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A Survey on Sensor Calibration in Air Pollution

Monitoring Deployments
Balz Maag, Member, IEEE, Zimu Zhou, Member, IEEE, and Lothar Thiele Member, IEEE

Abstract—Air pollution is a major concern for public health
and urban environments. Conventional air pollution monitoring
systems install a few highly accurate, expensive stations at
representative locations. Their sparse coverage and low spatial
resolution are insufficient to quantify urban air pollution and
its impacts on human health and environment. Advances in low-
cost portable air pollution sensors have enabled air pollution
monitoring deployments at scale to measure air pollution at
high spatiotemporal resolution. However, it is challenging to
ensure the accuracy of these low-cost sensor deployments because
the sensors are more error-prone than high-end sensing infras-
tructures and they are often deployed in harsh environments.
Sensor calibration has proven to be effective to improve the data
quality of low-cost sensors and maintain the reliability of long-
term, distributed sensor deployments. In this article, we review
the state-of-the-art low-cost air pollution sensors, identify their
major error sources, and comprehensively survey calibration
models as well as network re-calibration strategies suited for
different sensor deployments. We also discuss limitations of
exiting methods and conclude with open issues for future sensor
calibration research.

Index Terms—Sensor calibration, low cost sensors and devices,
air pollution sensors, air quality sensor networks,

I. INTRODUCTION

URBAN air pollution affects the quality of life and public

health. Pollutants such as particulate matter (PM), ozone

(O3), carbon monoxide (CO) or nitrogen dioxide (NO2) can

cause respiratory illnesses or cardiovascular diseases. A study

by the World Health Organization estimated that 11.6% of all

global deaths in 2012 can be traced back to air pollution [1].

Heavily polluted air also leads to environmental problems such

as acid rain, stratospheric ozone depletion and global climate

change. Monitoring air pollution is of growing importance to

increase public awareness and involvement in human health

and sustainable urban environments [2].

Traditionally, air pollutants are monitored by fixed sites with

expensive high-end sensing infrastructure run by governmental

authorities. These monitoring sites are usually distributed

sparsely and only suffice to estimate the average pollution

affecting large populations. However, air pollution is known

to be a complex phenomenon with sophisticated spatial and

short-term variations [3]. For instance, in major streets, the

pollutant concentrations may vary within tens of meters and
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over time within minutes [4]. Therefore, it is desirable to

increase the spatiotemporal resolution of available air pollution

information for the public to assess their personal health risks

and take precaution measures.

A driving factor that enables these increased monitoring

efforts is the availability of low-cost portable air pollution

sensors. These sensors are usually small, consume low power,

cost roughly between 10$ and 1′000$ and are able to measure

the concentrations of all the major air pollutants. Compared

to bulky high-end solutions (≥ 10′000$), low-cost sensors

are particularly convenient for large-scale static and mobile

deployments [5]–[8]. By now, low-cost air pollution sensors

have been successfully integrated into various long-term de-

ployments to provide fine-grained air pollution information for

quantitative studies and public services [9].

Unfortunately the data provided by these deployments is

often lacking sufficient accuracy [9], [10]. Many researchers

report about serious inaccuracies when comparing the low-cost

sensor measurements to reliable and accurate measurement of

conventional monitoring sites [11], [12]. The reason for this

unsatisfying performance can be linked to various limitations

of state-of-the-art low-cost sensors, such as low signal-to-noise

ratios or interference from environmental factors [13], [14].

In order to improve the data quality of existing and future

air quality monitoring deployments, active research efforts are

devoted to counteract these limitations with appropriate sensor

calibration. By calibrating a low-cost sensor its measurements

are transformed in a way that the calibrated measurements

are able to closely agree with reference measurements from

a high-end device. Sensor calibration is indispensable both

before and after the deployments of low-cost air pollution

sensors. Pre-deployment calibration is crucial to identify the

primary error sources, select and train calibration models for

low-cost sensors to properly function in the target deployment.

Periodic post-deployment calibration is necessary to maintain

consistency among distributed sensors and ensure data quality

of long-term deployments.

Although calibration for air pollution sensors dates back

to decades ago [15], [16], it has attracted increasing research

interest because (i) newly available air pollution sensors push

the boundaries in terms of power consumption and portability

while neglecting sensing accuracy; and (ii) air pollution sen-

sors are deployed in new scenarios such as in crowdsourced

urban sensing [17] and personal sensing [18], [19].

Related Surveys. Several surveys discuss low-cost air pollu-

tion sensor solutions and their different applications in real-

world deployments. Rai et al. [5] summarize existing low-
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cost air pollution sensor technologies and divide them into

two groups, particulate matter (PM) and gaseous sensors. The

survey provides an overview of existing testing and evaluation

reports that highlight various important characteristics and

limitations of state-of-the-art sensors. Similar articles focus

on sensors for particular pollutants, e.g., Spinelle et al. [7]

on volatile organic compounds (VOC) and benzene mea-

surements, Jovasevic et al. [6] on particulate matter and

Baron et al. [8] on electrochemical sensors for gaseous pollu-

tants. Yi et al. [9] review the existing applications of low-cost

air pollution sensors in static, vehicle and community based

sensor networks. Thompson [17] provides an in-depth review

of crowdsourced air pollution monitoring and their current

demands and requirements for future successful deployments.

Our Contribution. While the related survey articles highlight

the generally low accuracy of low-cost sensors, there is a lack

of a comprehensive review of the reasons for the low data

quality and calibration methods to improve it. In this article

we summarize the existing scientific literature and give an in-

depth list of different limitations of state-of-the-art low-cost

sensors. The majority of this survey is devoted to different

calibration models that have been proven successful in tackling

the limitations and improving the data quality of low-cost air

pollution sensors, and effective methods to re-calibrate large-

scale air pollution monitoring deployments. The discussed

works stem from different research communities including

atmospheric chemistry, measurement technology and sensor

networks. Thus, this survey provides a global picture of the

diverse scientific results.

Roadmap. In Sec. II we describe the most prominent sensing

principles used in low-cost sensors. Further, we describe 6

common limitations that lead to generally inaccurate mea-

surements. In Sec. III we present three calibration models

that are used to counteract different limitations that pose a

challenge in any sensor deployment. In Sec. IV we specifically

focus on methods that maintain high data quality in long-

term deployments. These network calibration methods are

tailored to re-calibrate the models presented in Sec. III in real-

world deployments where access to highly accurate reference

measurements is scarce. Finally we conclude this survey in

Sec. V and discuss multiple possible future work directions.

II. AIR POLLUTION SENSORS

Fast advances in technology and strong commercialization

efforts are main drivers for an increasing number of low-

cost sensors available nowadays [20]. Compared to high-

end monitoring systems low-cost sensors typically require

significantly less power and smaller packaging. Although these

properties make low-cost sensors favorable for various large-

scale monitoring applications, a diverse list of limitations

hinders them to achieve a similar level of data quality as more

sophisticated sensors. This section reviews the sensing tech-

nologies of low-cost air pollution sensors, summarizes their

most common error sources, and points out the calibration

opportunities to improve their measurement accuracy.

A. Sensor Types and Sensing Principles

As highlighted in [5], [9], common low-cost sensors can

roughly be divided in two groups defined by their target pollu-

tant, i.e., particulate matter (Sec. II-A1) and gases (Sec. II-A2).

1) Particulate Matter Sensors: Particulate matter (PM)

describes a mixture of solid and fluid particles, which are typ-

ically classified by their size in diameter. PM10 describes the

mass concentration of particles with a diameter smaller than

10µm, PM2.5 smaller than 2.5µm. Ultrafine particles (UFP)

are nano-particles with diameters usually below 0.1µm. These

particles are known to cause serious effects on environment

and human health and, thus, monitoring their concentration,

size distribution and composition is of high importance [2].

Low-cost PM sensors are almost exclusively based on op-

tical sensing principles. The most prominent principle is based

on light scattering, where air is pumped into a small chamber.

Inside the chamber a light source, either an LED or a low-

power laser, is illuminating the air. Depending on the number

of particles in the air mixture, the light is scattered with

different intensity, which can be measured by a photodiode.

Certain low-cost PM sensors apply more sophisticated optical

principles to also differentiate sizes of particles.

2) Gas Sensors: The most relevant gaseous pollutants in

outdoor air with serious negative effects on human beings,

animals and the environment are sulphur dioxide (SO2), oxides

of nitrogen (NO, NO2, NOx = NO + NO2), carbon monoxide

(CO) and ozone (O3) [2]. In indoor air mainly carbon dioxide

(CO2), volatile organic compounds (VOC) and in some cases

also carbon monoxide (CO) are known to be possibly present

in harmful concentrations [21].

The majority of commercially available low-cost gas sensors

is therefore targeting to measure the concentration of one of

these gases. With the exception of CO2, which is either directly

measured with light scattering sensors [20] or approximated by

the presence of VOCs [22], the most popular sensing principles

are based on electrochemical or metal oxide layer reactions.

• Electrochemical. An electrochemical sensor (EC) consists

in its simplest form of two electrodes, a working electrode

and a counter electrode. Gases are either oxidized or re-

duced at the working electrode, which results in electronic

charges generated. The generated potential difference at

the two electrodes allows a current flow. This current

is usually linearly proportional to the gas concentration.

More advanced electrochemical sensors incorporate one

or two additional electrodes to improve stability and

sensitivity [23], [24].

• Metal oxide. Metal oxide sensors (MOX) use a sensing

layer, where gases are either absorbed or desorbed. This

reaction causes a change in conductivity of the material.

In order to increase sensitivity the sensing layer needs to

be heated to temperatures of at least 250◦C. State-of-the-

art metal oxide sensors are capable of measuring all the

major gaseous pollutants [25].

Based on the above sensing principles, manufacturers pro-

duce low-cost sensors and offer different features. Some

sensors solely output an analog signal while others offer on-

device signal processing, e.g., digitization of the analog signals
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Fig. 1. Overview of typical low-cost error sources and their corresponding
calibration approaches indicated by gray lines.

or internal calibration. In the remainder of this survey we do

not differentiate between these different features. We regard

a low-cost air pollution sensor as a black box with a signal

output. The sensor is applied out-of-the-box and its output

is used for comparison and calibration with references. This

is the general approach done in the studies presented in this

survey.

B. Error Sources

One of the most essential questions regarding the aforemen-

tioned low-cost sensors is how their measurements perform

in comparison to high-quality references. An ideal sensor

fully agrees with its corresponding reference sensor, i.e.,

exhibits a perfect linear relationship, as illustrated in Fig. 2a.

Unfortunately, the main reason why low-cost sensors have not

yet been established as a trust-worthy air pollution monitoring

fashion is their generally poor measurement accuracy [11]–

[14]. In an exhaustive test report by Jiao et al. [12] perform

a black box testing approach for multiple sensors. Out of 38

tested sensors only 17 correlate well to their corresponding

reference sensors. Through exhaustive sensor testing schemes

and signal analysis researchers were able to detect multiple

different error sources of state-of-the-art low-cost sensors. As

a result, most low-cost sensors significantly deviate from an

ideal sensor (Fig. 2).

We divide the error sources in two groups, internal and

external error sources, also summarized in Fig. 1. Note that we

do not include error sources that have not yet been thoroughly

tackled by calibration methods, such as slow response time or

sensor mobility effects [26], [27].

1) Internal Error Sources: Internal error sources are gener-

ally known error sources and typically related to the working

principle of low-cost sensors.

• Dynamic Boundaries. Dynamic boundaries define the

range of a pollutant concentration in which a sensor is

sensitive to. Especially the lower boundary, the limit of

detection (LOD) [28], is important. Below this boundary

the noise of a sensor signal starts to dominate and it be-

comes impossible to differentiate between concentration

levels. Low-cost sensors often have a LOD that is close

to the range of interest or even surpasses it. As a result,

measurements at low pollution concentration are subject

to high noise. An example of a low-cost sensor affected

by high noise at low concentration due to imperfect

dynamic boundaries is depicted in Fig. 2b. Especially

PM [5] and electrochemical sensors [29] are known to be

significantly affected by low signal-to-noise ratios at low

concentrations. It is important that calibration procedures

are applied with respect to this limitations.

• Systematic Errors. Systematic errors are of non-random

nature and typically either characterized by a constant

offset over the whole range of concentrations or an

under- or overestimation of the concentration in certain

ranges [11], [13], [14]. An example of a sensor response

with a constant offset is illustrated in Fig. 2c. They can

often be attributed to imperfect calibration parameters and

are generally not related to the sensing principle. Popular

examples where systematic errors pose a challenge are

factory calibrated sensors, as elaborated in detail in

Sec. III.

• Non-Linear Response. Due to the nature of certain low-

cost sensing techniques non-linear relationships between

a sensors and a references response are unavoidable. Non-

linear behavior is known to be an issue particularly for a

wide range of particulate matter sensors [30], [31] and

metal oxide sensors [32]. Often sensor manufacturers

already linearize the sensor response, e.g., by internal

signal processing, or provide information about typical

non-linear behavior in the datasheet. However, additional

factors such as environmental conditions are known to

cause non-linear behavior as well [33]. Fig. 2d shows

an example of a non-linear sensor response. A linear

relationship is in general favorable because it allows the

use of simple calibration models.

• Signal Drift. Low-cost sensors generally cannot maintain

a stable measurement performance over a long time [34]–

[36]. This usually happens due to aging and impurity

effects, and leads to a slow drift of the sensors sensitivity.

Signal drift is one of the most common error sources and

seriously impedes long-term deployments with low-cost

sensors.

2) External Error Sources: External error sources are in-

duced by the working conditions of a sensor, such as en-

vironmental factors, and therefore are heavily deployment

dependent.

• Environmental Dependencies. Changing environmental

conditions can cause problems that almost any low-cost

sensor is facing. Various laboratory reports show that cer-

tain physical ambient properties, especially temperature

and humidity conditions, can have a serious effect on
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Fig. 2. Comparison of measurements (arbitrary unit) from a reference sensor (x-axis) versus measurements of different low-cost sensors (y-axis). Fig. 2a
illustrates the response of a perfect low-cost sensor, Fig. 2b of a low-cost sensor affected by high noise at low concentration due to imperfect dynamic
boundaries, Fig. 2c of a low-cost sensor suffering from systematically overestimated measurements and Fig. 2d of a senor with a non-linear response. The
ideal response is a perfectly linear relationship between low-cost sensor and reference.

a sensors response. For instance, increasing humidity is

notably decreasing the sensitivity of metal oxide [24],

electrochemical [37] and particulate matter sensors [38].

As a result, low-cost sensors usually perform significantly

worse in field deployments than in a laboratory setup.

Further, environmental dependencies can also be respon-

sible for non-linear responses, e.g., for electrochemical

sensors [33].

• Low Selectivity. Typical metal oxide and electrochemical

sensors suffer from low selectivity. This means they are

not exclusively sensitive to their intended target gas but

are also cross-sensitive to, sometimes various, interfering

substances in the air [39]. Especially in complex outdoor

air these cross-sensitivities impose a fundamental chal-

lenge for low-cost gas sensors. Particulate matter sensors

are usually not affected by cross-sensitivities because they

are intended to detect a composition of different parti-

cles. However, in some cases where low-cost particulate

matter sensors are either used to detect particles from

certain sources like car exhaust or to distinguish different

particle sizes, cross-sensitivities are also considered as a

fundamental error source [5]. Compared to environmental

dependencies, the low selectivity problem is caused by

purely chemical inferences and requires more sophisti-

cated calibration efforts.

C. Sensor Deployments and Calibration Opportunities

A commonly used solution to reduce the errors of low-

cost air pollution sensors is calibration. Calibration finds a

relationship i.e., a calibration model that maps the measure-

ments of a low-cost sensor to those of an accurate reference

sensor. Sensor calibration is performed both before and after

the deployment of air pollution sensors to deal with different

error sources (see Fig. 1).

1) Pre-deployment Calibration: The aim of pre-deployment

calibration is to try to identify all possible internal and external

error sources of a sensor in an observed and/or controlled

environment before deploying the sensor in the field. Pre-

deployment calibration usually assumes continuous availabil-

ity of a high-quality reference sensor. One or multiple error

sources listed in Fig. 1 can be detected by comparing the

low-cost sensor to the reference sensor. These error sources

are then tackled by developing a suited calibration model

(Sec. III).

2) Post-deployment Calibration: Post-deployment calibra-

tion is used for counteracting error sources that impede a

consistent performance of a calibration model over time or in

the actual deployment environment. These error sources are

either heavily deployment dependent, such as harsh environ-

mental conditions, or due to signal drift, which commonly

occurs in long-term deployments. During post-deployment

calibration, large numbers of sensors with irregular access

to reference measurements need to be calibrated. This is

achieved by applying the calibration models extracted from

pre-deployment calibration to different network re-calibration

strategies (Sec. IV).

In Sec. III and Sec. IV we outline the existing calibration

approaches, which are found in literature and used in low-cost

air pollution sensor deployments.

III. CALIBRATION MODELS

Calibration models are applied in both pre-deployment

and post-deployment calibration. We start with the basic

and fundamental model, i.e., offset and gain calibration, in

Sec. III-A. Building on this basic model Sec. III-B presents

a first extension that corrects for temperature and humidity

effects. Finally Sec. III-C summarizes an additional extension

of the previous two models by also considering potential

interference from other pollutants.

A calibration model takes the raw measurements of a low-

cost sensor and transforms them to calibrated measurements,

leveraging prior knowledge e.g., datasheets or additional in-

formation e.g., measurements from auxiliary sensors. Various

mathematical methods can be applied and calibration models

may vary for different types of sensors. Calibration parameters

can be derived through measurements either in a laboratory

setup (controlled environment) or in the field next to reference

monitoring sites (observed environment). Table I provides a

summary of available literature and different characteristics

with respect to the three calibration models. We exclusively

focus on calibration models that are either specifically tailored

for air pollution sensors or general models that have been

proven successful when applied to real-world air quality

sensors.

A. Offset and Gain Calibration

Offset and gain calibration tackles calibration errors due

to dynamic boundaries and systematic errors and removes
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TABLE I
OVERVIEW OF SENSOR CALIBRATION MODELS PRESENTED IN LITERATURE.

Calibration Model Author Method Setup Sensors

Offset and Gain Calibration

Castell et al. [11] Ordinary Least Squares Lab & Field EC
Spinelle et al. [13], [14] Ordinary Least Squares Field EC, MOX

Austin et al. [31] Exponential Curve Fitting Lab LS

Cheng et al. [40] 2
nd Order Curve Fitting Lab LS

Carotta et al. [41] Linear & Non-Linear Curve Fitting Field MOX
Dacunto et al. [30] Power Law Curve Fitting Field LS
Balabin et al. [42] Support Vector Regression Lab LS

Temperature and Humidity Correction

Holstius et al. [43] Multiple Least Squares Field LS
Piedrahita et al. [20] Multiple Least Squares Lab & Field MOX, LS

Jiao et al. [12] Multiple Least Squares Field EC, MOX, LS
Sun et al. [44] Multiple Least Squares Lab & Field EC

Martin et al. [45] Multiple Least Squares Lab LS
Eugster and Kling [46] Multiple Least Squares Field MOX

Barcelo-Ordinas et al. [47] Multiple Least Squares Field MOX
Hagan et al. [29] Multiple Least Squares, kNN Field EC

Wei et al. [48] Linear & Non-Linear Curve Fitting Lab & Field EC
Popoola et al. [33] Linear & Exponential Curve Fitting Lab & Field EC

Mead et al. [23] Linear & Non-Linear Curve Fitting Lab & Field EC
Gao et al. [49] Higher Order Polynomial Fitting Field LS

Masson et al. [32] Non-Linear Curve Fitting Lab & Field MOX
Tsujita et al. [50] Non-Linear Curve Fitting Lab & Field MOX
Sohn et al. [51] Exponential Curve Fitting Lab MOX

Sensor Array Calibration

Pang et al. [37] Multiple Least Squares Lab & Field EC
Spinelle et al. [13], [14] Multiple Least Squares Field EC, MOX

Maag et al. [52] Multiple Least Squares Field EC, MOX
Fang et al. [53] Multiple Least Squares Field MOX, LS
Cross et al. [54] Non-Linear Curve Fitting Field EC

Zimmermann et al. [55] Random Forests Field EC, LS
Kamionka et al. [56] Neural Networks Lab MOX

Spinelle et al. [13], [14] Neural Networks Field EC, MOX
Barakeh et al. [57] Neural Networks Field MOX

De Vito et al. [58], [59] Neural Networks Field MOX
Esposito et al. [60], [61] Neural Networks Field EC

Esposito et al. [62] Various machine learning methods Field EC
De Vito et al. [63] Various machine learning methods Field EC
Lewis et al. [64] Various machine learning methods Lab & Field EC, LS

Note: EC: Electrochemical, MOX: Metaloxide, LS: Light-Scattering (Particulate Matter and CO2)

potential non-linear responses. It is one of the most essential

calibration models that maps the raw sensing measurements

to a target pollutant concentration.
1) Principles: Offset and gain calibration fits a calibration

curve, either a linear or a non-linear one, to model relation-

ships between raw sensor readings and pollutant concentra-

tions. The calibration curve is defined by an offset term,

i.e., the sensor’s response to complete absence of the target

pollutant, and a gain term that characterizes the sensor’s

response to increasing pollutant concentrations. Optimal offset

and gain parameters capture the behavior of a sensor within

its sensitivity range, i.e., the dynamic boundaries, and remove

systematic errors attributed to poorly fitted calibration param-

eters.
2) Methods: The most popular methods to calculate offset

and gain terms are ordinary least squares for a linear cali-

bration line and non-linear curve fitting, for instance with an

exponential [31] or power law [30] gain term. Offset and gain

calibration can be performed in both lab and field setups.

• Lab Tests. One way to acquire a calibration curve is to

expose a sensor to various target pollutant concentrations

in a controlled laboratory setup. Austin et al. [31] expose

a low-cost PM sensor to different aerosol air mixtures

in an air-tight enclosure. The gathered measurements are

used to calculate a calibration curve defined by an offset

Fig. 3. Governmental monitoring station located in a suburban area in
Switzerland.

and an exponential gain term. Castell et al. [11] follow a

similar approach and calibrate different electrochemical

sensors by exposing them to five different gas mixing

ratios. Their sensors show high correlation (R2 ≥ 0.92)

and, thus, a simple linear calibration based on ordinary

least squares was used to adapt the offset and gain terms.

Similar laboratory calibration can be found in additional

works [40], [42]. For certain commercially available low-
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cost sensors an initial laboratory calibration is already

performed in the factory. Manufacturers usually follow

similar approaches as found in the literature and either

provide the sensors response over a range of target pol-

lutant concentrations [65] or in the form of a calibration

curve recorded in a laboratory setup [66].

• Field Tests. Various recent works propose to directly

calibrate their sensors in an environment that is similar

to the final deployment. The most prominent way is

installing the sensors under test next to high-end sensors.

For instance, Dacunto et al. [30] jointly deploy a low-cost

PM2.5 sensor with a high-end device in different indoor

locations. In outdoor deployments the most prominent

approach is to install the sensors under test directly next

to governmental monitoring stations that often feature

a variety of accurate pollution sensors. For instance,

Fig. 3 shows a monitoring station of the governmental air

quality monitoring network in Switzerland. Spinelle et al.

[13], [14] deploy 17 different low-cost gas sensors next to

high-quality sensors of a air quality monitoring station in

a semi-rural area. Carotta et al. [41] deploy different

MOX sensors next to a monitoring station located at

a high traffic road and next to one in a low traffic

intensive area. The highly accurate measurements from

these monitoring stations are used to train and evaluate

the calibration of the low-cost sensors.

3) Discussion: While laboratory setups are faster than field

tests, many researchers [11], [20], [32], [41] recommend field

tests for offset and gain calibration. In a laboratory setup,

the environmental conditions during exposure are typically

held constant, e.g., at room temperature and moderate relative

humidity. Further, the chamber is usually filled with clean

air mixed with the target pollutant concentration, i.e., without

possible interference from other pollutants. In contrast, field

tests allow that the sensors to be exposed to situations with

realistic environmental conditions, e.g., changing meteorolo-

gical parameters or interfering gases. Because the sensors are

exposed to realistic pollution concentrations the parameters

can be optimized to capture the behavior of the sensor within

expected concentration ranges, i.e., with respect to the dynamic

boundaries. For instance, Castell et al. [11] calculate an

offset of their calibration curve around 1 ppb in a laboratory

calibration and around 166 ppb in a field calibration for a CO

sensor. By re-calibrating the CO sensor, i.e., adapting its offset

term, in the field they finally reduce the measurement error

from 181 ppb by over a factor 2 to 87 ppb. Zimmermann et al.

[55] show similar results with four different sensors. Offset

and gain calibration models calculated in a laboratory perform

poorly in an outdoor deployment and are not in line with re-

calibrated models.

As explained in Sec. II-A2, errors of air pollution sensors

can be environment-dependent. In part, in-field offset and gain

calibration implicitly mitigates the impact of these external

errors. However, environmental conditions are complex and

subject to short- and long-term changes. As a result, simple

offset and gain calibration achieves significantly worse results

in field than in laboratory tests. For instance, Castell et al. [11]

observe a drop of R2 = 0.99 to 0.3 of a NO2 sensor when

moving from laboratory to field tests. To explicitly account for

these environmental conditions temperature, relative humidity

and interfering gases, advanced calibration models are needed,

as we will describe in Sec. III-B and Sec. III-C.

B. Temperature and Humidity Correction

Temperature and humidity correction augments air pollution

measurements with concurrently measured temperature and

humidity readings to calibrate the low-cost air pollution sensor.

1) Principles: The motivation of temperature and humidity

correction stems from the influence of different temperature or

relative humidity settings on sensors observed in laboratory

tests. Pang et al. [37] observe a relative drop in sensitivity

of roughly 20% for electrochemical sensors when the relative

humidity is increased from 15% to 85%. A similar observation

is made by Wang et al. [24] for a metal oxide sensor. The

sensor almost completely loses its sensitivity when chang-

ing from dry air to an extreme relative humidity of 95%.

Wang et al. [38] demonstrate that increasing humidity can

lead to an overestimation of the particle number of typical

low-cost light scattering sensors. Similar sensitivity losses

are also experienced under changing ambient temperature as

summarized by Rai et al. [5]. These results make it evident that

changing environmental conditions such as temperature and

humidity need to be incorporated in the calibration process in

order to improve the overall measurement accuracy of virtually

any low-cost air pollution sensors.

2) Methods: Temperature and humidity correction is ubiq-

uitous due to the availability of cheap and small but pre-

cise low-cost temperature and humidity sensors. Most works

include these additional measurements in their calibration

methods, and extend the single-variant mathematical models

in offset and gain calibration (Sec. III-A) to the corresponding

multi-variant models.

A simple approach found in most of the investigation is to

find the linear combination of raw air pollution, temperature

and humidity sensor measurement that best captures the target

reference concentration. The results in [12], [20], [29], [43]–

[46] all use multiple least squares to calculate this combination

and show beneficial results for any type of low-cost sensor.

Different approaches apply more complex methods to model

the impact of temperature and humidity. Masson et al. [32]

derive a detailed model that captures the physical effect of

ambient temperature on their MOX sensor. Popoola et al.

[33] develop a temperature baseline correction algorithm for

electrochemical sensors. They observe notable differences in

temperature sensitivity for carbon monoxide (CO) and nitrogen

oxide (NO) sensors. While the CO sensor showed a linear

relationship to its reference, the NO sensor exhibits a strong

exponential relationship. Therefore they model the reaction

to temperature with a linear line fit for the CO sensor and

a exponential curve fit for the NO sensor, which is used to

correct the corresponding sensor signal. They are able to show

a significant improvement for the NO sensor by improving the

correlation from R2 = 0.02 to R2 = 0.78. Tsujita et al. [50]

and Sohn et al. [51] similarly model the relationship of MOX
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sensors to humidity and temperature with exponential terms

and compensate for them by fitting a calibration curve.

3) Discussion: The extensive list of different sensors that

significantly improve their accuracy after temperature and

humidity correction underline the severity of the problem.

Temperature and humidity correction needs to be performed

for any air pollution sensor regardless of its underlying sensing

principles. In rare cases, the impact of ambient conditions

can be precisely modeled using chemical process theory. This

approach however requires deep knowledge of the underlying

sensing principle, e.g., physical properties of the metal oxide

sensing layer. Therefore, more simpler data driven methods

dominate the different calibration methods. Due to the popular-

ity of the problem recent low-cost sensors, especially fully dig-

ital sensor solutions, already integrate an internal temperature

and humidity correction [66], [67]. However, the various field

calibration works emphasize the benefit of directly compensate

for temperature and humidity dependencies. Thus, it becomes

evident that static correction schemes by manufacturers or

laboratory calibration may be replaced by in-field calibration

for optimal performance.

C. Sensor Array Calibration

Sensor array calibration is a generic extension of tempera-

ture and humidity correction that tackles another environmen-

tal dependent factor, interfering gases.

1) Principles: As described in Sec. III-A laboratory tests

are usually performed by exposing the sensor to clean air

that is mixed with the target pollutant. In most real-world

deployments the air mixture is composed of multiple differ-

ent components [23]. For instance, in outdoor and common

indoor air multiple pollutants appear concurrently at diverse

concentrations. These complex air mixtures particularly pose

a substantial challenge for gaseous pollutant sensors. Instead

of being selective to one single pollutant, low-cost sensors

are typically sensitive to multiple pollutants at the same

time with different intensities [24], [39]. This low-selectivity

problem is also referred to as cross-sensitivities and, broadly

put, equivalent to the temperature and humidity dependency,

i.e., different factors in the environment are influencing a

sensors response. Thus, the basic concept is the same as the

temperature and humidity correction but often requires more

complex methods.

By concurrently measuring all the cross-sensitivities it is

possible to compensate for all interfering pollutants. This

approach requires a sensor array, i.e., multiple different jointly

deployed low-cost sensors. One option to create a sensor array

is to install multiple sensors in a box to ensure common

air sampling. Note that the majority of sensor arrays also

include temperature and humidity sensors and, thus, in this

case sensor array calibration is also performing a temperature

and humidity correction.

2) Methods: Popular sensor array calibration methods can

be divided in multiple least squares and neural networks.

• Multiple Least Squares. For certain cross-sensitivity

problems a multiple least squares regression can be

successfully used for calibration. One of the most popular

examples is the cross-sensitivity of NOx EC sensors on

O3 concentrations [52], and vice-versa [37]. Pang et al.

[37] are compensating for potential influences of ambient

NO and NO2 concentrations on the signal of a O3 EC

sensor. The NO and NO2 concentrations are however

measured by a high-end sensing device. The effect of the

two cross-sensitivities follow a linear behavior and, thus,

a linear multiple least squares calibration can be success-

fully applied. Another investigation [52] follows a similar

approach, but compensates for the cross-sensitivity to

O3 of a NO2 EC sensor. The O3 measurements are

measured by another low-cost metal oxide sensor. It is

shown that the measurement error of the cross-sensitive

NO2 sensor can be reduced by over 80% by simply

incorporating measurements of an additional O3 sensor

in the calibration. Multiple least squares are effective to

compensate for cross-sensitivities of (i) electrochemical

sensors to (ii) the oxidizing gases NOx and O2.

• Neural Networks. In more complex cases, linear cali-

bration models do generally not perform well [13], [14]

and, therefore, different authors investigate the feasibility

of non-linear calibration models, mostly based on neural

networks or related machine learning methods, see Ta-

ble I. Spinelle et al. [13], [14] show for a wide range

of low-cost gas sensors an overall better performance of

neural network based sensor array calibration compared

to multiple least squares and particularly to a offset and

gain calibration based on ordinary least squares. For mul-

tiple O3 and NO2 sensors the coefficient of determination

R2 is improved from values below 0.3 to at least 0.85 and

0.55 respectively using neural networks instead of linear

models. They also show that for some sensors, in par-

ticular metal oxide CO and electrochemical NO sensors,

the cross-sensitivity limitation appears to be too severe

and could not be solved by calibration with reasonable

performance. Similar results are reported by De Vito et al.

[58], [59], [63], Esposito et al. [60]–[62], Lewis et al.

[64], Barakeh et al. [57] and Zimmermannet al. [55].

Different types of machine learning techniques, with the

majority being neural networks, are able to resolve cross-

sensitivities of commercial low-cost sensors with the help

of sensor array calibration.

3) Discussion: Compared to the other two calibration mod-

els, sensor array calibration is not a necessity for all sensors.

The necessity of sensor array calibration mainly depends on

the sensitivity profiles of low-cost sensors and the target pol-

lutant. For instance, O3 can in general be accurately measured

with a single low-cost sensor due to the aggressive nature of

ozone that in return simplifies the development of selective

sensing principles. Other pollutants, for instance NOx, are

affected by the presence of aggressive interference factors and

complicate the design of selective sensors. This two interacting

factors pose a substantial challenge in choosing the optimal

sensor array composition, i.e., what low-cost sensors are

required to accurately measure the target pollutant. Therefore,

various works [54], [55], [59] present a thorough analysis on

which sensor array composition achieves the best performance
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in terms of measurement accuracy, precision and stability.

Such an analysis requires concurrent data of multiple different

low-cost sensors that need to be tested on their feasibility

in different sensor arrays. In some cases, the available low-

cost sensors may not suffice for a successful array due to

unresolved cross-sensitivities [13]. Thus, finding the optimal

sensor array to tackle all cross-sensitivities remains an open

problem. Further, similar to the two previous models authors

agree that pre-deployment sensor array calibration needs to be

performed in the field. The complex composition of pollutants

in outdoor air requires the sensors under test to be exposed in

their target deployment for a successful calibration.

D. Comparisons of Calibration Models

In summary, the most essential calibration model that is

necessary for all types of sensors is a simple offset and gain

calibration, i.e., mapping the raw sensor measurements to a

pollutant concentration. Popular mathematical methods are

linear regression or simple curve fitting possibly incorporating

a non-linear gain term. Due to the severity of the environ-

mental dependency problem extending the basic model with

a temperature and humidity correction becomes indispensable

in order to significantly improve the measurement accuracy

of any low-cost sensor. The correction can easily be done by

concurrently measuring environmental parameters and include

them in multi-variable methods, such as multiple least squares

or non-linear curve fitting. Finally, additional environmental

influences from interfering gases can be eliminated by incorpo-

rating sensor array calibration techniques. Cross-sensitivities

are mostly problematic for electrochemical and metal oxide

sensors and heavily deployment dependent. Sensor array cali-

bration requires concurrent measurements from different low-

cost sensors and often sophisticated machine learning methods

to capture the complex relationship between multiple cross-

sensitive sensor and the target pollutant concentration. Overall

sensor array calibration has been shown to produce most accu-

rate data. Spinelle et al. [13], [14] evaluate the performance of

the three different calibration steps with different gas sensors.

For instance, the NO concentration measured by a calibrated

sensor array achieves 15 and 41 times lower measurement

errors compared to a single NO sensor with and without

temperature correction respectively. Similar results are shown

by Zimmermann et al. [55]. Their sensor array calibration

based on both linear and non-linear methods achieves an

almost one order of magnitude lower error than a simple

laboratory offset and gain calibration for four different types

of sensors.

The number of additional sensors and the amount of mea-

surements needed to learn the model parameters increase with

the complexity of calibration models. Compared to the other

two calibration models, sensor array calibration also requires

more training samples, i.e., covering a large range of different

outdoor situations and, thus, is more time-consuming and

complex to perform. De Vito et al. [58] show a clear positive

trend of accuracy and precision with increasing training data.

Finally they achieve a stable calibration with training data

collected over 100 days. These long training epochs efforts are

however justified in order to achieve high data accuracy during

long-term deployments possibly spanning multiple years.

Note that a prerequisite to apply calibration models is the

access to a highly accurate reference. A reference is usually

available in lab or field tests before actual deployment of air

pollution sensors. However, the sensors after deployment may

have irregular access to a reference, which requires additional

calibration strategies, as we will discuss in the next section.

IV. NETWORK CALIBRATION

Low-cost sensors are usually deployed in either a static or

mobile sensor network for long-term air pollution monitoring.

Even after pre-deployment calibration, these sensors need peri-

odic re-calibration due to sensor drift over time and changes in

the target environments. Some works report a significant drift

after already 1 month of deployment [35]. Thus, re-calibrating

sensors appears to be an absolute necessity in any long-term

deployment.

An important commonality of post-deployment calibration

is the lack of reference sensors to verify and potentially

re-calibrate low-cost sensors. This section reviews existing

network re-calibration methods, which calibrate a network of

sensors with irregular or even no access to a highly accurate

reference. We group the existing literature into three funda-

mental network calibration approaches, i.e., blind (Sec. IV-A),

collaborative (Sec. IV-B) and transfer (Sec. IV-C) calibration,

based on their assumptions or usage of virtual references.

Table II holds a list of works that present network calibration

methods specifically tailored for air quality sensors. Note

that calibration in sensor networks is a general problem and,

thus, some of the presented methods can also be directly

applied or adapted to other type of sensor network applications

consisting of temperature and relative humidity sensors [91],

microphones [92] or barometers [93].

A. Blind Calibration

The concept of blind calibration [94] or macro calibration,

is originally designed for general sensor networks and has

also been applied to temperature and relative humidity sensor

networks [91], [94]. The idea is to achieve a high similar-

ity between measurements of all sensors in a network. A

key assumption is that neighboring sensors measure almost

identical values, or are at least correlated. This assumption

is often not true for air pollution monitoring deployments.

First, air pollution is known to be a highly complex system

with large spatiotemporal gradients. Second, typical inter-

device differences of low-cost air pollution sensors hinder

equal measurements even in a dense small-scale network. As

a result measurements of air pollution sensors in a large-scale

deployment are in general neither identical nor necessarily

correlated. A more practical assumption is to exploit situations

in space and time where we can safely assume that all sensors

within the given deployment measure the same pollution

concentrations.

Tsujita et al. [50] installed a low-cost NO2 sensor in the city

of Tokyo, Japan. They recognize that the major error source

of their sensor appears to be baseline drift of the calibration
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TABLE II
OVERVIEW OF NETWORK CALIBRATION METHODS

Approach Author Linearity Mobility

Blind Calibration

Jiao et al. [12] Linear Static
Fishbain et al. [68] Linear Static

Moltchanov et al. [69] Linear Static
Broday et al. [70] Linear Static
Mueller et al. [35] Linear Static

Pieri et al. [71] Linear Static
Tsujita et al. [50] Linear Static

Mix: Blind & Collaborative Calibration Dorffer et al. [72]–[74] Linear & Non-Linear Mobile

Collaborative Calibration

Xiang et al. [75] Linear Mobile
Hasenfratz et al. [76] Linear Mobile

Saukh et al. [77] Linear Mobile
Saukh et al. [78] Linear Mobile
Maag et al. [79] Linear Mobile
Budde et al. [80] Linear Mobile

Fu et al. [81] Linear Mobile
Markert et al. [82] Linear Mobile

Kizel et al. [34] Linear Mobile
Arfire et al. [83] Non-Linear Mobile

Transfer Calibration

Cheng et al. [40] Non-Linear Static
Zhang et al. [84] Non-Linear not relevant

Zhang et al. [85] Mix not relevant

Deshmukh et al. [86] Mix not relevant

Fonollosa et al. [87] Mix not relevant

Yan et al. [88], [89] Linear not relevant

Bruins et al. [90] MOX Heating not relevant

S1 S2

S3

S4

R1

R2

Fig. 4. Blind calibration scenario with rurally located sensors S1, S2, rural
reference R1, urban sensors S3, S4 and urban reference R2. Sensors that are
located in similar areas (rural or urban) are calibrated to references in similar
areas during times when it is safe to assume that all sensor measurements are
identical.

parameters over time. Because they continuously install their

sensor at different locations where no accurate governmental

stations are deployed, they propose an auto-calibration method.

The sensor can be calibrated to reference stations that are not

necessarily in their spatial vicinity when one can safely assume

that the NO2 concentration is almost identical at any point in

the deployment region. To check these circumstances they use

NO2 measurements from four different monitoring stations and

re-calibrate the offset term of their low-cost sensor as soon as

all four stations report a NO2 concentration below 10 ppb. A

similar method is also applied by Pieri et al. [71]. A slightly

adapted approach is presented by Moltchanov et al. [69].

Instead of assessing the possibility of a uniform concentration

with reference measurements, they use specific time periods.

In order to calibrate low-cost O3 sensors they assume that

the O3 concentration is uniform during night time (01:00-

04:00 AM), when local emissions of precursors, e.g., NO2

traffic emissions, are negligible. During these time periods they

calibrate six O3 sensors to the reference measurements of one

monitoring station. Because O3 usually reaches concentrations

close to zero during night, this approach again only allows

for an offset re-calibration. Finally, Mueller et al. [35] also

divide their low-cost sensors in two groups, i.e., sensors that

measures traffic related pollution variations deployed in inner

city areas and background pollution sensors in outer city areas.

This scenario is also illustrated in Fig. 4. They assume that

at inner city locations O3 and NO2 concentrations are usually

uniform during night and at outer city locations during the

afternoon. Individual sensors installed in the inner city are

then calibrated to a remote monitoring station in the inner

city during nighttime and correspondingly for sensors located

in the outer parts of the city in the afternoon.

B. Collaborative Calibration

Collaborative calibration extends blind calibration by creat-

ing virtual references where two mobile sensors meet in space

and time such that they should measure the same physical

phenomena. The basic idea of collaborative calibration is to

exploit situations where two or more mobile sensors meet in

space and time, i.e., referred to as sensor rendezvous. The

notion of sensor rendezvous can also be found in other sensor

network problems, such as energy efficient data collection [95]

or sensor fault detection [77]. Further, collaborative calibration

exploiting sensor rendezvous is also used in other sensor net-

works, e.g., crowdsensing applications using microphones [92]

or barometers [93].

Sensor rendezvous can be utilized as references for cali-

brating mobile air pollution sensors. Sensors in a rendezvous
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M1

M2

M3

R1
M4

RV
RV RV RV

Fig. 5. Collaborative multi-hop calibration scenario exploiting sensor ren-
dezvous (RV) between static reference R1 and mobile sensors M{1,2,3,4}.
Whenever sensor M1 is in the vicinity of the reference R1 the low-cost sensor
can be calibrated. In return, the freshly calibrated M1 is calibrating M2 during
redenzvous, and so forth.

are assumed to sense the same physical air and the range

of a rendezvous can be empirically determined. For instance,

Xiang et al. [75] define a distance of at most 2 m between

two sensors to constitute a rendezvous in an indoor air

pollution monitoring deployment. Saukh et al. [78] show

that a distance of 50 m in urban outdoor deployments is a

reasonable upper limit. Whenever a mobile low-cost sensor

is in a sensor rendezvous with a highly accurate sensor, e.g.,

from a governmental monitoring site, the low-cost sensor can

use the reference measurement for calibration [78].

Arfire et al. [83] apply a non-linear temperature correction

for mobile electrochemical sensors in a collaborative fashion

with a reference sensor. Hasenfratz et al. [76] present three

different calibration methods based on weighted least squares

that also incorporate the age of measurement at the time of

the calibration parameter calculations. The methods in [76] are

also applied by Budde et al. [80] to calibrate PM sensors in

a participatory sensing scenario. These methods assume that

a sensor is in rendezvous with one or more reference sensors

multiple times under different conditions so that the sensor can

collect a calibration dataset with high variance for calibration.

Unfortunately, not all sensors necessarily are in rendezvous

with reference sensors frequently enough. As a consequence,

some sensors in the network cannot be re-calibrated. There-

fore, some works additionally exploit rendezvous between

a freshly calibrated and an uncalibrated low-cost sensor. In

this case a sensor that has been freshly calibrated is used

to calibrate an uncalibrated one, e.g., a sensor that has no

rendezvous with references. In return, the second freshly

calibrated sensor can also be used to calibrate others, and so

on. Calibration is therefore performed in a chain-like fashion

and, thus, this concept is also known as multi-hop calibration.

A typical multi-hop calibration chain is illustrated in Fig. 5.

Although multi-hop calibration allows to calibrate more sen-

sors compared to calibration exclusively with references, it

also poses multiple challenges. The most severe challenge

is error accumulation over multiple hops, first reported by

Hasenfratz et al. [76] and in detail evaluated by Saukh et al.

[78] and Kizel et al. [34]. Due to the nature of least squares

based calibration models at every hop of the calibration chain

calibration errors are accumulated. To counteract this error

accumulation Saukh et al. [78] propose to use an alternative

method, i.e., the geometric mean regression. It is not suffering

from error accumulation, theoretically and practically proven,

S1

S2

S3R1

S4

Transfer

Master

Fig. 6. Transfer calibration scenario between a reference sensor R1 and
sensors S{1,2,3,4}. In a first step sensors S{2,3,4} are standardized to a master
sensor S1 in order to achieve high similarity of raw measurements. In a second
step a calibration model acquired by the master S1 with reference R1 is
transferred to all other sensors S{2,3,4}.

and is successfully used for offset and gain calibration of a

real-world air pollution network. In [79] Maag et al. present a

method that is tailored for sensor array calibration while also

not suffering from error accumulation. Additional challenges

of multi-hop challenges are tackled in [81], [82]. Fu et al.

[81] study the effect of reference sensor placement on the

performance of multi-hop calibration and present an algorithm

to optimally design a practical deployment of static reference

and mobile low-cost sensors. A privacy preserving multi-

hop calibration scheme for participatory and crowd sensing

deployments is introduced by Markert et al. [82].

C. Transfer Calibration

The third group of network calibration methods is known

as transfer calibration. It has its origins mainly in industrial

deployments using electronic noses (e-noses), i.e., metal oxide

sensor arrays for hazardous odor detection. Although the

related work mainly focus on e-nose calibration, transfer

calibration can be applied to any sensor model. E-noses are

typically calibrated by neural networks to detect multiple dif-

ferent odors or gases with one calibration model. Training such

a neural network requires a lot of effort mainly due to training

sample collection and model optimization. Metal oxide sensor

arrays do typically not produce identical responses compared

to similar arrays, even coming from the same production

batch [85], i.e., there are significant inter-device differences

for e-noses. Therefore each e-nose needs to be calibrated inde-

pendently and mass production becomes an almost impossible

task. Transfer calibration tackles this problem by applying a

two-step calibration process. Assuming multiple e-noses, one

e-nose acts as a master sensor. In a first step, all non-master

e-noses standardize their raw sensor array signals individually

to the raw ones of the master. This step is usually performed

by linear regression methods, such as robust regression [86],

ridge regression [89], direct standardization [87] or weighted

least squares [85], and counteracts the inter-device differences.

In a second step, the master node calibrates its response

to the target gas or odor concentrations, e.g., by training a

neural network calibration model [85], [86]. This model is now

transferred to all non-master nodes, as illustrated in Fig. 6.
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TABLE III
DIRECT COMPARISON OF THE THREE NETWORK CALIBRATION METHODS.

Method Advantages Disadvantages

Blind + Applicable to static and
mobile sensors
+ Simple approach
+ All sensors in the net-
work can be calibrated

- Only offset calibration
possible

Collaborative + All calibration models
possible
+ Sensor rendezvous as-
sures high confidence in
identical measurements of
multiple sensors
+ Best suited for mobile
air pollution monitoring
deployments

- Only applicable to mo-
bile sensors
- Number of sensors that
can be calibrated depends
on sensor mobility
- Non-linear calibration
remains an open challenge
in multi-hop calibration

Transfer + Applicable to static and
mobile sensors
+ Non-linear calibration
methods for all calibration
models possible
+ All sensors in the net-
work can be calibrated

- Limited performance
- Only works with identi-
cal sensors
- Little experience in real-
world deployments

Other popular methods used in the second step are support

vector machines regression [87], [89] or classification based

methods to classify the presence of a certain gas using support

vector machines [87], [89] or logistic regression [89]. Some

works also combine the two steps using a global training

framework, such as auto encoders by Zhang et al. [84] or a

mixture of multi-task and transfer learning by Yan et al. [88].

Bruins et al. [90] show that the standardization in the first

step can also be performed by applying an elaborate heating

temperature control of the MOX sensor array.

Since transfer learning only requires one complex calibra-

tion process for the master sensor array, it is clearly able

to minimize calibration efforts in large-scale deployments.

Unfortunately transfer learning approaches have mainly been

evaluated in lab setups and not yet intensively in real-world

deployments. One of the only transfer calibration adaptations

using a real-world large-scale PM sensor deployment is pre-

sented by Cheng et al. [40]. In a first laboratory calibration step

the PM sensors are standardized to a master sensor using sec-

ond degree curve fitting. In the second step a neural network

is used to perform a temperature and humidity correction. The

neural network is constantly updated through out the deploy-

ment. Overall they achieve an increase in approximately 8%

measurement accuracy compared to uncalibrated situations.

D. Comparisons of Network Re-calibration Strategies

The three network calibration approaches all rely on dif-

ferent assumptions and fundamental design choices and, thus,

also have different advantages. Table III compares the three

methods and list their advantages and disadvantages. The

least complex method based on blind calibration exploits

time periods and locations of reference and low-cost sensors

for calibration to assure that all sensors generate identical

measurements. While this approach can be applied to any type

of sensor in any deployment, the opportunities for calibration

are generally sparse and, hence, only offset and gain calibra-

tion can be successfully performed. In order to increase the

opportunities for calibration, collaborative calibration exploits

meeting points or rendezvous between sensors. Consequently,

collaborative calibration can only be applied to mobile sensor

deployments. Depending on the mobility of the sensors it

might not possible to calibrate all sensors within the network,

e.g., a sensor with no rendezvous can not be calibrated. So

far it is unclear how collaborative calibration scales with the

network size. This is not a substantial problem for the other

two methods.

Finally, transfer calibration uses a two-step approach by

first standardizing all deployed sensors to a master sensor and

then transferring calibration parameters acquired by the master

to all sensors. Transfer calibration has no restrictions on the

possible calibration models or the mobility of sensor, with

the exception of the static master sensor next to a reference.

However, transfer calibration assumes that all sensors in the

network (i) drift in a equal way as the master node and (ii)

are equally affected by environmental conditions. These two

assumptions are in general not true in typical air quality moni-

toring networks [85]. Therefore, up to now transfer calibration

has not achieved satisfactory performance. Further, there is

only little experience in real-world deployments.

Overall, all the methods have been proven to be suc-

cessful in counteracting decreasing accuracy in their specific

long-term deployments. In general the average measurement

accuracy is increased after re-calibrating a sensor network

and, thus, the existing results point out the necessity of re-

calibration. However, the different strengths and weaknesses

of the three methods presents the need for an universal

network calibration method. Currently, there is no one-for-all

network calibration solution available. Recent research efforts

investigate the possibility of a general applicable network cali-

bration method, e.g., by combining different aspects from the

three methods. Some theoretical investigations already provide

mixtures of different models. For instance, Dorffer et al. [72]–

[74] combine the two ideas of blind and collaborative net-

work calibration to increase the possibilities for sensor re-

calibration. A key benefit of enhancing and mixing different

network calibration aspects will thus help to assure that all

sensors in a network can be calibrated. We discuss a detailed

possibility in Sec. V.

V. DISCUSSIONS AND CONCLUSIONS

In this survey, we review the sensing principles and error

sources of low-cost air pollution sensors, and the calibration

models and re-calibration strategies to improve the accuracy

of these sensors before and after their deployments. Back to

decades ago, air pollution information was accessible only

at coarse spatiotemporal resolution. Advances in portable

air pollution sensors have enabled fine-grained air pollution

monitoring at low cost. Along with the convenience brought by

low-cost sensors come with the challenges in ensure quality of

their measurements. We demonstrate the effective calibration

models and strategies suited to improve the accuracy of diverse

air pollution sensors in various deployments. In the era of

Internet of Things, where air pollution monitoring becomes

more crowdsourced and personal, we also identify several
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largely open and attractive opportunities for future sensor

calibration research.

Calibration model benchmarking. Popular ways to assess

the performance of calibration models are metrics related to

measurement error and correlation. A widely used metric is the

root-mean-squared-error between the calibrated measurements

and its reference counterpart. Equally popular is the coefficient

of determination R2, which captures the amount of variance

of the reference measured is finally captured in the calibrated

measurements. There exist a variety of other statistical mea-

sures used in related work. An open challenge in assessing the

performance of calibration methods is a unified way to declare

a limit of these metrics when the calibrated measurement

suffices for a certain application. Some researchers already fol-

low benchmarks proposed by official authorities, for instance

the data quality objective (DQO) presented by the European

parliament [7], [11], [14]. The DQO provides a clear metric

that air quality sensors need to satisfy in order to be applied

as official measurement provider. As expected calibrating

low-cost sensors in order to fulfill these objectives is very

challenging, but also not necessarily needed for quantitative

applications such as personal exposure assessment. A possible

future direction is to build a benchmarking framework that

defines data quality guidelines for low-cost air quality sensor

networks with respect to different pollutants and applications.

Context-aware network re-calibration. As presented in

Sec. IV, all network re-calibration schemes need to identify

situations where it is safe to assume that multiple sensors

measure the same or similar phenomenon. The re-calibration

opportunities are either based on coarse assumptions (in blind

and transfer calibration) or mobility (in collaborative cali-

bration). With the rise of big data and urban computing the

relationship between a sensors context, e.g., detailed land-use

data, and the expected pollution concentration can be precisely

modeled and is deeply understood. By classifying sensor

locations according to their land-use context, e.g., nearby

traffic, elevation or population density, a number of confident

and new re-calibration opportunities can be increased. These

context-based virtual re-calibration opportunities will greatly

improve the calibration ability of a sensor network and allow

additional calibration models as well as mathematical methods.

Calibration with little overhead. Machine learning methods,

such as neural networks, have become popular tools for sensor

calibration in the last few years. Although they offer powerful

capabilities of capturing complex and possibly non-linear rela-

tionships between multiple sensors, they require large amounts

of measurements to train an accurate calibration model via

standard supervised learning. This can be a burden for model

updating in network re-calibration, especially for sensors that

have limited reference samples. In addition, the number of

samples available for calibration may vary for different sensors

in a deployment. Consequently, the accuracy of calibration

models can also differ for different sensors due to imbalanced

training data. Some recent study [19] has exploited techniques

such as semi-supervised learning to reduce the amounts of

training data for sensor array calibration. However, it remains

open how to reduce the training overhead of network re-

calibration and achieve consistent calibration accuracy for all

sensors in a networked deployment.

Quantification of Trust. Due to limited access to refer-

ence data during a sensor network deployment not only re-

calibration is a challenging task but also the evaluation of

the calibration performance. Control mechanisms to assess the

trust of the calibrated measurements offer therefore additional

future research directions. Metrics such as accuracy bounds

for sensor measurements [96], discrete reputation scores [97]

or inter-node sensor confidence [98] and correlation [77] can

be applied in a network-wide trust model to provide a notion

of quality of service of the air quality monitoring sensor

network. Additionally, by observing a trust metric one can

estimate the need for re-calibrating certain sensors within

the network or apply filtering methods to assure high data

quality. Different related works [99] propose trust mechanisms

in general networks, however, these have not yet been applied

in the specific scenarios of air pollution monitoring networks.
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