
Machine Learning (2020) 109:373–440

https://doi.org/10.1007/s10994-019-05855-6

A survey on semi-supervised learning

Jesper E. van Engelen1 · Holger H. Hoos1,2

Received: 3 December 2018 / Revised: 20 September 2019 / Accepted: 29 September 2019 /

Published online: 15 November 2019

© The Author(s) 2019

Abstract

Semi-supervised learning is the branch of machine learning concerned with using labelled

as well as unlabelled data to perform certain learning tasks. Conceptually situated between

supervised and unsupervised learning, it permits harnessing the large amounts of unlabelled

data available in many use cases in combination with typically smaller sets of labelled data.

In recent years, research in this area has followed the general trends observed in machine

learning, with much attention directed at neural network-based models and generative learn-

ing. The literature on the topic has also expanded in volume and scope, now encompassing a

broad spectrum of theory, algorithms and applications. However, no recent surveys exist to

collect and organize this knowledge, impeding the ability of researchers and engineers alike

to utilize it. Filling this void, we present an up-to-date overview of semi-supervised learn-

ing methods, covering earlier work as well as more recent advances. We focus primarily on

semi-supervised classification, where the large majority of semi-supervised learning research

takes place. Our survey aims to provide researchers and practitioners new to the field as well

as more advanced readers with a solid understanding of the main approaches and algorithms

developed over the past two decades, with an emphasis on the most prominent and currently

relevant work. Furthermore, we propose a new taxonomy of semi-supervised classification

algorithms, which sheds light on the different conceptual and methodological approaches for

incorporating unlabelled data into the training process. Lastly, we show how the fundamental

assumptions underlying most semi-supervised learning algorithms are closely connected to

each other, and how they relate to the well-known semi-supervised clustering assumption.

Keywords Semi-supervised learning · Machine learning · Classification

Editor: Tom Fawcett.

B Jesper E. van Engelen

jesper.van.engelen@gmail.com

Holger H. Hoos

hh@liacs.nl

1 Leiden Institute of Advanced Computer Science, Leiden University, Leiden, The Netherlands

2 Department of Computer Science, University of British Columbia, Vancouver, BC, Canada

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-019-05855-6&domain=pdf
http://orcid.org/0000-0001-7220-5441
http://orcid.org/0000-0003-0629-0099

374 Machine Learning (2020) 109:373–440

1 Introduction

In machine learning, a distinction has traditionally been made between two major tasks:

supervised and unsupervised learning (Bishop 2006). In supervised learning, one is presented

with a set of data points consisting of some input x and a corresponding output value y. The

goal is, then, to construct a classifier or regressor that can estimate the output value for

previously unseen inputs. In unsupervised learning, on the other hand, no specific output

value is provided. Instead, one tries to infer some underlying structure from the inputs. For

instance, in unsupervised clustering, the goal is to infer a mapping from the given inputs (e.g.

vectors of real numbers) to groups such that similar inputs are mapped to the same group.

Semi-supervised learning is a branch of machine learning that aims to combine these

two tasks (Chapelle et al. 2006b; Zhu 2008). Typically, semi-supervised learning algorithms

attempt to improve performance in one of these two tasks by utilizing information generally

associated with the other. For instance, when tackling a classification problem, additional

data points for which the label is unknown might be used to aid in the classification process.

For clustering methods, on the other hand, the learning procedure might benefit from the

knowledge that certain data points belong to the same class.

As is the case for machine learning in general, a large majority of the research on semi-

supervised learning is focused on classification. Semi-supervised classification methods are

particularly relevant to scenarios where labelled data is scarce. In those cases, it may be

difficult to construct a reliable supervised classifier. This situation occurs in application

domains where labelled data is expensive or difficult obtain, like computer-aided diagnosis,

drug discovery and part-of-speech tagging. If sufficient unlabelled data is available and under

certain assumptions about the distribution of the data, the unlabelled data can help in the

construction of a better classifier. In practice, semi-supervised learning methods have also

been applied to scenarios where no significant lack of labelled data exists: if the unlabelled

data points provide additional information that is relevant for prediction, they can potentially

be used to achieve improved classification performance.

A plethora of learning methods exists, each with their own characteristics, advantages and

disadvantages. The most recent comprehensive survey of the area was published by Zhu in

2005 and last updated in 2008 [see Zhu (2008)]. The book by Chapelle et al. (2006b) and

the introductory book by Zhu and Goldberg (2009) also provide good bases for studying

earlier work on semi-supervised learning. More recently, Subramanya and Talukdar (2014)

provided an overview of several graph-based techniques, and Triguero et al. (2015) reviewed

and analyzed pseudo-labelling techniques, a class of semi-supervised learning methods.

Since the survey by Zhu (2008) was published, some important developments have taken

place in the field of semi-supervised learning. Across the field, new learning approaches

have been proposed, and existing approaches have been extended, improved, and analyzed

in more depth. Additionally, the rise in popularity of (deep) neural networks (Goodfellow

2017) for supervised learning has prompted new approaches to semi-supervised learning,

driven by the simplicity of incorporating unsupervised loss terms into the cost functions of

neural networks. Lastly, there has been increased attention for the development of robust

semi-supervised learning methods that do not degrade performance, and for the evaluation

of semi-supervised learning methods for practical purposes.

In this survey, we aim to provide the reader with a comprehensive overview of the cur-

rent state of the research area of semi-supervised learning, covering early work and recent

advances, and providing explanations of key algorithms and approaches. We present a new

taxonomy for semi-supervised classification methods that captures the assumptions under-

123

Machine Learning (2020) 109:373–440 375

lying each group of methods as well as the way in which they relate to existing supervised

methods. In this, we provide a perspective on semi-supervised learning that allows for a

more thorough understanding of different approaches and the connections between them.

Furthermore, we shed new light on the fundamental assumptions underlying semi-supervised

learning, and show how they connect to the so-called cluster assumption.

Although we aim to provide a comprehensive survey on semi-supervised learning, we

cannot possibly cover every method in existence. Due to the sheer size of the literature

on the topic, this would not only be beyond the scope of this article, but also distract

from the key insights which we wish to provide to the reader. Instead, we focus on the

most influential work and the most important developments in the area over the past twenty

years.

The rest of this article is structured as follows. The basic concepts and assumptions of semi-

supervised learning are covered in Sect. 2, where we also make a connection to clustering.

In Sect. 3, we present our taxonomy of semi-supervised learning methods, which forms

the conceptual basis for the remainder of our survey. Inductive methods are covered in

Sects. 4 through 6. We first consider wrapper methods (Sect. 4), followed by unsupervised

preprocessing (Sect. 5), and finally, we cover intrinsically semi-supervised methods (Sect. 6).

Sect. 7 covers transductive methods, which form the second major branch of our taxonomy.

Semi-supervised regression and clustering are discussed in Sect. 8. Finally, in Sect. 9, we

provide some prospects for the future of semi-supervised learning.

2 Background

In traditional supervised learning problems, we are presented with an ordered collection

of l labelled data points DL = ((xi , yi))
l
i=1. Each data point (xi , yi) consists of an object

xi ∈ X from a given input space X , and has an associated label yi , where yi is real-valued in

regression problems and categorical in classification problems. Based on a collection of these

data points, usually called the training data, supervised learning methods attempt to infer a

function that can successfully determine the label y∗ of some previously unseen input x∗.

In many real-world classification problems, however, we also have access to a collection

of u data points, DU = (xi)
l+u
i=l+1, whose labels are unknown. For instance, the data points for

which we want to make predictions, usually called the test data, are unlabelled by definition.

Semi-supervised classification methods attempt to utilize unlabelled data points to construct

a learner whose performance exceeds the performance of learners obtained when using only

the labelled data. In the remainder of this survey, we denote with X L and XU the collection

of input objects for the labelled and unlabelled samples, respectively.1

There are many cases where unlabelled data can help in constructing a classifier. Consider,

for example, the problem of document classification, where we wish to assign topics to a

collection of text documents (such as news articles). Assuming our documents are represented

by the set of words that appear in it, one could train a simple supervised classifier that, for

example, learns to recognize that documents containing the word “neutron” are usually about

physics. This classifier might work well on documents containing terms that it has seen in

the training data, but will inherently fail when a document does not contain predictive words

that also occurred in the training set. For example, if we encounter a physics document

1 We note that the collections of data points referred to here are technically lists. However, following common

usage, in this survey, we refer to them as ‘sets’ and, in a slight abuse of notation, apply standard set-theoretic

concepts to them.

123

376 Machine Learning (2020) 109:373–440

Fig. 1 A basic example of binary classification in the presence of unlabelled data. The unlabelled data points

are coloured according to their true label. The coloured, unfilled circles depict the contour curves of the input

data distribution corresponding to standard deviations of 1, 2 and 3 (Color figure online)

about particle accelerators that does not contain the word “neutron”, the classifier is unable

to recognize it as a document concerning physics. This is where semi-supervised learning

comes in. If we consider the unlabelled data, there might be documents that connect the word

“neutron” to the phrase “particle accelerator”. For instance, the word “neutron” would often

occur in a document that also contains the word “quark”. Furthermore, the word “quark”

would regularly co-occur with the phrase “particle accelerator”, which guides the classifiers

towards classifying these documents as revolving around physics as well, despite having

never seen the phrase “particle accelerator” in the labelled data.

Figure 1 provides some further intuition towards the use of unlabelled data for classifi-

cation. We consider an artificial classification problem with two classes. For both classes,

100 samples are drawn from a 2-dimensional Gaussian distribution with identical covariance

matrices. The labelled data set is then constructed by taking one sample from each class.

Any supervised learning algorithm will most likely obtain as the decision boundary the solid

line, which is perpendicular to the line segment connecting the two labelled data points and

intersects it in the middle. However, this is quite far from the optimal decision boundary.

As is clear from this figure, the clusters we can infer from the unlabelled data can help us

considerably in placing the decision boundary: assuming that the data stems from two Gaus-

sian distributions, a simple semi-supervised learning algorithm can infer a close-to-optimal

decision boundary.

2.1 Assumptions of semi-supervised learning

A necessary condition of semi-supervised learning is that the underlying marginal data distri-

bution p(x) over the input space contains information about the posterior distribution p(y|x).

If this is the case, one might be able to use unlabelled data to gain information about p(x), and

thereby about p(y|x). If, on the other hand, this condition is not met, and p(x) contains no

information about p(y|x), it is inherently impossible to improve the accuracy of predictions

based on the additional unlabelled data (Zhu 2008).

123

Machine Learning (2020) 109:373–440 377

(a) Smoothness and low-density assumptions. (b) Manifold assumption.

Fig. 2 Illustrations of the semi-supervised learning assumptions. In each picture, a reasonable supervised

decision boundary is depicted, as well as the optimal decision boundary, which could be closely approximated

by a semi-supervised learning algorithm relying on the respective assumption

Fortunately, the previously mentioned condition appears to be satisfied in most learning

problems encountered in the real world, as is suggested by the successful application of semi-

supervised learning methods in practice. However, the way in which p(x) and p(y|x) interact

is not always the same. This has given rise to the semi-supervised learning assumptions,

which formalize the types of expected interaction (Chapelle et al. 2006b). The most widely

recognized assumptions are the smoothness assumption (if two samples x and x ′ are close

in the input space, their labels y and y′ should be the same), the low-density assumption

(the decision boundary should not pass through high-density areas in the input space), and

the manifold assumption (data points on the same low-dimensional manifold should have the

same label). These assumptions are the foundation of most, if not all, semi-supervised learning

algorithms, which generally depend on one or more of them being satisfied, either explicitly or

implicitly. Throughout this survey, we will elaborate on the underlying assumptions utilized

by each specific learning algorithm. The assumptions are explained in more detail below; a

visual representation is provided in Fig. 2.

2.1.1 Smoothness assumption

The smoothness assumption states that, for two input points x, x ′ ∈ X that are close by in

the input space, the corresponding labels y, y′ should be the same. This assumption is also

commonly used in supervised learning, but has an extended benefit in the semi-supervised

context: the smoothness assumption can be applied transitively to unlabelled data. For exam-

ple, assume that a labelled data point x1 ∈ X L and two unlabelled data points x2, x3 ∈ XU

exist, such that x1 is close to x2 and x2 is close to x3, but x1 is not close to x3. Then, because

of the smoothness assumption, we can still expect x3 to have the same label as x1, since

proximity—and thereby the label—is transitively propagated through x2.

2.1.2 Low-density assumption

The low-density assumption implies that the decision boundary of a classifier should prefer-

ably pass through low-density regions in the input space. In other words, the decision

123

378 Machine Learning (2020) 109:373–440

boundary should not pass through high-density regions. The assumption is defined over

p(x), the true distribution of the input data. When considering a limited set of samples from

this distribution, it essentially means that the decision boundary should lie in an area where

few data points are observed. In that light, the low-density assumption is closely related to

the smoothness assumption; in fact, it can be considered the counterpart of the smoothness

assumption for the underlying data distribution.

Suppose that a low-density area exists, i.e. an area R ⊂ X where p(x) is low. Then very

few observations are expected to be contained in R, and it is thus unlikely that any pair of

similar data points in R is observed. If we place the decision boundary in this low-density

area, the smoothness assumption is not violated, since it only concerns pairs of similar data

points. For high-density areas, on the other hand, many data points can be expected. Thus,

placing the decision boundary in a high-density region violates the smoothness assumption,

since the predicted labels would then be dissimilar for similar data points.

The converse is also true: if the smoothness assumption holds, then any two data points

that lie close together have the same label. Therefore, in any densely populated area of the

input space, all data points are expected to have the same label. Consequently, a decision

boundary can be constructed that passes only through low-density areas in the input space,

thus satisfying the low-density assumption as well. Due to their close practical relation, we

depict the low-density assumption and the smoothness assumption in a single illustration in

Fig. 2.

2.1.3 Manifold assumption

In machine learning problems where the data can be represented in Euclidean space, the

observed data points in the high-dimensional input space R
d are usually concentrated along

lower-dimensional substructures. These substructures are known as manifolds: topological

spaces that are locally Euclidean. For instance, when we consider a 3-dimensional input space

where all points lie on the surface of a sphere, the data can be said to lie on a 2-dimensional

manifold. The manifold assumption in semi-supervised learning states that (a) the input space

is composed of multiple lower-dimensional manifolds on which all data points lie and (b)

data points lying on the same manifold have the same label. Consequently, if we are able

to determine which manifolds exist and which data points lie on which manifold, the class

assignments of unlabelled data points can be inferred from the labelled data points on the

same manifold.

2.2 Connection to clustering

In semi-supervised learning research, an additional assumption that is often included is the

cluster assumption, which states that data points belonging to the same cluster belong to

the same class (Chapelle et al. 2006b). We argue, however, that the previously mentioned

assumptions and the cluster assumption are not independent of each other but, rather, that

the cluster assumption is a generalization of the other assumptions.

Consider an input space X with some objects X ⊂ X , drawn from the distribution p(x).

A cluster, then, is a set of data points C ⊆ X that are more similar to each other than to other

data points in X , according to some concept of similarity (Anderberg 1973). Determining

clusters corresponds to finding some function f : X → Y that maps each input in x ∈ X to

a cluster with label y = f (x), where each cluster label y ∈ Y uniquely identifies one cluster.

Since we do not have direct access to p(x) to determine a suitable clustering, we need to rely

123

Machine Learning (2020) 109:373–440 379

on some concept of similarity between data points in X , according to which we can assign

clusters to similar data points.

The concept of similarity we choose, often implicitly, dictates what constitutes a cluster.

Although the efficacy of any particular clustering method for finding these clusters depends

on many other factors, the concept of similarity uniquely defines the interaction between p(x)

and p(y|x). Therefore, whether two points belong to the same cluster can be derived from

their similarity to each other and to other points. From our perspective, the smoothness, low-

density, and manifold assumptions boil down to different definitions of the similarity between

points: the smoothness assumption states that points that are close to each other in input space

are similar; the low-density assumption states that points in the same high-density area are

similar; and the manifold assumption states that points that lie on the same low-dimensional

manifold are similar. Consequently, the semi-supervised learning assumptions can be seen

as more specific instances of the cluster assumption: that similar points tend to belong to the

same group.

One could even argue that the cluster assumption corresponds to the necessary condition

for semi-supervised learning: that p(x) carries information on p(y|x). In fact, assuming the

output space Y contains the labels of all possible clusters, the necessary condition for semi-

supervised learning to succeed can be seen to be the necessary condition for clustering to

succeed. In other words: if the data points (both unlabelled and labelled) cannot be mean-

ingfully clustered, it is impossible for a semi-supervised learning method to improve on a

supervised learning method.

2.3 When does semi-supervised learning work?

The primary goal of semi-supervised learning is to harness unlabelled data for the construction

of better learning procedures. As it turns out, this is not always easy or even possible. As

mentioned earlier, unlabelled data is only useful if it carries information useful for label

prediction that is not contained in the labelled data alone or cannot be easily extracted from

it. To apply any semi-supervised learning method in practice, the algorithm then needs to be

able to extract this information. For practitioners and researchers alike, this begs the question:

when is this the case?

Unfortunately, it has proven difficult to find a practical answer to this question. Not only

is it difficult to precisely define the conditions under which any particular semi-supervised

learning algorithm may work, it is also rarely straightforward to evaluate to what extent these

conditions are satisfied. However, one can reason about the applicability of different learning

methods on various types of problems. Graph-based methods, for example, typically rely on

a local similarity measure to construct a graph over all data points. To apply such methods

successfully, it is important that a meaningful local similarity measure can be devised. In

high-dimensional data, such as images, where Euclidean feature distance is rarely a good

indicator of the similarity between data points, this is often difficult. As can be seen in the

literature, most semi-supervised learning approaches for images rely on a weak variant of

the smoothness assumption that requires predictions to be invariant to minor perturbations

in the input (Rasmus et al. 2015; Laine and Aila 2017; Tarvainen and Valpola 2017). Semi-

supervised extensions of supervised learning algorithms, on the other hand, generally rely

on the same assumption as their supervised counterparts. For instance, both supervised and

semi-supervised support vector machines rely on the low-density assumption, which states

that the decision boundary should lie in a low-density region of the decision space. If a

123

380 Machine Learning (2020) 109:373–440

supervised classifier performs well in such cases, it is only natural to use the semi-supervised

extension to the algorithm.

As is the case for supervised learning algorithms, no method has yet been discovered to

determine a priori what learning method is best-suited for any particular problem. What is

more, it is impossible to guarantee that the introduction of unlabelled data will not degrade

performance. Such performance degradation has been observed in practice, and its preva-

lence is likely under-reported due to publication bias (Zhu 2008). The problem of potential

performance degradation has been identified in multiple studies (Zhu 2008; Chapelle et al.

2006b; Singh et al. 2009; Li and Zhou 2015; Oliver et al. 2018), but remains difficult to

address. It is particularly relevant in scenarios where good performance can be achieved with

purely supervised classifiers. In those cases, the potential performance degradation is much

larger than the potential performance gain.

The main takeaway from these observations is that semi-supervised learning should not be

seen as a guaranteed way of achieving improved prediction performance by the mere intro-

duction of unlabelled data. Rather, it should be treated as another direction in the process of

finding and configuring a learning algorithm for the task at hand. Semi-supervised learning

procedures should be part of the suite of algorithms considered for use in a particular appli-

cation scenario, and a combination of theoretical analysis (where possible) and empirical

evaluation should be used to choose an approach that is well suited to the given situation.

2.4 Empirical evaluation of semi-supervised learningmethods

When evaluating and comparing machine learning algorithms, a multitude of decisions influ-

ence the relative performance of different algorithms. In supervised learning, these include

the selection of data sets, the partitioning of those data sets into training, validation and test

sets, and the extent to which hyperparameters are tuned. In semi-supervised learning, addi-

tional factors come into play. First, in many benchmarking scenarios, a decision has to be

made which data points should be labelled and which should remain unlabelled. Second, one

can choose to evaluate the performance of the learner on the unlabelled data used for training

(which is by definition the case in transductive learning), or on a completely disjoint test

set. Additionally, it is important to establish high-quality supervised baselines to allow for

proper assessment of the added value of the unlabelled data. In practice, excessively limiting

the scope of the evaluation can lead to unrealistic perspectives on the performance of the

learning algorithms. Recently, Oliver et al. (2018) established a set of guidelines for the real-

istic evaluation of semi-supervised learning algorithms; several of their recommendations

are included here.

In practical use cases, the partitioning of labelled and unlabelled data is typically fixed.

In research, data sets used for evaluating semi-supervised learning algorithms are usually

obtained by simply removing the labels of a large amount of data points from an existing

supervised learning data set. In earlier research, the data sets from the UCI Machine Learning

Repository were often used (Dua and Graff 2019). In more recent research on semi-supervised

image classification, the CIFAR-10/100 (Krizhevsky 2009) and SVHN (Netzer et al. 2011)

data sets have been popular choices. Additionally, two-dimensional toy datasets are some-

times used to demonstrate the viability of a new approach. Typically, these toy data sets

consist of an input distribution where data points from each class are concentrated along

a one-dimensional manifold. For instance, the popular half-moon data set consists of data

points drawn from two interleaved half circles, each associated with a different class.

123

Machine Learning (2020) 109:373–440 381

As has been observed in practice, the choice of data sets and their partitioning can have

significant impact on the relative performance of different learning algorithms (see, e.g.

Chapelle et al. 2006b; Triguero et al. 2015). Some algorithms may work well when the

amount of labelled data is limited and perform poorly when more labelled data is available;

others may excel on particular types of data sets but not on others. To provide a realistic

evaluation of semi-supervised learning algorithms, researchers should thus evaluate their

algorithms on a diverse suite of data sets with different quantities of labelled and unlabelled

data.

In addition to the choice of data sets and their partitioning, it is important that a strong

baseline is chosen when evaluating the performance of a semi-supervised learning method.

After all, it is not particularly relevant to practitioners whether the introduction of unlabelled

data improves the performance of any particular learning algorithm. Rather, the central ques-

tion is: does the introduction of unlabelled data yield a learner that is better than any other

learner—be it supervised or semi-supervised. As pointed out by Oliver et al. (2018), this calls

for the inclusion of state-of-the-art, properly tuned supervised baselines when evaluating the

performance of semi-supervised learning algorithms.

Several studies have independently evaluated the performance of different semi-supervised

learning methods on various data sets. Chapelle et al. (2006b) empirically compared eleven

diverse semi-supervised learning algorithms, using supervised support vector machines and k-

nearest neighbours as their baseline. They included semi-supervised support vector machines,

label propagation and manifold regularization techniques, applying hyperparameter opti-

mization for each algorithm. Comparing the performance of the algorithms on eight different

data sets, the authors found that no algorithm uniformly outperformed the others. Substan-

tial performance improvements over the baselines were observed on some data sets, while

performance was found to be degraded on others. Relative performance also varied with the

amount of unlabelled data.

Oliver et al. (2018) compared several semi-supervised neural networks, including the mean

teacher model, virtual adversarial training and a wrapper method called pseudo-label, on

two image classification problems. They reported substantial performance improvements

for most of the algorithms, and observed that the error rates typically declined as more

unlabelled data points were added (without removing any labelled data points). Performance

degradations were observed only when there was a mismatch between the classes present in

the labelled data and the classes present in the unlabelled data. These results are promising

indeed: they indicate that, in image classification tasks, unlabelled data can be employed

by neural networks to consistently improve performance. It is an interesting avenue for

future research to investigate whether these consistent performance improvements can also be

obtained for other types of data. Furthermore, it is an open question whether the assumptions

underlying these semi-supervised neural networks could be exploited to consistently improve

the performance of other learning methods.

3 Taxonomy of semi-supervised learningmethods

Over the past two decades, a broad variety of semi-supervised classification algorithms has

been proposed. These methods differ in the semi-supervised learning assumptions they are

based on, in how they make use of unlabelled data, and in the way they relate to supervised

algorithms. Existing categorizations of semi-supervised learning methods generally use a

subset of these properties and are typically relatively flat, thereby failing to capture similarities

123

382 Machine Learning (2020) 109:373–440

Fig. 3 Visualization of the semi-supervised classification taxonomy. Each leaf in the taxonomy corresponds

to a specific type of approach to incorporating unlabelled data into classification methods. In the leaf corre-

sponding to transductive, graph-based methods, the dashed boxes represent distinct phases of the graph-based

classification process, each of which has a multitude of variations

between different groups of methods. Furthermore, the categorizations are often fine-tuned

towards existing work, making them less suited for the inclusion of new approaches.

In this survey, we propose a new way to represent the spectrum of semi-supervised classifi-

cation algorithms. We attempt to group them in a clear, future-proof way, allowing researchers

and practitioners alike to gain insight into the way semi-supervised learning methods relate

to each other, to existing supervised learning methods, and to the semi-supervised learning

assumptions. The taxonomy is visualized in Fig. 3. At the highest level, it distinguishes

between inductive and transductive methods, which give rise to distinct optimization proce-

dures: the former attempt to find a classification model, whereas the latter are solely concerned

with obtaining label predictions for the given unlabelled data points. At the second level, it

considers the way the semi-supervised learning methods incorporate unlabelled data. This

distinction gives rise to three distinct classes of inductive methods, each of which is related

to supervised classifiers in a different way.

The first distinction we make in our taxonomy, between inductive and transductive meth-

ods, is common in the literature on semi-supervised learning (see, e.g. Chapelle et al. 2006b;

Zhu 2008; Zhu and Goldberg 2009). The former, like supervised learning methods, yield a

classification model that can be used to predict the label of previously unseen data points.

The latter do not yield such a model, but instead directly provide predictions. In other words,

given a data set consisting of labelled and unlabelled data, X L , XU ⊆ X , with labels yL ∈ Yl

for the l labelled data points, inductive methods yield a model f : X �→ Y , whereas transduc-

123

Machine Learning (2020) 109:373–440 383

tive methods produce predicted labels ŷU for the unlabelled data points in XU . Accordingly,

inductive methods involve optimization over prediction models, whereas transductive meth-

ods optimize directly over the predictions ŷU .

Inductive methods, which generally extend supervised algorithms to include unlabelled

data, are further differentiated in our taxonomy based on the way they incorporate unlabelled

data: either in a preprocessing step, directly inside the objective function, or via a pseudo-

labelling step. The transductive methods are in all cases graph-based; we group these based on

the choices made in different stages of the learning process. In the remainder of this section,

we will elaborate on the grouping of semi-supervised learning methods represented in the

taxonomy, which forms the basis for our discussion of semi-supervised learning methods in

the remainder of this survey.

3.1 Inductive methods

Inductive methods aim to construct a classifier that can generate predictions for any object in

the input space. Unlabelled data may be used when training this classifier, but the predictions

for multiple new, previously unseen examples are independent of each other once training has

been completed. This corresponds to the objective in supervised learning methods: a model

is built in the training phase and can then be used for predicting the labels of new data points.

3.1.1 Wrapper methods

A simple approach to extending existing, supervised algorithms to the semi-supervised setting

is to first train classifiers on labelled data, and to then use the predictions of the resulting

classifiers to generate additional labelled data. The classifiers can then be re-trained on this

pseudo-labelled data in addition to the existing labelled data. Such methods are known as

wrapper methods: the unlabelled data is pseudo-labelled by a wrapper procedure, and a

purely supervised learning algorithm, unaware of the distinction between originally labelled

and pseudo-labelled data, constructs the final inductive classifier. This reveals a key property

of wrapper methods: most of them can be applied to any given supervised base learner,

allowing unlabelled data to be introduced in a straightforward manner. Wrapper methods

form the first part of the inductive side of the taxonomy, and are covered in Sect. 4.

3.1.2 Unsupervised preprocessing

Secondly, we consider unsupervised preprocessing methods, which either extract useful fea-

tures from the unlabelled data, pre-cluster the data, or determine the initial parameters of a

supervised learning procedure in an unsupervised manner. Like wrapper methods, they can

be used with any supervised classifier. However, unlike wrapper methods, the supervised

classifier is only provided with originally labelled data points. These methods are covered in

Sect. 5.

3.1.3 Intrinsically semi-supervised methods

The last class of inductive methods we consider directly incorporate unlabelled data into the

objective function or optimization procedure of the learning method. Many of these methods

are direct extensions of supervised learning methods to the semi-supervised setting: they

123

384 Machine Learning (2020) 109:373–440

extend the objective function of the supervised classifier to include unlabelled data. Semi-

supervised support vector machines (S3VMs), for example, extend supervised SVMs by

maximizing the margin not only on labelled, but also on unlabelled data. There are intrinsically

semi-supervised extensions of many prominent supervised learning approaches, including

SVMs, Gaussian processes and neural networks, and we describe these in Sect. 6. We further

group the methods inside this category based on the semi-supervised learning assumptions

on which they rely.

3.2 Transductivemethods

Unlike inductive methods, transductive methods do not construct a classifier for the entire

input space. Instead, their predictive power is limited to exactly those objects that it encoun-

ters during the training phase. Therefore, transductive methods have no distinct training and

testing phases. Since supervised learning methods are by definition not supplied with unla-

belled data until the testing phase, no clear analogies of transductive algorithms exist in

supervised learning.

Since no model of the input space exists in transductive learners, information has to

be propagated via direct connections between data points. This observation naturally gives

rise to a graph-based approach to transductive methods: if a graph can be defined in which

similar data points are connected, information can then be propagated along the edges of

this graph. In practice, all transductive methods we discuss are either explicitly graph-based

or can implicitly be understood as such. We note that inductive graph-based methods also

exist; we cover them in Sect. 6.3. Inductive as well as transductive graph-based methods are

typically premised on the manifold assumption: the graphs, constructed based on the local

similarity between data points, provide a lower-dimensional representation of the potentially

high-dimensional input data.

Transductive graph-based methods generally consist of three steps: graph construction,

graph weighting and inference. In the first step, the set of objects, X , is used to construct a

graph where each node represents a data point and pairwise similar data points are connected

by an edge. In the second step, these edges are weighted to represent the extent of the pairwise

similarity between the respective data points. In the third step, the graph is used to assign

labels to the unlabelled data points. Different methods for carrying out these three steps are

discussed in detail in Sect. 7.

4 Wrapper methods

Wrapper methods are among the oldest and most widely known algorithms for semi-

supervised learning (Zhu 2008). They utilize one or more supervised base learners and

iteratively train these with the original labelled data as well as previously unlabelled data

that is augmented with predictions from earlier iterations of the learners. The latter is com-

monly referred to as pseudo-labelled data. The procedure usually consists of two alternating

steps of training and pseudo-labelling. In the training step, one or more supervised classifiers

are trained on the labelled data and, possibly, pseudo-labelled data from previous iterations.

In the pseudo-labelling step, the resulting classifiers are used to infer labels for the previ-

ously unlabelled objects; the data points for which the learners were most confident of their

predictions are pseudo-labelled for use in the next iteration.

123

Machine Learning (2020) 109:373–440 385

A significant advantage of wrapper methods is that they can be used with virtually any

supervised base learner. The supervised base learner can be entirely unaware of the wrapper

method, which simply passes pseudo-labelled samples to the base learner as if they were

regular labelled samples. Although some wrapper methods require the base learner to provide

probabilistic predictions, many wrapper methods relying on multiple base learners do not.

For any particular wrapper method, the semi-supervised learning assumptions underlying it

are dependent on the base learners that are used. In that sense, a wrapper method cannot be

considered a learning method on its own: it only becomes a complete learning method when

it is combined with a particular set of base learners.

A comprehensive survey of wrapper methods was published recently by Triguero et al.

(2015). In addition to providing an overview of such methods, they also proposed a catego-

rization and taxonomy of wrapper methods, which is based on (1) how many classifiers are

used, (2) whether different types of classifiers are used, and (3) whether they use single-view

or multi-view data (i.e. whether the data is split into multiple feature subsets). This taxonomy

provides valuable insight into the space of wrapper methods.

We present a less complex taxonomy, focused on the three relatively independent types of

wrapper methods that have been studied in the literature. Firstly, we consider self-training,

which uses one supervised classifier that is iteratively re-trained on its own most confident

predictions. Secondly, we consider co-training, an extension of self-training to multiple

classifiers that are iteratively re-trained on each other’s most confident predictions. The

classifiers are supposed to be sufficiently diverse, which is usually achieved by operating

on different subsets of the given objects or features. Lastly, we consider pseudo-labelled

boosting methods. Like traditional boosting methods, they build a classifier ensemble by

constructing individual classifiers sequentially, where each individual classifier is trained on

both labelled data and the most confident predictions of the previous classifiers on unlabelled

data.

4.1 Self-training

Self-training methods (sometimes also called “self-learning” methods) are the most basic

of pseudo-labelling approaches (Triguero et al. 2015). They consist of a single supervised

classifier that is iteratively trained on both labelled data and data that has been pseudo-labelled

in previous iterations of the algorithm.

At the beginning of the self-training procedure, a supervised classifier is trained on only

the labelled data. The resulting classifier is used to obtain predictions for the unlabelled

data points. Then, the most confident of these predictions are added to the labelled data set,

and the supervised classifier is re-trained on both the original labelled data and the newly

obtained pseudo-labelled data. This procedure is typically iterated until no more unlabelled

data remain.

Self-training was first proposed by Yarowsky (1995) as an approach to word sense dis-

ambiguation in text documents, predicting the meaning of words based on their context.

Since then, several applications and variations of self-training have been put forward. For

instance, Rosenberg et al. (2005) applied self-training to object detection problems, and

showed improved performance over a state-of-the-art (at that time) object detection model.

Dópido et al. (2013) developed a self-training approach for hyperspectral image classifi-

cation. They used domain knowledge to select a set of candidate unlabelled samples, and

pseudo-labelled the most informative of these samples with the predictions made by the

trained classifier.

123

386 Machine Learning (2020) 109:373–440

The self-training paradigm admits a multitude of design decisions, including the selection

of data to pseudo-label, the re-use of pseudo-labelled data in later iterations of the algorithm,

and stopping criteria (see, e.g. Rosenberg et al. 2005; Triguero et al. 2015). The selection

procedure for data to be pseudo-labelled is of particular importance, since it determines

which data end up in the training set for the classifier. In typical self-training settings, where

this selection is made based on prediction confidence, the quality of the confidence esti-

mates significantly influences algorithm performance. In particular, the ranking of prediction

probabilities for the unlabelled samples should reflect the true confidence ranking.

If well-calibrated probabilistic predictions are available, the respective probabilities can

be used directly. In this case, the self-training approach is iterative and not incremental, as

label probabilities for unlabelled data points are re-estimated in each step. In that case, the

approach becomes similar to expectation-maximization (EM; Dempster et al. 1977). It has

been particularly well studied in the context of naïve Bayes classifiers, which are inherently

probabilistic (Nigam and Ghani 2000; Nigam et al. 2000, 2006). Wu et al. (2012b) recently

applied semi-supervised EM with a naïve Bayes classifier to the problem of detecting fake

product reviews on e-commerce websites.

Algorithms that do not natively support robust probabilistic predictions may require adap-

tations to benefit from self-training. Decision trees are a prime example of this: without any

modifications or pruning, prediction probability estimates, which are generally calculated

from the fraction of samples in a leaf with a certain label, are generally of low quality. This

can be mainly attributed to the fact that most decision tree learning algorithms explicitly

attempt to minimize the impurity in tree nodes, thereby encouraging small leaves and highly

biased probability estimates (Provost and Domingos 2003). Tanha et al. (2017) attempted to

overcome this problem in two distinct ways. Firstly, they applied several existing methods,

such as grafting and Laplace correction, to directly improve prediction probability estimates.

Secondly, they used a local distance-based measure to determine the confidence ranking

between instances: the prediction confidence of an unlabelled data point is based on the

absolute difference in the Mahalanobis distances between that point and the labelled data

from each class. They showed improvements in performance of both decision trees and

random forests (ensembles of decision trees) using this method (Tanha et al. 2017).

Leistner et al. (2009) also utilized self-training to improve random forests. Instead of

labelling the unlabelled data x ∈ XU with the label predicted to be most likely, they pseudo-

label each unlabelled data point independently for each tree according to the estimated

posterior distribution p(y|x). Furthermore, they proposed a stopping criterion based on the

out-of-bag-error: when the out-of-bag-error (which is an unbiased estimate of the general-

ization error) increases, training is stopped.

The base learners in self-training are by definition agnostic to the presence of the wrapper

method. Consequently, they have to be completely re-trained in each self-training iteration.

However, when a classifier can be trained incrementally (i.e. optimizing the objective function

over individual data points or subsets of the given data), an iterative pseudo-labelling approach

similar to self-training can be applied. Instead of re-training the entire algorithm in each

iteration, data points can be pseudo-labelled throughout the training process. This approach

was applied to neural networks by Lee (2013), who proposed the pseudo-label approach.

Since the pseudo-labels predicted in the earlier training stages are generally less reliable,

the weight of the pseudo-labelled data is increased over time. The pseudo-label approach

exhibits clear similarities to self-training, but differs in the sense that the classifier is not

re-trained after each pseudo-labelling step: instead, it is fine-tuned with new pseudo-labelled

data, and therefore technically deviates from the wrapper method paradigm.

123

Machine Learning (2020) 109:373–440 387

Limited studies regarding the theoretical properties of self-training algorithms exist. Haf-

fari and Sarkar (2007) performed a theoretical analysis of several variants of self-training and

showed a connection with graph-based methods. Culp and Michailidis (2008) analyzed the

convergence properties of a variant of self-training with several base learners, and considered

the connection to graph-based methods as well.

4.2 Co-training

Co-training is an extension of self-training to multiple supervised classifiers. In co-training,

two or more supervised classifiers are iteratively trained on the labelled data, adding their

most confident predictions to the labelled data set of the other supervised classifiers in each

iteration. For co-training to succeed, it is important that the base learners are not too strongly

correlated in their predictions. If they are, their potential to provide each other with useful

information is limited. In the literature, this condition is usually referred to as the diversity

criterion (Wang and Zhou 2010). Zhou and Li (2010) provided a survey of semi-supervised

learning methods relying on multiple base learners. They jointly refer to these methods as

disagreement-based methods, referring to the observation that co-training approaches exploit

disagreements between multiple learners: they exchange information through unlabelled data,

for which different learners predict different labels.

To promote classifier diversity, earlier co-training approaches mainly relied on the exis-

tence of multiple different views of the data, which generally correspond to distinct subsets of

the feature set. For instance, when handling video data, the data can be naturally decomposed

into visual and audio data. Such co-training methods belong to the broader class of multi-

view learning approaches, which includes a broad range of supervised learning algorithms as

well. A comprehensive survey of multi-view learning was produced by Xu et al. (2013). We

cover multi-view co-training methods in Sect. 4.2.1. In many real-world problem scenarios,

no distinct views of the data are known a priori. Single-view co-training methods address

this problem either by automatically splitting the data into different views, or by promoting

diversity in the learning algorithms themselves; we cover these methods in Sect. 4.2.2. We

also briefly discuss co-regularization methods, in which multiple classifiers are combined

into a single objective function, in Sect. 4.2.3.

4.2.1 Multi-view co-training

The basic form of co-training was proposed by Blum and Mitchell (1998). In their seminal

paper, they proposed to construct two classifiers that are trained on two distinct views, i.e.

subsets of features, of the given data. After each training step, the most confident predictions

for each view are added to the set of labelled data for the other view. Blum and Mitchell

applied the co-training algorithm to the classification for university web pages, using the

web page text and the anchor text in links to the web page from external sources as two

distinct views. This algorithm and variants thereof have been successfully applied in several

fields, most notably natural language processing (Kiritchenko and Matwin 2001; Mihalcea

2004; Wan 2009).

The original co-training algorithm by Blum and Mitchell (1998) relies on two main

assumptions to succeed: (1) each individual subset of features should be sufficient to obtain

good predictions on the given data set, and (2) the subsets of features should be conditionally

independent given the class label. The first assumption can be understood trivially: if one

of the two feature subsets is insufficient to form good predictions, a classifier using that set

123

388 Machine Learning (2020) 109:373–440

can never contribute positively to the overall performance of the combined approach. The

second assumption is related to the diversity criterion: if the feature subsets are conditionally

independent given the class label, the predictions of the individual classifiers are unlikely

to be strongly correlated. Formally, for any data point xi = x
(1)
i × x

(2)
i , decomposed into

x
(1)
i and x

(2)
i for the first and second feature subset, respectively, the conditional indepen-

dence assumption amounts to p(x
(1)
i |x(2)

i , yi) = p(x
(1)
i |yi). Dasgupta et al. (2002) showed

that, under the previously mentioned assumptions, generalization error can be decreased by

promoting agreement among the individual learners.

In practice, the second assumption is generally not satisfied: even if a natural split of

features exists, such as in the experimental setup used by Blum and Mitchell (1998), it is

unlikely that information contained in one view provides no information about the other view

when conditioned on the class label (Du et al. 2011). Considering the university web page

classification example, the anchor text of a link to a web page can indeed be expected to

contain clues towards the content of the web page, even if it is known that the web page

is classified as a faculty member’s home page. For example, if the link’s anchor text is

“Dean of the Engineering Faculty”, one is more likely to find information about the dean of

the engineering faculty than about any other person in the text of that page. Thus, several

alternatives to this assumption have been considered.

Abney (2002) showed that a weak independence assumption is sufficient for successful

co-training. Balcan et al. (2005) further relaxed the conditional independence assumption,

showing that a much weaker assumption, which they dub the expansion assumption, is suf-

ficient and to some extent necessary. The expansion assumption states that the two views

are not highly correlated, and that individual classifiers never confidently make incorrect

predictions.

Du et al. (2011) studied empirical methods to determine to what degree the sufficiency and

independence assumptions hold. They proposed several methods for automatically splitting

the feature set into two views, and showed that the resulting empirical independence and suf-

ficiency is positively correlated with the performance of the co-trained algorithm, indicating

that feature splits optimizing sufficiency and independence lead to good classifiers.

4.2.2 Single-view co-training

As shown by Du et al. (2011), co-training can be successful even when no natural split in a

given feature set is known a priori. This observation is echoed throughout the literature on co-

training, and many different approaches to applying co-training in this so-called single-view

setting exist.

Chen et al. (2011) attempted to alleviate the need for pre-defined disjoint feature sets by

automatically splitting the feature set in each co-training iteration. They formulated a single

optimization problem closely related to co-training, incorporating both the requirement that

the feature sets should be disjoint and the expansion property of Balcan et al. (2005). They

showed promising results for this approach on a partially synthetic data set, where multiple

views of each data point are automatically generated. Wang and Zhou (2010) reasoned about

sufficient and necessary conditions for co-training to succeed, approaching co-training from

a graph-based perspective, where label propagation is alternately applied to each learner. A

downside of this approach is that, although inspired by co-training, it cannot be applied to

an arbitrary supervised learning algorithm without modification: the operations resembling

co-training are embedded in the objective function, which is optimized directly.

123

Machine Learning (2020) 109:373–440 389

Several techniques have been proposed for splitting single-view data sets into multiple

views. For instance, Wang et al. (2008b) suggested to generate k random projections of

the data, and use these as the views for k different classifiers. Zhang and Zheng (2009)

proposed to project the data onto a lower-dimensional subspace using principal component

analysis and to construct the pseudo-views by greedily selecting the transformed features

with maximal variance. Yaslan and Cataltepe (2010) do not transform the data to a different

basis, but select the features for each view iteratively, with preference given to features with

high mutual information with respect to the given labels.

Further approaches to apply algorithms resembling co-training to data sets where no

explicit views are available focus on other ways of introducing diversity among the clas-

sifiers. For example, one can use different hyperparameters for the supervised algorithms

(Wang and Zhou 2007; Zhou and Li 2005a), or use different algorithms altogether (Goldman

and Zhou 2000; Xu et al. 2012; Zhou and Goldman 2004). Wang and Zhou (2007) provided

both theoretical and empirical analyses on why co-training can work in single-view settings.

They showed that the diversity between the learners is positively correlated with their joint

performance. Zhou and Li (2005b) proposed tri-training, where three classifiers are alter-

nately trained. When two of the three classifiers agree on their prediction for a given data

point, that data point is passed to the other classifier along with the respective label. Crucially,

tri-training does not rely on probabilistic predictions of individual classifiers, and can thus

be applied to a much broader range of supervised learning algorithms.

The authors of the tri-training approach proposed to extend it to more than three learners—

notably, to random forests (Li and Zhou 2007). The approach, known as co-forest, starts by

training the decision trees independently on all labelled data. Then, in each iteration, each

classifier receives pseudo-labelled data based on the joint prediction of all other classifiers

on the unlabelled data: if the fraction of classifiers predicting a class ŷi for an unlabelled

data point xi exceeds a certain threshold, the pseudo-labelled data point (xi , yi) is passed to

the classifier. The decision trees are then all re-trained on their labelled and pseudo-labelled

data. In the next iteration, all previously pseudo-labelled data is treated as unlabelled again.

We note that, as the number of trees approaches infinity, this approach becomes a form of

self-training.

Co-forest includes a mechanism for reducing the influence of possibly mislabelled data

points in the pseudo-labelling step by weighting the newly labelled data based on predic-

tion confidence. Deng and Zu Guo (2011) attempted to further prevent the influence of

possibly mislabelled data points by removing “suspicious” pseudo-labellings. After each

pseudo-labelling step, the prediction for each pseudo-labelled data point xi is compared to

the (pseudo-)labels of its k nearest neighbours (both labelled and pseudo-labelled); in case

of a mismatch, the pseudo-label is removed from xi .

We note that in existing literature concerning co-forest, the size of the forest has always

been limited to six trees. It has been empirically shown that, in supervised random forests,

performance can substantially improve as the number of trees is increased (Oshiro et al. 2012).

Therefore, it is likely that increasing the number of trees in co-forest will substantially affect

relative performance compared to random forests.

4.2.3 Co-regularization

Co-training methods reduce disagreement between classifiers by passing information

between them, in the form of pseudo-labelled data. Furthermore, the implicit objective of co-

training is to minimize the error rate of the ensemble of classifiers. Sindhwani et al. proposed

123

390 Machine Learning (2020) 109:373–440

to make these properties explicit in a single objective function (Sindhwani et al. 2005; Sind-

hwani and Rosenberg 2008). They propose co-regularization, a regularization framework in

which both the ensemble quality and the disagreement between base learners are simultane-

ously optimized. The key idea is to use an objective function comprised of two terms: one

that penalizes incorrect predictions made by the ensemble, and another that directly penalizes

different predictions of the base classifiers. To handle per-view noise within this framework,

Yu et al. (2011) introduced Bayesian co-training, which uses a graphical model for combin-

ing data from multiple views and a kernel-based method for co-regularization. This model

was extended to handle different noise levels per data point by Christoudias et al. (2009).

Co-training can be seen as a greedy optimization strategy for the co-regularization objec-

tive. The two components of the objective function are minimized in an alternating fashion:

the prediction error of the ensemble is minimized by training the base learners independently,

and the disagreement between classifiers is minimized by propagating predictions from one

classifier to the others as if they were ground truth. We note, however, that the general co-

regularization objective does not have to be optimized using a wrapper method, and many

co-regularization algorithms use different approaches (see, e.g. Sindhwani and Rosenberg

2008; Yu et al. 2011).

4.3 Boosting

Ensemble classifiers consist of multiple base classifiers, which are trained and then used to

form combined predictions (Zhou 2012). The simplest form of ensemble learning trains k base

classifiers independently and aggregates their predictions. Beyond this simplistic approach,

two main branches of supervised ensemble learning exist: bagging and boosting (Zhou 2012).

In bagging methods, each base learner is provided with a set of l data points, which are

sampled, uniformly at random with replacement, from the original data set (bootstrapping).

The base classifiers are trained independently. When training is completed, their outputs are

aggregated to form the prediction of the ensemble. In boosting methods, on the other hand,

each base learner is dependent on the previous base learners: it is provided with the full data

set, but with weights applied to the data points. The weight of a data point xi is based on

the performance of the previous base learners on xi , such that larger weights get assigned

to data points that were incorrectly classified. The final prediction is obtained as a linear

combination of the predictions of the base classifiers.

Technically, boosting methods construct a weighted ensemble of classifiers ht in a greedy

fashion. Let FT −1(x) =
∑T −1

t=1 αt · ht (x) denote the ensemble of classifiers ht with weight

αt at time T − 1. Furthermore, let ℓ(ŷ, y) denote the loss function for predicting label ŷ for

a data point with true label y. In each iteration of the algorithm, an additional classifier hT

is added to the ensemble with a certain weight αT , such that the cost function

L(FT) =
l

∑

i=1

ℓ(FT (xi), yi)

=
l

∑

i=1

ℓ(FT −1(xi) + αT · hT (xi), yi)

is minimized. Note that, at time T , the ensemble FT −1 is fixed. With particular choices of

loss functions, such as ℓ(ŷ, y) = exp(−ŷ · y), the optimization problem yields a weighted

classification problem for determining hT , and allows us to express the optimal αT in terms

of the loss of hT on the training data.

123

Machine Learning (2020) 109:373–440 391

By definition, base learners in bagging methods are trained independently. Therefore,

the only truly semi-supervised bagging method would apply self-training to individual base

learners. Co-training, however, can be seen to be closely related to bagging methods: the only

way classifiers interact is by the exchange of pseudo-labelled data; other than that, the classi-

fiers can be trained independently and simultaneously. However, most co-training methods do

not use bootstrapping, a defining characteristic of bagging methods. In boosting, on the other

hand, there is an inherent dependency between base learners. Consequently, boosting meth-

ods can be readily extended to the semi-supervised setting, by introducing pseudo-labelled

data after each learning step; this idea gives rise to the class of semi-supervised boosting

methods.

Semi-supervised boosting methods have been studied extensively over the past two

decades. The success achieved by supervised boosting methods, such as AdaBoost (Freund

and Schapire 1997), gradient boosting, and XGBoost (Chen and Guestrin 2016), provides

ample motivation for bringing boosting to the semi-supervised setting. Furthermore, the

pseudo-labelling approach of self-training and co-training can be easily extended to boosting

methods.

4.3.1 SSMBoost

The first effort towards semi-supervised boosting methods was made by Grandvalet et al.,

who extended AdaBoost to the semi-supervised setting. They proposed a semi-supervised

boosting algorithm (Grandvalet et al. 2001), which they later extended and motivated from

the perspective of gradient boosting (d’Alché Buc et al. 2002). A loss function is defined for

unlabelled data, based on the predictions of the current ensemble and on the predictions of the

base learner under construction. Experiments were conducted with multiple loss functions;

the authors reported the strongest results using the expected loss of the new, combined

classifier. The weighted error ǫt for base classifier ht is thus adapted to include the unlabelled

data points, causing the weight term αt to depend on the unlabelled data as well.

Crucially, SSMBoost does not assign pseudo-labels to the unlabelled data points. As a

result, it requires semi-supervised base learners to make use of the unlabelled data and is

therefore intrinsically semi-supervised, in contrast to most other semi-supervised boosting

algorithms, which are wrapper methods. Nevertheless, SSMBoost is included here, because

it forms the foundation for all other forms of semi-supervised boosting algorithms, which do

not require semi-supervised base learners.

4.3.2 ASSEMBLE

The ASSEMBLE algorithm, short for Adaptive Supervised Ensemble, pseudo-labels the unla-

belled data points after each iteration, and uses these pseudo-labelled data points in the

construction of the next classifier, thus alleviating the need for semi-supervised base learn-

ers (Bennett et al. 2002). As shown by its authors, ASSEMBLE effectively maximizes the

classification margin in function space.

Since pseudo-labels are used in ASSEMBLE, it is not trivial to decide which unla-

belled data points to pass to the next base learner. Bennett et al. (2002) proposed to use

bootstrapping—i.e. sampling, uniformly at random, with replacement, l data points from the

l + u labelled and unlabelled data points.

123

392 Machine Learning (2020) 109:373–440

4.3.3 SemiBoost

The semi-supervised boosting algorithm SemiBoost addresses the problem of selecting data

points to be used by the base learners by relying on the manifold assumption, utilizing

principles from graph-based methods (Mallapragada et al. 2009). Each unlabelled data point

is assigned a pseudo-label, and the corresponding prediction confidence is calculated based

on a predefined neighbourhood graph that encodes similarity between data points. Then, a

subset of these pseudo-labelled data points is added to the set of labelled data points for

training the next base learner. The probability of a sample being selected for this subset

is proportional to its prediction confidence. SemiBoost was successfully applied to object

tracking in videos by Grabner et al. (2008).

SemiBoost uses the standard boosting classification model, expressing the final label

prediction as a linear combination of the predictions of the individual learners. Its cost func-

tion, however, is highly dissimilar from the previously described semi-supervised boosting

methods. Mallapragada et al. (2009) argue that a successful labelling of the test data should

conform to the following three requirements. Firstly, the predicted labels of the unlabelled

data should be consistent for unlabelled data points that are close to each other. Secondly, the

predicted labels of the unlabelled data should be consistent with the labels of nearby labelled

data points. And, thirdly, the predicted labels for the labelled data points should correspond to

their true labels. These requirements are expressed in the form of a constrained optimization

problem, where the first two are captured by the objective function, and the last is imposed as

a constraint. In other words, the SemiBoost algorithm uses boosting to solve the optimization

problem

minimize
FT

LL(ŷ, A, FT) + λ · LU (ŷ, A, FT)

subject to ŷi = yi , i = 1, . . . , l,
(1)

where LU and LL are the cost functions expressing the inconsistency across the unlabelled

and the combined labelled and unlabelled data, respectively, andλ ∈ R is a constant governing

the relative weight of the cost terms; A is an n × n symmetric matrix denoting the pairwise

similarities between data points. Lastly, FT denotes the joint prediction function of the

ensemble of classifiers at time T . We note that the optimization objective in Eq. 1 is very

similar to the cost functions encountered in graph-based methods (see Sects. 6.3 and 7) in

that it favours classifiers that consistently label data points on the same manifold. In graph-

based methods, however, no distinction is generally made between labelled-unlabelled and

unlabelled-unlabelled pairs.

4.3.4 Other semi-supervised boosting methods

The three previously discussed methods form the core of semi-supervised boosting research.

Further work in the area includes RegBoost, which, like SemiBoost, includes local label

consistency in its objective function (Chen and Wang 2011). In RegBoost, this term is also

dependent on the estimated local density of the marginal distribution p(x). Several attempts

have been made to extend the label consistency regularization to the multiclass setting (Tanha

et al. 2012; Valizadegan et al. 2008).

123

Machine Learning (2020) 109:373–440 393

5 Unsupervised preprocessing

We now turn to a second category of inductive methods, known as as unsupervised prepro-

cessing, which, unlike wrapper methods and intrinsically semi-supervised methods, use the

unlabelled data and labelled data in two separate stages. Typically, the unsupervised stage

comprises either the automated extraction or transformation of sample features from the unla-

belled data (feature extraction), the unsupervised clustering of the data (cluster-then-label),

or the initialization of the parameters of the learning procedure (pre-training).

5.1 Feature extraction

Since the early days of machine learning, feature extraction has played an important role in

the construction of classifiers. Feature extraction methods attempt to find a transformation of

the input data such that the performance of the classifier improves or such that its construction

becomes computationally more efficient. Feature extraction is an expansive research topic that

has been covered by several books and surveys. We focus on a small number of particularly

prominent techniques and refer the reader to the existing literature on feature extraction

methods for further information (see, e.g. Guyon and Elisseeff 2006; Sheikhpour et al. 2017).

Many feature extraction methods operate without supervision, i.e. without taking into

account labels. Principal component analysis, for example, transforms the input data to a

different basis, such that they are linearly uncorrelated, and orders the principal components

based on their variance (Wold et al. 1987). Other traditional feature extraction algorithms

operate on the labelled data and try to extract features with high predictive power (see, e.g.

Guyon and Elisseeff 2006).

Recent semi-supervised feature extraction methods have mainly been focused on finding

latent representations of the input data using deep neural networks (in Sect. 6.2.1, we further

discuss neural networks). The most prominent example of this is the autoencoder: a neural

network with one or more hidden layers that has the objective of reconstructing its input. By

including a hidden layer with relatively few nodes, usually called the representation layer,

the network is forced to find a way to compactly represent its input data. Once the network

is trained, features are provided by the representation layer. A schematic representation of a

standard autoencoder is provided in Fig. 4.

The network can be considered to consist of two parts: the encoder h, which maps an

input vector x to its latent representation h(x), and the decoder g, which attempts to map

the latent representation back to the original x. The network is trained by optimizing a loss

function penalizing the reconstruction error: a measure of inconsistency between the input

x and the corresponding reconstruction g(h(x)). Once the network is trained, the latent

representation of any x can be found by simply propagating it through the encoder part of

the network to obtain h(x). A popular type of autoencoders is the denoising autoencoder,

which is trained on noisy versions of the input data, penalizing the reconstruction error of

the reconstructions against the noiseless originals (Vincent et al. 2008). Another variant, the

contractive autoencoder, directly penalizes the sensitivity of the autoencoder to perturbations

in the input (Rifai et al. 2011b).

Autoencoders attempt to find a lower-dimensional representation of the input space

without sacrificing substantial amounts of information. Thus, they inherently act on the

assumption that the input space contains lower-dimensional substructures on which the data

lie. Furthermore, when applied as a preprocessing step to classification, they assume that

two samples on the same lower-dimensional substructure have the same label. These obser-

123

394 Machine Learning (2020) 109:373–440

.

Encoder

h(·)
Decoder

g(·)

x

h(x)

g(h(x))

Fig. 4 Simplified representation of an autoencoder. The rectangles correspond to layers within the network;

the trapeziums represent the encoder and decoder portions of the network, which can consist of multiple layers

vations indicate that the assumptions underlying autoencoders are closely related to the

semi-supervised manifold assumption.

In some domains, data is not inherently represented as a meaningful feature vector. Since

many common classification methods require such a representation, feature extraction is a

necessity in those cases. The feature extraction step, then, consists of finding an embedding

of the given object into a vector space by taking into account the relations between different

input objects. Examples of such approaches can be found in natural language processing

(Collobert et al. 2011; Mikolov et al. 2013) and network science (Grover and Leskovec

2016; Perozzi et al. 2014; Wang et al. 2016).

5.2 Cluster-then-label

Clustering and classification have traditionally been regarded as relatively disjoint research

areas. However, many semi-supervised learning algorithms use principles from clustering to

guide the classification process. Cluster-then-label approaches form a group of methods that

explicitly join the clustering and classification processes: they first apply an unsupervised or

semi-supervised clustering algorithm to all available data, and use the resulting clusters to

guide the classification process.

Goldberg et al. (2009) first cluster the labelled data and a subset of the unlabelled data.

A classifier is then trained independently for each cluster on the labelled data contained in

it. Finally, the unlabelled data points are classified using the classifiers for their respective

clusters. In the clustering step, a graph is constructed over the data points using the Hellinger

distance; size-constrained spectral clustering is then applied to the resulting graph. Since the

clustering is only used to segment the data, after which individual learners are applied to

each cluster, the approach supports any supervised base learner.

Demiriz et al. (1999) first cluster the data in a semi-supervised manner, favouring clusters

with limited label impurity (i.e. a high degree of consistency in the labels of the data points

123

Machine Learning (2020) 109:373–440 395

within a given cluster), and use the resulting clusters in classification. Dara et al. (2002)

proposed a more elaborate preprocessing step, applying self-organizing maps (Kohonen

1998) to the labelled data in an iterative fashion. The unlabelled data points are then mapped,

yielding a cluster assignment for each of them. If the cluster to which an unlabelled data

point xi is mapped contains only data points with the same label, that label is also assigned

to xi . This process can be iterated, after which the resulting label assignments can be used

to train an inductive classifier (in the work of Dara et al., a multilayer perceptron). We note

that this approach can be regarded as a wrapper method (see Sect. 4).

5.3 Pre-training

In pre-training methods, unlabelled data is used to guide the decision boundary towards

potentially interesting regions before applying supervised training.

This approach naturally applies to deep learning methods, where each layer of the hierar-

chical model can be considered a latent representation of the input data. The most commonly

known algorithms corresponding to this paradigm are deep belief networks and stacked

autoencoders. Both methods are based on artificial neural networks and aim to guide the

parameters (weights) of a network towards interesting regions in model space using the

unlabelled data, before fine-tuning the parameters with the labelled data.

Pre-training approaches have deep roots in the field of deep learning. Since the early 2000s,

neural networks with multiple hidden layers (deep neural networks) have been gaining an

increasing amount of attention. However, due to their high number of tunable parameters,

training these networks has often been challenging: convergence tended to be slow, and trained

networks were prone to poor generalization (Erhan et al. 2010). Early on, these problems

were commonly addressed by employing unsupervised pre-training methods. Since then, this

has been mostly superseded by the application of weight sharing, regularization methods and

different activation functions. Consequently, the work we cover in this section mainly stems

from the first decade of the 2000s. However, the underlying principles still apply, and are

still used in other methods (such as ladder networks, see Sect. 6.2.2).

Deep belief networks consist of multiple stacked restricted Boltzmann machines (RBMs),

which are trained layer-by-layer with unlabelled data in a greedy fashion (Hinton et al. 2006).

The resulting weights are then used as the initialization for a deep neural network with the

same architecture augmented by an additional output layer, enabling the model to be trained

in a supervised manner on the labelled data.

Stacked autoencoders are very similar to deep belief networks, but they use autoencoders

as their base models instead of RBMs. The autoencoders are trained layer-by-layer, where the

encoding h(x) produced by each autoencoder is passed as the input to the next autoencoder,

which is then trained to reconstruct it with minimal error. Finally, these trained autoencoders

are combined, an output layer is added (as in deep belief networks), and the resulting network

is trained on the labelled data in a supervised manner. The paradigm works with multiple

types of autoencoders, including denoising and contractive autoencoders (Vincent et al. 2008;

Rifai et al. 2011b).

Based on an empirical analysis of deep belief networks and stacked autoencoders, Erhan

et al. (2010) suggested that unsupervised pre-training guides the neural network model

towards regions in model space that provide better generalization. Deep neural networks

are often motivated from the perspective that they learn a higher-level representation of the

data at each layer. Thus, each layer of the network can be considered to contain a differ-

ent representation of the input data. Both deep belief networks and stacked autoencoders

123

396 Machine Learning (2020) 109:373–440

attempt to guide the model in the extraction of these hierarchical representations, pushing

the model towards the extraction of representations that are deemed informative. From that

perspective, pre-training methods are closely related to the unsupervised feature extraction

methods described earlier: they both use unlabelled data in an attempt to extract meaningful

information from the input data. Crucially, however, the parameters used for unsupervised

preprocessing can be changed in the supervised fine-tuning phase of pre-training methods,

whereas they remain fixed after the unsupervised phase of feature extraction approaches.

6 Intrinsically semi-supervisedmethods

We now turn our attention to inductive learning algorithms that directly optimize an objective

function with components for labelled and unlabelled samples. These methods, which we

call intrinsically semi-supervised, do not rely on any intermediate steps or supervised base

learners. Usually, they are extensions of existing supervised methods to include unlabelled

samples in the objective function.

Generally, these methods rely either explicitly or implicitly on one of the semi-supervised

learning assumptions (see Sect. 2.1). For instance, maximum-margin methods rely on the

low-density assumption, and most semi-supervised neural networks rely on the smooth-

ness assumption. We begin with an overview of the earliest intrinsically semi-supervised

classification methods, namely maximum-margin methods. Next, we discuss perturbation-

based methods, which directly incorporate the smoothness assumption. These encompass

most semi-supervised neural networks. Then, we consider manifold-based techniques, which

either explicitly or implicitly approximate the manifolds on which the data lie. Finally, we

consider generative models.

6.1 Maximum-marginmethods

Maximum-margin classifiers attempt to maximize the distance between the given data points

and the decision boundary. This approach corresponds to the semi-supervised low-density

assumption: when the margin between all data points and the decision boundary is large

(except for some outliers), the decision boundary must be in a low-density area (Ben-David

et al. 2009). Conceptually, maximum-margin methods thus lend themselves well to extension

to the semi-supervised setting: one can incorporate knowledge from the unlabelled data to

determine where the density is low and thus, where a large margin can be achieved.

6.1.1 Support vector machines

The most prominent example of a supervised maximum-margin classifier is the support

vector machine (SVM): a classification method that attempts to maximize the distance from

the decision boundary to the points closest to it, while encouraging data points to be classified

correctly. It was one of the first maximum-margin approaches to be proposed in the semi-

supervised setting, and it has been studied extensively since. We briefly introduce supervised

SVMs, but the reader to machine learning book by Bishop (2006) for a more extensive

introduction.

The objective of an SVM is to find a decision boundary that maximizes the margin, which

is defined as the distance between the decision boundary and the data points closest to it.

The term is also commonly used to describe the area extruding from the decision boundary

123

Machine Learning (2020) 109:373–440 397

in which no data points lie. The soft-margin SVM is a popular variant of SVMs that allows

data points to violate the margin (i.e. lie between the corresponding margin boundary and

the decision boundary, or even be misclassified) at a certain cost. SVMs supports implicit

mapping of objects to higher-dimensional feature spaces using the so-called kernel trick.

Formally, when training an SVM, we endeavour to find a weight vector w ∈ R
d with

minimal magnitude and a bias variable b ∈ R, such that yi · (w⊺ · xi + b) ≥ 1 − ξi for

all data points xi ∈ X L . Here, ξi ≥ 0 is called the “slack variable” for xi , which allows xi

to violate the margin at some cost, which is incorporated into the objective function. The

corresponding optimization problem can be formulated as follows:

minimize
w,b,ξ

1

2
· ||w||2 + C ·

l
∑

i=1

ξi

subject to yi · (w⊺ · xi + b) ≥ 1 − ξi , i = 1, . . . , l,

ξ ≥ 0, i = 1, . . . , l,

where C ∈ R is a constant scaling factor for the penalization of data points violating the

margin. If C is large, the optimal margin will generally be narrow, and if C is small, the

optimal margin will generally be wide. Thus, C acts as a regularization parameter, governing

the trade-off between the complexity of the decision boundary and prediction accuracy on

the training set.

The concept of semi-supervised SVMs, or S3VMs, is similar: we want to maximize the

margin, and we want to correctly classify the labelled data. However, in the semi-supervised

setting, an additional objective becomes relevant: we also want to minimize the number of

unlabelled data points that violate the margin. Since the labels of the unlabelled data points are

unknown, those that violate (i.e. lie within) the margin are penalized based on their distance

to the closest margin boundary.

The intuitive extension of the optimization problem for S3VMs thus becomes

minimize
w,b,ξ

1

2
· ||w||2 + C ·

l
∑

i=1

ξi + C ′ ·
n

∑

i=l+1

ξi

subject to yi · (w⊺ · xi + b) ≥ 1 − ξi , i = 1, . . . , l,

|w⊺ · xi + b| ≥ 1 − ξi , i = l + 1, . . . , n,

ξi ≥ 0, i = 1, . . . , n,

(2)

where C ′ ∈ R is the margin violation cost associated with unlabelled data points.

S3VMs were proposed by Vapnik (1998), who motivated the problem from a more trans-

ductive viewpoint: instead of optimizing only over the weight vector, bias and slack variables,

he proposed to also optimize over the label predictions ŷU . The constraint for the unlabelled

data was formulated similarly to that for labelled data, but with the predicted labels ŷU .

Though different at first sight, this formulation is equivalent to optimization problem 2 above,

since any labelling ŷU can only be optimal if, for each ŷi ∈ ŷU , xi is on the correct side

of the decision boundary (i.e. ŷi · (w⊺ · xi + b) ≥ 0). Otherwise, a better solution could be

obtained by simply inverting the labelling of xi .

The extension of SVMs to the semi-supervised setting carries one significant disadvantage:

the optimization problem encountered when training S3VMs becomes non-convex and NP-

hard. Consequently, most efforts in the study of S3VMs have been focused on training them

efficiently in practice.

123

398 Machine Learning (2020) 109:373–440

Initial efforts showed promising results in applying S3VMs, but only to small data sets.

For instance, Bennett and Demiriz (1999) proposed to use the L1 norm instead of the L2 norm

in the objective function and posed the problem as a mixed integer programming problem.

The earliest widely used optimization approach was introduced by Joachims (1999), whose

approach for solving the optimization problem starts with a random assignment of ŷU and

a low value for C ′. Each iteration of the algorithm then consists of three steps. First, the

supervised SVM optimization problem corresponding to the current label assignment ŷU is

solved. Next, the algorithm inverts the labels of each pair of data points for which this inversion

improves the objective function, until no more such pairs exist. Finally, C ′ is increased. The

algorithm terminates when C ′ reaches a predefined value specified by the user.

Other approaches to solving S3VMs have been put forward. For instance, several stud-

ies have proposed convex relaxations of the objective function, which can be solved using

semidefinite programming methods. The earliest such approach was introduced by de Bie

and Cristianini (2004, 2006) and later extended to the multiclass setting by Xu and Schuur-

mans (2005). However, due to their time complexity, these approaches do not scale to large

amounts of data.

Chapelle et al. (2008) provided an overview of optimization procedures for S3VMs up

until 2008 and broadly categorize S3VM optimization methods into two categories: com-

binatorial methods, finding the label assignment ŷU that minimizes the objective function,

and continuous methods, directly solving the optimization problem using label assignments

ŷi = sign(w⊺·xi +b). All the approaches we have thus far described fall into the combinatorial

category. However, the formulation in optimization problem 2 corresponds to the continuous

approach; it underlies, for example, the concave-convex procedure, which decomposes the

non-convex objective function into a convex and a concave component, and iteratively solves

the optimization problem by replacing the concave component with a linear approximation

at the current solution (Chapelle et al. 2008; Collobert et al. 2006).

Other continuous methods make use of the fact that problem 2 can be reformulated as an

optimization problem without constraints. This stems from the fact that, if a labelled point

xi ∈ X L does not violate the margin, then ξi = 0 in the optimal solution. If it does violate

the margin, then ξi = 1 − yi · (w⊺ · xi + b). For an unlabelled data point xi ∈ XU , ξi = 0 if

it does not violate the margin, and otherwise, ξi = 1 − |w⊺ · xi + b|. Thus, the optimization

problem can be reformulated as

minimize
w,b

1

2
· ||w||2 + C ·

l
∑

i=1

max (0, 1 − yi · f (xi))

+ C ′ ·
n

∑

i=l+1

max (0, 1 − | f (xi)|) ,

(3)

where f (xi) = w⊺ · xi + b.

This approach underlies ∇TSVM by Chapelle and Zien (2005), which is based on a smooth

approximation of the object function in Eq. 3 obtained by squaring the loss for the labelled

data points, and by approximating the loss for the unlabelled data points with an exponential

function. This optimization problem is then solved by gradient descent, where C ′ is gradually

increased from some value close to zero to its intended value. Chapelle et al. (2006a) take a

similar approach, where they keep C ′ fixed and use a continuous approach to transform the

objective function from using only the labelled data to the final objective function.

As is the case for most semi-supervised learning methods, S3VMs are not guaranteed

to perform better than their supervised counterparts (Singh et al. 2009). Specifically, if one

123

Machine Learning (2020) 109:373–440 399

of the underlying assumptions of the semi-supervised learning method is violated, there

is a large risk of degrading performance when introducing the unsupervised objective. In

the case of S3VMs, many highly diverse decision boundaries may exist that pass through

a low-density area and achieve reasonable classification performance on the labelled data.

Consequently, one can expect the generalization performance of such classifiers to exhibit

significant variance.

Li and Zhou (2015) proposed to mitigate this problem by considering a diverse set of

low-density separators and choosing the separator that performs best under the worst pos-

sible ground truth. Like all S3VM variants, their method is premised on the assumption

that the optimal decision boundary lies in a low-density area. Their algorithm, called S4VM

(safe S3VM), consists of two stages. Firstly, a diverse set of low-density decision boundaries

is constructed. To this end, the authors propose to minimize a cost function that penalizes

the pairwise similarity between the label predictions associated with the decision bound-

aries, using deterministic annealing and a heuristic sampling method. Secondly, the decision

boundary with maximal worst-case performance gain over the supervised decision boundary

is chosen as the result of S4VM training. This problem formulation limits the probability that

the solution found by a S4VM exhibits performance worse than the corresponding supervised

SVM.

The performance gain is formulated as the resulting increase in the number of correctly

labelled data points minus the increase in the number of incorrectly labelled data. The latter

term is multiplied by a factor λ ∈ R, governing the amount of risk of performance degradation

one wishes to take. Formally, this is captured by a scoring function J (ŷ, y, ysvm) for a set of

predicted labels ŷ, ground truth y, and supervised SVM predictions ysvm defined as

J (ŷ, y, ysvm) = gain(ŷ, y, ysvm) − λ · lose(ŷ, y, ysvm),

where gain and lose denote the increases in correctly and incorrectly labelled data points,

respectively. The optimal label assignment ȳ in the worst-case true labelling can then be

found as

ȳ ∈ arg max
y∈{±1}u

[

min
ŷ∈M

J (y, ŷ, ysvm)

]

,

where M is the set of all candidate label assignments such that the corresponding decision

boundary cuts through a low-density area. Due to the optimization over all possible label

assignments, this optimization problem is NP-hard. Li and Zhou (2015) proposed a con-

vex relaxation of the problem to effectively find a good candidate solution. Based on the

assumption that the true label assignment is indeed in this set, they proved that, if λ ≥ 1,

the performance of S4VM is never lower than that of the corresponding SVM. They vali-

dated this finding empirically, and showed that their implementation achieves performance

improvements over standard SVMs similar to other S3VM approaches, but that, contrary to

those, performance never significantly degrades relative to supervised SVMs.

The formulation of the second stage of the optimization procedure is not limited to sup-

port vector machines; indeed, it could theoretically be applied to any other semi-supervised

learning algorithm. Li and Zhou (2015) additionally propose to perform both stages simul-

taneously in a deterministic annealing approach.

6.1.2 Gaussian processes

The notion of margin maximization is directly incorporated into support vector machines,

and it should thus not come as a surprise that they are easily extended to the semi-supervised

123

400 Machine Learning (2020) 109:373–440

setting. Less obviously, similar efforts have been made with other supervised methods as

well. Notably, Lawrence and Jordan (2005) have extended Gaussian processes to handle

unlabelled data.

Gaussian processes are a family of non-parametric models that estimate the posterior

probability over the function f mapping points in the input space to a continuous output

space. When used for binary classification purposes, which are the focus of the paper by

Lawrence and Jordan (2005), this output is in turn mapped to the label space Y = {−1, 1}.
In the learning phase, f is established such that the likelihood of observing the data points

((xi , yi))
l
i=1 is maximized. The resulting model can be considered an l-dimensional Gaussian

distribution over the label vector y of the input data points, where l is the number of labelled

data points. Predictions for previously unseen data points x∗ can then be made by the model by

evaluating the posterior probability of the respective class label, conditioned on the observed

data points X , their associated labels y, and the observed data point x∗. The associated

covariance matrix is the Gram matrix obtained from all l + 1 data points using some kernel

function k.

Lawrence and Jordan (2005) extended Gaussian processes for binary classification to

the semi-supervised case by incorporating the unlabelled data points into the likelihood

function. Specifically, the likelihood for an unlabelled data point x is low when it is close to

the decision boundary (i.e. when f (x) is close to 0), and high when it is far away from the

decision boundary. The space of possible labels is expanded to include a null category; the

posterior probability of this null category is high around the decision boundary. By imposing

the constraint that unlabelled data points can never be mapped to the null category, the model

is explicitly discouraged from choosing a decision boundary that passes through a high-

density area of unlabelled data points. In other words, unlabelled data points should be far

away from the decision boundary.

This extension of Gaussian processes to the semi-supervised setting has an interesting side

effect: contrary to supervised Gaussian processes, introducing additional (unlabelled) data

can increase the posterior variance. In other words, additional data can increase uncertainty.

This effect stems from the observation that the likelihood function for a single unlabelled

data point x∗ can be bimodal if f (x∗) is close to 0.

6.1.3 Density regularization

Another way of encouraging the decision boundary to pass through a low-density area is to

explicitly incorporate the amount of overlap between the estimated posterior class probabil-

ities into the cost function. When there is a large amount of overlap, the decision boundary

passes through a high-density area, and when there is a small amount of overlap, it passes

through a low-density area. Several approaches have been proposed to use this assumption

to regularize the objective function used in the context of classification.

Grandvalet and Bengio (2005) proposed to formalize this in the maximum a posteri-

ori (MAP) framework by imposing a prior on the model parameters, favouring parameters

inducing small class overlap in the predictive model (additionally, see Chapelle et al. 2006b).

In particular, they used Shannon’s conditional entropy as a measure of class overlap. The

prior is weighted by a constant λ ∈ R. The resulting objective is generally non-convex. The

authors proposed solving the optimization problem by means of deterministic annealing.

This entropy regularization method can be applied to any supervised learning method based

on maximum-likelihood; the authors conducted experiments using logistic regression.

Corduneanu and Jaakkola (2003) proposed to directly incorporate an estimate of p(x),

the distribution over the input data, into the objective function. They add a cost term to the

123

Machine Learning (2020) 109:373–440 401

objective function that reflects the belief that, in high-density areas, the posterior probability

of y conditioned on x should not vary too much. To this end, they cover the entire input

space X with multiple, possibly overlapping, small regions; the cost term is then calculated

as the sum of the mutual information between labels and inputs in each of these regions,

weighted by the estimated density in the region. Their work is an extension of earlier work

by Szummer and Jaakkola (2003).

Liu et al. (2013, 2015) proposed to incorporate the prior density into the node splitting

criterion of decision trees. When selecting the hyperplane for splitting the data at a node in

a decision tree, their approach penalizes high-density areas, using Gaussian kernel density

estimators to approximate p(x). They conducted experiments with random forests consisting

of 100 of the resulting semi-supervised decision trees and observed significant performance

improvements over supervised random forests for several data sets. Levatić et al. (2017)

introduced a more generic framework for using unlabelled data in the splitting criterion by

constructing an impurity measure for unlabelled data. In their experiments, they promoted

feature consistency within the data subsets on each side of the splitting boundary, penalizing

empirical variance for numerical data and the Gini impurity for nominal data. We note that

the specific categorization of these methods within our taxonomy depends on the choice of

splitting criterion.

6.1.4 Pseudo-labelling as a form of margin maximization

Depending on the base learner used, the self-training approach described in Sect. 4 can

also be regarded a margin-maximization method. For instance, when using self-training

with supervised SVMs, the decision boundary is iteratively pushed away from the unlabelled

samples. Even though the unlabelled data are not explicitly incorporated into the loss function,

this amounts to exploiting the low-density assumption, as done in the case of S3VMs.

6.2 Perturbation-basedmethods

The smoothness assumption entails that a predictive model should be robust to local pertur-

bations in its input. This means that, when we perturb a data point with a small amount of

noise, the predictions for the noisy and the clean inputs should be similar. Since this expected

similarity is not dependent on the true label of the data points, we can make use of unlabelled

data.

Many different methods exist for incorporating the smoothness assumption into a given

learning algorithm. For instance, one could apply noise to the input data points, and incor-

porate the difference between the clean and the noisy predictions into the loss function.

Alternatively, one could implicitly apply noise to the data points by perturbing the classifier

itself. These two approaches give rise to the category of perturbation-based methods.

Perturbation-based methods are often implemented with neural networks. Due to their

straightforward incorporation of additional (unsupervised) loss terms into their objective

function, they are extendable to the semi-supervised setting with relative ease. In recent

years, neural networks have received renewed interest, due their successful application in

various application areas (see, e.g. Collobert et al. 2011; Krizhevsky et al. 2012; LeCun et al.

2015). As a result, interest in semi-supervised neural networks has risen as well. In particular,

neural networks with many layers, so-called deep neural networks, have given rise to inter-

esting extensions to the semi-supervised setting. These intrinsically semi-supervised neural

networks differ from the neural networks used for feature extraction, which we discussed in

123

402 Machine Learning (2020) 109:373–440

Sect. 5.1: the unlabelled data is incorporated directly into the optimization objective, rather

than being used in a separate preprocessing step. Before continuing our discussion of such

methods, we provide a short, general introduction to neural networks targeted at readers who

are not too familiar with them. For a more extensive introduction to (deep) neural networks,

we refer the interested reader to the recent book by Goodfellow et al. (2016).

6.2.1 Neural networks

A neural network is a formal system that computes an output vector by propagating an input

vector through a network of simple processing elements with weighted connections between

them. These simple processing elements are called nodes, and each of them contains an

activation function that ultimately determines its output. In the feedforward networks we are

considering here, nodes are usually grouped together into layers, where nodes from each

layer are only connected to nodes from adjacent layers. The output vector is calculated by

propagating the input vector through the weighted connections of the network. The output

of each node, commonly referred to as its activation, is calculated by applying its activation

function to the weighted sum of its inputs.

In supervised neural networks, the network weights are generally optimized to calculate

the desired output vector for a given input vector. Considering the classification task, let

f : R
d �→ R

|Y| denote the vector-valued function modelled by a neural network, mapping

an input vector x ∈ R
d to a |Y|-dimensional output vector, where Y denotes the set of possible

classes. The function f is modelled by a neural network consisting of one or multiple layers;

nodes in consecutive layers are connected by weighted edges. The weights are stored in a

weight matrix W , where the element at position (i, j) denotes the weight of the edge between

nodes i and j . We use f (x; W) to denote the output obtained by propagating the input x

through the network and evaluating the activations of the final layer.

A loss function ℓ is then defined, calculating the cost associated with output layer activa-

tions f (x; W) for a data point x with true label y. The complete cost function is then defined

as

L(W) =
l

∑

i=1

ℓ(f (xi ; W), yi). (4)

The explicit notion of the parametrization of f by W is often omitted for conciseness.

The weights in W are iteratively optimized by passing input samples through the network

and propagating the share of one or more samples in the cost L backwards through the

network. In this process, known as backpropagation, the weights are updated, using gradient

descent or a similar method to iteratively minimize the cost (Goodfellow et al. 2016). To

achieve good performance (in terms of loss), the network generally needs to pass multiple

times over the entire training set, and each such pass is known as an epoch.

In the literature on neural networks, various notation styles are used. In particular, some

of the articles we discuss use θ to denote the network weights, and denote the output of

the corresponding network by fθ (x). In discussing these articles, we use this notation style

when we deem it essential for maintaining relatability between the respective article and this

survey.

6.2.2 Semi-supervised neural networks

The simplicity and efficiency of the backpropagation algorithm for a great variety of loss func-

tions make it attractive to simply add an unsupervised component to L. This approach, which

123

Machine Learning (2020) 109:373–440 403

can be considered a form of regularization over the unlabelled data, is employed by virtually

all semi-supervised deep learning methods. Furthermore, the hierarchical nature of repre-

sentations in deep neural networks make them a viable candidate for other semi-supervised

approaches. If deeper layers in the network express increasingly abstract representations of

the input sample, one can argue that unlabelled data could be used to guide the network

towards more informative abstract representations. Approaches based on this argument can

be readily implemented in deep neural networks through the smoothness assumption, giving

rise to so-called perturbation-based semi-supervised neural networks.

6.2.3 Ladder networks

The first such approach is the ladder network, proposed by Rasmus et al. (2015). It extends

a feedforward network to incorporate unlabelled data by using the feedforward part of the

network as the encoder of a denoising autoencoder, adding a decoder, and including a term

in the cost function to penalize the reconstruction cost. The underlying idea is that latent

representations that are useful for input reconstruction can also facilitate class prediction.

Consider a feedforward network with K hidden layers and weights W . We denote the

inputs of a layer k (after normalization) as zk , and the layer’s activations (i.e. after applying

the activation function) as hk . Note that for conciseness, when referring to layer inputs and

activations, we do not explicitly mention the input data xi , nor the parametrization W (e.g.

we write hk for the activation vector of the k-th layer in a neural network with weights W

for data point xi). In a regular feedforward network, the loss for a given data point xi is

calculated by comparing the activations of the final layer f (xi) = hK to the corresponding

label yi with ℓ(f (xi), yi). As is shown in Eq. 4, the final cost function for the network is then

L(W) =
∑l

i=1 ℓ(f (xi), yi).

Ladder networks add an additional term to L, in order to penalize the sensitivity of the

network to small perturbations of the input. This is achieved by treating the entire network

as the encoder part of a denoising autoencoder: isotropic Gaussian noise with mean zero

and fixed variance is added to the input samples, and the existing feedforward network is

treated as the encoder part. A decoder is then added alongside it, which is supposed to take

the final-layer representation hK of a noisy data point x̃, and transform it to reconstruct x.

To achieve this goal, a reconstruction cost is added to the cost function of the network. This

inherently unsupervised cost term penalizes the difference between the input data points and

their reconstructions generated by the network; it applies to both labelled and unlabelled

data.

Although the autoencoder component of ladder networks is highly similar to regular

denoising autoencoders, it differs from those in two ways. Firstly, a ladder network injects

noise not only at the first layer, but at every layer. We denote the noisy inputs of a layer k

as z̃k , and the resulting activations as h̃k . The supervised loss component for each sample

‘omes ℓ(h̃K , y): the loss function is evaluated against the output for the noisy sample. Note

that, in the testing phase, no noise is induced at any point in the network.

Secondly, ladder networks utilize a different reconstruction cost calculation. Where reg-

ular denoising autoencoders only penalize the difference between the clean input x and the

reconstructed version x̂ of the noisy input x̃, the ladder network also penalizes local recon-

structions of the hidden representations of the data. To do so, they enforce the decoder to

have K layers, the same number of layers as the original network (the encoder). Each of these

layers is also required to have the same number of nodes as the corresponding layer in the

encoder. As a data point passes through the encoder, noise is added to the layer inputs at each

layer. Then, at each layer in the decoder, the reconstructed representation ẑk is compared to

123

404 Machine Learning (2020) 109:373–440

the hidden representation zk of the clean input x at layer k in the encoder. This, of course,

requires each data point to pass through the network twice: once without noise (to obtain z),

and once with noise (to obtain z̃ and the reconstructed ẑ).

The final semi-supervised cost function of ladder networks then becomes

L(W) =
l

∑

i=1

ℓ(f (xi), yi) +
n

∑

i=1

K
∑

k=1

ReconsCost(zk
i , ẑk

i),

where ReconsCost(·, ·) is defined as the squared L2 norm of the difference between the two

normalized latent vectors and summed over the labelled and unlabelled data. For a detailed

diagram of the information flow in ladder networks, which uses the same notation we do, we

refer the reader to Figure 1 in the ladder network study by Pezeshki et al. (2016, p. 4).

Through their penalization of reconstruction errors, ladder networks effectively attempt to

push the network towards extracting interesting latent representations of the data. The method

is premised on the assumption that a latent representation hK that is useful for reconstructing

x can also facilitate the prediction of the corresponding class label. Rasmus et al. (2015)

showed that ladder networks achieve state-of-the-art results on image data sets with partially

labelled data, including MNIST. Interestingly, they also reported improvements when using

only labelled data. Prémont-Schwarz et al. (2017) extended the ladder network architecture to

the recurrent setting by adding connections between the encoders and decoders of successive

instances of the network.

Rasmus et al. also proposed a simpler, computationally more efficient variant of ladder

networks. This method, generally referred to as the Ŵ-model, only includes the reconstruction

cost for the last layer. Therefore, no full decoder needs to be constructed. The Ŵ-model was

empirically shown to provide substantial performance improvements over the corresponding

fully-supervised model.

Pezeshki et al. (2016) conducted an extensive empirical study of the different components

of ladder networks. Their study revealed that the reconstruction cost at the first layer of the

neural network, combined with the introduction of noise in that layer, has critical impact on

overall performance. We note that this architecture differs from the Ŵ-model, which only

considers the last, rather than the first, layer of the network when assessing reconstruction

error.

6.2.4 Pseudo-ensembles

Instead of explicitly perturbing the input data, one can also perturb the neural network

model itself. Robustness in the model can then be promoted by imposing a penalty on

the difference between the activations of the perturbed network and those of the orig-

inal network for the same input. Bachman et al. (2014) proposed a general framework

for this approach, where an unperturbed parent model with parameters θ is perturbed to

obtain one or more child models. In this framework, which they call pseudo-ensembles,

the perturbation is obtained from a noise distribution �. The perturbed network f̃θ (x; ξ)

is then generated based on the unperturbed parent network fθ (x) and a sample ξ from

the noise distribution. The semi-supervised cost function then consists of a supervised part

and an unsupervised part. The former captures the loss of a perturbed network for labelled

input data, and the latter the consistency across perturbed networks for the unlabelled data

points.

Based on this framework, Bachman et al. (2014) proposed a semi-supervised cost function.

Consider a neural network with K layers, and let f k
θ (x) and f̃ k

θ (x; ξ) denote the k-th layer

123

Machine Learning (2020) 109:373–440 405

activations of the unperturbed and the perturbed network, respectively. The cost function of

the pseudo-ensemble for neural networks then becomes

E
ξ∼�

[

1

l
·

l
∑

i=1

L(f̃θ (xi ; ξ), yi)

]

+ E
ξ∼�

[

1

n
·

n
∑

i=1

K
∑

k=2

λk · Vk

(

f k
θ (xi), f̃ k

θ (xi ; ξ)
)

]

,

where the consistency loss Vk penalizes differences between the activations of the unper-

turbed and perturbed networks at the k-th layer for the same input; λk is the relative weight

of that particular cost term.2 Bachman et al. propose to gradually increase each ˘k over time,

in effect placing more weight on the supervised objective in early iterations. One particu-

larly prominent method of inducing noise is dropout, which randomly sets weights to zero

(i.e. removes connections in the neural network) in each training iteration (Srivastava et al.

2014). In its originally proposed form, it was only applied to the supervised loss component.

However, Wager et al. (2013) and Bachman et al. (2014) showed that dropout can be readily

applied to unlabelled data as well.

The framework proposed by Bachman et al. is not limited to semi-supervised settings:

the supervised term in the loss function can be applied to any supervised learning problem.

Furthermore, a similar approach could be applied to other learning algorithms than neural

networks, although the per-layer activation comparison would have to be replaced by a

suitable alternative. Of course, since neural networks are entirely parametrized by connection

weights, they offer a relatively straightforward implementation of model perturbation.

6.2.5 5-model

Instead of comparing the activations of the unperturbed parent model with those of the

perturbed models in the cost function, one can also compare the perturbed models directly.

A simple variant of this approach, where two perturbed neural network models are trained,

was suggested by Laine and Aila (2017). They use dropout (Srivastava et al. 2014) as the

perturbation process, and penalize the differences in the final-layer activations of the two

networks using squared loss. The weight of the unsupervised term in the cost function starts

at zero, and is gradually increased. This approach, which they name the 	-model, can be

seen as a simple variant of pseudo-ensembles.

6.2.6 Temporal ensembling

Since the noise process used in the methods described thus far is stochastic, the entire neural

network model can be considered a stochastic model. With the 	-model, the network is

regularized by penalizing the difference in output of two perturbed network models, drawn

from the same distribution, on the same input. This idea can be extended to more than two

perturbed models. Such an approach was taken by Sajjadi et al. (2016), who additionally

perturbed the input data with random transformations. Of course, such pairwise compar-

isons will increase the running time of each training iteration quadratically in the number

2 Bachman et al. (2014) consider distributions over the input data and consequently use expectations in their

formalism; for consistency within this survey, we replaced these expectations by averages over the given data.

123

406 Machine Learning (2020) 109:373–440

of perturbations. Pseudo-ensembles solve this problem by comparing the perturbed network

activations to the activations of the unperturbed network model.

In the same paper in which they propose the 	-model, Laine and Aila (2017) propose a

different approach to combining multiple perturbations of a network model: they compare

the activations of the neural network at each epoch to the activations of the network at

previous epochs. In particular, after each epoch, they compare the output of the network

to the exponential moving average of the outputs of the network in previous epochs. Since

the connection weights are changed in each iteration, this cannot be considered a form of

pseudo-ensembling, but it is conceptually related, in that the network output is smoothed

over multiple model perturbations.

This approach—dubbed temporal ensembling, because it penalizes the difference in the

network outputs at different points in time during the training process—can be considered an

extension of the 	-model. However, instead of comparing fθ (x; ξ) to fθ (x; ξ ′) for ξ, ξ ′ ∼ �,

it uses comparisons to the exponential moving average of final-layer activations in previous

epochs. Since the loss function for unlabelled data points depends on the network output in

previous iterations, temporal ensembling is closely related to pseudo-labelling methods, such

as the pseudo-label approach (Lee 2013) and self-training. The crucial difference, however,

is that the entire set of final-layer activations is compared to the activations of the previous

network model, whereas self-training approaches and pseudo-label convert these outputs to

a single, hard prediction (the pseudo-label).

6.2.7 Mean teacher

When training a neural network using temporal ensembling, unlabelled data points are incor-

porated into the learning process at large intervals. Since the activations for each input are

only generated once per epoch, it takes a long time for the activations of unlabelled data

points to influence the inference process. Tarvainen and Valpola (2017) attempted to over-

come this problem by considering moving averages over connection weights, instead of

moving averages over network activations.

Specifically, they suggested calculating the exponential moving average of weights at

each training iteration, and compared the resulting final-layer activations to the final-layer

activations when using the latest set of weights. Furthermore, they imposed noise on the

input data to increase robustness. Formally, consider a neural network with weights Wt at

iteration t , and a set of averaged weights Ŵt . The loss function ℓ for an unlabelled input,

then, is calculated as ℓ(x) = || f (x̃; Ŵt) − f (x̃′; Wt)||2, where x̃ and x̃′ are two noise-

augmented versions of x. After calculating Wt+1 using backpropagation, Ŵt+1 is calculated

by Ŵt+1 = α · Ŵt + (1 − α) · Wt+1, where α is the decay rate. They name the model with

averaged weights Ŵ the teacher model, and the latest model with weights Wt the student

model. This terminology has since been adopted in the literature when constructing semi-

supervised neural networks.

6.2.8 Virtual adversarial training

Most of the perturbation-based approaches we have discussed thus far aim to promote robust-

ness to small perturbations in the input. In doing so, they do not take into account the

directionality of the perturbation: the injected noise is generally isotropic. However, it has

been suggested in several studies that the sensitivity of neural networks to perturbations in

the input is often highly dependent on the direction of these perturbations (Szegedy et al.

2013; Goodfellow et al. 2014b).

123

Machine Learning (2020) 109:373–440 407

Miyato et al. (2018) proposed a regularization procedure that takes the perturbation

direction into account. For each data point, labelled or unlabelled, they approximate the

perturbation to the corresponding input data that would yield the largest change in network

output (the so-called advesarial noise). They then incorporate a term into the loss function

that penalizes the difference in the network outputs for the perturbed and unperturbed input

data. For the unperturbed data point, the weights from the previous optimization iteration are

used. Formally, the adversarial loss function for a sample x can be defined as

ℓ(x) = D(f (x; Ŵ), f (x + γ adv; W)),

where D is some divergence measure, γ adv is the adversarial noise, and Ŵ are the previous

network weights. Their approach is called virtual adversarial training, after the supervised

adversarial training method proposed by Goodfellow et al. (2014b). In the latter approach,

the outputs for the perturbed input are compared to the respective true outputs, rather than to

the outputs of the network for the unperturbed input. As such, regular adversarial training can

only be applied in a supervised setting. Adversarial training and virtual adversarial training

both bear close similarity to contractive autoencoders: there, the sensitivity of the network to

perturbations in the inputs is penalized by directly assessing the derivatives of the network

outputs with respect to the inputs (Rifai et al. 2011b).

Park et al. (2018) combined concepts from virtual adversarial training with the 	-model

(see Sect. 6.2.5). Instead of perturbing the unlabelled data points with adversarial noise, they

apply an adversarial dropout mask to the network weights. First, they sample a random

dropout mask ǫs . Then, within some maximum distance from ǫs , they find the dropout mask

ǫadv that maximizes the difference between the unperturbed network output and the network

output when the dropout mask is applied. Their loss function, then, is defined as

ℓ(x) = D(f (x; W , ǫs), f (x; W , ǫadv)),

where the network is parameterized by the weights W as well as the dropout mask. Park et al.

(2018) reported small performance improvements over virtual adversarial training and the

	-model.

6.2.9 Semi-supervised mixup

The perturbation-based neural networks we have discussed thus far rely on a particularly

strong instantiation of the smoothness assumption: they encourage the predictions of the

network to be identical for minor perturbations in the input, regardless of the direction of

the perturbation. Recently, several researchers have considered the possibility of applying

larger perturbations to the input. In this scenario, the direction of the perturbation generally

does matter: when the perturbation points towards the decision boundary, the neural network

outputs (but not necessarily the resulting class assignment) should typically change more

than when it points away from the decision boundary.

This approach was formalized in the supervised mixup method, which was proposed by

Zhang et al. (2018). They postulate that, in a robust classifier, the predictions for a linear

combination of feature vectors should be a linear combination of their labels. They incorporate

this by training on augmented data points in addition to the original labelled samples. To

this end, they randomly select pairs of data points (x, y) and (x′, y′) during training, and

sample an interpolation factor λ from a symmetric beta distribution Beta(α, α), where α is

a predetermined hyperparameter. The network is then trained in a supervised manner on the

linearly interpolated data point (x̂, ŷ), where

123

408 Machine Learning (2020) 109:373–440

x̂ = λ · x + (1 − λ) · x′,

ŷ = λ · y + (1 − λ) · y′.

In their experiments, Zhang et al. (2018) report substantial performance improvements in

several training scenarios. Their best results are achieved when the beta distribution hyper-

parameter, α, is relatively low, causing the distribution to be strongly biased towards the

extremes (i.e., λ = 0 and λ = 1). Consequently, a large majority of interpolated samples will

lie very close to either of the two selected data points.

The interpolation used in mixup can be applied to unlabelled samples as well, by interpo-

lating the predicted labels rather than the true labels. Verma et al. (2019) combined mixup with

the mean teacher approach (see Sect. 6.2.7), determining the target label for the augmented

data point as the linear interpolation of the predictions of the teacher model. Interestingly,

the interpolation was only applied to pairs of unlabelled data points, and not to mixed pairs

of labelled and unlabelled data points. Berthelot et al. (2019) proposed a semi-supervised

neural network composed of several supervised and semi-supervised components, includ-

ing a semi-supervised extension of mixup. In selecting data points for interpolation, they

do not distinguish between labelled and unlabelled data points. For labelled data points,

the true label is then used in interpolation; for unlabelled data points, the predicted label is

used.

Mixup exhibits similarities to graph-based methods (see Sects. 6.3 and 7): rather than

employing pointwise perturbations, they apply perturbations based on combinations of dif-

ferent data points. Unlike in graph-based methods, however, the pairwise similarity between

data points is not taken into account. The precise implications of this remain an interesting

avenue for future research.

6.3 Manifolds

Perturbation-based methods make direct use of the smoothness assumption, penalizing dif-

ferences in the behaviour of a classifier under slight changes in the input or in the classifier

itself. However, one can imagine that not all minor changes to the input should yield similar

outputs. In particular, if the data lie on lower-dimensional manifolds, one can expect the

classifier to be insensitive only to minor changes along the manifold. This observation corre-

sponds to the manifold assumption, which forms the basis of a significant body of intrinsically

semi-supervised learning algorithms.

An m-dimensional manifold is a subspace of the original input space that locally resem-

bles Euclidean space R
m . Reiterating the definition from Sect. 2, the manifold assumption

states that (a) the input space is composed of multiple lower-dimensional manifolds on

which all data points lie and (b) data points lying on the same lower-dimensional manifold

have the same label. Formally, the first part of the manifold assumption states that each

conditional probability distribution p(x |y) has a structure corresponding to the union of

one or more Riemannian manifolds M. The second part, then, states that points on the

same Riemannian manifold M should have the same label. If these assumptions hold,

information about the manifolds present in the input space can prove useful to classifica-

tion.

In this section, we consider two general types of methods that are based on the manifold

assumption. Firstly, we consider manifold regularization techniques, which define a graph

over the data points and implicitly penalize differences in predictions for data points with

small geodesic distance. Secondly, we consider manifold approximation techniques, which

123

Machine Learning (2020) 109:373–440 409

explicitly estimate the manifolds M on which the data lie and optimize an objective function

accordingly.

6.3.1 Manifold regularization

Consider a labelled data point xi and an unlabelled data point x j , and assume that xi lies

on some manifold M. If x j also lies on M, the manifold assumption implies that it is

likely to have the same label as xi . Furthermore, assuming that the data is concentrated

on lower-dimensional manifolds, we can expect there to be more data points x∗ located

on M.

If we have sufficiently many data points, we can thus expect there to be some “path”,

a so-called geodesic, from x j to xi , passing through other labelled or unlabelled samples,

such that each path segment is relatively short. We can formalize this notion of a path by

defining a graph over all data points, connecting pairs of data points that are close together

in the original input space with an edge. Edge weights may be used to express the degree of

similarity. This is the key principle underlying graph-based methods, which also form the

basis of transductive semi-supervised learning (see Sect. 7).

Following this motivation, Belkin et al. (2005, 2006) formulated a general framework for

regularizing inductive learners based on manifolds. They considered a kernel K : X×X �→ R

with a corresponding hypothesis space HK and an associated norm || · ||K . For supervised

problems, then, they formulated the following general optimization problem:

minimize
f ∈HK

l
∑

i=1

[ℓ(f (xi), yi)] + γ · || f ||2K ,

for some loss function ℓ on labelled data. Here, γ denotes the relative influence of the

smoothing term. This objective function simultaneously penalizes misclassifications and

promotes smoothness of the predictive function. For the semi-supervised setting, they

added an unsupervised regularization term that penalizes differences in label assignments

for pairs of data points that have a direct edge between them in the graph. Implic-

itly, they thereby encourage data points on the same manifold to receive the same label

prediction.

This unsupervised regularization term gives rise to the class of manifold regularization

methods. Consider a similarity graph with symmetric weighted adjacency matrix W , where

Wi j denotes the similarity between data points xi and x j (Wi j = 0 if the points are not con-

nected). Let D denote the degree matrix, which is a diagonal matrix with Di i =
∑n

j=1 Wi j .

The manifold regularization term || f ||2I is then defined as

|| f ||2I = 1

2
·

n
∑

i=1

n
∑

j=1

Wi j · (f (xi) − f (x j))
2. (5)

The regularization term can be expressed as f⊺ · L · f , where L = D − W is the graph

Laplacian, and f ∈ R
n is the vector of evaluations of f for each xi . The final optimization

problem, including the manifold regularization term from Eq. 5, becomes

123

410 Machine Learning (2020) 109:373–440

minimize
f ∈HK

1

l
·

l
∑

i=1

ℓ(f (xi), yi) + γ · || f ||2K + γU · || f ||2I , (6)

where γU determines the relative influence of the manifold regularization term.

This general framework leads to semi-supervised extensions of popular supervised learn-

ing algorithms, such as Laplacian support vector machines (LapSVMs), where the loss

function ℓ is defined as the hinge loss, i.e. ℓ(ŷ, y) = max{1−y ŷ, 0}. The supervised objective

of LapSVMs maximizes the margin, and the unsupervised objective maximizes consistency

of predictions along the estimated manifolds. In the paper proposing this framework, Belkin

et al. (2006) suggested to solve the resulting loss minimization problem in its dual form,

similar to popular solving techniques for supervised SVMs, in time O(n3). Melacci and

Belkin (2011) suggested solving the optimization problem in its primal form. Combining an

early stopping criterion with a preconditioned conjugate gradient, they reduced the time com-

plexity to O(c · n2) for some c that is empirically shown to be significantly smaller than n.

Qi et al. (2012) suggested to extend twin SVMs, which optimize two SVM-like objective

functions to yield two non-parallel decision boundaries (one for each class) (Jayadeva et al.

2007), to include the LapSVM regularization term. Sindhwani et al. (2005); Sindhwani and

Rosenberg (2008) extend manifold regularization to the co-regularization framework (see

Sect. 4.2). They proposed to construct two classifiers using an objective function similar to

that of LapSVMs for two different views. Niyogi (2008) provided some theoretical analysis

on the manifold regularization framework and analyzed its usefulness in semi-supervised

learning.

Zhu and Lafferty (2005) proposed to incorporate a manifold regularization term in a

generative model. They expressed the data-generating distribution as a mixture model, where

the manifold is locally approximated by a mixture model component. Their loss function

consists of a regularizer over the graph and a generative component. Weston et al. (2008)

incorporated a manifold regularization term into deep neural networks. They proposed several

methods to incorporate the manifold structure using an auxiliary embedding task, which

encourages the latent representations in the neural network to be similar for similar inputs.

Furthermore, they suggested to include a regularization term that explicitly pushes the latent

representations of non-similar data points (defined as not being neighbours in the underlying

graph) further apart. This approach was applied to hyperspectral image classification by Ratle

et al. (2010). More recently, Luo et al. (2018) employed a loss function that encourages data

points with the same label, either predicted (for unlabelled data points) or true (for labelled

data points), to have similar latent representations in the penultimate layer. Additionally,

it encourages the latent representations of data points with different predicted labels to be

dissimilar.

The graph construction process is non-trivial and involves many hyperparameters. For

instance, one can use a variety of connectivity criteria and edge weighting schemes. This

makes the performance of manifold regularization methods highly dependent on hyperpa-

rameter settings. Geng et al. (2012) attempted to overcome this problem by first selecting a

set of candidate Laplacians using different hyperparameter settings. They then posed the opti-

mization problem as finding the linear combination of Laplacians that minimizes the manifold

regularization objective. Formally, let there be m candidate Laplacians L1, . . . , Lm . Assume

that the optimal manifold L∗ lies in the convex hull of L1, . . . , Lm , i.e. L∗ =
∑m

j=1 μ j · L j

with
∑m

j=1 μ j = 1 and μ j ≥ 0 for j = 1, . . . , m. Since each L j is a valid graph Laplacian,

their linear combination is a valid graph Laplacian as well. Using exponential weights in the

Laplacian, the manifold regularization term || f ||2I then becomes

123

Machine Learning (2020) 109:373–440 411

|| f ||2I = f⊺ · L · f

= f⊺ ·

⎛

⎝

m
∑

j=1

μ j · L j

⎞

⎠ · f

=
m

∑

j=1

μ j · || f ||2I (j),

where || f ||2I (j) is the manifold regularization term for candidate Laplacian L j . This final

regularization term is then used in the original optimization problem from Eq. 6, with the

addition of a regularization term ||μ||2 to prevent the optimizer from overfitting to one

manifold, and the constraint that
∑m

j=1 μ j = 1. The objective function is then optimized

with respect to μ and f , which Geng et al. proposed to do in an EM-like fashion (i.e.

fixing one and optimizing the other alternatingly). Their approach, which they call ensemble

manifold regularization, was demonstrated to be superior to LapSVMs when applied to the

SVM objective function on both synthetic and real-world data sets (Geng et al. 2012).

Aside from the methods proposed by Geng et al. (2012) and Luo et al. (2018), graph

construction methods have mainly been studied in the context of transductive semi-supervised

learning. We cover these methods extensively in Sect. 7.

6.3.2 Manifold approximation

Manifold regularization techniques introduce a regularization term that directly captures the

fact that manifolds locally represent lower-dimensional Euclidean space. However, one can

also consider a two-stage approach, where the manifold is first explicitly approximated and

then used in a classification task. This is the approach taken by manifold approximation

techniques, which construct an explicit representation of the manifold. We note that such

approaches have a close relation to, and can in some cases even be considered as, semi-

supervised preprocessing (see Sect. 5).

Rifai et al. (2011a) developed such an approach, where the manifolds are first estimated

using contractive autoencoders (CAE, see Rifai et al. 2011a), and then used by a super-

vised training algorithm. CAEs are a variant of autoencoders that, in addition to the normal

reconstruction cost term in autoencoders, penalize the derivatives of the output activations

with respect to the input values. By doing so, they penalize the sensitivity of the learned

features to small perturbations in the input without relying on sampling these perturbations

(like denoising autoencoders do). Rifai et al. (2011b) claim that CAEs do not merely penalize

sensitivity to small perturbations in the input, but that they penalize small perturbations of

the input data along the manifold. They argue that this effect occurs due to the balance of

promoting reconstruction and penalizing sensitivity to inputs. In other words, they claim to

act directly on the manifold assumption.

The loss function L utilized by contractive autoencoders with reconstruction cost ℓ(·, ·) is

L =
n

∑

i=1

ℓ(g(h(xi)), yi) + λ · ||J ||2F ,

where ||J ||F is the Frobenius norm of the Jacobian matrix of the outputs with respect to

the inputs, i.e. the sum of the squared partial derivatives of each output activation with

respect to each input value. Rifai et al. additionally proposed to penalize the Hessian of the

output values. Due to the computational complexity of exactly calculating the Hessian, they

123

412 Machine Learning (2020) 109:373–440

propose to approximate it as the difference between the Jacobians corresponding to small

perturbations of the input.

Using singular value decomposition, they estimate the tangent plane at each input point

to approximate the actual manifolds. As a result, the distance between two data points along

the manifold can be estimated and subsequently used in classification, e.g. via a k-nearest

neighbour algorithm. Additionally, they suggested to use a deep neural network pre-trained

with multiple, stacked contractive autoencoders, where an additional term is added to the loss

function to explicitly penalize sensitivity of the outputs to perturbations along the tangent

plane.

A manifold can be described as a collection of overlapping charts, each having a simple

geometry, that jointly cover the entire manifold. Such a collection of charts is known as an

atlas. Pitelis et al. (2013, 2014) suggested to approximate these charts explicitly, associating

each with an affine subspace. They alternate between assigning data points to charts, and

choosing the affine subspace best matching the data for each chart. The charts are initialized

using principal component analysis on a set of random subspaces. From this, a set of charts

and a soft assignment of points to charts is obtained (since points can be associated with

more than one chart). Finally, from these charts and soft assignments, kernels are generated

that are then used in SVM-based supervised learning.

6.4 Generativemodels

The aforementioned methods are all discriminative: their only goal is to infer a function that

can classify data points. In some cases, they produce probabilistic predictions; in others,

they only yield the most likely class to assign. In all cases, they approach the classification

problem without explicitly modelling any of the data-generating distributions. In contrast, the

primary goal of methods based on generative models is to model the process that generated

the data. When such a generative model is conditioned on a given label y, it can also be used

for classification.

6.4.1 Mixture models

If prior knowledge about p(x, y) is available, generative models can be very powerful. For

instance, consider the case where we know that our data p(x, y) is composed of a mixture of

k Gaussian distributions, each of which corresponds to a certain class. Most discriminative

methods would not be able to properly incorporate this prior information. Instead, one would

be best served by simply fixing the model as a mixture of k Gaussian components. Each

component j = 1, . . . , k has three parameters: a weight π j (where
∑k

j=1 π j = 1), mean

vector μ j , and covariance matrix � j . The most likely parameters can then be inferred, for

example via expectation-maximization (Dempster et al. 1977). This model is generative: it

models the distribution p(x, y), from which samples (x, y) can be drawn. The model can then

also be used for classification: since the inference procedure yields an estimate p̂(x |y) of the

conditional distribution p(x |y), one can simply assign to an unlabelled data point xi ∈ XU

the class c that maximizes p̂(xi |yi = c) · p(yi = c). In the case of Gaussian mixture models

described earlier, p(yi = c) = πc.

The application of mixture models to generative modelling comes with several caveats

(Cozman et al. 2003; Zhu 2008). Firstly, the mixture model should be identifiable: each

distinct parameter choice for the mixture model should determine a distinct joint distribution,

up to a permutation of the mixture components. Secondly, mixture models hinge on the

123

Machine Learning (2020) 109:373–440 413

critical assumption that the assumed model is correct. If the model is not correct, i.e. the true

distribution p(x, y) does not conform with the assumed model, unlabelled data may hurt

performance rather than improve it.

In real-world applications, the model correctness assumption rarely holds. Therefore,

using mixture models for generative modelling can prove difficult. Some approaches exist to

mitigate these problems; for example, Nigam et al. (2000) vary the influence of unlabelled

data in EM. However, the rigidity of mixture models has caused attention to shift to more

flexible classes of generative models.

6.4.2 Generative adversarial networks

Recently, a new type of learning paradigm known as generative adversarial networks (GAN)

has been proposed, based on the idea of simultaneously constructing generative and discrim-

inative learners (Goodfellow et al. 2014a). Generally implemented using neural networks,

this approach simultaneously trains a generative model, tasked with generating data points

that are difficult to distinguish from real data, and a discriminative classifier, tasked with

predicting whether a given data point is ‘real’ or ‘fake’ (i.e. artificially generated).

The discriminator D, with parameters θ (D), and generator G, with parameters θ (G), are

trained simultaneously to optimize a single objective function. Crucially, the discriminator’s

goal is to minimize the objective function, whereas the generator’s goal is to maximize it. The

discriminative function D expresses the probability that a data point x is real; the generative

function G generates a data point x from a noise vector z sampled from some distribution

p(z). The cost function then consists of two terms; the first of these expresses the ability

of the discriminator to identify true data points as such, and its optimization involves only

the discriminator. The second term expresses the discriminator’s ability to identify fake data

points, and its optimization involves both the discriminator and the generator. Formally,

treating the real data as samples from some underlying probability distribution p(x), the

optimization problem can be formulated as

min
G

max
D

V (D, G) = Ex∼p(x)[log D(x)] + Ez∼p(z)[log(1 − D(G(z))], (7)

where the parametrizations of D by θ (D) and G by θ (G) are omitted for conciseness.

The generator and the discriminator are trained in an alternating fashion. In each training

step, multiple real data points are taken from the training data, and multiple fake data points

are generated using G by sampling from p(z). The respective parameters θ (D) and θ (R) of

the discriminator and the generator are then adjusted independently to optimize the empirical

objective function over the batches of samples using gradient descent (Goodfellow 2017).

GANs are naturally unsupervised: they consist of a generative model, trained on unlabelled

data, in combination with a discriminative classifier used to assess the quality of the generator.

However, extensions exist to support classification in GANs. Proposed but not implemented

in the original GAN paper (Goodfellow et al. 2014a), these methods also use a generator

and a discriminator, but train the discriminator to identify different classes instead of only

distinguishing real from fake data points. As such, GANs naturally extend to the semi-

supervised case: the purely discriminative component of the loss term (the first cost term in

Eq. 7) can easily be extended to incorporate true labels when these are known.

Springenberg (2015) proposed to extend the GAN discriminator to use |Y| outputs, cor-

responding to the |Y| possible classes. In their method, named CatGAN, they adapt the GAN

cost function to include a cross-entropy cost term that penalizes misclassifications of real

data by the discriminator. The ability of the discriminator to distinguish real from fake data

123

414 Machine Learning (2020) 109:373–440

points is assessed by considering the entropy of its outputs: for fake data, the discrimina-

tor should be uncertain of the class to assign, whereas it should be certain of its prediction

for real data points. Furthermore, they add a cost term to encourage the generator to assign

equal probability of generation to each class. We note that CatGAN can also be used in an

unsupervised setting, by leaving out the cross-entropy cost term.

Salimans et al. (2016) extended GANs to the semi-supervised setting by using |Y| + 1

outputs, where outputs 1, . . . , |Y| correspond to the individual classes, and output |Y| + 1 is

used to indicate fake data points. The loss function is adapted to include the cross-entropy loss

of the prediction given the true label for the labelled data points. Otherwise, the loss function

does not need to be changed significantly: when presented with an unlabelled data point, the

discriminator’s estimate of the data point not being fake can be calculated as
∑|Y|

c=1 Dc(x)

for data point x, where Dc(x) is the value of output c of the discriminator. Odena (2016)

independently proposed the same idea around the same time. Dai et al. (2017) provided

some theoretical analysis of this framework. They argued that, for the method to improve

performance over the discriminator by itself, the distribution modelled by the generator

should complement the true data distribution: it should assign high probability density to

regions in the input space that have low density in the true distribution.

Instead of using the discriminator for determining both the class and the authenticity

of data points, one can also use a separate discriminative model for each task. This is the

approach taken in triple adversarial networks, where one discriminator is used for classifying

data points, and another is tasked with distinguishing real from fake data (Li et al. 2017).

For an extensive overview of GANs, their applications and their extensions, we refer the

reader to the summary of the 2016 NIPS tutorial on GANs by Goodfellow (2017).

6.4.3 Variational autoencoders

Aside from GANs, further efforts have been made in recent years towards constructing

semi-supervised deep generative models. One notable example is the proposal of variational

autoencoders (VAE) and their application to semi-supervised learning.

Proposed by Kingma and Welling (2013), variational autoencoders are a type of latent

variable model that treats each data point x as being generated from a vector of latent variables

z. Traditional latent variable models, such as autoencoders, generally yield a model with a

highly complex distribution p(z), which makes it very difficult to use them for sampling.

Contrastingly, VAEs constrain p(z) to be a simple distribution, such as a standard multivariate

Gaussian distribution, from which sampling is straightforward. The transformation from p(z)

to some more complex distribution p(x|z) is then left to a decoder.

At training time, an encoder is used to determine the parameters of a distribution p(z|x)

based on a data point x. To generate reconstructions of x, latent vectors z can then be sampled

from this distribution and passed through the decoder. The decoder and encoder are jointly

trained, minimizing a combined cost function consisting of (1) the Kullback-Leibler diver-

gence between the posterior distribution p(z|x) and some simple prior distribution p(z), and

(2) the reconstruction cost of the output of the autoencoder for input data. The first term is

crucial: it allows the decoder to be used as a generative model, taking in latent vectors that

are directly sampled from p(z).

For brevity, we do not go into too much detail regarding the training procedure of VAEs,

which includes a nontrivial backpropagation step due to the sampling procedure; instead, we

refer the reader to the VAE tutorial by Doersch (2016).

123

Machine Learning (2020) 109:373–440 415

Kingma et al. (2014) propose a two-step model to use VAEs for semi-supervised learning.

In the first step, a VAE is trained on both the unlabelled and labelled data to extract mean-

ingful latent representations from data points. By itself, this can be seen as an unsupervised

preprocessing step, allowing the latent representations to be used by any supervised classifier.

In the second step, they implement a VAE in which the latent representation is augmented

with the label vector yi , which contains the one-hot-encoded true labels for labelled data

points and is treated as an additional latent variable for unlabelled data. In addition to the

decoder, a classification network is introduced that infers the label predictions (Kingma et al.

2014).

7 Transductivemethods

The semi-supervised learning methods described in the previous sections were all inductive

algorithms: their primary goal was to use both labelled and unlabelled data to construct a

procedure capable of providing label predictions for data points in the entire input space.

In inductive learners, we can therefore clearly distinguish between a training phase and a

testing phase: in the training phase, labelled data (X L , yL) and unlabelled data XU are used

to construct a classifier. In the testing phase, this classifier is used to independently classify

the unlabelled or other, previously unseen data points.

In this section, we discuss transductive algorithms, which constitute the second major class

of semi-supervised learning methods. Unlike inductive algorithms, transductive algorithms

do not produce a predictor that can operate over the entire input space. Instead, transductive

methods yield a set of predictions for the set of unlabelled data points provided to the learning

algorithm. Contrary to the inductive setting, we thus cannot distinguish between a training

phase and a testing phase: transductive algorithms are provided with labelled data (X L , yL)

and unlabelled data XU , and output exclusively predictions ŷU for the unlabelled data.

Transductive methods typically define a graph over all data points, both labelled and

unlabelled, encoding the pairwise similarity of data points with possibly weighted edges (Zhu

2005). An objective function is then defined and optimized, in order to achieve two goals:

1. For labelled data points, the predicted labels should match the true labels.

2. Similar data points, as defined via the similarity graph, should have the same label

predictions.

In other words, these methods encourage consistent predictions for similar data points while

taking into account the known labels. A close similarity exists between these methods and the

inductive manifold-based methods from Sect. 6.3. Both methods construct a graph over the

data points and use pairwise similarity between data points to approximate more complex

structures. The only major difference between them is that the inductive methods seek to

obtain a classifier that can operate across the entire input space, whereas transductive methods

only yield predictions for a given set of unlabelled data points. Collectively, these methods

are often referred to as graph-based methods (Zhu 2008).

In Sect. 6.3, we focused on the interpretation and motivation of graph-based techniques

from the theoretical perspective of manifolds. The development of transductive graph-based

methods, however, has generally been driven directly by the two optimization criteria outlined

above. This section, in which we discuss transductive semi-supervised learning, follows that

line of reasoning.

123

416 Machine Learning (2020) 109:373–440

7.1 A general framework for graph-basedmethods

Graph-based semi-supervised learning methods generally involve three separate steps: graph

creation, graph weighting and inference (Jebara et al. 2009; Liu et al. 2012). In the first step,

nodes (representing data points) in the graph are connected to each other, based on some

similarity measure. In the second step, the resulting edges are weighted, yielding a weight

matrix. The first two steps together are commonly referred to as the graph construction phase.

After graph construction, we have a graph consisting of a set of nodes V = {v1, . . . , vn},
corresponding to the data points, and an n × n weight matrix W containing the edge weights

for all pairs of nodes, where an edge weight of zero indicates that no edge is present. In

the remainder of this section, we use the terms node and data point interchangeably in the

context of graph-based methods.

Once the graph is constructed, it is used to obtain predictions ŷU for the unlabelled

data points. The general form of objective functions for transductive graph-based methods

contains one component for penalizing predicted labels that do not match the true label,

and another component for penalizing differences in the label predictions for connected data

points. Formally, given a supervised loss function ℓ for the labelled data and an unsupervised

loss function ℓU for pairs of labelled or unlabelled data points, transductive graph-based

methods attempt to find a labelling ŷ that minimizes

λ ·
l

∑

i=1

ℓ(ŷi , yi) +
n

∑

i=1

n
∑

j=1

Wi j · ℓU (ŷi , ŷ j), (8)

where λ governs the relative importance of the supervised term. Furthermore, some graph-

based methods impose an additional unary regularization term on the unlabelled predictions.

This general framework for graph-based methods allows for a multitude of variations in each

of its steps. The formulation is commonplace in graph-based methods, and most graph-based

inference algorithms can be shown to fit into this framework (Bengio et al. 2006; Subramanya

and Talukdar 2014). It is also present in the manifold regularization framework (Belkin et al.

2005) discussed in Sect. 6.3.

For graph construction, most graph-based methods rely on the local similarity between

data points in the input space, connecting data points with similar features. In that case,

they implicitly rely on the smoothness assumption in addition to the manifold assumption. A

parallel can be drawn between such graph-based methods and supervised nearest-neighbour

methods. The latter predict the label of an unlabelled data point by looking at the labels of

similar (i.e. nearby) labelled data points; graph-based methods also consider the similarity

between pairs of unlabelled data points. Using that information, labels can be propagated

transitively from a labelled data point to an unlabelled data point through other data points,

both labelled and unlabelled. In that light, some graph-based methods can be seen as semi-

supervised extensions to nearest-neighbour methods.

The spectrum of graph-based semi-supervised learning methods can be effectively struc-

tured based on the different approaches in the two main phases, i.e. graph construction and

inference. Early work on graph-based methods focused mainly on the second phase, leaving

graph construction a scarcely studied topic. Zhu (2008) noted that this imbalance might be

unjust, and that graph construction can have significant impact on classifier performance.

Later work has addressed this imbalance, and graph construction has since become an area

of substantial research interest (de Sousa et al. 2013).

Graph-based transductive methods were introduced in the early 2000s, and graph-based

inference methods were particularly intensively studied during the subsequent decade. A

123

Machine Learning (2020) 109:373–440 417

substantial portion of the research conducted in this field is covered in the semi-supervised

learning survey by Zhu (2008) and in the doctoral thesis of Zhu (2005). Furthermore, Sub-

ramanya and Talukdar (2014) recently published a book on graph-based methods.

Following the general chronological order of research in the field of graph-based methods,

we begin by outlining different approaches to solving the inference problem. After that, we

provide an overview of research on graph construction.

7.2 Inference in graphs

The inference process in transductive methods consists of forming predictions ŷU for the

unlabelled data points XU . If the predicted labels of the labelled data are not fixed to the

true labels in the inference process, optimization proceeds over the entire set of predicted

labels ŷ.

Many approaches have been suggested for tackling the optimization of Expression 8;

generally, these differ in the specific choices of the loss functions ℓ and ℓU and the trade-off

parameter λ. Furthermore, some methods infer only the most likely label assignment ŷ, while

others estimate the marginal probability distributions. Jointly, these variations give rise to a

plethora of different graph-based inference methods.

Although the general objective function from Expression 8 applies to the multiclass setting

as well, many graph-based methods do not naturally extend beyond binary classification. The

inference methods we focus on in the following mostly consider the binary classification case.

7.2.1 Hard label assignments: graphmin-cut

The first graph-based semi-supervised classification method was proposed by Blum and

Chawla (2001), who experimented with graph construction using a k-nearest neighbours

algorithm and the ǫ-neighbourhood (connecting pairs of data points with distance smaller

than ǫ). They kept the edge weights fixed and uniform, but experimented with changing the

weight of edges between unlabelled data points relative to other edges.

Once the graph is constructed, the optimization problem is approached from a min-cut

perspective. Specifically, a single source node v+ is added and connected with infinite weight

to the positive data points, and a single sink node v−, connected with infinite weight to the

negative data points. Determining the minimum cut, then, corresponds to finding a set of

edges with minimal combined weight that, when removed, result in a graph with no paths

from the source node to the sink node. All unlabelled nodes in the resulting graph that are

in the component containing v+ are labelled as positive, and all unlabelled nodes that are in

the component containing v− are labelled as negative.

The min-cut approach can be seen to minimize the general objective function of Expres-

sion 8 as λ approaches infinity (fixing the predictions on labelled data points to their true

labels) and ℓU (ŷi , ŷ j) = 1{ŷi �=ŷ j }, where 1 is the indicator function. Note that, assuming

labels 0 and 1 are used, the loss function for unlabelled data corresponds to quadratic cost,

i.e. 1{ŷi �=ŷ j } = (ŷi − ŷ j)
2. We can write the corresponding objective function as

λ ·
l

∑

i=1

(ŷi − yi)
2 +

n
∑

i=1

n
∑

j=1

Wi j · (ŷi − ŷ j)
2. (9)

Note that this objective function can be written in an alternate form, using the graph

Laplacian L = D − W (where D is the diagonal matrix containing the degree for node i at

Di i) as follows:

123

418 Machine Learning (2020) 109:373–440

λ ·
l

∑

i=1

(ŷi − yi)
2 + 2 · ŷ⊺ · L · ŷ.

Pang and Lee (2004) used the min-cut approach for classification in the context of senti-

ment analysis. They note that, instead of fixing the predicted labels of labelled data to their

true labels, one can also assign finite weight to the edges connecting the source and sink nodes

to the labelled data points, indicating confidences in either classification from the perspective

of the individual data point.

The min-cut approach can easily lead to degenerate cuts, yielding a solution where almost

all unlabelled data fall within the same graph component. This behaviour originates from the

fact that more balanced cuts generally have more potential edges to cut: when a cut yields a

split into negative nodes V − and positive nodes V +, the number of edges to cut is potentially

|V +| · |V −|. Joachims (2003) proposed to normalize the objective function of min-cut based

on this potential number of edges being cut, using spectral methods to solve the resulting

optimization problem.

Since the min-cut algorithm optimizes over a binary vector, it does not permit the extraction

of marginal probabilities. To solve this problem, Blum et al. (2004) proposed to construct

an ensemble of min-cut classifiers, each finding the minimum cut on a randomly perturbed

version of the constructed graph, obtained by adding noise to the edge weights. The prediction

probabilities are then simply calculated as the fraction of classifiers predicting a given label.

7.2.2 Probabilistic label assignments: Markov random fields

The lack of a principled, efficient way of estimating classification probabilities is a fundamen-

tal disadvantage of the min-cut approach to graph-based inference. In many cases, we wish

to estimate the probability P(yi = c) that an unlabelled data point xi has label c. Standard

min-cut, however, only provides hard classifications (i.e. it only outputs class labels and no

probabilities). Approaching graph-based methods from the perspective of Markov random

fields provides a potential solution to this problem. In the following, with a slight abuse of

notation, we use X and x to denote random variables and their realizations, respectively,

rather than data points.

The Hammersley-Clifford theorem states that a probability distribution P(X = x) for

random variables X1, . . . , Xn corresponds to a Markov random field if a graph G exists such

that the joint probability function P(X = x) can be factorized over the (maximal) cliques

of G (Hammersley and Clifford 1971). In other words, P(X = x) corresponds to a Markov

random field formed by G if

P(X = x) = 1

Z
·

∏

c∈CG

ψc(xc),

where Z is a normalization constant, CG is the set of cliques in G, ψc is an arbitrary function,

and xc contains the realizations of random variables in clique c.

Using the Hammersley-Clifford theorem, we can show that the general minimization for

graph-based methods, formulated in Expression 8, can be expressed in the form of a Markov

random field. Let G denote the graph with weight matrix W obtained in the graph construction

phase, and let Ŷ = (Ŷ1, . . . , Ŷn) be a collection of random variables corresponding to the

predicted labels (i.e. 0 or 1) for data points x1, . . . , xn . We extend G by connecting each

node Ŷi corresponding to a labelled data point xi to an auxiliary node Y ′
i , corresponding to

a random variable which can only attain the true label yi . We denote the entire collection of

123

Machine Learning (2020) 109:373–440 419

Fig. 5 Example of an undirected

graphical model for graph-based

classification. Filled nodes and

edges between them correspond

to the original graph G. Unfilled

nodes with plus and minus signs

correspond to auxiliary nodes

connected to labelled data

random variables, or nodes, as Y = Ŷ ∪ Y ′, where Y ′ contains all auxiliary nodes.3 Since the

auxiliary nodes can only attain the corresponding true label, P(Y = y) = P(Ŷ = ŷ), where

ŷ is the set of predictions for our (labelled and unlabelled) data.

This situation is depicted in Fig. 5. The filled nodes Ŷ and the edges between them

correspond to the original graph G; the unfilled nodes marked with plus and minus signs

represent the auxiliary nodes Y ′, and are connected only to the corresponding filled node.

Recall that a clique is a subset of nodes within which every pair of nodes is connected by

an edge. A maximal clique, then, is a clique that cannot be expanded, i.e. to which no nodes

can be added such that the resulting subset of nodes also forms a clique. We note that every

pair of nodes that is connected by an edge is part of at least one clique. Thus, if we can find

an expression of the form
1

Z
·

∏

(u,v)∈E

ψ{u,v}({u, v})

for P(Ŷ = ŷ), the probability distribution corresponds to a Markov random field. We proceed

to show that we can express the cost function from Expression 8 such that minimizing it

corresponds to maximizing the probability P(Ŷ = ŷ). We can distinguish between two

different types of edges: those between two normal nodes u, v from Ŷ , and those between a

normal node and its auxiliary node (u from Ŷ , v from Y ′, or vice versa). Let us define ψ(·)
for these two cases independently:

ψ({ŷi , ŷ j }) = exp(−Wi j · ℓU (ŷi , ŷ j)) if vi , v j ∈ Ŷ ,

ψ({ŷi , y′
i }) = exp(−ℓ(ŷi , y′

i)) if vi ∈ Ŷ , v j ∈ Y ′

or vi ∈ Y ′, v j ∈ Ŷ .

The probability P(Ŷ = ŷ) then becomes

1

Z
·

∏

(u,v)∈E

ψ{u,v}({u, v}) = exp

⎛

⎜

⎝
−

∑

y′
i ∈Y ′

ℓ(ŷi , y′
i) −

∑

ŷi ,ŷ j ∈Ŷ

ℓU (ŷi , ŷ j)

⎞

⎟

⎠
,

3 We note that technically, Ŷ , Y ′ and Y are lists rather than sets, but—following common practice in the

machine learning literature—use set notation in the following.

123

420 Machine Learning (2020) 109:373–440

where the normalization constant Z can be calculated by summing over all possible config-

urations of Y . Although this is computationally too expensive for all practical purposes, the

normalization constant is irrelevant in the context of maximum-likelihood estimation. The

negative logarithm of the unnormalized probability, then, is exactly equal to the general loss

function for graph-based methods from Expression 8. Maximizing the probability P(Y = y),

we obtain the mode of the Markov random field, i.e. its most likely configuration. This solu-

tion is exactly the solution found when minimizing the min-cut objective (Blum and Chawla

2001).

In the inductive semi-supervised classification setting, classifier predictions are indepen-

dent, i.e. P(Ŷ = ŷ) = p(Y1 = ŷ1) · p(Ŷ2 = ŷ2) · . . . · p(Ŷn = ŷn). In transductive,

graph-based methods, however, this is generally not the case: predictions are dependent on

each other. Therefore, the most probable label assignment ŷ generally does not correspond

to the label assignment minimizing the expected error rate. To find the latter, each data point

xi would have to be assigned the label that maximizes the marginal probability for that data

point. Unfortunately, finding the marginal probabilities of a random field is not trivial.

Zhu and Ghahramani (2002b) attempted the calculation of the marginal probabilities via

Markov chain Monte Carlo (MCMC) sampling. They experimented with Metropolis and

Swendsen-Wang sampling and reported low computational efficiency. Shental and Domany

(2005) used a multicanonical MCMC method to compute the marginal probabilities.

7.2.3 Efficient probabilistic label assignments: Gaussian random fields

There is no closed-form solution for calculating the marginal probabilities in the Markov

random field with binary labels described previously. However, when the random variables

Ŷ are relaxed to take real values, a closed-form solution exists. This approach was proposed

by Zhu et al. (2003); it involves fixing the labels of the labelled data points and using quadratic

cost for the pairs of predictions ŷi , ŷ j ∈ R. This results in an objective function identical

to that used in the min-cut formulation (see Expression 9), except for the relaxation of the

predictions to real numbers.

Using real-valued predictions with a quadratic loss function, the exponential form for

P(Ŷ = ŷ) is a multivariate Gaussian distribution. Thus, a closed-form solution for the mode

of the field, which equals its mean, exists. Furthermore, the marginal probability distribution

P(Ŷi = ŷi) is Gaussian as well, allowing for computation of the label predictions minimizing

the error rate. This is why the random field is called a Gaussian random field.

Recall from Sect. 6.3 that we defined the graph Laplacian as L = D − W , where D

is the degree matrix (i.e. a diagonal matrix with the vertex degrees on the diagonal). Zhu

et al. (2003) showed that the prediction function is harmonic, i.e. L · ŷ = 0 at unlabelled

data points, and is equal to the true label at labelled data points. The predicted label at each

unlabelled data point is equal to the average of the predictions of its neighbours, i.e.

ŷi = 1

Di i

·
∑

v j ∈N (vi)

Wi j · ŷ j , for i = l + 1, . . . , n,

where N (vi) denotes the neighbourhood of node vi , that is, N (vi) = {v j : Wi j �= 0}. Fur-

thermore, the solution is unique and ŷi ∈ [0, 1] for each i . Thus, label predictions can be

easily obtained from the solution using thresholding.

Computation of the marginals of the Markov random field involves an inversion of the

submatrix LU corresponding to the unlabelled data points in the graph Laplacian. This is com-

putationally expensive for large numbers of unlabelled data points. Several other approaches

123

Machine Learning (2020) 109:373–440 421

have been proposed for finding the solution to the harmonic function, including loopy belief

propagation and a conjugate gradient method (Zhu et al. 2003).

Before proposing the Gaussian random fields approach to graph-based methods, Zhu and

Ghahramani (2002a) introduced the label propagation algorithm for inference on graphs. It is

an iterative algorithm that computes soft label assignments ŷi ∈ R by pushing (propagating)

the estimated label at each node to its neighbouring nodes based on the edge weights. In other

words, the new estimated label at each node is calculated as the weighted sum of the labels

of its neighbours. In matrix notation, let

Ai j = Wi j
∑

vk∈N (vi)
Wik

denote the transition matrix. The label propagation algorithm then consists of two steps, which

are repeated until the label assignment ŷ converges. Starting with an initial label assignment

ŷ, which is random for the unlabelled data points and equal to the true labels for the labelled

data points:

1. Propagate labels from each node to the neighbouring nodes: ŷ = A⊺ · ŷ.

2. Reset the predictions of the labelled data points to the corresponding true labels.

Zhu (2005) showed that the algorithm is guaranteed to converge to the harmonic function

solution described earlier. They also showed that the label propagation approach can be

interpreted as a random walk with transition matrix A, which stops when a labelled node

is hit. Wu et al. (2012a) cast this procedure in a framework they call partially absorbing

random walks, where they, instead of deterministically stopping when a labelled node is hit,

stochastically determine whether to stop (absorb) or continue the random walk. The label

propagation approach is closely related to the Markov random walks approach by Szummer

and Jaakkola (2002). Belkin et al. (2004) considered a similar objective function and provided

some theoretical analysis. Azran (2007) proposed a random walk approach, where walks

originate in unlabelled nodes and the labelled nodes are absorbing states. The probability

that an unlabelled data points attains a certain label is then derived from the probability that a

walk starting from the unlabelled node ends up in a labelled node of the corresponding class,

as the length of the random walk approaches infinity.

7.2.4 Handling label noise and irregular graphs: local and global consistency

The Gaussian random fields method has two drawbacks (Subramanya and Talukdar 2014).

Firstly, since the true labels are clamped to the labelled data points, it does not handle label

noise well. Secondly, in irregular graphs, the influence of nodes with a high degree is relatively

large. An approach closely related to the Gaussian random fields method that addresses these

two issues was proposed by Zhou et al. (2004). It is commonly known as the local and global

consistency (LGC) method, referring to the observation that graph-based methods promote

consistency of labels on manifolds (global) and nearby in the input space (local). Note that,

in the following, we assume Y = {−1, 1}.
To address the first issue, LCF does not clamp the true labels to the labelled data points, but

rather penalizes the squared error between the true label and the estimated label. The second

issue is addressed by regularizing the penalty term for unlabelled data points by the node

degrees. Furthermore, predictions for the unlabelled data points are regularized by pulling

them towards zero (Bengio et al. 2006). We can write the corresponding objective function

in the general form as

123

422 Machine Learning (2020) 109:373–440

l
∑

i=1

(ŷi − yi)
2 +

n
∑

i=l+1

ŷ2
i + λU ·

n
∑

i=1

n
∑

j=1

Wi j ·
(

ŷi√
Di i

− ŷ j
√

D j j

)2

,

where λU governs the weight of the penalization of inconsistencies in label predictions

between neighbours in the graph.

Note that, like for the min-cut and MRF objectives, the last term of the objective function

can be expressed using matrix notation. The only difference is that LGC uses the normalized

graph Laplacian L̃ = D− 1
2 · L · D− 1

2 instead of the unnormalized Laplacian L = D − W

in that term. Like Gaussian random fields, this formalization admits a closed-form solution

and a relatively efficient iterative approach to optimization. In this algorithm, the label vector

ŷt+1 at iteration t + 1 is calculated based on that at iteration t , using the update rule

ŷt+1 = α · L̃ · ŷt + (1 − α) · y,

where y is 0 for the unlabelled data points, and α governs the relative importance of the

calculated label vector versus the base label vector y. This algorithm is often referred to as

label spreading.

7.2.5 Further research on graph-based inference

The previously described approaches, and in particular label propagation, have been the de

facto standard approach to the inference phase in graph-based semi-supervised classifica-

tion. Several variants and extensions to the approach have been proposed, which we briefly

summarize here.

Baluja et al. (2008) applied graph-based methods to recommender systems (in particular,

video suggestions to users). They proposed adsorption, a heuristic algorithm for predicting

the label ŷi of node i by performing a random walk starting at node vi . At each step in the

random walk, the process can either continue to the next step (continue), accept the label of

a labelled node as the prediction (injection), or explicitly predict no label (abandonment).

The last option corresponds to a dummy prediction, which specifically indicates that the

learning algorithm is unable to produce a confident prediction. The option chosen by the

algorithm is dependent on two hyperparameters governing the relative frequencies of the

three options. Heuristic approaches to hyperparameter optimization have been proposed by

Baluja et al. (2008) and Talukdar et al. (2008). The algorithm has been successfully applied

to video recommendation, but is difficult to analyze theoretically, due to its many heuristic

components. Talukdar and Crammer (2009) found that there is no objective function that is

minimized by the adsorption algorithm, and proposed a modification to the algorithm for

which such an objective function does exist.

The previously described graph-based methods can be sensitive to class imbalance (Zhu

2008). Several approaches have been proposed to mitigate this problem. Zhu et al. (2003)

suggested to adjust the classification threshold such that the predicted label proportions

correspond to predefined label proportions. Wang et al. (2008a) developed an optimization

scheme that is less sensitive to noise in the true labels and that mitigates the problem of

sensitivity to class imbalance by altering the influence of labelled samples based on the label

proportions. They modified the objective function to optimize over real-valued predictions as

well as binary label assignments; their approach penalizes the difference between real-valued

and binary predictions. It then proceeds to optimize the objective function by optimizing,

in an alternating fashion, the real-valued and binary label assignments. Later, Wang et al.

(2013) considered the same approach from a graph max-cut perspective.

123

Machine Learning (2020) 109:373–440 423

In structured output learning, the labels of data points cannot be captured using sim-

ple binary or real-valued representations. For instance, the output labels might be better

represented with histograms or probability distributions in some cases (e.g. when predict-

ing the relative traffic density at a location over a 24-hour cycle). Subramanya and Bilmes

(2008, 2011) propagate discrete probability distributions through a graph, based on the KL-

divergence between the distributions of different nodes. As an alternative to KL-divergence,

Solomon et al. (2014) proposed to use the Wasserstein distance to measure the similarity

between the discrete distributions of neighbouring nodes.

7.3 Graph construction

Arguably, graph construction is the most important aspect of graph-based methods: in order

for inference to work, the constructed graph must accurately capture local similarities. Initial

research on graph-based methods was chiefly focused on the inference phase, and graph

construction was not well-studied (Zhu 2008). In recent years, however, this has changed.

Extensive experiments have been conducted on different graph construction algorithms, and

new methods have been introduced (de Sousa et al. 2013; Jebara et al. 2009; Subramanya

and Talukdar 2014).

Since the nodes of the graph correspond to the data points (both labelled and unlabelled),

the graph construction phase amounts to forming edges between nodes (yielding the adja-

cency matrix) and attaching weights to them (yielding the weight matrix). In many cases, the

similarity measure governing the connectivity between nodes is also used to construct the

weight matrix.

7.3.1 Adjacency matrix construction

The first step in constructing the graph is the creation of an adjacency matrix, whose elements

indicate the presence of edges between pairs of nodes. Three popular methods for determining

edges exist and are outlined below. We note that the first two methods, ǫ-neighbourhood and

k-nearest neighbours, are local in the sense that a set of neighbours can be determined

independently for each node. In other words, the construction of a neighbourhood for a

node vi does not influence neighbourhood construction for another node v j (unless vi is

a neighbour of v j). The third method, b-matching, on the other hand, optimizes a global

objective, and nodes that are far apart can significantly influence each other’s connectivity.

ǫ-neighbourhood. One of the first methods to be used in graph construction was the ǫ-

neighbourhood method, which simply connects each node to all nodes to which the distance

is at most ǫ (Blum and Chawla 2001). In other words, an edge between xi and x j is created

if, and only if, d(xi , x j) ≤ ǫ, where d(·, ·) is some distance measure (usually Euclidean

distance). The structure of the resulting graph is highly dependent on the choice of ǫ and the

distance measure. Furthermore, since ǫ is fixed, it does not work well if the scale of patterns

varies across the given input data. Because of these limitations, the ǫ-neighbourhood method

is rarely used in practice (de Sousa et al. 2013; Jebara et al. 2009).

k-nearest neighbours. The most common graph construction method for transductive

methods is the k-nearest neighbours method, where each node is connected to its k nearest

neighbours in the input space according to some distance measure (Blum and Chawla 2001).

Using vanilla k-nearest neighbours, however, gives rise to a problem: since k-nearest neigh-

bours is not symmetric, some additional processing is often required to obtain an undirected

123

424 Machine Learning (2020) 109:373–440

graph. Two options are commonly considered: one (symmetric k-nearest neighbours) con-

structs an edge if i is in the k-neighbourhood of j or vice versa, and the other (mutual k-nearest

neighbours) constructs an edge if i and j are both in each other’s k-neighbourhood (de Sousa

et al. 2013). The difference between the ǫ-neighbours and k-nearest neighbours methods has

been extensively studied by Maier et al. (2009) in the context of clustering methods.

b-matching. The postprocessing step used when constructing the graph with k-nearest neigh-

bours generally results in a graph where not all nodes have exactly k neighbours. When

symmetric k-nearest neighbours is used, it often occurs that some nodes have much higher

degrees than others. Jebara et al. (2009) showed that this can negatively impact the final

performance of the classifier. They proposed an edge construction method that enforces the

regularity of the constructed graph, i.e. ensures that each node has the same number of neigh-

bours, and that the nodes have exactly the requested number of edges. Their approach is

inspired by matching, a concept from graph theory where one tries to find a subset of edges

in a graph such that the edges do not share any vertices. In their method, referred to as b-

matching, the objective is to find the subset of edges in the complete graph such that (1) each

node has degree b and (2) the sum of the edge weights is maximized.

Note that, in the original study by Jebara et al. (2009), instead of maximizing the sum of

edge weights, the objective is to minimize the sum of the distances between the remaining

edges. However, since they define the distance matrix C as Ci j =
√

Wi i + W j j − 2Wi j ,

these notions are equivalent. The corresponding optimization problem is formulated as

minimize
A∈Bn×n

n
∑

i=1

n
∑

j=1

Ai j · Ci j

subject to

n
∑

j=1

Ai j = b i = 1, . . . , n,

Ai i = 0 i = 1, . . . , n,

Ai j = A j i i, j = 1, . . . , n.

It can be shown that this corresponds to the optimization problem solved by the k-nearest

neighbour algorithm, with the addition of the constraint Ai j = A j i , which ensures that

a symmetric graph is constructed without the need for a postprocessing step. However, the

most efficient known algorithm for the b-matching optimization problem has time complexity

O(n2.5) and requires several assumptions that are not always satisfied in real-world scenarios

(Huang and Jebara 2011).

7.3.2 Graph weighting

The graph weighting phase, which forms the second step of graph construction, determines the

weights for the edges in the graph. In many cases, the weights correspond to the similarity

measure used for constructing the edges. For instance, a Gaussian kernel is often used to

determine the connectivity of the graph via k-nearest neighbours as well as the edge weights.

In that case, the graph construction process is usually considered as consisting of weighting

and sparsification. First, a complete adjancency matrix K is constructed using some kernel

function k for all pairs of nodes such that Ki j = k(xi , x j); then, the weight matrix W is

obtained by sparsification, i.e. by removing edges from K .

Several methods for edge weighting have been suggested in the literature. One of the most

popular weighting schemes is Gaussian edge weighting (de Sousa et al. 2013; Jebara et al.

2009), where

123

Machine Learning (2020) 109:373–440 425

Wi j = exp

(−||xi − x j ||2
2σ 2

)

,

and σ 2 is the variance of the Gaussian kernel. Note that this corresponds to an isotropic

Gaussian kernel; a non-isotropic Gaussian kernel can also be used. Hein and Maier (2007)

suggested a local variant of Gaussian edge weighting for k-nearest neighbour graph con-

struction, where the variance for a pair of nodes i and j is based on the maximum distance

to i and j’s nearest neighbours. They define the weight as

Wi j = exp

(−||xi − x j ||2
(max{hi , h j })2

)

,

where hi = maxvk∈N (vi) ||xi − xk ||2, i.e. the maximum squared distance between i and its

neighbours. Blum and Chawla (2001) suggested altering the importance of different features

in the similarity calculation based on their information gain. Jebara et al. (2009) experimented

with binary weights, where Wi j = 1 if nodes i and j are connected, and Wi j = 0 otherwise.

We note that, in all weighting schemes described above, Wi j = 0 for unconnected nodes.

The approaches described above determine edge weights Wi j based solely on the pairwise

similarity of nodes xi and x j . However, it is also possible to take the entire neighbourhood

of a node into account when determining edge weights. Wang and Zhang (2008) introduced

the linear neighbourhood propagation (LNP) algorithm, which is based on the assumption

that the graph should be constructed such that any data point xi can be approximated as a

linear combination of its neighbours, i.e.

xi =
∑

v j ∈N (vi)

Wi j · x j + ǫi

for some vector ǫi of low magnitude. In this equation, the unknowns are the weights Wi j

of the contributions of each neighbour to the approximation of xi . The approach by Wang

and Zhang consists of estimating W such that the difference between the approximated and

true data points is minimized, while ensuring that the weights are positive and that the edge

weights for each node sum to 1. This leads to the following optimization problem:

minimize
W∈Rn×n

n
∑

i=1

||xi − x̃i ||2

subject to
∑

v j ∈N (vi)
Wi j = 1 i = 1, . . . , n

Wi j ≥ 0 i, j = 1, . . . , n

(10)

where x̃i =
∑

v j ∈N (vi)
Wi j · x j is the reconstruction of xi . This formulation is identical to

locally linear embedding (Roweis and Saul 2000), with the addition of the two constraints.

LNP can be solved via a series of quadratic programming problems (one for each node).

Crucially, this depends on the fact that edge weight symmetry is not enforced, i.e. it is not

necessarily the case that Wi j = W j i ; because of this, the weights Wi j are independent of

Wk j for k �= i .

Karasuyama and Mamitsuka (2013) combined locally linear embedding with a local sim-

ilarity measure to obtain the edge weights. In particular, given a pre-constructed graph (for

instance, using the k-nearest neighbour algorithm), they calculate the weight between two

connected nodes using a Gaussian kernel with diagonal covariance matrix. This matrix is

constructed by finding the coefficients that minimize the local reconstruction error.

123

426 Machine Learning (2020) 109:373–440

Liu and Chang (2009) construct the weight matrix with a modification of the symmetric

k-nearest neighbours method: two nodes are connected if either of them is in the other’s

k-neighbourhood, but the weight of the two connections is summed if they are both in each

other’s neighbourhoods. In other words, the modified weight matrix W is constructed based

on the original weight matrix Ŵ as follows:

Wi j =

⎧

⎪

⎨

⎪

⎩

Ŵi j + Ŵ j i , if vi ∈ N (v j) and v j ∈ N (vi)

Ŵ j i , if vi ∈ N (v j) and v j /∈ N (vi)

Ŵi j , otherwise

de Sousa et al. (2013) compared the influence of several of these methods on the perfor-

mance of transductive algorithms. In particular, they compared Gaussian weighting (where

edges are weighted using an isotropic Gaussian kernel), the locally normalized Gaussian

weighting approach by Hein and Maier (2007), and LNP (Wang and Zhang 2008); somewhat

surprisingly, their best results were obtained using Gaussian weighting.

7.3.3 Simultaneous graph construction and weighting

The LNP algorithm described earlier (see Sect. 7.3.2) assumes that the graph structure (i.e.

the set of edges) is known and fixed, and determines the edge weights for each node locally,

based on the assumption that each node can be reconstructed as a linear combination of its

neighbours. Instead of fixing the graph structure, however, one can also simultaneously infer

the graph structure and edge weights by linearly reconstructing nodes based on all other

nodes.

Such an approach was first proposed by Yan and Wang (2009), based on the sparse coding

approach formulated for face recognition by Wright et al. (2009). The idea is to find, for

each node xi , a coefficient vector a ∈ R
n denoting the contributions of all other nodes to the

reconstruction of xi . This reconstruction is then calculated as x̃i = (X ′)⊺·a, where X ′ ∈ R
n×d

denotes the full data matrix, but with a row of zeroes at index i (since a node cannot contribute

to its own reconstruction). Note that, unlike the LNP reconstruction from Problem 10 above,

where only predetermined neighbours contribute to the reconstruction, here, all n − 1 other

nodes can be used. The corresponding basic optimization problem attempts to minimize, for

each data point, the norm of the error vector ǫi = x̃i − xi , expressing the difference between

the reconstruction and the true data. Crucially, unlike LNP, which makes use of the L2 norm

and thus promotes non-sparse solutions, Yan and Wang (2009) use the L1 norm.

To avoid an underdetermined system of equations in some cases, the final optimization

problem penalizes both the norm of the reconstruction coefficients and the noise vector. Let

B = [(X ′)⊺, Id] be the concatenation of the data matrix X and the d × d identity matrix Id .

Each data point xi can then be expressed as xi = B · a
′. Here, a

′ consists of the coefficient

vector a = [a′
1, . . . , a′

n] and the error vector ǫ = [a′
n+1, . . . , a′

n+d]. The final optimization

problem for finding the optimal coefficients is then defined as follows for each node xi :

minimize
a
′∈Rn+d

||a′||1

subject to B · a
′ = xi ,

(11)

where || · ||1 is the L1 norm. Now, let ai denote the coefficient vector found for node i . The

final graph is then constructed by simply adding an edge between nodes i and j if, and only

if, ai j �= 0, and setting the edge weights to the magnitude of the coefficient, i.e. Wi j = |ai j |.
We note that this approach does not yield an undirected graph. A variant of the sparse coding

123

Machine Learning (2020) 109:373–440 427

method was proposed by He et al. (2011), who impose a constraint that all coefficients be

non-negative to the objective from Problem 11 above.

The coefficient vector a can be seen as an encoding of xi . From this perspective, one

would expect similar data points to have similar encodings. Zhuang et al. (2012) captured

this assumption by constructing a matrix A from all encodings a1, . . . , an and regularizing

the objective function by the rank of A. Based on a well-known clustering method called low-

rank representation (Liu et al. 2010a), the regularization term penalizes coefficient matrices

of high rank. The low-rankness of the matrix captures global structures in the data, while

sparsity captures the local structure among data points. The resulting optimization problem,

which includes the non-negativity constraint and penalizes the L0 norm of the coefficients, is

NP-hard; Zhuang et al. (2012) proposed a convex relaxation leading to an objective function

identical to the sparse coding objective function from Problem 11, but with the addition of

the non-negativity constraint and a surrogate for the rank-regularization term.

Although this approach achieves good empirical results, the motivation for using the

contribution coefficients a as graph weights remains somewhat unclear. As an alternative, Li

and Fu (2013, 2015) use the reconstruction coefficients of pairs of data points to measure

their similarity. In particular, they build a matrix of encoding vectors that is sparse and of

low rank, and base the similarity of data points on the distance between their encodings.

Additionally, they impose the constraint that all nodes have equal degree, to promote sparsity

and regularity of the graph.

7.4 Scalable transductive learning

Many of the graph construction and inference methods discussed thus far suffer from a lack

of scalability (Liu et al. 2012). Graph construction methods commonly have time complexity

O(n2) (for instance, k-nearest neighbours has time complexity O(k ·n2)); inference methods

generally have time complexity O(n3) for obtaining exact solutions and O(n) for approximate

solutions. This can make it difficult to apply graph-based methods in real-world applications

with large quantities of unlabelled data. Liu et al. (2012) provided an overview of approaches

for making graph-based methods more scalable.

To tackle the scalability problem, several approaches have been proposed for efficiently

constructing smaller graphs on which inference can then be performed. These approaches

rely on finding a set of m ≪ n prototype or anchor points to express the structure in the

given data more compactly. These anchor points are used in the inference phase, after which

unlabelled data points are classified based on the inferred labels of nearby anchor points.

A commonly used approach called anchor graph regularization was proposed by Liu et al.

(2010b). Their method seeks to find a set of anchor points u1, . . . , uk and corresponding label

assignments so that each data point can be expressed as a linear combination of the labels

of nearby anchor points. They choose the positions of the anchor points using k-means

clustering, and construct a graph connecting each data point to its closest anchors. The

corresponding weights are defined via locally linear embedding (see Sect. 7.3.2); these are

then used to construct a graph over all data points. The inference process indirectly optimizes

the predictions for the data points, by optimizing a graph-based objective function defined

over the predictions for the anchor points. Zhang et al. (2009) proposed to use a low-rank

approximation of the adjacency matrix in the unsupervised cost term in the inference phase.

123

428 Machine Learning (2020) 109:373–440

7.5 From transduction to induction

To obtain a prediction for a previously unseen data point, transductive algorithms need to

be rerun in their entirety. Since transductive methods are often computationally expensive,

this is undesirable in many real-world problem scenarios, where on-the-fly classification for

new data points is required. The issue of adapting and extending transductive algorithms for

inductive classification has not been studied extensively in the literature, but some potential

solutions have been proposed.

The first type of approach is to find the optimal label prediction for previously unseen

data points based on the objective function of the transductive algorithm. Such approaches

fix the transductive predictions, and use the resulting graph to predict the label of previously

unseen data points (Bengio et al. 2006; Zhu 2008). Considering the general objective function

from Expression 8, the optimal label assignment for the new data point xi can be calculated

efficiently: assuming we can calculate the graph weights Wi j for j = 1, . . . , n, we can

optimize the objective function with respect to only the predicted label of the new data point.

The label assignment ŷi minimizing the cost function is then given by the weighted majority

vote of the neighbours of the data point:

ŷi ∈ arg max
c∈Y

∑

v j ∈N (vi)∧ŷ j =c

Wi j

The second type of approach for building an inductive classifier is to treat the pseudo-

labelled predictions as true labels, and to train a supervised classifier based on these

predictions. This approach was taken by Kveton et al. (2010), who used the min-cut approach

to obtain the optimal labels, and trained a supervised SVM using the combined labelled and

unlabelled data. One can consider using a transductive approach with probability estimates,

such that unlabelled samples can be weighted in the supervised learning algorithm. This

approach can also be applied to inductive learners that have a computationally expensive

prediction phase: we can train an inductive semi-supervised learning method on all available

data, and pass its predictions for the unlabelled data along with the labelled data to a com-

putationally more efficient classifier (Urner et al. 2011). The efficient predictor can then be

used to make predictions on new, previously unseen data points.

7.6 Classification in network data

In some real-world problems, data is inherently represented as a graph. Such data, which

is commonly referred to as network data, arises in the context of social networks, scientific

collaboration, spreading of infectious diseases, company structures, etc. In such networks,

nodes generally represent entities (such as people), and edges represent relations between

them (such as friendship). The field that studies such data is commonly known as network

science (Barabási 2016).

In such network data, graph-based transductive methods are highly appropriate candidates

for performing inference. Node classification in particular can be considered a regular trans-

ductive semi-supervised learning task, and is broadly applied to problems in social network

analysis and natural language processing (Tan et al. 2011; Yang et al. 2016). Although there

is a considerable amount of overlap between these fields, the semi-supervised learning and

network science communities have operated rather independently. Of course, significant dif-

ferences also exist between data that is inherently given in the form of a network and graphs

that are inferred from input vectors based on some similarity measure.

123

Machine Learning (2020) 109:373–440 429

Sen et al. (2008) provided an overview of inference techniques for node classification

in network data. They emphasized the difference between local classification, where each

node is classified individually based on its neighbours (possibly iteratively), and global

classification, where a global, joint objective function is optimized. They specifically consider

the iterative classification algorithm, which constructs a local, supervised classifier for each

node and assigns to the node the most likely label based on its neighbours and their labels (Lu

and Getoor 2003; Neville and Jensen 2000). This procedure is iterated until the predictions

in the entire network stabilize. Yang et al. (2016) proposed a neural network-based approach

that simultaneously predicts the label of a node and its context, i.e. (properties of) nearby

nodes in the network, using node embedding.

They extended this approach to the inductive setting, by expressing the embedding as a

function of the features of a given node (and not its context). The context is predicted using a

random walk; similar approaches to that problem have been previously studied (Perozzi et al.

2014; Tang et al. 2015). Several approaches have been suggested to generalize convolutional

neural network architectures to network data (see, e.g. Bruna et al. 2014; Duvenaud et al.

2015; Kipf and Welling 2016).

Network-based methods generally attempt to find a way to represent given network data

as vectors, allowing for inductive inference (Yang et al. 2016). Interestingly, this can be

considered the inverse task of what most semi-supervised graph-based methods attempt to

do, which is to construct a graph based on vector data. These complementary approaches

highlight the difference between ‘standard’, tabular data and data specified natively in the

form of a network.

8 Related areas

Although the vast majority of semi-supervised learning research has been focussed on semi-

supervised classification, other problems have also been studied. Semi-supervised regression,

where the label space Y is real-valued instead of categorical, is particularly closely related

to semi-supervised classification; we cover it in limited detail below. Semi-supervised clus-

tering, which can be considered the counterpart of semi-supervised classification, is also

covered in some detail later in this section.

Some other areas related to semi-supervised classification are not covered in this survey.

They include the field of active learning, where the learning algorithm can query the user

for the labels of previously unlabelled data points. Consequently, new labelled data can

be obtained. Since labelling data is generally costly, the challenge lies in the selection of

unlabelled data points whose labels would be most informative (Settles 2012). We also do not

cover learning from positive and unlabelled data, which is a special case of semi-supervised

learning where the algorithm has access to a set of unlabelled data points, but where all

labelled data points belong to a single class (see, e.g. Liu et al. 2002; Denis et al. 2005; Elkan

and Noto 2008).

8.1 Semi-supervised regression

In classification problems, the label space Y is categorical; in regression problems, on the

other hand, the output value space is continuous. Although classification and regression

problems are both concerned with predicting output values for input data points, most semi-

supervised classification methods cannot be naturally applied to the regression setting.

123

430 Machine Learning (2020) 109:373–440

A class of methods that can be rather easily extended to the regression setting is that of

graph-based methods (see Sect. 7). Many such methods model a real-valued function in an

intermediate step and incorporate the real-valued predictions in a regularization term in the

objective function. These real-valued predictions can be readily utilized in the regression

scenario (see, e.g. Belkin et al. 2004; Cortes and Mohri 2007).

The second class of methods that is naturally equipped to deal with regression problems

is the class of wrapper methods (see Sect. 4). Although relatively little research has been

conducted in this direction, wrapper methods such as self-training and co-training to regres-

sion methods can be readily applied in a semi-supervised regression setting. In fact, as in

the case of supervised classification methods, any supervised regressor can be used within a

wrapper method. Zhou and Li (2005a) proposed a co-training algorithm for semi-supervised

regression. They construct two k-nearest neighbour regressors on the labelled data, which

then iteratively pass pseudo-labelled data to each other. The labelling confidence, which is

used to select data points to pseudo-label, is based on the performance of the regressors

obtained when adding the pseudo-labelled data point to the training set, as measured on the

labelled data.

8.2 Semi-supervised clustering

Semi-supervised classification is a relatively well-defined task, where one is presented with

fully labelled data as well as completely unlabelled data. In semi-supervised clustering,

however, the supervised information can take different forms. For instance, there can be

must-link (two samples are known to be in the same cluster) and cannot-link (two samples

are known to be in different clusters) constraints (Lange et al. 2005). It is also possible that

some cluster assignments are known beforehand.

An example for incorporation of the latter type of information is the use of labelled data

for cluster seeding. Basu et al. (2002) proposed to initialize the clusters based on the data

points for which cluster assignments are known. For every cluster, they initialize the cluster

centroid for the k-means algorithm to the mean feature values of the data points known to

belong to that cluster. They also proposed an alternative of this approach, where the cluster

assignments of the labelled data points are kept fixed in the k-means procedure.

Like semi-supervised regression, semi-supervised clustering is a relatively small research

area when compared to semi-supervised classification. For a more extensive overview of

semi-supervised clustering methods, we refer the reader to the recent survey by Bair (2013)

and the older survey on clustering methods by Grira et al. (2004).

9 Conclusions and future perspectives

In this survey, we have presented an overview of the field of semi-supervised learning.

Covering methods from the early 2000s and more recent advances, our survey constitutes an

up-to-date review of this important topic within machine learning. Furthermore, we have pre-

sented a new taxonomy for semi-supervised classification methods, distinguishing between

the primary objective of the approach (transductive versus inductive learning) and the way

unlabelled data is used (i.e. wrapper methods, unsupervised preprocessing, and intrinsically

semi-supervised methods).

Early research in the field of semi-supervised learning mainly focused on wrapper methods

(Sect. 4) and semi-supervised extensions of traditional supervised algorithms (such as SVMs,

123

Machine Learning (2020) 109:373–440 431

see Sect. 6). Graph-based methods (Sects. 6.3 and 7) have been extensively researched over

the past two decades. They are perhaps the most intuitive semi-supervised learning method,

explicitly incorporating the similarity of different unlabelled data points in a principled way.

However, they still pose computational challenges. In recent years, semi-supervised learning

has developed along similar lines as supervised learning: notably, there has been a strong focus

on semi-supervised neural networks, in the form of unsupervised preprocessing (Sect. 5.3)

as well as semi-supervised regularization (Sect. 6.2). Additionally, deep generative models

have been extended to the semi-supervised setting (Sect. 6.4).

From our perspective, one of the most important issues to be resolved in semi-supervised

learning is the potential performance degradation caused by the introduction of unlabelled

data. Although this has received relatively little attention in the literature (likely due to pub-

lication bias, as noted by Zhu 2008), many semi-supervised learning methods only perform

better than their supervised counterparts or base learners in specific cases (Li and Zhou 2015;

Singh et al. 2009). In other cases, the supervised baselines used for empirically evaluating

the performance of semi-supervised learning methods are relatively weak, causing a skewed

perspective on the benefits of incorporating unlabelled data (Oliver et al. 2018). Moreover,

the potential performance degradation is generally much more significant than the potential

improvement, especially in machine learning problems where strong performance is achieved

with purely supervised learning. We believe that this is one of the main reasons for the dearth

of applications of semi-supervised learning methods in practice when compared to supervised

learning.

Notable exceptions are the recent advances in semi-supervised neural networks, which are

generally perturbation-based (see Sect. 6.2). They incorporate the relatively weak smooth-

ness assumption (i.e. minor variations in the input space should only cause minor variations

in the output space). Empirically, these methods have been shown to consistently outper-

form their supervised counterparts. A considerable advantage of using neural networks for

semi-supervised learning is that it is relatively straightforward to incorporate unsupervised

loss terms into the cost function, which can then be optimized using backpropagation. This

flexibility also accomodates the incorporation of more complex cost terms, facilitating, for

example, graph-based regularization. For these reasons, we expect that the popularity of

semi-supervised neural networks will continue to grow for the foreseeable future.

A second potential remedy for the lack of robustness of semi-supervised learning methods

lies in the application of automated machine learning (AutoML) to the semi-supervised

setting. Recently, there has been a steep increase in interest in the automatic selection and

configuration of learning algorithms for a given classification problem. These approaches

include meta-learning and neural architecture search as well as automated algorithm selection

and hyperparameter optimization. While AutoML techniques have been prominently and

successfully applied to supervised learning (see, e.g. Elsken et al. 2019; Feurer et al. 2015;

Thornton et al. 2013), there has been no application to semi-supervised learning so far.

Another important step towards the adoption of semi-supervised in practice is the develop-

ment of standardized software packages. Several highly popular toolkits exist for supervised

learning, such as scikit-learn (Pedregosa et al. 2011), but there is much less standardization

in the field of semi-supervised learning. We note that some generic toolkits do exist; the

KEEL software package includes a semi-supervised learning module (Triguero et al. 2017),

and implementations of some transductive graph-based methods exist in scikit-learn. For

neural networks, it is typically relatively straightforward to implement semi-supervised loss

terms within popular software packages such as PyTorch (Paszke et al. 2017) and TensorFlow

(Abadi et al. 2016).

123

432 Machine Learning (2020) 109:373–440

Lastly, we expect the strong distinction between clustering and classification to fade.

Fundamentally, both approaches can be seen as special cases of semi-supervised in which

either only labelled data or only unlabelled data is present. When we can confidently reason

about the connections between the marginal distribution p(x) and the conditional distribution

p(y|x), learning algorithms can make effective use of unlabelled as well as labelled data.

The recent rise in popularity of generative models (see Sect. 6.4) can be seen as evidence for

this paradigm shift.

Ultimately, we expect the incorporation of unlabelled data to be a vital step in the progress

of machine learning and its applications. To uncover the intricate and complex structures

underlying the data model, the machine needs to be able to infer patterns between observations

about which it receives no explicit labelling information. Semi-supervised learning, which

aims to provide mechanisms to build such connections, will be an important tool towards

this end.

Acknowledgements We thank Matthijs van Leeuwen for his valuable feedback on drafts of this article.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

OpenAccess This article is distributed under the terms of the Creative Commons Attribution 4.0 International

License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and repro-

duction in any medium, provided you give appropriate credit to the original author(s) and the source, provide

a link to the Creative Commons license, and indicate if changes were made.

References

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., & Isard,

M., et al. (2016). Tensorflow: A system for large-scale machine learning. In 12th USENIX symposium

on operating systems design and implementation (OSDI 16) (pp. 265–283).

Abney, S. (2002). Bootstrapping. In Proceedings of the 40th annual meeting on association for computational

linguistics, association for computational linguistics (pp. 360–367).

Anderberg, M. R. (1973). Cluster analysis for applications. Cambridge: Academic Press.

Azran, A. (2007). The rendezvous algorithm: Multiclass semi-supervised learning with Markov random walks.

In Proceedings of the 24th international conference on machine learning (pp. 49–56).

Bachman, P., Alsharif, O., & Precup, D. (2014). Learning with pseudo-ensembles. In Advances in neural

information processing systems (pp. 3365–3373).

Bair, E. (2013). Semi-supervised clustering methods. Wiley Interdisciplinary Reviews: Computational Statis-

tics, 5(5), 349–361.

Balcan, M. F., Blum, A., & Yang, K. (2005). Co-training and expansion: Towards bridging theory and practice.

In Advances in neural information processing systems (pp. 89–96).

Baluja, S., Seth, R., Sivakumar, D., Jing, Y., Yagnik, J., Kumar, S., Ravichandran, D., & Aly, M. (2008). Video

suggestion and discovery for youtube: Taking random walks through the view graph. In Proceedings of

the 17th international conference on world wide web (pp. 895–904). ACM.

Barabási, A. L. (2016). Network science. Cambridge: Cambridge University Press.

Basu, S., Banerjee, A., & Mooney, R. (2002). Semi-supervised clustering by seeding. In Proceedings of the

19th international conference on machine learning (pp. 27–34).

Belkin, M., Matveeva, I., & Niyogi, P. (2004). Regularization and semi-supervised learning on large graphs. In

Proceedings of the international conference on computational learning theory (pp. 624–638). Springer.

Belkin, M., Niyogi, P., & Sindhwani, V. (2005). On manifold regularization. In Proceedings of the 10th

international conference on artificial intelligence and statistics (pp. 17–24).

Belkin, M., Niyogi, P., & Sindhwani, V. (2006). Manifold regularization: A geometric framework for learning

from labeled and unlabeled examples. Journal of Machine Learning Research, 7, 2399–2434.

123

http://creativecommons.org/licenses/by/4.0/

Machine Learning (2020) 109:373–440 433

Ben-David, S., Lu, T., Pál, D., & Sotáková, M. (2009). Learning low density separators. In Proceedings of the

12th international conference on artificial intelligence and statistics (pp. 25–32).

Bengio, Y., Delalleau, O., & Le Roux, N. (2006). Chapter 11. Label propagation and quadratic criterion. In

O. Chapelle, B. Schölkopf, & A. Zien (Eds.), Semi-supervised learning (pp. 193–216). Cambridge: The

MIT Press.

Bennett, K. P., & Demiriz, A. (1999). Semi-supervised support vector machines. In Advances in neural

information processing systems (pp. 368–374).

Bennett, K. P., Demiriz, A., & Maclin, R. (2002). Exploiting unlabeled data in ensemble methods. In Proceed-

ings of the 8th ACM SIGKDD international conference on knowledge discovery and data mining (pp.

289–296). ACM.

Berthelot, D., Carlini, N., Goodfellow, I., Papernot, N., Oliver, A., & Raffel, C. (2019). Mixmatch: A holistic

approach to semi-supervised learning. arXiv:1905.02249.

Bishop, C. M. (2006). Pattern recognition and machine learning. Berlin: Springer.

Blum, A., & Chawla, S. (2001). Learning from labeled and unlabeled data using graph mincuts. In Proceedings

of the 18th international conference on machine learning (pp. 19–26).

Blum, A., Lafferty, J., Rwebangira, M. R., & Reddy, R. (2004). Semi-supervised learning using randomized

mincuts. In Proceedings of the 21st international conference on machine learning (p. 13).

Blum, A., & Mitchell, T. (1998). Combining labeled and unlabeled data with co-training. In Proceedings of

the 11th annual conference on computational learning theory (pp. 92–100). ACM.

Bruna, J., Zaremba, W., Szlam, A., & LeCun, Y. (2014). Spectral networks and locally connected networks

on graphs. In International conference on learning, representations.

Chapelle, O., Chi, M., & Zien, A. (2006a). A continuation method for semi-supervised SVMs. In Proceedings

of the 23rd international conference on machine learning (pp. 185–192).

Chapelle, O., Schölkopf, B., & Zien, A. (2006b). Semi-supervised learning (1st ed.). Cambridge: The MIT

Press.

Chapelle, O., Sindhwani, V., & Keerthi, S. S. (2008). Optimization techniques for semi-supervised support

vector machines. Journal of Machine Learning Research, 9, 203–233.

Chapelle, O., & Zien, A. (2005). Semi-supervised classification by low density separation. In Proceedings of

the 10th international workshop on artificial intelligence and statistics (pp. 57–64).

Chen, K., & Wang, S. (2011). Semi-supervised learning via regularized boosting working on multiple semi-

supervised assumptions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(1), 129–

143.

Chen, M., Chen, Y., & Weinberger, K. Q. (2011). Automatic feature decomposition for single view co-training.

In Proceedings of the 28th international conference on machine learning (pp. 953–960).

Chen, T., & Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM

SIGKDD international conference on knowledge discovery and data mining (pp. 785–794). ACM.

Christoudias, C. M., Urtasun, R., Kapoorz, A., & Darrell, T. (2009). Co-training with noisy perceptual obser-

vations. In Proceedings of the 2009 IEEE conference on computer vision and pattern recognition (pp.

2844–2851). IEEE.

Collobert, R., Sinz, F., Weston, J., & Bottou, L. (2006). Large scale transductive SVMs. Journal of Machine

Learning Research, 7, 1687–1712.

Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., & Kuksa, P. (2011). Natural language

processing (almost) from scratch. Journal of Machine Learning Research, 12, 2493–2537.

Corduneanu, A., & Jaakkola, T. (2003). On information regularization. In Proceedings of the 19th conference

on uncertainty in artificial intelligence (pp. 151–158). Morgan Kaufmann Publishers Inc.

Cortes, C., & Mohri, M. (2007). On transductive regression. In Advances in neural information processing

systems (pp. 305–312).

Cozman, F. G., Cohen, I., & Cirelo, M. C. (2003) Semi-supervised learning of mixture models. In Proceedings

of the 20th international conference on machine learning (pp. 99–106).

Culp, M., & Michailidis, G. (2008). An iterative algorithm for extending learners to a semi-supervised setting.

Journal of Computational and Graphical Statistics, 17(3), 545–571.

Dai, Z., Yang, Z., Yang, F., Cohen, W. W., & Salakhutdinov, R.R. (2017). Good semi-supervised learning that

requires a bad gan. In Advances in neural information processing systems (pp. 6510–6520).

d’Alché Buc, F., Grandvalet, Y., & Ambroise, C. (2002). Semi-supervised marginboost. Advances in Neural

Information Processing Systems, 1, 553–560.

Dara, R., Kremer, S. C., & Stacey, D. A. (2002). Clustering unlabeled data with SOMs improves classification

of labeled real-world data. In Proceedings of the international joint conference on neural networks (Vol.

3, pp. 2237–2242). IEEE.

Dasgupta, S., Littman, M. L., & McAllester, D. A. (2002). PAC generalization bounds for co-training. In

Advances in neural information processing systems (pp. 375–382).

123

http://arxiv.org/abs/1905.02249

434 Machine Learning (2020) 109:373–440

de Bie, T., & Cristianini, N. (2004). Convex methods for transduction. In Advances in neural information

processing systems (pp. 73–80).

de Bie, T., & Cristianini, N. (2006). Semi-supervised learning using semi-definite programming. In O. Chapelle,

B. Schölkopf, & A. Zien (Eds.), Semi-supervised learning (pp. 119–135). Cambridge: The MIT Press.

de Sousa, C. A. R., Rezende, S. O., & Batista, G. E. (2013) Influence of graph construction on semi-supervised

learning. In Proceedings of the joint European conference on machine learning and knowledge discovery

in databases (pp. 160–175). Springer.

Demiriz, A., Bennett, K. P., & Embrechts, M. J. (1999). Semi-supervised clustering using genetic algorithms.

In Artificial Neural Networks in Engineering (pp. 809–814).

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM

algorithm. Journal of the Royal statistical society, Series B, 39, 1–38.

Deng, C., & Zu Guo, M. (2011). A new co-training-style random forest for computer aided diagnosis. Journal

of Intelligent Information Systems, 36(3), 253–281.

Denis, F., Gilleron, R., & Letouzey, F. (2005). Learning from positive and unlabeled examples. Theoretical

Computer Science, 348(1), 70–83.

Doersch, C. (2016). Tutorial on variational autoencoders. arXiv:1606.05908.

Dópido, I., Li, J., Marpu, P. R., Plaza, A., Dias, J. M. B., & Benediktsson, J. A. (2013). Semisupervised self-

learning for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing,

51(7), 4032–4044.

Du, J., Ling, C. X., & Zhou, Z. H. (2011). When does cotraining work in real data? IEEE Transactions on

Knowledge and Data Engineering, 23(5), 788–799.

Dua, D., & Graff, C. (2019). UCI machine learning repository. Retrieved September 12, 2019 from http://

archive.ics.uci.edu/ml.

Duvenaud, D. K., Maclaurin, D., Iparraguirre, J., Bombarell, R., Hirzel, T., Aspuru-Guzik, A., & Adams, R.

P. (2015). Convolutional networks on graphs for learning molecular fingerprints. In Advances in neural

information processing systems (pp. 2224–2232).

Elkan, C., & Noto, K. (2008). Learning classifiers from only positive and unlabeled data. In Proceedings of the

14th ACM SIGKDD international conference on knowledge discovery and data mining (pp. 213–220).

ACM.

Elsken, T., Metzen, J. H., & Hutter, F. (2019). Neural architecture search: A survey. Journal of Machine

Learning Research, 20(55), 1–21.

Erhan, D., Bengio, Y., Courville, A., Manzagol, P. A., Vincent, P., & Bengio, S. (2010). Why does unsupervised

pre-training help deep learning? Journal of Machine Learning Research, 11, 625–660.

Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., & Hutter, F. (2015). Efficient and robust

automated machine learning. In Advances in neural information processing systems (pp. 2962–2970).

Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an application

to boosting. Journal of Computer and System Sciences, 55(1), 119–139.

Geng, B., Tao, D., Xu, C., Yang, L., & Hua, X. S. (2012). Ensemble manifold regularization. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 34(6), 1227–1233.

Goldberg, A. B., Zhu, X., Singh, A., Xu, Z., & Nowak, R. D. (2009). Multi-manifold semi-supervised learning.

In Proceedings of the 12th international conference on artificial intelligence and statistics (pp. 169–176).

Goldman, S., & Zhou, Y. (2000) Enhancing supervised learning with unlabeled data. In Proceedings of the

17th international conference on machine learning (pp. 327–334).

Goodfellow, I. (2017). NIPS 2016 tutorial: Generative adversarial networks. arXiv:1701.00160.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. Cambridge: The MIT Press.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y.

(2014a). Generative adversarial nets. In Advances in neural information processing systems (pp. 2672–

2680).

Goodfellow, I., Shlens, J., & Szegedy, C. (2014b). Explaining and harnessing adversarial examples.

arXiv:1412.6572.

Grabner, H., Leistner, C., Bischof, H. (2008). Semi-supervised on-line boosting for robust tracking. Proceed-

ings of the 10th European conference on computer vision (pp. 234–247).

Grandvalet, Y., & Bengio, Y. (2005). Semi-supervised learning by entropy minimization. In Advances in neural

information processing systems (pp. 529–536).

Grandvalet, Y., d’Alché Buc, F., & Ambroise, C. (2001). Boosting mixture models for semi-supervised learning.

International conference on artificial neural networks (pp. 41–48).

Grira, N., Crucianu, M., & Boujemaa, N. (2004). Unsupervised and semisupervised clustering: A brief survey.

In 7th ACM SIGMM international workshop on multimedia information retrieval.

123

http://arxiv.org/abs/1606.05908
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://arxiv.org/abs/1701.00160
http://arxiv.org/abs/1412.6572

Machine Learning (2020) 109:373–440 435

Grover, A., & Leskovec, J. (2016). node2vec: Scalable feature learning for networks. In Proceedings of the

22nd ACM SIGKDD international conference on knowledge discovery and data mining (pp. 855–864).

ACM.

Guyon, I., & Elisseeff, A. (2006). An introduction to feature extraction. In I. Guyon, M. Nikravesh, S. Gunn,

& L. A. Zadeh (Eds.), Feature extraction (pp. 1–25). Berlin: Springer.

Haffari, G. R., & Sarkar, A. (2007). Analysis of semi-supervised learning with the Yarowsky algorithm. In

Proceedings of the 23rd conference on uncertainty in artificial intelligence (pp. 159–166).

Hammersley, J. M., & Clifford, P. (1971). Markov fields on finite graphs and lattices. Retrieved October 27,

2019 from http://www.statslab.cam.ac.uk/~grg/books/hammfest/hamm-cliff.pdf.

He, R., Zheng, W. S., Hu, B. G., & Kong, X. W. (2011). Nonnegative sparse coding for discriminative

semi-supervised learning. In Proceedings of the 2011 IEEE conference on computer vision and pattern

recognition (pp. 2849–2856). IEEE.

Hein, M., & Maier, M. (2007). Manifold denoising. In Advances in neural information processing systems

(pp. 561–568).

Hinton, G. E., Osindero, S., & Teh, Y. W. (2006). A fast learning algorithm for deep belief nets. Neural

Computation, 18(7), 1527–1554.

Huang, B., & Jebara, T. (2011). Fast b-matching via sufficient selection belief propagation. In Proceedings of

the 14th international conference on artificial intelligence and statistics (pp. 361–369).

Jayadeva, K. R., & Chandra, S. (2007). Twin support vector machines for pattern classification. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, 29(5), 905–910.

Jebara, T., Wang, J., & Chang, S. F. (2009) Graph construction and b-matching for semi-supervised learning.

In Proceedings of the 26th annual international conference on machine learning (pp. 441–448).

Joachims, T. (1999). Transductive inference for text classification using support vector machines. In Proceed-

ings of the 16th international conference on machine learning (Vol. 99, pp. 200–209).

Joachims, T. (2003). Transductive learning via spectral graph partitioning. In Proceedings of the 20th inter-

national conference on machine learning (pp. 290–297).

Karasuyama, M., & Mamitsuka, H. (2013) Manifold-based similarity adaptation for label propagation. In

Advances in neural information processing systems (pp. 1547–1555).

Kingma, D. P., Mohamed, S., Rezende, D. J., & Welling, M. (2014). Semi-supervised learning with deep

generative models. In Advances in neural information processing systems (pp. 3581–3589).

Kingma, D. P., & Welling, M. (2013). Auto-encoding variational Bayes. In International conference on learn-

ing, representations.

Kipf, T. N., & Welling, M. (2016). Semi-supervised classification with graph convolutional networks.

arXiv:1609.02907.

Kiritchenko, S., & Matwin, S. (2001). Email classification with co-training. In Proceedings of the 2001

conference of the centre for advanced studies on collaborative research (P. 8). IBM press.

Kohonen, T. (1998). The self-organizing map. Neurocomputing, 21(1–3), 1–6.

Krizhevsky, A. (2009). Learning multiple layers of features from tiny images. Master’s thesis, University of

Toronto, Department of Computer Science.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural

networks. In Advances in neural information processing systems (pp. 1097–1105).

Kveton, B., Valko, M., Rahimi, A., & Huang, L. (2010). Semi-supervised learning with max-margin graph

cuts. In Proceedings of the 13th international conference on artificial intelligence and statistics (pp.

421–428).

Laine, S., & Aila, T. (2017). Temporal ensembling for semi-supervised learning. In International conference

on learning, representations.

Lange, T., Law, M. H., Jain, A. K., & Buhmann, J. M. (2005). Learning with constrained and unlabelled data.

In Proceedings of the 2005 IEEE conference on computer vision and pattern recognition (Vol. 1, pp.

731–738). IEEE.

Lawrence, N. D., & Jordan, M. I. (2005). Semi-supervised learning via Gaussian processes. In Advances in

neural information processing systems (pp. 753–760).

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436.

Lee, D. H. (2013). Pseudo-label: The simple and efficient semi-supervised learning method for deep neural

networks. In Proceedings of the 30th ICML workshop on challenges in representation learning (Vol. 3,

p. 2).

Leistner, C., Saffari, A., Santner, J., Bischof, H. (2009). Semi-supervised random forests. In Proceedings of

the IEEE 12th international conference on computer vision (pp. 506–513). IEEE.

Levatić, J., Ceci, M., Kocev, D., & Džeroski, S. (2017). Semi-supervised classification trees. Journal of

Intelligent Information Systems, 49(3), 461–486.

Li, C., Xu, K., Zhu, J., & Zhang, B. (2017). Triple generative adversarial nets. arXiv:1703.02291.

123

http://www.statslab.cam.ac.uk/~grg/books/hammfest/hamm-cliff.pdf
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1703.02291

436 Machine Learning (2020) 109:373–440

Li, M., & Zhou, Z. H. (2007). Improve computer-aided diagnosis with machine learning techniques using

undiagnosed samples. IEEE Transactions on Systems, Man, and Cybernetics—Part A: Systems and

Humans, 37(6), 1088–1098.

Li, S., & Fu, Y. (2013). Low-rank coding with b-matching constraint for semi-supervised classification. In

Proceedings of the 23rd international joint conference on artificial intelligence (pp. 1472–1478).

Li, S., & Fu, Y. (2015). Learning balanced and unbalanced graphs via low-rank coding. IEEE Transactions

on Knowledge and Data Engineering, 27(5), 1274–1287.

Li, Y. F., & Zhou, Z. H. (2015). Towards making unlabeled data never hurt. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 37(1), 175–188.

Liu, B., Lee, W. S., Yu, P. S., & Li, X. (2002). Partially supervised classification of text documents. In

Proceedings of the 19th international conference on machine learning (Vol. 2, pp. 387–394).

Liu, G., Lin, Z., & Yu, Y. (2010a). Robust subspace segmentation by low-rank representation. In Proceedings

of the 27th international conference on machine learning (pp. 663–670).

Liu, W., & Chang, S. F. (2009). Robust multi-class transductive learning with graphs. In Proceedings of the

2009 IEEE conference on computer vision and pattern recognition (pp. 381–388). IEEE.

Liu, W., He, J., & Chang, S. F. (2010b). Large graph construction for scalable semi-supervised learning. In

Proceedings of the 27th international conference on machine learning (pp. 679–686).

Liu, X., Song, M., Tao, D., Liu, Z., Zhang, L., Chen, C., & Bu, J. (2013). Semi-supervised node splitting for

random forest construction. In Proceedings of the 2013 IEEE conference on computer vision and pattern

recognition (pp. 492–499). IEEE.

Liu, W., Wang, J., & Chang, S. F. (2012). Robust and scalable graph-based semisupervised learning. Proceed-

ings of the IEEE, 100(9), 2624–2638.

Liu, X., Song, M., Tao, D., Liu, Z., Zhang, L., Chen, C., et al. (2015). Random forest construction with robust

semisupervised node splitting. IEEE Transactions on Image Processing, 24(1), 471–483.

Lu, Q., Getoor, L. (2003). Link-based classification. In Proceedings of the 20th international conference on

machine learning (pp. 496–503).

Luo, Y., Zhu, J., Li, M., Ren, Y., & Zhang, B. (2018). Smooth neighbors on teacher graphs for semi-supervised

learning. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 8896–

8905).

Maier, M., Luxburg, U. V., & Hein, M. (2009). Influence of graph construction on graph-based clustering

measures. In Advances in neural information processing systems (pp. 1025–1032).

Mallapragada, P. K., Jin, R., Jain, A. K., & Liu, Y. (2009). Semiboost: Boosting for semi-supervised learning.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(11), 2000–2014.

Melacci, S., & Belkin, M. (2011). Laplacian support vector machines trained in the primal. Journal of Machine

Learning Research, 12, 1149–1184.

Mihalcea, R. (2004). Co-training and self-training for word sense disambiguation. In Proceedings of the 8th

conference on computational natural language learning.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013) Distributed representations of words

and phrases and their compositionality. In Advances in neural information processing systems (pp. 3111–

3119).

Miyato, T., Maeda, S. I., Koyama, M., & Ishii, S. (2018). Virtual adversarial training: A regularization method

for supervised and semi-supervised learning. IEEE Transactions on Pattern Analysis and Machine Intel-

ligence, 41(8), 1979–1993.

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., & Ng, A.Y. (2011). Reading digits in natural images with

unsupervised feature learning. In NIPS workshop on deep learning and unsupervised feature learning.

Neville, J., & Jensen, D. (2000). Iterative classification in relational data. In Proceedings of the 17th AAAI

workshop on learning statistical models from relational data (pp. 13–20).

Nigam, K., & Ghani, R. (2000). Analyzing the effectiveness and applicability of co-training. In Proceedings

of the 9th international conference on information and knowledge management (pp. 86–93). ACM.

Nigam, K., McCallum, A., Mitchell, T. (2006). Semi-supervised text classification using EM. In Semi-

Supervised Learning (pp. 33–56).

Nigam, K., McCallum, A. K., Thrun, S., & Mitchell, T. (2000). Text classification from labeled and unlabeled

documents using EM. Machine Learning, 39(2), 103–134.

Niyogi, P. (2008). Manifold regularization and semi-supervised learning: Some theoretical analyses. Journal

of Machine Learning Research, 14(1), 1229–1250.

Odena, A. (2016). Semi-supervised learning with generative adversarial networks. arXiv:1606.01583.

Oliver, A., Odena, A., Raffel, C., Cubuk, E. D., Goodfellow, I. J. (2018). Realistic evaluation of deep semi-

supervised learning algorithms. arXiv:1804.09170.

123

http://arxiv.org/abs/1606.01583
http://arxiv.org/abs/1804.09170

Machine Learning (2020) 109:373–440 437

Oshiro, T. M., Perez, P. S., & Baranauskas, J. A. (2012). How many trees in a random forest? In Proceedings of

the international workshop on machine learning and data mining in pattern recognition (pp. 154–168).

Springer.

Pang, B., & Lee, L. (2004). A sentimental education: Sentiment analysis using subjectivity summarization

based on minimum cuts. In Proceedings of the 42nd annual meeting on association for computational

linguistics, association for computational linguistics (p. 271).

Park, S., Park, J., Shin, S., & Moon, I. (2018). Adversarial dropout for supervised and semi-supervised learning.

In Proceedings of the thirty-second AAAI conference on artificial intelligence (pp. 3917–3924).

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., &

Lerer, A. (2017). Automatic differentiation in pytorch. In NIPS Autodiff workshop.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al. (2011). Scikit-learn:

Machine learning in python. Journal of Machine Learning Research, 12, 2825–2830.

Perozzi, B., Al-Rfou, R., & Skiena, S. (2014). Deepwalk: Online learning of social representations. In Pro-

ceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining

(pp. 701–710). ACM.

Pezeshki, M., Fan, L., Brakel, P., Courville, A., & Bengio, Y. (2016). Deconstructing the ladder network

architecture. In Proceedings of the 33rd international conference on machine learning (pp. 2368–2376).

Pitelis, N., Russell, C., & Agapito, L. (2013). Learning a manifold as an atlas. In Proceedings of the 2013

IEEE conference on computer vision and pattern recognition (pp. 1642–1649). IEEE.

Pitelis, N., Russell, C., & Agapito, L. (2014). Semi-supervised learning using an unsupervised atlas. In Pro-

ceedings of the joint European conference on machine learning and knowledge discovery in databases

(pp. 565–580). Springer.

Prémont-Schwarz, I., Ilin, A., Hao, T., Rasmus, A., Boney, R., & Valpola, H. (2017). Recurrent ladder networks.

In: I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, R. Garnett (eds.),

Advances in neural information processing systems (pp. 6009–6019).

Provost, F., & Domingos, P. (2003). Tree induction for probability-based ranking. Machine Learning, 52(3),

199–215.

Qi, Z., Tian, Y., & Shi, Y. (2012). Laplacian twin support vector machine for semi-supervised classification.

Neural Networks, 35, 46–53.

Rasmus, A., Berglund, M., Honkala, M., Valpola, H., & Raiko, T. (2015). Semi-supervised learning with

ladder networks. In Advances in neural information processing systems (pp. 3546–3554).

Ratle, F., Camps-Valls, G., & Weston, J. (2010). Semisupervised neural networks for efficient hyperspectral

image classification. IEEE Transactions on Geoscience and Remote Sensing, 48(5), 2271–2282.

Rifai, S., Dauphin, Y. N., Vincent, P., Bengio, Y., & Muller, X. (2011a). The manifold tangent classifier. In

Advances in neural information processing systems (pp. 2294–2302).

Rifai, S., Vincent, P., Muller, X., Glorot, X., & Bengio, Y. (2011b). Contractive auto-encoders: Explicit

invariance during feature extraction. In Proceedings of the 28th international conference on machine

learning (pp. 833–840).

Rosenberg, C., Hebert, M., & Schneiderman, H. (2005). Semi-supervised self-training of object detection

models. In Proceedings of the 7th IEEE workshop on applications of computer vision (pp. 29–36).

Roweis, S. T., & Saul, L. K. (2000). Nonlinear dimensionality reduction by locally linear embedding. Science,

290(5500), 2323–2326.

Sajjadi, M., Javanmardi, M., & Tasdizen, T. (2016). Regularization with stochastic transformations and per-

turbations for deep semi-supervised learning. In Advances in neural information processing systems (pp.

1163–1171).

Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., & Chen, X. (2016). Improved techniques

for training gans. In Advances in neural information processing systems (pp. 2234–2242).

Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B., & Eliassi-Rad, T. (2008). Collective classification

in network data. AI Magazine, 29(3), 93.

Settles, B. (2012). Active learning. Synthesis Lectures on Artificial Intelligence and Machine Learning, 6(1),

1–114.

Sheikhpour, R., Sarram, M. A., Gharaghani, S., & Chahooki, M. A. Z. (2017). A survey on semi-supervised

feature selection methods. Pattern Recognition, 64, 141–158.

Shental, N., & Domany, E. (2005). Semi-supervised learning—A statistical physics approach. In Proceedings

of the 22nd ICML workshop on learning with partially classified training data.

Sindhwani, V., Niyogi, P., & Belkin, M. (2005). A co-regularization approach to semi-supervised learning

with multiple views. In Proceedings of the 22nd ICML workshop on learning with multiple views (pp.

74–79).

Sindhwani, V., & Rosenberg, D. S. (2008). An RKHS for multi-view learning and manifold co-regularization.

In Proceedings of the 25th international conference on machine learning (pp. 976–983).

123

438 Machine Learning (2020) 109:373–440

Singh, A., Nowak, R., & Zhu, X. (2009) Unlabeled data: Now it helps, now it doesn’t. In Advances in neural

information processing systems (pp. 1513–1520).

Solomon, J., Rustamov, R., Guibas, L., & Butscher, A. (2014) Wasserstein propagation for semi-supervised

learning. In Proceedings of the 31st international conference on machine learning (pp. 306–314).

Springenberg, J. T. (2015). Unsupervised and semi-supervised learning with categorical generative adversarial

networks. arXiv:1511.06390.

Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: a simple way

to prevent neural networks from overfitting. Journal of Machine Learning Research, 15(1), 1929–1958.

Subramanya, A., & Bilmes, J. (2008). Soft-supervised learning for text classification. In Proceedings of

the conference on empirical methods in natural language processing, association for computational

linguistics (pp. 1090–1099).

Subramanya, A., & Bilmes, J. (2011). Semi-supervised learning with measure propagation. Journal of Machine

Learning Research, 12, 3311–3370.

Subramanya, A., & Talukdar, P. P. (2014). Graph-based semi-supervised learning. Synthesis Lectures on

Artificial Intelligence and Machine Learning, 8(4), 1–125.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., et al. (2013). Intriguing properties

of neural networks. arXiv:1312.6199.

Szummer, M., & Jaakkola, T. (2002) Partially labeled classification with Markov random walks. In Advances

in neural information processing systems (pp. 945–952).

Szummer, M., & Jaakkola, T. S. (2003) Information regularization with partially labeled data. In Advances in

neural information processing systems (pp. 1049–1056).

Talukdar, P. P., & Crammer, K. (2009). New regularized algorithms for transductive learning. In Proceedings of

the joint European conference on machine learning and knowledge discovery in databases (pp. 442–457).

Springer.

Talukdar, P. P., Reisinger, J., Paşca, M., Ravichandran, D., Bhagat, R., & Pereira, F. (2008). Weakly-supervised

acquisition of labeled class instances using graph random walks. In Proceedings of the conference on

empirical methods in natural language processing, association for computational linguistics (pp. 582–

590).

Tan, C., Lee, L., Tang, J., Jiang, L., Zhou, M., & Li, P. (2011). User-level sentiment analysis incorporating social

networks. In Proceedings of the 17th ACM SIGKDD international conference on knowledge discovery

and data mining (pp. 1397–1405). ACM.

Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., & Mei, Q. (2015). Line: Large-scale information network

embedding. In Proceedings of the 24th international conference on world wide web, international world

wide web conferences steering committee (pp. 1067–1077).

Tanha, J., van Someren, M., & Afsarmanesh, H. (2012). An adaboost algorithm for multiclass semi-supervised

learning. In Proceedings of the 12th IEEE international conference on data mining (pp. 1116–1121).

IEEE.

Tanha, J., van Someren, M., & Afsarmanesh, H. (2017). Semi-supervised self-training for decision tree clas-

sifiers. International Journal of Machine Learning and Cybernetics, 8(1), 355–370.

Tarvainen, A., & Valpola, H. (2017) Weight-averaged consistency targets improve semi-supervised deep

learning results. In Advances in neural information processing systems (pp. 1195–1204).

Thornton, C., Hutter, F., Hoos, H. H., & Leyton-Brown, K. (2013) Auto-weka: Combined selection and

hyperparameter optimization of classification algorithms. In Proceedings of the 19th ACM SIGKDD

international conference on knowledge discovery and data mining (pp. 847–855). ACM.

Triguero, I., García, S., & Herrera, F. (2015). Self-labeled techniques for semi-supervised learning: Taxonomy,

software and empirical study. Knowledge and Information Systems, 42(2), 245–284.

Triguero, I., González, S., Moyano, J. M., García López, S., Alcalá Fernández, J., Luengo Martín, J., et al.

(2017). KEEL 3.0: An open source software for multi-stage analysis in data mining. International Journal

of Computational Intelligence Systems, 10, 1238–1249.

Urner, R., Ben-David, S., & Shalev-Shwartz, S. (2011). Access to unlabeled data can speed up prediction time.

In Proceedings of the 27th international conference on machine learning (pp. 641–648).

Valizadegan, H., Jin, R., & Jain, A. K. (2008). Semi-supervised boosting for multi-class classification. In

Joint European conference on machine learning and knowledge discovery in databases (pp. 522–537).

Springer.

Vapnik, V. (1998). Statistical learning theory (Vol. 1). New York: Wiley.

Verma, V., Lamb, A., Kannala, J., Bengio, Y., & Lopez-Paz, D. (2019). Interpolation consistency training for

semi-supervised learning. arXiv:1903.03825.

Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P. A. (2008). Extracting and composing robust features

with denoising autoencoders. In Proceedings of the 25th international conference on machine learning

(pp. 1096–1103).

123

http://arxiv.org/abs/1511.06390
http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1903.03825

Machine Learning (2020) 109:373–440 439

Wager, S., Wang, S., & Liang, P. S. (2013). Dropout training as adaptive regularization. In Advances in neural

information processing systems (pp. 351–359).

Wan, X. (2009). Co-training for cross-lingual sentiment classification. In Proceedings of the 47th annual

meeting of the ACL, association for computational linguistics (pp. 235–243).

Wang, D., Cui, P., Zhu, W. (2016). Structural deep network embedding. In Proceedings of the 22nd ACM

SIGKDD international conference on knowledge discovery and data mining (pp. 1225–1234). ACM.

Wang, F., & Zhang, C. (2008). Label propagation through linear neighborhoods. IEEE Transactions on Knowl-

edge and Data Engineering, 20(1), 55–67.

Wang, J., Jebara, T., & Chang, S. F. (2008a). Graph transduction via alternating minimization. In Proceedings

of the 25th international conference on machine learning (pp. 1144–1151).

Wang, J., Jebara, T., & Chang, S. F. (2013). Semi-supervised learning using greedy max-cut. Journal of

Machine Learning Research, 14, 771–800.

Wang, J., Luo, S. W., & Zeng. X. H. (2008b). A random subspace method for co-training. In Proceedings of

the IEEE international joint conference on neural networks (pp. 195–200). IEEE.

Wang, W., & Zhou, Z. H. (2007). Analyzing co-training style algorithms. In Proceedings of the 18th European

conference on machine learning (pp. 454–465). Springer.

Wang, W., Zhou, Z. H. (2010). A new analysis of co-training. In Proceedings of the 27th international

conference on machine learning (pp. 1135–1142).

Weston, J., Ratle, F., & Collobert, R. (2008). Deep learning via semi-supervised embedding. In Proceedings

of the 25th international conference on machine learning (pp. 1168–1175).

Wold, S., Esbensen, K., & Geladi, P. (1987). Principal component analysis. Chemometrics and Intelligent

Laboratory Systems, 2(1–3), 37–52.

Wright, J., Yang, A. Y., Ganesh, A., Sastry, S. S., & Ma, Y. (2009). Robust face recognition via sparse

representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(2), 210–227.

Wu, X. M., Li, Z., So, A. M., Wright, J., & Chang, S. F. (2012a). Learning with partially absorbing random

walks. In Advances in neural information processing systems (pp. 3077–3085).

Wu, Z., Wu, J., Cao, J., & Tao, D. (2012b). Hysad: A semi-supervised hybrid shilling attack detector for

trustworthy product recommendation. In Proceedings of the 18th ACM SIGKDD international conference

on knowledge discovery and data mining (pp. 985–993). ACM.

Xu, C., Tao, D., & Xu, C. (2013). A survey on multi-view learning. arXiv:1304.5634.

Xu, J., He, H., & Man, H. (2012). Dcpe co-training for classification. Neurocomputing, 86, 75–85.

Xu, L., & Schuurmans, D. (2005) Unsupervised and semi-supervised multi-class support vector machines. In

Proceedings of the 20th national conference on artificial intelligence (Vol. 5, p. 13).

Yan, S., & Wang, H. (2009). Semi-supervised learning by sparse representation. In Proceedings of the 2009

SIAM international conference on data mining (pp. 792–801). SIAM.

Yang, Z., Cohen, W. W., & Salakhutdinov, R. (2016) Revisiting semi-supervised learning with graph embed-

dings. In Proceedings of the 33rd international conference on machine learning (pp. 40–48).

Yarowsky, D. (1995). Unsupervised word sense disambiguation rivaling supervised methods. In Proceedings

of the 33rd annual meeting of the association for computational linguistics, association for computational

linguistics (pp. 189–196).

Yaslan, Y., & Cataltepe, Z. (2010). Co-training with relevant random subspaces. Neurocomputing, 73(10),

1652–1661.

Yu, S., Krishnapuram, B., Rosales, R., & Rao, R. B. (2011). Bayesian co-training. Journal of Machine Learning

Research, 12, 2649–2680.

Zhang, H., Cisse, M., Dauphin, Y. N., & Lopez-Paz, D. (2018). mixup: Beyond empirical risk minimization.

In International conference on learning representations.

Zhang, K., Kwok, J. T., & Parvin, B. (2009). Prototype vector machine for large scale semi-supervised learning.

In Proceedings of the 26th international conference on machine learning (pp. 1233–1240).

Zhang, W., & Zheng, Q. (2009). Tsfs: A novel algorithm for single view co-training. In Proceedings of the 2nd

IEEE international joint conference on computational sciences and optimization (Vol. 1, pp. 492–496).

IEEE.

Zhou, D., Bousquet, O., Lal, T. N., Weston, J., & Schölkopf, B. (2004). Learning with local and global

consistency. In Advances in Neural Information Processing Systems (pp. 321–328).

Zhou, Y., & Goldman, S. (2004) Democratic co-learning. In Proceedings of the 16th IEEE international

conference on tools with artificial intelligence (pp. 594–602). IEEE.

Zhou, Z. H. (2012). Ensemble methods: Foundations and algorithms. Boca Raton: CRC Press.

Zhou, Z. H., & Li, M. (2005a) Semi-supervised regression with co-training. In Proceedings of the 19th

international joint conference on artificial intelligence (Vol. 5, pp. 908–913).

Zhou, Z. H., & Li, M. (2005b). Tri-training: Exploiting unlabeled data using three classifiers. IEEE Transactions

on Knowledge and Data Engineering, 17(11), 1529–1541.

123

http://arxiv.org/abs/1304.5634

440 Machine Learning (2020) 109:373–440

Zhou, Z. H., & Li, M. (2010). Semi-supervised learning by disagreement. Knowledge and Information Systems,

24(3), 415–439.

Zhu, X. (2005). Semi-supervised learning with graphs. Ph.D. thesis, Carnegie Mellon University.

Zhu, X. (2008). Semi-supervised learning literature survey. Technical Report. 1530, University of Wisconsin-

Madison.

Zhu, X., & Ghahramani, Z. (2002a). Learning from labeled and unlabeled data with label propagation.

Technical Report. CMU-CALD-02-107, Carnegie Mellon University.

Zhu, X., & Ghahramani, Z. (2002b) Towards semi-supervised classification with Markov random fields. Tech-

nival Report. CMU-CALD-02-106, Carnegie Mellon University.

Zhu, X., Ghahramani, Z., & Lafferty, J. D. (2003) Semi-supervised learning using Gaussian fields and harmonic

functions. In Proceedings of the 20th international conference on machine learning (pp. 912–919).

Zhu, X., & Goldberg, A. B. (2009). Introduction to semi-supervised learning. Synthesis Lectures on Artificial

Intelligence and Machine Learning, 3(1), 1–130.

Zhu, X., & Lafferty, J. (2005). Harmonic mixtures: Combining mixture models and graph-based methods for

inductive and scalable semi-supervised learning. In Proceedings of the 22nd international conference on

machine learning (pp. 1052–1059). ACM.

Zhuang, L., Gao, H., Lin, Z., Ma, Y., Zhang, X., & Yu, N. (2012) Non-negative low rank and sparse graph for

semi-supervised learning. In Proceedings of the 2012 IEEE conference on computer vision and pattern

recognition (pp. 2328–2335). IEEE.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and

institutional affiliations.

123

	A survey on semi-supervised learning
	Abstract
	1 Introduction
	2 Background
	2.1 Assumptions of semi-supervised learning
	2.1.1 Smoothness assumption
	2.1.2 Low-density assumption
	2.1.3 Manifold assumption

	2.2 Connection to clustering
	2.3 When does semi-supervised learning work?
	2.4 Empirical evaluation of semi-supervised learning methods

	3 Taxonomy of semi-supervised learning methods
	3.1 Inductive methods
	3.1.1 Wrapper methods
	3.1.2 Unsupervised preprocessing
	3.1.3 Intrinsically semi-supervised methods

	3.2 Transductive methods

	4 Wrapper methods
	4.1 Self-training
	4.2 Co-training
	4.2.1 Multi-view co-training
	4.2.2 Single-view co-training
	4.2.3 Co-regularization

	4.3 Boosting
	4.3.1 SSMBoost
	4.3.2 ASSEMBLE
	4.3.3 SemiBoost
	4.3.4 Other semi-supervised boosting methods

	5 Unsupervised preprocessing
	5.1 Feature extraction
	5.2 Cluster-then-label
	5.3 Pre-training

	6 Intrinsically semi-supervised methods
	6.1 Maximum-margin methods
	6.1.1 Support vector machines
	6.1.2 Gaussian processes
	6.1.3 Density regularization
	6.1.4 Pseudo-labelling as a form of margin maximization

	6.2 Perturbation-based methods
	6.2.1 Neural networks
	6.2.2 Semi-supervised neural networks
	6.2.3 Ladder networks
	6.2.4 Pseudo-ensembles
	6.2.5 Π-model
	6.2.6 Temporal ensembling
	6.2.7 Mean teacher
	6.2.8 Virtual adversarial training
	6.2.9 Semi-supervised mixup

	6.3 Manifolds
	6.3.1 Manifold regularization
	6.3.2 Manifold approximation

	6.4 Generative models
	6.4.1 Mixture models
	6.4.2 Generative adversarial networks
	6.4.3 Variational autoencoders

	7 Transductive methods
	7.1 A general framework for graph-based methods
	7.2 Inference in graphs
	7.2.1 Hard label assignments: graph min-cut
	7.2.2 Probabilistic label assignments: Markov random fields
	7.2.3 Efficient probabilistic label assignments: Gaussian random fields
	7.2.4 Handling label noise and irregular graphs: local and global consistency
	7.2.5 Further research on graph-based inference

	7.3 Graph construction
	7.3.1 Adjacency matrix construction
	7.3.2 Graph weighting
	7.3.3 Simultaneous graph construction and weighting

	7.4 Scalable transductive learning
	7.5 From transduction to induction
	7.6 Classification in network data

	8 Related areas
	8.1 Semi-supervised regression
	8.2 Semi-supervised clustering

	9 Conclusions and future perspectives
	Acknowledgements
	References

