
IJCSI International Journal of Computer Science Issues, Vol. 1, 2009

ISSN (Online): 1694-0784

ISSN (Print): 1694-0814

1

A Survey on Service Composition Middleware in

Pervasive Environments

Noha Ibrahim1, Frédéric Le Mouël2

 1 Grenoble Informatics Laboratory

Grenoble, France

2 Université de Lyon, INRIA, INSA-Lyon, CITI

Lyon, France

Abstract
The development of pervasive computing has put the light on a

challenging problem: how to dynamically compose services in

heterogeneous and highly changing environments? We propose

a survey that defines the service composition as a sequence of

four steps: the translation, the generation, the evaluation, and

finally the execution. With this powerful and simple model we

describe the major service composition middleware. Then, a

classification of these service composition middleware

according to pervasive requirements - interoperability,

discoverability, adaptability, context awareness, QoS

management, security, spontaneous management, and

autonomous management - is given. The classification

highlights what has been done and what remains to do to

develop the service composition in pervasive environments.

Key words: middleware, service oriented architecture,

service composition, pervasive environment,

classification

1. Introduction

Middleware are enabling technologies for the

development, execution and interaction of applications.

These software layers are standing between the operating

systems and applications. They have evolved from

simple beginnings - hiding network details from

applications - into sophisticated systems that handle

many important functionalities for distributed

applications - providing support for distribution,

heterogeneity and mobility. SOA middleware[2] is a

programming paradigm that uses ``services'' as the unit

of computer work. Service-oriented computing enables

the development of loosely coupled systems that are able

to communicate, compose and evolve in an open,

dynamic and heterogeneous environment. A service-

oriented system comprises software systems that interact

with each other through well-defined interfaces.

If middleware were designed to help manage the

complexity and heterogeneity inherent in distributed

systems, one can imagine the new role middleware has to

play in order to respect the evolution from distributed

and mobile computing to pervasive one. Hardly a day

passes without some new evidence of the proliferation of

portable computers in the marketplace, or of the growing

demand for wireless communication. Support for

mobility has been the focus of number of experimental

systems, researches and commercial products, and that

since several decades. The mission of mobile computing

is to allow users to access any information using any

device over any network at any time. When this access

becomes to every information using every device and

over every network at every time, one can say that

mobile computing has evolved to what we now call

pervasive computing[13].

In pervasive environments where SOA has been adopted,

functionalities are more and more modeled as services,

and published as interfaces. The proliferation of new

services encourages the applications to use these latter,

all combined together. In this case, we speak of a

composite service. The process of developing a

composite service is called service composition[7].

Composing services together is the new challenge

awaiting the SOA middleware[2] meeting the pervasive

environments[13]. Indeed, the variety of service

providers in a pervasive environment, and the

heterogeneity of the services they provide require

applications and users of these kind of environments to

develop models, techniques and algorithms in order to

IJCSI International Journal of Computer Science Issues, Vol. 1, 2009

2

compose services and execute them. The service

composition needs to follow some

requirements[19][33][34] in order to resolve the

challenges brought by pervasivity.

Several surveys[5][7][22][31][33] dealt with service

composition. Many of them[7][31] classified the

middleware under exclusive criteria such as manual

versus automated, static versus dynamic, and so on.

Others[5][22][33] classified the service composition

middleware under different domains such as artificial

intelligence, formal methods, and so on. But none of

these surveys proposed a generic reference model to

describe the service composition middleware in

pervasive environments.

In this article, we propose:

• a generic service composition middleware

model, the SCM model, a novel way to describe

the service composition problem in pervasive

environments,

• a description of six middleware architectures

using the SCM model as a backbone and

highlighting the strength and weakness of each

middleware,

• and finally, a classification of these latter under

pervasive requirements identified by the

literature to be essential for service composition

in pervasive environments.

The outlines are as follows. In section 2, we define the

service composition middleware (SCM) model and

explain its modules. In section 3, we describe six service

composition middleware by mapping their architecture to

the SCM model. In section 4, we classify these

middleware according to the pervasive requirements we

identify. Finally, section 5 concludes our work and gives

research directions to the service composition problem.

2. SCM: Service Composition Middleware

Model

Based on several studies[22][24] that resolve the service

composition process problem into several fundamental

problems, we define a service composition middleware

as a framework providing tools and techniques for

composing services. We define a service composition

middleware model, SCM model, as an abstract layer,

general enough to describe all existing service

composition middleware. The SCM model is at a high-

level of abstraction, without considering a particular

service technology, language, platform or algorithm used

in the composition process. The aim of this definition is

to give the basis to discuss similarities and differences,

advantages and disadvantages of all available service

composition middleware and to highlight the nowadays

existing lacks concerning the service composition

problem in pervasive environments.

As depicted Figure 1, the SCM interacts with the

application layer by receiving functionality requests from

users or applications[5][7]. SCM needs to respond to the

functionality requests by providing services that fulfill

the demand. These services can be atomic or composite.

The Service Repository represents all the distributed

service repository where services are registered. The

SCM interacts with the Service Repository to choose

services to compose.

The SCM is split into four components: the Translator,

the Generator, the Evaluator, and the Builder. The

process of service composition includes the following

phases:

1. Applications specify their needed functionalities

by sending requests to the middleware. These

requests can be described with diverse

languages or techniques. The request

descriptions are translated to a system

comprehensible language in order to be used by

the middleware. Most systems distinguish

between external specification languages and

internal ones. The external ones are used to

enhance the accessibility with the outside

world, commonly the users. Users can hence

Figure 1 SCM model

IJCSI International Journal of Computer Science Issues, Vol. 1, 2009

3

express what they need or want in a relatively

easy way, usually using semantics and

ontologies. Internal specification corresponds

more to a formal way of expressing things and

uses specific languages, models, and logics,

usually for SOA a generic service model. Some

research[30] provide a translation mechanism of

the available service technologies and service

descriptions into one model. Others, such as

SELF-SERV[25], propose a wrapper to provide

a uniform access interface to services[8]. These

middleware usually realize transformation from

one model to another or from one technology to

another. The technologies are predefined in

advance and usually consist of the legacy ones.

If new technology models appear in the

environment, the Translator will need to be

expanded to take these technologies into

consideration. Another family of

research[6][26] do not provide the Translator

module as they use common model to describe

all the services of the environment. They use

common description languages such as DAML-

S - recently called OWL-S[36], - for describing

atomic services, composed services and user

queries.

2. Once translated, the request specification is sent

to the Generator. The Generator will try to

provide the needed functionalities by

composing the available service technologies,

and hence composing their functionalities. It

tries to generate one or several composition

plans with the same or different technology

services available in the environment. It is quite

common to have several ways to do a same

requirement, as the number of available

functionalities in pervasive environments is in

expansion. Composing service is technically

performed by chaining interfaces using a

syntactically or semantically method matching.

The interface chaining is usually represented as

a graph or described with a specific language.

Graph based approaches[8][10], represent the

semantic matching between the inputs and

outputs of service operations. It is a powerful

technique as many algorithms can be applied

upon graphs and hence optimize the service

composition. Number of languages have been

proposed in the literature to describe data

structure in general and functionalities offered

by devices in particular. If some languages are

widely used, such as XML, and generic for

multiple uses others are more specific to certain

tasks as service composition, orchestration or

choreography such as Business Process

Execution Language (BPEL4WS or BPEL[4])

and OWL-S[36].

3. The Evaluator chooses the most suitable

composition plan for a given context. This

selection is done from all the plans provided by

the Generator. In pervasive environments, this

evaluation depends strongly on many criteria

like the application context, the service

technology model, the quality of the network,

the non functional service QoS properties, and

so on. The evaluation needs to be dynamic and

adaptable as changes may occur unpredictably

and at any time. Two main approaches are

commonly used: the rule-based

planning[27][28][29] and the formal methods

approach[6][10][12][30]. The rules evaluate

whether a given composition plan is appropriate

or not in the actual context. If rules were

commonly used as an evaluation approach, their

use lacks of dynamism proper to pervasive

environments. A major problem of the

evaluation approach is namely the lack of

dynamic tools to verify the correctness -

functional and non functional aspects - of the

service composition plan. This aspect is at the

main advantage of what most formal methods

offer. The nowadays most popular and

advanced technique to evaluate a given

composition plan is the evaluation by formal

methods (like Petri nets and process algebras

like the Pi-calculus). Petri nets are a framework

to model concurrent systems. Their main

attraction is the natural way of identifying basic

aspects of concurrent systems, both

mathematically and conceptually. Petri nets are

very commonly merged with composition

languages such as BPEL[4] and OWL-S[36].

On the other hand, Automata or labeled

transition systems are a well-known model

underlying formal system specifications and are

more and more used in the service composition

process[30].

4. The Builder executes the selected composition

plan and produces an implementation

corresponding to the required composite

service. It can apply a range of techniques to

realize the effective service composition. These

techniques depend strongly on the service

technology model we are composing and on the

context we are evolving in. Once the composite

service available, it can be executed by the

IJCSI International Journal of Computer Science Issues, Vol. 1, 2009

4

application that required its functionality. In the

literature, we distinguish different kinds of

builders provided by the service composition

middleware. Some builders are very basic and

use only simple invocation in sequence to a list

of services[17]. These services need to be

available otherwise the composition result is not

certain. Others[35] provide complex discovery

protocols adapted to the heterogeneous nature

of the pervasive environments. The discovery

takes in charge to find and choose the services

taking part into the composition process and to

choose contextually the most suitable ones if

many are available. Finally some systems

propose solutions not only located in the

middleware layer but also in the networking

one.

We argue that the SCM model is generic enough to

describe the service composition process in pervasive

environments. In the next section, we use the SCM

model as a backbone for describing various middleware

that do the service composition.

3. Service Composition Middleware in

Pervasive Environments

In this section, we describe six middleware for service

composition adapted for pervasive environments by

mapping them to our SCM model. The chosen

middleware are architectures, platforms or algorithms

that propose solutions to the service composition

problem: MySIM[17], PERSE[30], SeSCo[10],

Broker[6], SeGSeC[8] and WebDG[12].

For each middleware, we describe the service

composition runtime process, the prototypes developed

and identify the four modules of our SCM model in their

provided architectures.

3.1 MySIM: Spontaneous Service Integration for

Pervasive Environment

MySIM[17] is a spontaneous middleware that integrate

services in a transparent way without disturbing users

and applications of the environment. Service integration

is defined as being a service transformation from one

service technology to another (Translator), a service

composition and a service adaptation. MySIM selects

services that are composable, generates composition

plans (Generator), evaluate their QoS degrees

(Evaluator) and implements new composite services in

the environment (Builder). These new services publish

well known interfaces but new implementations and

better QoS. MySIM also proposes to adapt the

application execution to the services available by

redirecting the application call to services with better

QoS.

MySIM architecture is depicted under the SCM model in

Figure 2. The Translator service transforms services into

a generic Service model. The Generator service is

responsible of the syntactic and semantic matching of the

service operations for composition and adaptation issues.

The QoS service evaluates the composition or

substitution matching via non functional properties and

the Decision service decides which services to compose

or to substitute. Finally the Builder service implements

the composite service, and the Registry service publishes

its interfaces.

MySIM is implemented under the OSGi/Felix platform.

It uses the reflexive techniques to do the syntactic

interface matching and ontology online reasoner for the

semantic matching. The service composition is

technically done by generating new bundles (unit of

deployment) that composes the services together. The

results show the heavy cost of the semantic matching.

The solution is interesting but solutions need to be found

to make the spontaneous service integration scalable to

large environments.

3.2 PERSE: Pervasive Semantic-aware Middleware

PERSE[30] proposes a semantic middleware, that deals

with well known functionalities such as service

discovery, registration and composition. This

middleware provides a service model to support

interoperability between heterogeneous both semantic

and syntactic service description languages (Translator).

The model further supports the formal specification of

service conversations as finite state automata, which

enables the automated reasoning about service behavior

independently from the underlying conversation

specification language. Hence, pervasive service

Figure 2 MySIM mapped to SCM

IJCSI International Journal of Computer Science Issues, Vol. 1, 2009

5

conversations described with different service

conversation languages (Generator) can be integrated

(Builder) toward the realization of a user task. The

model also supports the specification of service non-

functional properties based on existing QoS models to

meet the specific requirements of each pervasive

application through the QoS aware Composition service

(Evaluator).

PERSE architecture is depicted under the SCM model in

Figure 3. The Evaluator module is the most developed as

it verifies the correctness of the composition plan and

analyzes the service QoS before composing services. A

Translator is also available to translate the legacy

services into a common model semantically and

syntactically described. The Generator semantically

matches services. The Builder discovers the services in

the environment and simply invoke them in sequence.

[30] have implemented a prototype of PERSE using Java

1.5. Selected legacy plugins have been developed for

SLP using jSLP, UPnP[35] using Cyberlink, and UDDI

using jUDDI. The efficiency of PERSE has been tested

and proved in the cost evaluation of semantic service

matching, the time to organize the semantic service

registry, the time to publish and locate a semantic service

description as well as the comparison of the scalability of

the registry compared with a WSDL service registry, and

finally the processing time for service composition with

and without the support of QoS.

3.3 SeSCo: Seamless Service Composition

SeSCo[10] presents a service composition mechanism

for pervasive computing. It employs the service-oriented

middleware platform called Pervasive Information

Communities Organization (PICO) to model and

represent resources as services. The proposed service

composition mechanism models services as directed

attributed graphs, maintains a repository of service

graphs, and dynamically combines multiple basic

services into complex services (Builder). The proposed

service composition mechanism constructs possible

service compositions based on their semantic and

syntactic descriptions (Generator). SeSCo[10] proposes

a hierarchical service overlay mechanism based on a

LATCH protocol (Evaluator). The hierarchical scheme

of aggregation exploits the presence of heterogeneity

through service cooperation. Devices with higher

resources assist those with restricted resources in

accomplishing service-related tasks such as discovery,

composition, and execution.

SeSCo architecture is depicted under SCM model in

Figure 4. No Translator module is provided and SeSCo

uses the same language to present the user task and the

composite service. The service matching is done on a

semantic interface matching and the evaluation is upon

the input/output matching correctness.

SeSCo[10] evaluated its approach by calculating the

composition success ratio for different lengths of

composition which is essentially the number of services

that can be used to compose a single service. This

evaluation shows the effect of limiting the length of the

composition to a predefined number. If the service

density is higher, even with a lower value of composition

length, a successful composition can be achieved.

However, at lower service densities, it might be

necessary to allow higher composition lengths for better

composition.

3.4 Broker Approach for Service Composition

Broker[6] presents a distributed architecture and

associated protocols for service composition in mobile

environments that take into consideration mobility,

Figure 3 PERSE mapped to SCM

Figure 4 SeSCo mapped to SCM

IJCSI International Journal of Computer Science Issues, Vol. 1, 2009

6

dynamic changing service topology, and device

resources. The composition protocols are based on

distributed brokerage mechanisms (Evaluator) and

utilize a distributed service discovery process over ad-

hoc network connectivity. The proposed architecture is

based on a composition manager, a device that manages

the discovery, integration (Generator), and execution of

a composite request (Builder). Two broker selection-

based protocols - dynamic one and distributed one - are

proposed in order to distribute the composition requests

to the composition managers available in the

environment. These protocols depend on device-specific

potential value, taking into account services available on

the devices, computation and energy resources and the

service topology of the surrounding vicinity.

Figure 5 Broker mapped to SCM

Broker architecture is depicted under the SCM model in

Figure 5. The Broker arbitration is the Evaluator module

as it evaluates the available devices and decides to

distribute the composition request, described in a special

language (DSF), taking into account the device context.

The evaluation is done here before the composition

process. The Service Integration describes the

composition sequence using a specific language (ESF)

and pass it to the Service Execution (the Builder) to

execute it.

Broker[6] implemented a protocol as part of a distributed

event-based mobile network simulator, to test the two

proposed broker arbitration protocols and the

composition efficiency. Simulation results show that

their protocols - especially the distributed approach -

exceed the usual centralized broker composition in terms

of composition efficiency and broker arbitration

efficiency.

3.5 SeGSeC: Semantic Graph-Based Service

Composition

SeGSeC[8] proposes an architecture that obtains the

semantics of the requested service in an intuitive form

(e.g. using a natural language) (Tranlator), and

dynamically composes the requested service based on its

semantics (Generator). To compose a service based on

its semantics, the proposed architecture supports

semantic representation of services - through a

component model named Component Service Model

with Semantics (CoSMoS) - discovers services required

for composition - through a middleware named

Component Runtime Environment (CoRE) - and

composes the requested service based on its semantics

and the semantics of the discovered services - through a

service composition mechanism named Semantic Graph-

Based Service Composition (SeGSeC).

Figure 6 SeGSeC mapped to SCM

SeGSeC architecture is depicted under SCM model in

Figure 6. The Request Analyser translates the user

request into an internal system language using graph-

based approach. The Semantic Analyser and Service

composer produce the composition workflow ready to be

executed by the Service performer. The workflow

respects the semantic matching composition rules and

the correctness is guaranteed via the Evaluator module.

SeGSeC[8] was evaluated according to the number of

services deployed and the time needed to discover,

match and compose services. Another set of evaluations

took not only the number of deployed services but

especially the number of operations these services

implement. Their results show that SeGSeC performs

efficiently when only a small number of services are

deployed and that it scales to the number of services

deployed if the discovery phase is done efficiently.

IJCSI International Journal of Computer Science Issues, Vol. 1, 2009

7

3.6 WebDG: Semantic Web Services Composition

WebDG[12] proposes an ontology-based framework for

the automatic composition of web services. [12] presents

an algorithm to generate composite services from high

level declarative descriptions. The algorithm uses

composability rules, in order to compare the syntactic

and semantic features of web services to determine

whether two services are composable.

WebDG architecture is depicted under SCM model in

Figure 7. The service composition approach is depicted

under four phases of request specification (Translator),

service description matchmaking (Generator),

composition plan selection (Evaluator) and composite

service generation (Builder).

A prototype implementation WebDG is provided and

tested on a E-government Web service applications.

The WebDG evaluation aims to test the possibility of

generating plans for a large number of service interfaces,

the effectiveness and speed of the matchmaking

algorithm, and the role of the selection phase (QoC

parameters) in reducing the number of generated plans.

The result show that most of the time is spent on

checking message composability. On the other hand, a

relatively low value of composition completeness

generates more plans, each plan containing a small

number of composable operations. In contrast, a high

value of this ratio generates a smaller number of plans,

each plan having more composable operations.

4. Classification of the Pervasive Service

Composition Middleware

As shown above, the SCM model is generic enough to

provide generic functional modules that describe the

existing service composition middleware. We choose to

classify the middleware – MySIM[17], PERSE[30],

SeSCo[10], Broker[6], SeGSeC[8] and WebDG[12] -

according to pervasive environment requirements. We

first list and explain these pervasive requirements for

service composition middleware, then a classification of

these middleware is given.

4.1 Pervasive Requirements

Pervasive computing brought new challenges to

distributed and mobile computing. We identify the

following eight fundamental requirements for service

composition in pervasive environments: interoperability,

discoverability, adaptability, context awareness, QoS

management, security, spontaneous management and

autonomous management.

Interoperability is the ability of two or more systems or

components to exchange information and to use the

information that has been exchanged. Ubiquitous

computing environments, quoting Mark Weiser's

definition, consist of various kinds of computational

devices, networks and collaborating software and

hardware entities. Due to the large number of

heterogeneous and cooperating parties, interoperability is

required at all levels of ubiquitous computing. Service

composition middleware need to take advantage of all

the functionalities available in the surroundings, and for

that they need to be interoperable.

Discoverability is a major issue for ubiquity and

composition as devices and services need to be located

and accessed before being composed. One of the

fundamental challenges of distributed and highly

dynamic environments is how the applications can

discover the surrounding entities and, conversely, how

the applications can be discovered by the other entities in

the system. In a pervasive system, the execution

environment of applications can be logically considered

as a single container including all applications, other

components, and resources. Moreover, the idea in

distributed environments is that the resources can be

accessed without any knowledge of where the resources

or the users are physically located.

Adaptability is the ability of a software entity to adapt to

the changing environment. Changes in applications' and

users' requirements or changes within the network, may

require the presence of adaptation mechanisms within

the middleware. Moreover, adaptation is necessary when

a significant mismatch occurs between the supply and

demand of a resource. As the application's execution

environment changes due to the user's mobility, the vital

resources need to be substituted by corresponding

resources in the new environment in order to ensure

continuous operation. The requirement for adaptation is

present on many different layers of a computing system.

Figure 5: WebDG mapped to SCM

IJCSI International Journal of Computer Science Issues, Vol. 1, 2009

8

Context awareness is the ability of pervasive middleware

to be aware in terms of devices coming and leaving,

functionalities offered and retrieved, quality of service

changing, etc. They need to be aware of all these

changes, in order to offer the best functionalities to

applications regardless the context around. When

considering context-aware systems in general, some

common functionalities that are present in almost every

system, can be identified: context sensing and

processing, context information representation, and the

applications that utilize the context information. In

general, the context information can be divided into low-

and high-level context information. Low-level context

information can be collected using sensors in the system.

Low-level context information sources can be combined

or processed further to higher level context information.

QoS management is essential in dynamic environments,

where connectivity is very variable. A pervasive

middleware for service composition need to take the non

functional parameters of applications and devices into

consideration in order to provide viable and flexible

composition plans and composite services. QoS

parameters concern not only the services but also the

devices where the execution is taking place. The

composition execution need to rely on this parameter in

order to take place in the best conditions. Not only the

QoS of different services need to be compatible, but also

the devices performing the composition need to respect

certain characteristics and constraints.

Security mechanisms, such as authentication,

authorization, and accounting (AAA) functions may be

an important part of the middleware in order to

intelligently control access to computer and network

resources, enforcing policies, auditing network/user

usage, etc. Another important aspect concerns privacy

and trust in pervasive environments. In presence of

unknown devices, middleware need to respect privacy of

users, and provide trust mechanisms adapted to the ever

changing nature of the environment.

Spontaneous management concerns the ability of a

pervasive middleware to compose services

independently of user and application requests. The

middleware spontaneously composes services that are

compatible together and produces a new composite

service into the environment. The new service is

registered and can publish its interfaces in order to be

discovered and executed by applications. Spontaneous

service composition is an interesting feature in pervasive

environments, as services meet when the user encounter,

and interesting composite service can be generated from

these meetings, even though not required at that moment

by users.

Autonomous Management concerns the ability for a

pervasive middleware to control and manage its

resources, functions, security and performance, in face of

failures and changes, with little or no human

intervention. The complexity of future ubiquitous

computing environments will be such that it will be

impossible for human administrators to perform their

traditional functions of configuration management,

performability management, and security management.

Instead, one must resort to automate most of these

management functions, allowing humans to concentrate

on the definition and supervision of high-level

management policies, while the middleware itself takes

care of the translation of these high-level policies into

automated control structures. The challenge is therefore

to move from classical middleware support for

configuration, performability and security management

to support for self-configuration, self-tuning, self-healing

and self-protecting capabilities.

We classify the service composition middleware –

MySIM[17], PERSE[30], SeSCo[10], Broker[6],

SeGSeC[8], and WebDG[12] - under the above

requirements. For each middleware, we analyze its four

modules - Translator, Generator, Evaluator, and Builder

- and detail if they respect the pervasive requirements.

The first section depicts the requirements that are

fulfilled, at a certain extend, by the service composition

middleware. The second section explains the

requirements that are until now left behind. Our

classification is given in Figure 8.

4.2 Service Composition Middleware Meeting

Pervasive Requirements

In this section, we are interested in the pervasive

requirements that are fulfilled by service composition

middleware: discoverability, adaptability, context

awareness, and QoS management.

If some pervasive requirements are relatively well

fulfilled by the current composition middleware, others

are still at a preliminary stage.

All middleware provide the discoverability and context

awareness requirements. These requirements are intrinsic

to every composition middleware wanting to evolve in

dynamic and ever changing environment such as the

pervasive environments. These requirements are

IJCSI International Journal of Computer Science Issues, Vol. 1, 2009

9

essential when constructing and evaluating composition

plans, but also when discovering and invoking services.

Indeed, generating and evaluating composition plans

must be contextual, as services can come and go at any

time, and a given composition plan constructed at a

certain time, need to be evaluated before execution, in

case some changes have affected it. Hence, the context

awareness is not only provided by the Builder but also

by the Generator and Evaluator modules.

The adaptability requirement is fulfilled by four of the

six classified middleware (MySIM[17], PERSE[30],

SeSCo[10], and Broker[6]) for different SCM modules.

The environmental changes, that affect a pervasive

environment, such as devices coming and leaving,

services being unavailable, require from the middleware

special mechanisms in order to re-evaluate and adapt

their service composition to these changes. As we can

see, some middleware propose adaptation mechanisms,

but this requirement is far from being fulfilled by all

service composition middleware in the environment. In

nowadays researches, adaptation is more considered as a

field of research[35] than a requirement to fulfill.

Adapting services can be seen as a way of integrating

services into their new environments.

The QoS management requirement is fulfilled by five of

the six classified middleware (MySIM[17], PERSE[30],

SeSCo[10], Broker[6] and WebDG[11]). The modules

that usually respect the QoS properties are the

Generator, Evaluator and the Builder. The Evaluator

relies on the service QoS parameters in order to choose

the most suitable plan from all possible composition

plans. QoS is especially relevant for stateful services. A

plan composition of stateful services need to take QoS

into account, as the resulting composition may not

execute in case of severe incompatibilities in QoS

between combined services. The Builder can analysis the

QoS parameter in order to choose the devices and

platforms where to execute the service composition,

depending on power or memory properties, but also to

choose services to compose depending on the devices

they execute on. This requirement is especially

considered in the development of multimedia

applications in variable environments such as pervasive

environments[16]. Indeed, composing services within

multimedia applications imposes a rigorous respect of

the QoS properties otherwise the whole application may

not execute.

4.3 Service Composition Middleware Missing

Pervasive Requirements

Nowadays service composition middleware present real

lack in providing interoperability, spontaneous

management, security mechanisms and autonomous

management to service composition in pervasive

environments.

The interoperablity requirement is more than left behind

in nowadays service composition middleware. Figure 8

shows that only three middleware (MySIM[17],

PERSE[30] and SeGSeC[8]) fulfill this requirement, and

only for the Translator module. Interoperability is

currently resolved by explicit technical translations from

one service model to another. By this way,

interoperability is only resolved at a technology level.

On a more theoretical and formal level, the use of

semantic and ontology based languages[1] is not

sufficient to make service composition fully

interoperable. Very often, service providers use different

ontology domain and ontology transformations from one

domain to another are more than needed.

Spontaneous management is only considered by

MySIM[17] middleware. Indeed all of the other five

middleware are goal-oriented and respond mainly to

predefined functionality requests coming from the

Figure 6: Service composition Middleware Classification

IJCSI International Journal of Computer Science Issues, Vol. 1, 2009

10

application layer. None of these middleware propose a

spontaneous service composition that deliver new

services and functionalities into the environment,

without the intervention of users or applications.

MySIM[17] proposes a service integration middleware

that generates new services in the environment

spontaneously and automatically. Compatible services

are composed on the fly, without any intervention and

upon the middleware own decision based on semantic

and syntactic service matching.

The middleware listed above, do not propose solutions to

address the problem of security or trust. They rely on the

existing mechanisms proposed by the middleware and

network layers, if any. Several other studies[14][15]

address security features for service composition using

contracts[15], verification formal methods[14], or a

security model for enforcing access control in extensible

component platforms[20].

No real autonomous composition management is

provided. The middleware do not propose mechanism to

manage their resources, functions, security, and

performance, in face of failures and changes, with little

or no human intervention. Pervasive environments that

are capable of composing functionalities autonomously

are still at preliminary state of consumption. A major

domain that dealt with autonomous management of the

composition is the multi-agent systems. Combining

multi-agent systems and service-oriented architecture is a

well known research field to add autonomy features to

services[9][18][21][23].

5. Conclusions

The development of pervasive computing has put the

accent on a well identified problem, the service

composition problem. Composing services together on

various platforms, extending environments with new

functionalities, are the new trends pervasive computing

aims to achieve. Many composition middleware have

reached a certain maturity, and propose complete

architectures and protocols to discover and compose

services in pervasive environments. Many

surveys[5][7][22][31][33] list service composition

middleware according to predefined criteria or

properties. They very often consider middleware for the

composition of a particular technology such as Web

services composition middleware. The application of

service composition middleware to pervasive

environment is rather new, and a real lack in analyzing

and classifying service composition middleware under a

reference model is noticed.

In this article, we surveyed six complete service

composition architectures for pervasive environments,

located in the middleware layer, MySIM[17],

PERSE[30], SeSCo[10], Broker[6], SeGSeC[8] and

WebDG[12]. We do not claim the exhaustiveness of our

classification, but we think that the major middleware for

service composition in pervasive environments are

depicted. We introduced a novel approach to study the

service composition problem. We studied these systems

by reducing the composition problem to four main

problems: the service translations, the composition plan

generations, the plan contextual evaluations, and finally

the real composition implementation. In each of these

domains, several trends appeared to be commonly used:

simple translation between diverse service technologies

for the Translator, graph based approach or language

composition one for the Generator, formal methods

approach for the Evaluator, and discovery and

invocation mechanisms for the Builder. Finally, we

classified these middleware under several requirements

related to the ubiquity of the environments. If some

requirements such as discoverability and context

awareness are well verified, others are still being

explored such as interoperability, adaptability and QoS

management. Security, spontaneous and autonomous

management open the way to many promising research

trends, at the intersection of several major domains such

as artificial intelligence and autonomic computing, for

service composition middleware in pervasive

environments.

References
[1] T. Bittner and M. Donnelly and S. Winter:, Ontology and

semantic interoperability, CRCpress (Tailor & Francis),

D. Prosperi and S. Zlatanova (ed.): Large-scale 3D data

integration: Challenges and Opportunities, pages 139-160,

2005.

[2] T. Erl:, Service-Oriented Architecture (SOA): Concepts,

Technology, and Design, Prentice Hall, 2005.

[3] B. Cole-Gomolski:, Messaging Middleware Initiative

Takes a Hit, PComputerworld, 1997.

[4] Matjaz Juric and Poornachandra Sarang and Benny

Mathew:, Business Process Execution Language for Web

Services (2nd edition), PACKT Publishing, 2006.

[5] A. Alamri and M. Eid and A. El Saddik "Classification of

the state-of-the-art dynamic web services composition

techniques", Int. J. Web and Grid Services, Vol. 2, No. 2,

2006, pp. 148-166.

[6] D. Chakraborty and A. Joshi and T. Finin and Y. Yesha

"Service Composition for Mobile Environments", Journal

on Mobile Networking and Applications, Special Issue

on Mobile Services, Vol. 10, No. 4, 2005, pp. 435-451.

IJCSI International Journal of Computer Science Issues, Vol. 1, 2009

11

[7] S. Dustdar and W. Schreiner "A survey on web services

composition", Int. J. Web and Grid Services, Vol. 1, No.

1, 2005, pp. 1-30.

[8] K. Fujii and T. Suda "Semantics-based dynamic service

composition", IEEE Journal on Selected Areas in

Communications, Vol. 23, No. 12, 2005.

[9] F. Ishikawa and N. Yoshioka and S. Honiden "Mobile agent

system for Web service integration in pervasive network",

Systems and Computers in Japan, Wiley-Interscience,

Vol. 36, No. 11, 2005, pp. 34-48.

[10] S. Kalasapur and M. Kumar and B. Shirazi "Dynamic

Service Composition in Pervasive Computing", IEEE

Transactions on Parallel and Distributed Systems, Vol.

18, No. 7, 2007, pp. 907-918.

[11] B. Medjahed and Y. Atif "Context-based matching for

web service composition", Distributed and Parallel

Databases, Special Issue on Context-Aware Web

Services, Vol. 21, No. 1, 2006, pp. 5-37.

[12] B. Medjahed and A. Bouguettaya and A. K. Elmagarmid

"Composing Web services on the Semantic Web", The

VLDB Journal, Vol. 12, No. 4, 2003, pp. 333-351.

[13] M. Satyanarayanan "Pervasive Computing: Vision and

Challenges", IEEE Personal Communication, 2001.

[14] G. Barthe and D. Gurov and M. Huisman "Compositional

Verification of Secure Applet Interactions", in FASE '02:

Proceedings of the 5th International Conference on

Fundamental Approaches to Software Engineering,

2002, London, UK, pp. 15-32.

[15] N. Dragoni and F. Massacci and C. Schaefer and T. Walter

and E. Vetillard "A Security-by-contracts Architecture for

Pervasive Services", in Security Privacy and Trust in

Pervasive and Ubiquitous Computing Worshop, 2007.

[16] B. Girma and L. Brunie and J.-M. Pierson "Planning-

Based Multimedia Adaptation Services Composition for

Pervasive Computing", in 2nd International Conference

on Signal-Image Technology & Internet & based

Systems (SITIS'2006), 2006, LNCS series, Springer

Verlag.

[17] N. Ibrahim and F. Le Mouël and S. Frénot "MySIM: a

Spontaneous Service Integration Middleware for Pervasive

Environments", in ACM International Conference on

Pervasive Services (ICPS'2009), 2009, London, UK.

[18] Z. Maamar and S. Kouadri and H. Yahyaoui "A Web

services composition approach based on software agents

and context", in SAC'04: Proceedings of the 2004 ACM

symposium on Applied computing, 2004, Nicosia,

Cyprus.

[19] E. Niemela and J. Latvakoski "Survey of requirements and

solutions for ubiquitous software", in 3rd international

conference on Mobile and ubiquitous multimedia, 2004,

Vol. x, pp. 71-78.

[20] P. Parrend and S. Frénot "Component-Based Access

Control: Secure Software Composition through Static

Analysis", in Proceedings of the 7th International

Symposium, 2008 Springer, LNCS 4954, Budapest,

Hungary.

[21] C. Preist and C. Bartolini and A. Byde "Agent-based

service composition through simultaneous negotiation in

forward and reverse auctions", in EC '03: Proceedings of

the 4th ACM conference on Electronic commerce, 2003.

[22] J. Rao and X. Su "A Survey of Automated Web Service

Composition Methods", in First International Workshop

on Semantic Web Services and Web Process

Composition, 2004, SWSWPC, San Diego, California,

USA.

[23] Q. B. Vo and L. Padgham "Conversation-Based

Specification and Composition of Agent Services", in

Cooperative Information Agents (CIA), 2006,

Edinburgh, UK, pp. 168-182.

[24] Z. Yang and R. Gay and C. Miao and J.-B. Zhang and Z.

Shen and L. Zhuang and H. M. Lee "Automating

integration of manufacturing systems and services: a

semantic Web services approach", in Industrial

Electronics Society (IECON) 31st Annual Conference of

IEEE, 2005.

[25] Ion Constantinescu and Boi Faltings and Walter Binder

"Large Scale, Type-Compatible Service Composition", in

ICWS '04: Proceedings of the IEEE International

Conference on Web Services, Washington, DC, USA,

2004.

[26] Evren Sirin and James Hendler and Bijan Parsia "Semi-

automatic Composition of Web Services using Semantic

Descriptions", in Web Services: Modeling, Architecture

and Infrastructure Workshop, Angers, France, 2003.

[27] Fabio Casati and Ski Ilnicki and Li-jie Jin and Vasudev

Krishnamoorthy and Ming-Chien Shan "Adaptive and

Dynamic Service Composition in eFlow", in CAiSE '00:

Proceedings of the 12th International Conference on

Advanced Information Systems Engineering, London,

UK, 2000.

[28] Tao Gu and Hung Keng Pung and Da Qing Zhang "A

Middleware for Building Context-Aware Mobile Services",

in Proceedings of IEEE Vehicular Technology

Conference, Los Angeles, USA, 2004.

[29] Shankar R. Ponnekanti and Armando Fox "SWORD: A

developer toolkit for web service composition'', in 11th

World Wide Web Conference, Honolulu, USA, 2002.

[30] S. Ben Mokhtar, "Semantic Middleware for Service-

Oriented Pervasive Computing", Ph.D. thesis, University of

Paris 6, Paris, France, 2007.

[31] D. Kuropka and H. Meyer "Survey on Service

Composition", Technical Report, Hasso-Plattner-

Institute, University of Potsdam, number 10, 2005.

[32] J. Floch ed. "Theory of adaptation", Delivrable D2.2,

Mobility and ADaptation enAbling Middleware

(MADAM), 2006.

[33] C. Mascolo and S. Hailes and L. Lymberopoulos and P.

Picco and P. Costa and G. Blair and P. Okanda and T.

Sivaharan and W. Fritsche and M. and M. A. Rónai and K.

Fodor and A. Boulis "Survey of Middleware for Networked

Embedded Systems", Technical Report, FP6 IP Project:

Reconfigurable Ubiquitous Networked Embedded

Systems, 2005.

[34] T. Salminen, "Lightweight middleware architecture for

mobile phones", Ph.D. thesis, Department of Electrical and

Information Engineering, University of oulu, Oulu,

IJCSI International Journal of Computer Science Issues, Vol. 1, 2009

12

Finland, 2005.

[35] UPnP Forum, "Understanding UPnP: A White Paper",

Technical Report, 2000.

[36] The OWL Services Coalition, "OWL-S: Semantic Markup

for Web Servicesr", White paper, 2003.

Noha Ibrahim holds an engineering diploma from Ecole
Nationale Supérieure d'Informatique et de Mathématique
Appliquée de Grenoble (ENSIMAG), and a Phd degree from
National Institute for Applied Science (INSA) Lyon, France. The
Phd is about service integration in pervasive environments. Her
Phd focused on providing a spontaneous service integration
middleware adapted for pervasive middleware. Her main
interests are middleware for pervasive and ambient computing.
Noha Ibrahim is currently a post doctoral at the Grenoble
Informatics Laboratory where she works on service composition
based framework for optimizing queries.

Frédéric Le Mouël holds an engineering diploma in Languages
and Operating Systems, and a Phd degree from the University of
Rennes 1, France. His dissertation focused on an adaptive
environment for distributed execution of applications in a mobile
computing context. Frédéric Le Mouël is currently associate
professor in the National Institute for Applied Sciences of
Lyon(INSA Lyon, France), Telecommunications Department,
Center for Innovation in Telecommunication and Integration of
Services (CITI Lab.). His main interests are service-oriented
middleware and more specifically on the fields of dynamic
adaptation, composition, coordination and trust of services.

