dataset, almost all multi- or one-stage-

semi-supervised methods reach about or over 90% accu-

racy. The best methods MixMatch and FixMatch reach an

accuracy of more than 95% and are roughly three percent

worse than the fully supervised baseline. For the CIFAR-100

dataset, fewer results are reported. FixMatch is with about

77% on this dataset the best method in comparison to the

fully supervised baseline of about 80%. Newer methods also

provide results for 1000 or even 250 labels instead of 4000

labels. Especially EnAET, ReMixMatch, and FixMatch stick

out since they achieve only 1-2% worse results with 250

labels instead of with 4000 labels.

For the STL-10 dataset, most methods report a better result

than the supervised baseline. These results are possible due to

the unlabeled part of the dataset. The unlabeled data can only

be utilized by semi-, self-, or unsupervised methods. EnAET

achieves the best results with more than 95%. FixMatch

reports an accuracy of nearly 95% with only 1000 labels. This

is more than most methods achieve with 5000 labels.

The ILSVRC-2012 dataset is the most difficult dataset

based on the reported Top-1 accuracies. Most methods only

achieve a Top-1 accuracy which is roughly 20% worse than

the reported supervised baseline with around 86%. Only the

methods SimCLR, BYOL, and SimCLRv2 achieve an accu-

racy that is less than 10% worse than the baseline. SimCLRv2

achieves the best accuracy with a Top-1 accuracy of 80.9%

and a Top-5 accuracy of around 96%. For fewer labels also

SimCLR, BYOL and SimCLRv2 achieve the best results.

The unsupervised methods are separated from the su-

pervised baseline by a clear margin of up to 10%. SCAN

achieves the best results in comparison to the other methods

as it builds on the strong pretext task of SimCLR. This also

illustrates the reason for including the unsupervised method

in a comparison with semi-supervised methods. Unsuper-

vised methods do not use labeled examples and therefore

are expected to be worse. However, the data show that the

gap of 10% is not large and that unsupervised methods can

benefit from ideas of self-supervised learning. Some paper

report results for even fewer labels as shown in Table 3 which
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TABLE 3: Overview of the reported accuracies with fewer labels - The first column states the used method. The last seven

columns report the Top-1 accuracy score in % for the respective dataset and amount of labels. The number is either given as an

absolute number or in percent. A blank entry represents the fact that no result was reported.

CIFAR-10 STL-10 ILSVRC-2012 ILSVRC-2012 (Top-5)

4000 1000 250 5000 1000 10% 1% 10% 1%

One-Stage-Semi-Supervised

Mean Teacher [48] 89.64 82.68 52.68
ICT [70] 92.71 84.52 61.4 [46]
MixMatch [46] 93.76 92.25 88.92 94.41 89.82
EnAET [73] 94.65 93.05 92.4 95.48 91.96
UDA [16] 95.12 [26] 91.18 [26] 92.34 [26] 68.66 88.52
ReMixMatch [45] 94.86 94.27 93.73 93.82
FixMatch [26] 95.74 94.93 94.83 71.46 89.13

Multi-Stage-Semi-Supervised

DMT [79] 88.70 80.3 58.6
SimCLR [25] 74.4 [57] 63.0 [57] 92.6 85.8
BYOL [28] 77.7 71.2 93.7 89.5
SimCLRv2 [57] 80.9 76.6 95.5 93.4

closes the gap to unsupervised learning further. IMSAT re-

ports an accuracy of about 94% on STL-10. Since IMSAT

uses pretrained ImageNet features, a superset of STL-10, the

results are not directly comparable.

D. DISCUSSION

In this subsection, we discuss the presented results of the

previous subsection. We divide our discussion into three

major trends that we identified. All these trends lead to

possible future research opportunities.

1. Trend: Real World Applications?

Previous methods were not scaleable to real-world images

and applications and used workarounds e.g. extracted fea-

tures [85] to process real-world images. Many methods can

report a result of over 90% on CIFAR-10, a simple low-

resolution dataset. Only five methods can achieve a Top-5

accuracy of over 90% on ILSVRC-2012, a high-resolution

dataset. We conclude that most methods are not scalable to

high-resolution and complex image classification problems.

However, the best-reported methods like FixMatch and Sim-

CLRv2 seem to have surpassed the point of only scientific

usage and could be applied to real-world classification tasks.

This conclusion applies to real-world image classifica-

tion tasks with balanced and clearly separated classes. This

conclusion also implicates which real-world issues need to

be solved in future research. Class imbalance [93], [94]

or noisy labels [27], [95] are not treated by the presented

methods. Datasets with also few unlabeled data points are

not considered. We see that good performance on well-

structured datasets does not always transfer completely to

real-world datasets [27]. We assume that these issues arise

due to assumptions that do not hold on real-world datasets

like a clear distinction between datapoints [27] and non-

robust hyperparameters like augmentations and batch size

[28]. Future research has to address these issues so that

reduced supervised learning methods can be applied to any

real-world datasets.

2. Trend: How much supervision is needed?

We see that the gap between reduced supervised and su-

pervised methods is shrinking. For CIFAR-10, CIFAR-100

and ILSVRC-2012 we have a gap of less than 5% left

between total supervised and reduced supervised learning.

For STL-10 the reduced supervised methods even surpass

the total supervised case by about 20% due to the additional

set of unlabeled data. We conclude that reduced supervised

learning reaches comparable results while using only roughly

10% of the labels.

In general, we considered a reduction from 100% to 10%

of all labels. However, we see that methods like FixMatch

and SimCLRv2 achieve comparable results with even fewer

labels such as the usage of 1% of all labels. For ILSVRC-

2012 this is equivalent to about 13 images per class. Fix-

Match even achieves a median accuracy of around 65% for

one label per class for the CIFAR-10 dataset [26].

The trend that results improve overtime is expected. But

the results indicate that we are near the point where semi-

supervised learning needs very few to almost no labels per

class (e.g. 10 labels for CIFAR10). In practice, the labeling

cost for unsupervised and semi-supervised will almost be

the same for common classification datasets. Unsupervised

methods would need to bridge the performance gap on these

classification datasets to be useful anymore. It is questionable

if an unsupervised method can achieve this because it would

need to guess what a human wants to have classified even

when competing features are available.

We already see that on datasets like ImageNet additional

data such as JFT-300M is used to further improve the su-

pervised training [96]–[98]. These large amounts of data

can only be collected without any or weak labels as the

collection process has to be automated. It will be interesting

to investigate if the discussed methods in this survey can also
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scale to such datasets while using only few labels per class.

We conclude that on datasets with few and a fixed number

of classes semi-supervised methods will be more important

than unsupervised methods. However, if we have a lot of

classes or new classes should be detected like in few- or zero-

shot learning [38], [94], [99], [100] unsupervised methods

will still have a lower labeling cost and be of high impor-

tance. This means future research has to investigate how

the semi-supervised ideas can be transferred to unsupervised

methods as in [14], [41] and to settings with many, an

unknown or rising amount of classes like in [39], [96].

3. Trend: Combination of common ideas

In the comparison, we identified that few common ideas are

shared by one-stage-semi-supervised and multi-stage-semi-

supervised methods.

We believe there is only a little overlap between these

methods due to the different aims of the respective authors.

Many multi-stage-semi-supervised papers focus on creating

good representations. They fine-tune their results only to be

comparable. One-stage-semi-supervised papers aim for the

best accuracy scores with as few labels as possible.

If we look at methods like SimCLRv2, EnAET, ReMix-

Match, or S4L we see that it can be beneficial to combine

different ideas and mindsets. These methods used a broad

range of ideas and also ideas uncommon for their respective

training strategy. S4L calls their combined approach even

"Mix of all models" [15] and SimCLRv2 states that "Self-

Supervised Methods are Strong Semi-Supervised Learners"

[57].

We assume that this combination is one reason for their

superior performance. This assumption is supported by the

included comparisons in the original papers. For example,

S4L showed the impact of each method separately as well

as the combination of all [15].

Methods like Fixmatch illustrate that it does not need a lot

of common ideas to achieve state-of-the-art performance but

rather that the selection of the correct ideas and combining

them in a meaningful is important. We identified that some

common ideas are not often combined and that the combina-

tion of a broad range and unusual ideas can be beneficial. We

believe that the combination of the different common idea is

a promising future research field because many reasonable

combinations are yet not explored.

V. CONCLUSION
In this paper, we provided an overview of semi-, self-, and

unsupervised methods. We analyzed their difference, similar-

ities, and combinations based on 34 different methods. This

analysis led to the identification of several trends and possible

research fields.

We based our analysis on the definition of the different

training strategies and common ideas in these strategies. We

showed how the methods work in general, which ideas they

use and provide a simple classification. Despite the difficult

comparison of the methods’ performances due to different

architectures and implementations, we identified three major

trends.

Results of over 90% Top-5 accuracy on ILSVRC-2012

with only 10% of the labels indicate that semi-supervised

methods could be applied to real-world problems. However,

issues like class imbalance and noisy or fuzzy labels are

not considered. More robust methods need to be researched

before semi-supervised learning can be applied to real-world

issues.

The performance gap between supervised and semi- or

self-supervised methods is closing and the number of labels

to get comparable results to fully supervised learning is

decreasing. In the future, the unsupervised methods will have

almost no labeling cost benefit in comparison to the semi-

supervised methods due to these developments. We conclude

that in combination with the fact that semi-supervised meth-

ods have the benefit of using labels as guidance unsuper-

vised methods will lose importance. However, for a large

number of classes or an increasing number of classes the

ideas of unsupervised are still of high importance and ideas

from semi-supervised and self-supervised learning need to be

transferred to this setting.

We concluded that one-stage-semi-supervised and multi-

stage-semi-supervised training mainly use a different set of

common ideas. Both strategies use a combination of different

ideas but there are few overlaps in these techniques. We

identified the trend that a combination of different techniques

is beneficial to the overall performance. In combination with

the small overlap between the ideas, we identified possible

future research opportunities.
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