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ABSTRACT

Since the advent of U-Net, fully convolutional deep neural networks and its many variants have
completely changed the modern landscape of deep learning based medical image segmentation.
However, the over dependence of these methods on pixel level classification and regression has
been identified early on as a problem. Especially when trained on medical databases with sparse
available annotation, these methods are prone to generate segmentation artifacts such as fragmented
structures, topological inconsistencies and islands of pixel. These artefacts are especially problematic
in medical imaging since segmentation is almost always a pre-processing step for some downstream
evaluation. The range of possible downstream evaluations is rather big, for example surgical planning,
visualization, shape analysis, prognosis, treatment planning etc. However, one common thread across
all these downstream tasks is the demand of anatomical consistency. To ensure the segmentation result
is anatomically consistent, approaches based on Markov/ Conditional Random Fields, Statistical
Shape Models are becoming increasingly popular over the past 5 years. In this review paper, a broad
overview of recent literature on bringing anatomical constraints for medical image segmentation is
given, the shortcomings and opportunities of the proposed methods are thoroughly discussed and
potential future work is elaborated. We review the most relevant papers published until the submission
date. For quick access, important details such as the underlying method, datasets and performance
are tabulated.

Keywords Medical Image Segmentation · Shape Priors · Shape Models · CRF · MRF · Active Contours

1 Introduction

Semantic segmentation is the task of predicting the cate-
gory of individual pixels in the image which has been one
of the key problems in the field of image understanding
and computer vision for a long time. It has a vast range of
applications such as autonomous driving (detecting road

signs, pedestrians and other road users), land use and land
cover classification, image search engines, medical field
(detecting and localizing the surgical instruments, describ-
ing the brain tumors, identifying organs in different image
modalities). This problem has been tackled by a combina-
tion of machine learning and computer vision, approaches
in the past. Despite their popularity and success, deep
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learning era changed main trends. Many of the problems
in computer vision - semantic segmentation among them
- have been solved with convolutional neural networks
(CNNs) .

Incorporating prior knowledge into traditional image seg-
mentation algorithms has proven useful for obtaining more
accurate and plausible results. The highly constrained
nature of anatomical objects can be well captured with
learning based techniques. However, in most recent and
promising techniques such as CNN based segmentation it
is not obvious how to incorporate such prior knowledge.
Segmenting images that suffer from low-quality and low
signal-to-noise ratio without any shape constraint remains
problematic even for CNNs. Though it has been shown
that incorporation of shape prior information significantly
improves the performance of the segmentation algorithms,
incorporation of such prior knowledge is a tricky practical
problem. In this work, we provide an overview of efforts
of shape prior usage in deep learning frameworks.

1.1 Yet another review paper

There already appeared a variety of review papers about
shape modelling and deep learning for medical image seg-
mentation in the recent past. McInerney and Terzopoulos
(1996) presents various approaches that apply deformable
models. Peng et al. (2013) deals with different categories
of graph-based models where meaningful objects are rep-
resented by sub-graphs. The review by Heimann and
Meinzer (2009) is about statistical shape models and con-
centrates especially on landmark-based shape representa-
tions. Elnakib et al. (2011) also reviews different shape
feature based models, that include statistical shape mod-
els, as well as deformable models. A more recent review
by Nosrati and Hamarneh (2016) provides insights into
segmentation models that incorporate shape information
as prior knowledge. Later surveys of Litjens et al. (2017),
Razzak et al. (2017), Rizwan I Haque and Neubert (2020)
and Lei et al. (2020) shift their focus to deep learning
approaches. Hesamian et al. (2019) and Taghanaki et al.
(2019) present different network architectures and training
techniques, whereas Jurdi et al. (2020) take it a step further
and reviews prior-based loss functions in neural networks.

Since deep learning became the method of choice for many
computer vision tasks, including medical image segmenta-
tion, we focus our review on models that combine neural

networks with explicit shape models in order to incorporate
shape knowledge into the segmentation process. Segmen-
tation models solely based on neural networks usually do
not incorporate any form of shape knowledge. They are
based on traditional loss functions that only regard objects
at pixel level and do not evaluate global structures. The
papers we present in this review improve these networks by
combining them with additional models that are especially
built with shape in mind. This is also the point that delimits
this review from existing surveys which either focus mostly
deep learning approaches or on traditional shape and de-
formable model methods, but not on the combination of
both.

The explicit models applied in this review can be divided
into three main categories as shown in Figure 1: 1) Condi-
tional or Markov Field models that establish connections
between different pixel regions 2) Active/Statistical Shape
Models that learn a special representation for valid shapes
3) Active Contour Models or snakes that use deformable
splines for shape detection. These models are either ap-
plied as pre-processing steps to create initial segmentations,
post-processing steps to refine the neural network segmen-
tations, or used in multi-step models consisting of various
models along a specific pipeline.

We are aware that the field is heavily shifting from explicit
ways of modeling shape to more implicit approaches where
networks are trained in an end-to-end way.Up and com-
ing Works propose more intelligent loss functions that no
longer require additional explicit shape modelling, but only
consist of a single neural network. Zhang et al. (2020a)
proposed a new geometric loss for lesion segmentation.
Other examples are Mohagheghi and Foruzan (2020) and
Han et al. (2020) where the loss contains shape priors. Li
et al. (2020) introduces a spatially encoded loss with a
special shape attention mechanism. Clough et al. (2019b)
uses a topology based loss function.

However the overwhelming majority of articles combine
neural networks and explicit models to introduce shape
knowledge. This combination often stems from a rather
principled engineering design choice (as shown in Fig-
ure 1) which is not detailed in any of the previous review
articles. This review focuses on this overarching design
principle of shape constraint which, along with being a
quick access guide to explicit approaches, will work as a
research catalyzer of implicit constraints.

Neural Networks

Active / Statistical
Shape Models

Conditional / Markov
Random Field

Active Contour Models /
Leve-Set Methods

for
Post-

Processing

for
End-to-End

Training

for
Post-

Processing

for
Prior-

Knowledge
Multistep
Approach

for
Post-

Processing

for
Pre-

Processing

combined with

Figure 1: Overview of related work approaches

2 CRF / MRF approaches

Markov Random Fields (MRF) Li (1994) belong to the
domain of graphical models and model relationships be-
tween pixels or high-level features with a neighborhood
system. The label probability of a single pixel is thereby
conditioned on all neighboring pixels which allow to model
contextual constraints. The maximum a posteriori proba-
bility (MAP) can then be calculated by applying the Bayes
rule. Conditional Random Fields (CRF) Lafferty et al.
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(2001) are an extension of MRFs and allow to incorpo-
rate arbitrary global features over regions of pixels. For
medical image segmentation this means that they gener-
ate smooth edges by using this global knowledge about
surrounding regions which is a reason why the are often ap-
plied alongside neural networks to perform medical image
segmentation.

CRFs used for postprocessing The largest category
of methods that utilize CRFs or MRFs apply them as a
pos-tprocessing step. A large portion of papers focus on
the straight-forward approach where the CNN generates
initial segmentations maps which are directly passed to
a CRF or MRF model as inputs for further refinements.
These approaches are evaluated on a variety of anatomies
and mostly differ in the utilized network architectures but
follow the same idea. They are applied to lung nodules
(Yaguchi et al. (2019), Gao et al. (2016)), retinal vessel
(Fu et al. (2016b)), brain tumor (Zhao et al. (2016), Li
et al. (2017a)), cervical nuclei (Liu et al. (2018)), eye
sclera (Mesbah et al. (2017)), melanoma (Luo and Yang
(2018)), ocular structure (Nguyen et al. (2018)), left atrial
appendage (Jin et al. (2018)), lymph node (Nogues et al.
(2016)), liver (Dou et al. (2016)) and prostate cancer le-
sion (Cao et al. (2019)) segmentation tasks. A slightly
different approach for skin lesion detection by Qiu et al.
(2020) is based on the same idea, but uses not just a single
CNN network, but an ensemble of seven or fifteen which
are combined inside the CRF. Two other approaches to
highlight here for brain region (Zhai and Li (2019)) and
optical discs in fundus image (Bhatkalkar et al. (2020))
segmentation integrate a special attention mechanism into
their networks with the motivation to improve the segmen-
tations by detecting and exploiting salient deep features.
Another special version that operates on weakly segmented
bounding box images for fetal brain & lung segmentation
is introduced by Rajchl et al. (2017). Given the initial
weak segmentations, the model iteratively optimizes the
pixel predictions with a CNN followed by a CRF to obtain
the final segmentation maps.
Instead of CRFs, Shakeri et al. (2016) use a MRF to im-
pose volumetric homogenity on the outputs of a CNN for
subcortical region segmentation. MRFs are also utilized
in the approach shown by Xia et al. (2019) for kidney seg-
mentation where the MRF is integrated into a SIFT-Flow
model.
Besides these classical approaches, another method that
came up focused on cascading CNN networks that gener-
ate segmentations in a coarse-to-fine fashion. Wachinger
et al. (2018) use this strategy with a first network that
segments fore- from background pixels in brain MRIs and
a second one that classifies the actual brain regions. The
same method is also used by Shen and Zhang (2017) for
brain tumor segmentation, by Dou et al. (2017) for liver
and whole heart segmentation, and by Christ et al. (2016)
for liver-based lesion segmentation.
A somewhat different cascading structure, for brain tu-
mor segmentation, is introduced by Hu et al. (2019)
where multiple subsequent CNNs are used to extract more

discriminative multi-scale features and to capture depen-
dencies. Feng et al. (2020) extend this version on the
task of brain tumor segmentation with the introduction of
residual connections that improve the overall performance.
Similar to the cascading methods, there are CNNs with two
pathways that combine two parallel networks on different
resolution levels that aim for capturing larger 3D contexts.
The approach was originally introduced by Alansary et al.
(2016) for placenta segmentation, but was also applied
in Cai et al. (2017) to the task of pancreas segmentation.
Kamnitsas et al. (2017) proposes another related approach
where two parallel networks, a FCN that extracts a rough
mask and a HED that outputs a contour, are fused inside a
CRF. In the approach by Shen et al. (2018) that deals with
brain tumor segmentation, a third path is added where in
total three concurrent FCNs are trained based on different
filtered (gaussian, mean, median) input images. After each
network an individual CRF is applied and their results are
fused in a linear regression model.
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Figure 2: Overview of relevant papers per year for each
category

Training CNN and CRF models end-to-end The idea
of integrating CRF models directly into neural networks
origins from the task of semantic image segmentation and
was introduced by Zheng et al. (2015). They combine the
strengths of both models into a unified framework that
allows end-to-end training. Broken down, the basic task
of CRFs is to minimize an energy term with an iterative
mean field approximation. Since CRFs are graphical mod-
els, each iteration step can be formulated as a stack of
CNN layers. Multiple iterations can then be implemented
by repeatedly executing this stack or alternatively as an
equivalent Recurrent Neural Network (RNN). The result-
ing network is denoted as a CRF-RNN and can be applied
on top of any CNN architecture. Fu et al. (2016a) are the
first to transfer this method to medical image segmenta-
tions with a model called DeepVessel for the task of retinal
vessel segmentation. For the same task Luo et al. (2017)
achieve similar results by using a slightly deeper base CNN
network with more convolution layers. Besides retinal ves-
sel, CRF-RNN approaches are applied to a variety of other
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anatomical structures. Zhao et al. (2016) applies them to
brain tumor segmentation and extend it with some addi-
tional pre- and post-processing steps later on Zhao et al.
(2018b). Xu et al. (2018) uses a V-Net combined with
CRF-RNN for bladder segmentation and in Monteiro et al.
(2018) they are also applied on brain tumor as well as
prostate segmentation with 3D multi-modal images. Ana-
logues Chen and de Bruijne (2018) utilizes a U-Net as their
base-network to deal with white matter lesion segmenta-
tion. On the same idea as CRF-RNN Deng et al. (2020)

uses a CRF-Recurrent Regression based Neural Network
(CRF-RRNN) integrated with a heterogeneous CNN for
brain tumor segmentation where the combined network can
also be trained end-to-end. Instead of using a full RNN,
Zhang et al. (2020d) propose a method where MRF is inte-
grated into the segmentation network as a block of local
and global convolution layers that take the CNN output as
unary potentials to calculate the corresponding pairwise
potentials.

Table 1: CNNs combined with CRF / MRF models

Authors Anatomy Title Method

CRF / MRF used for post-processing

Li et al.
(2017a)

Brain Tumor Low-Grade Glioma Segmentation Based on
CNN with Fully Connected CRF

CRF refines CNN segmentation

Wachinger
et al. (2018)

Brain Re-
gion

DeepNAT: Deep convolutional neural
network for segmenting neuroanatomy

CRF refines hierarchical CNN
segmentations

Hu et al.
(2019)

Brain Tumor Brain Tumor Segmentation Using
Multi-Cascaded Convolutional Neural
Networks and Conditional Random Field

FC-CRF refines segmentations of three
CNNs

Shen and
Zhang (2017)

Brain Tumor Fully connected CRF with data-driven prior
for multi-class brain tumor segmentation

Multiple FC-CRFs

Kamnitsas
et al. (2017)

Brain Lesion Efficient Multi-Scale 3D CNN with Fully
Connected CRF for Accurate Brain Lesion
Segmentation

FC-CRF refines two-pathway CNN

Alansary et al.
(2016)

Placenta Fast Fully Automatic Segmentation of the
Human Placenta from Motion Corrupted
MRI

FC-CRF refines two-pathway CNN

Shakeri et al.
(2016)

Sub-cortical
regions

Sub-cortical brain structure segmentation
using F-CNN’s

MRF refines FCNN segmentation

Zhai and Li
(2019)

Brain region An Improved Full Convolutional Network
Combined with Conditional Random Fields
for Brain MR Image Segmentation
Algorithm and its 3D Visualization
Analysis

FC-CRF refines CNN with attention

Dou et al.
(2016)

Liver 3D Deeply Supervised Network for
Automatic Liver Segmentation from CT
Volumes

FC-CRF refines 3D FCNN with 3D
supervision mechanism

Dou et al.
(2017)

Heart 3D Deeply Supervised Network for
Automated Segmentation of Volumetric
Medical Images

FC-CRF refines cascading U-Nets

Christ et al.
(2016)

Liver Automatic Liver and Lesion Segmentation
in CT Using Cascaded Fully Convolutional
Neural Networks and 3D Conditional
Random Fields

FC-CRF refines cascaded FCNs

Fu et al.
(2016b)

Retinal Ves-
sel

Retinal vessel segmentation via deep
learning network and fully-connected
conditional random fields

FC-CRF refines CNN with side-outputs

Jin et al.
(2018)

Left atrial ap-
pendage

Left Atrial Appendage Segmentation Using
Fully Convolutional Neural Networks and
Modified Three-Dimensional Conditional
Random Fields

FC-CRF combines slices of FCN

Cai et al.
(2017)

Pancreas Pancreas Segmentation in MRI using
Graph-Based Decision Fusion on
Convolutional Neural Networks

CRF refines results from FCN and HED
network

Xia et al.
(2019)

Kidney Deep Semantic Segmentation of Kidney
and Space-Occupying Lesion Area Based
on SCNN and ResNet Models Combined
with SIFT-Flow Algorithm

MRF refines combined ResNet and SCNN
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Table 1: CNNs combined with CRF / MRF models

Authors Anatomy Title Method

Rajchl et al.
(2017)

Fetal Brain /
Lung

DeepCut: Object Segmentation from
Bounding Box Annotations using
Convolutional Neural Networks

Iterative CRF and CNN

Nogues et al.
(2016)

Lymph Node Automatic Lymph Node Cluster
Segmentation Using Holistically-Nested
Neural Networks and Structured
Optimization in CT Images

CRF refines HNN (FCN + DSN)
segmentations

Yaguchi et al.
(2019)

Lung Nod-
ules

3D fully convolutional network-based
segmentation of lung nodules in CT images
with a clinically inspired data synthesis
method

CRF refines 3D FCN segmentations

Gao et al.
(2016)

Lung Segmentation label propagation using deep
convolutional neural networks and dense
conditional random field

CRF refines CNN segmentations

Feng et al.
(2020)

Brain Tumor Study on MRI Medical Image
Segmentation Technology Based on
CNN-CRF Model

CRF refines DCNN segmentations

Liu et al.
(2018)

Cervical Nu-
clei

Automatic segmentation of cervical nuclei
based on deep learning and a conditional
random field

Locally FC-CRF refines Mask-RCNN
segmentation

Shen et al.
(2018)

Brain Tumor Brain tumor segmentation using concurrent
fully convolutional networks and
conditional random fields

Concurrent FCN refined by FC-CRF

Mesbah et al.
(2017)

Eye Sclera Conditional random fields incorporate
convolutional neural networks for human
eye sclera semantic segmentation

Initial CNN boundaries refined by CRF

Luo and Yang
(2018)

Melanoma Fast skin lesion segmentation via fully
convolutional network with residual
architecture and CRF

CRF refines FCN segmentations

Bhatkalkar
et al. (2020)

Fundus Op-
tic Disk

Improving the Performance of
Convolutional Neural Network for the
Segmentation of Optic Disc in Fundus
Images Using Attention Gates and
Conditional Random Fields

FC-CRF refines CNN segmentations

Qiu et al.
(2020)

Skin Lesion Inferring Skin Lesion Segmentation With
Fully Connected CRFs Based on Multiple
Deep Convolutional Neural Networks

CRF refines segmentations of DCNN
ensemble

Nguyen et al.
(2018)

Ocular struc-
tures

Ocular structures segmentation from
multi-sequences mri using 3d unet with
fully connected crfs

FC-CRF refines CNN segmentations

Cao et al.
(2019)

Prostate can-
cer lesions

Prostate Cancer Detection and
Segmentation in Multi-parametric MRI via
CNN and Conditional Random Field

Selective Dense CRF refines CNN
segmentations

CNN and CRF trained end-to-end

Zhao et al.
(2018b)

Brain Tumor A deep learning model integrating FCNNs
and CRFs for brain tumor segmentation.

Combination of FCNN and CRF-RNN

Monteiro et al.
(2018)

Prostate /
Brain Tumor

Conditional Random Fields as Recurrent
Neural Networks for 3D Medical Imaging
Segmentation

Combination of FCNN and CRF-RNN

Fu et al.
(2016a)

Retinal Ves-
sel

DeepVessel: Retinal Vessel Segmentation
via Deep Learning and Conditional
Random Field

Combination of CNN and CRF-RNN layers

Chen and
de Bruijne
(2018)

White matter
hyperintensi-
ties

An End-to-end Approach to Semantic
Segmentation with 3D CNN and
Posterior-CRF in Medical Images

Combination of U-Net and FC-CRF

Xu et al.
(2018)

Bladder Automatic bladder segmentation from CT
images using deep CNN and 3D fully
connected CRF-RNN

Combination of CNN and CRF-RNN
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Table 1: CNNs combined with CRF / MRF models

Authors Anatomy Title Method

Deng et al.
(2020)

Brain Tumor Deep Learning-Based HCNN and
CRF-RRNN Model for Brain Tumor
Segmentation

Combination of HCNN and CRF-RRNN

Zhang et al.
(2020d)

Prostate ARPM-net: A novel CNN-based
adversarial method with Markov Random
Field enhancement for prostate and organs
at risk segmentation in pelvic CT images

CNN combined with MRF block

Zhao et al.
(2016)

Brain tumor Brain tumor segmentation using a fully
convolutional neural network with
conditional random fields

CRF integrated into FCNN

Luo et al.
(2017)

Retinal Ves-
sel

Efficient CNN-CRF network for retinal
image segmentation

Combination of CNN and CRF

3 Shape model based approaches

The second category of model assumptions often com-
bined with CNNs are active shape models (ASM) Cootes
et al. (1995) or probabilistic active shape models (PASM).
ASMs require a training set with a fixed number of man-
ually annotated landmark points of the segmented object.
Each point represents a particular part of the object and
has to be in the same position over all images. These an-
notated shapes are then iteratively matched and a mean
shape is derived. The landmark points show different vari-
abilities that are modeled by a Point Distribution Model
(PDM). Performing a principal component analysis (PCA)
and weighting the eigenvectors allows creating new shapes
in the allowed variability range. For detecting an object in
an unknown image an algorithm is used that updates pose
and shape parameters iteratively to improve the match until
convergence. An extension to this approach are probabilis-
tic ASMs (PASM) Wimmer et al. (2009). They impose a
weaker constraint on shapes which allows more flexible
contours with more variations from the mean shape. This
is achieved by introducing a probabilistic energy function
which is minimized in order to fit a shape to a given image.
The model’s ability to generalize is thereby improved and
the segmentation results outperform standard ASMs.

Shape Models for post-processing Though CNN based
segmentation models yield good segmentation results, they
tend to produce anatomically implausible segmentation
maps that can contain detached islands or holes at parts
where they do not occur in reality. Since shape models
represent valid and anatomically plausible shapes, it makes
sense to apply them in post-processing steps to regular-
ize initial CNN segmentations and transform them into a
valid shape domain. Xing et al. (2016) take up this idea
and apply it to nucleus segmentation. The initial segmen-
tations are generated by a CNN and the post-processing
step includes a sparse selection-based shape model for
top-down shape inference, which is more insensitive to
object occlusions compared to PCA-based shape models,
and an additional deformable model for bottom-up shape
deformation. Also Hsu (2019) follows this strategy for seg-
mentation and tracking of the left ventricle. They swap out

the CNN for a Faster-RCNN and use an improved ASM
that allows to obtain matching points in greater ranges.
Fauser et al. (2019) continue on improving the ASM by
using a probabilistic ASM that is more flexible and al-
lows leaving the shape space. The segmentation of the left
ventricle is performed by combining the results of three
CNN-PASM models for each dimension. Another modi-
fied ASM is proposed by Medley et al. (2020). The authors
use Expectation-Maximization to deal with outliers during
optimizing the ASM. They also evaluate different ASM
features and conclude that a CNN that learns the input
feature maps for the EM-ASM performs best. Besides
improving on the ASM a different approach by Karimi
et al. (2019) aims for generating better predictions with an
ensemble of U-Net like CNN models with different filters
and parameters. In their approach a SSM model, based on
the thresholded segmentations from all individual models,
is only applied if the disagreement between the ensemble
models becomes to high. Instead of using the CNN for
generating segmentation maps, it is also sufficient to only
predict bounding boxes as initializations for ASMs. Such
an approach is applied by Tabrizi et al. (2018) on kidney
segmentation where a fuzzy-ASM produces the final seg-
mentations. Li et al. (2018) also uses a CNN for bounding
box prediction, but adds an intermediate step before utiliz-
ing a statistical shape model for myocardial segmentation,
in which a random forest classifier builds probability maps
from the given bounding boxes. Another tree model, more
specific an adaptive feature learning probability boosting
tree (AFL-PBT) is also utilized by He et al. (2018) as an
initial step to classify voxels for prostate segmentation. A
subsequent CNN then extracts boundary probability maps
and a three-level ASM is employed to generate final seg-
mentations.

Shape Models for prior knowledge In this second para-
graph we present some papers where the shape models are
applied pre-hoc before any deep learning network. Two
straight forward models for this category are proposed
by Cheng et al. (2016) and Fan et al. (2020). In Fan
et al. (2020) a 3D U-Net-like CNN segments Itra-Cholear
anatomy based on initial segmentations from an ASM
and the original CT images. Cheng et al. (2016) on the
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other hand use a CNN for refining initial segmentations
from an Active Appearance Model (AAM) that produces
only coarse prostate segmentations. The AAM is basically
an extended shape model that adds an additional texture
model for better fitting capabilities. The other two models
already introduce some pipeline-like approaches, but use
both a shape model as prior knowledge. The pipeline for
subcortical region segmentation in Duy et al. (2018) starts
with a pre-processing SVM that classifies sagittal slices
into groups of similar shape. The prior ASM then creates
rough segmentations for each group which are finalized
by a CNN. Further the authors propose an optional CRF
model for post-processing. Nguyen et al. (2019) introduce
the ASM as a more traditional prior for uveal melanoma
segmentation where it is used as a constraining term for a
CRF model that is based on Grad-CAM (class activation
maps) heatmaps. The final segmentations are again gen-
erated with a U-Net that combines the CRF with original
input CTs.
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Figure 3: Overview of anatomical structures examined in
the relevant papers

Pipeline approaches with multiple CNN and ASM
models The last category for combining shape models
and neural networks contains all approaches that consist of
different models arranged along pipelines. The motivation
is to process input images stage-wise or in a coarse-to-fine
way that allows to capture more information and hence re-
sult in more accurate segmentation maps. In the models by
Tack et al. (2018) for knee menisci, Ambellan et al. (2019)
for knee bone & cartilage, and Brusini et al. (2020) for hip-
pocampus segmentation, the pipelines combine multiple
CNNs and SSMs. All three start with initial 2D U-Nets
regularized by SSMs which are used to extract smaller 3D

subvolumes. Tack et al. (2018) and Ambellan et al. (2019)
apply an additional 3D U-Net afterwards, whereas Brusini
et al. (2020) uses three U-Nets and averages their predic-
tions to obtain final segmentations. Ambellan et al. (2019)
further continues after this step and utilizes a second 3D
SSM model to obtain the knee bone segmentations and
even applies a third U-Net to segment the cartilage after-
wards. Besides these typical pipelines, there are also some
hybrid approaches we count to this category that integrate
shape models and neural networks. They use special CNNs
that directly predicts the parameters of an SSM, which are
the shape coefficients (weights for the modes of variations),
the pose parameters. Qin et al. (2020) use such a SSM-Net
inside a small pipeline for prostate segmentation. They
propose an inception-based network that directly predicts
parameters of the SSM which can be back-translated into
a prostate contour prediction. Parallel to this, a residual
U-Net generates probability maps from the inputs. The
final segmentations are generated by averaging the outputs
of both models. The method of Tilborghs et al. (2020)
for left ventricle segmentation is based on the same idea,
but removes the small pipeline. Instead they modify the
CNN and add a third output which is an actual distance
map. A special loss function is used to train the network to-
ward optimizing the segmentation map alongside the SSM
parameters. A nearly identical approach by Karimi et al.
(2018) is applied to prostate segmentation. Their CNN
predicts center position of the prostate, the shape model pa-
rameters, and a rotation vector which are passed to a final
layer that outputs the coordinates of the landmark points
which resemble the a final segmentation map. Schock
et al. (2020) relies on the same method for knee bone &
cartilage segmentation, but extend it with additional pre-
and post-processing steps. They add a preprocessing 2D
U-Net that detects initial bone positions and crop the vol-
ume into subvolumes which only contain the femur or tibia
bone. Afterwards their SSM-Net comes into place that
predicts the SSM parameters and the actual landmarks in
a subsequent PCA layer. An additional fine-tuning step
then generates the cartilage segmentations with a 3D U-
Net based on subvolumes centered at the bones’ landmark
points. Rather than integrating the SSM and CNN, Ma et al.
(2018) introduces a Bayesian model that integrates both,
the CNN and a robust kernel SSM (RKSSM) for the task
of pancreas segmentation. At first the RKSSM is initial-
ized to fit the detected ROI of a Dense U-Net. A Gaussian
Mixture Model afterwards guides the shape adaption and
iteratively projects the adapted shape onto the RKSSM
until convergence which results in the final segmentation
map.

Table 2: CNNs combined with Active Shape Models

Authors Anatomy Title Method

ASM for post-processing

Xing et al.
(2016)

Nucleus An Automatic Learning-Based Framework
for Robust Nucleus Segmentation

Shape Model refines CNN segmentation
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Table 2: CNNs combined with Active Shape Models

Authors Anatomy Title Method

He et al.
(2018)

Prostate Automatic Magnetic Resonance Image
Prostate Segmentation Based on Adaptive
Feature Learning Probability Boosting Tree
Initialization and CNN-ASM Refinement

Three-level-ASM refines segmentations of
CNN

Fauser et al.
(2019)

Temporal
Bone

Toward an automatic preoperative pipeline
for image-guided temporal bone surgery

Probabilistic ASM refines 2D U-Net
segmentation

Li et al. (2018) Myocardial Fully Automatic Myocardial Segmentation
of Contrast Echocardiography Sequence
Using Random Forests Guided by Shape
Model

ASM refines random-forest segmentations
initialized by a CNN

Medley et al.
(2020)

Left Ventri-
cle

Deep Active Shape Model for Robust
Object Fitting

ASM initialized with CNN generated
features maps

Karimi et al.
(2019)

Prostate Accurate and robust deep learning-based
segmentation of the prostate clinical target
volume in ultrasound images

SSM refines segmentations from ensemble
of CNNs

Tabrizi et al.
(2018)

Kidney Automatic kidney segmentation in 3D
pediatric ultrasound images using deep
neural networks and weighted fuzzy active
shape model

Fuzzy ASM segmentations based on DNN
generated bounding boxes

Hsu (2019) Left Ventri-
cle

Automatic Left Ventricle Recognition,
Segmentation and Tracking in Cardiac
Ultrasound Image Sequences

ASM improves R-CNN segmentations for
detection and tracking

ASM as prior-knowledge

Duy et al.
(2018)

Brain Re-
gion

Accurate brain extraction using Active
Shape Model and Convolutional Neural
Networks

CNN refines ASM segmentations

Cheng et al.
(2016)

Prostate Active appearance model and deep learning
for more accurate prostate segmentation on
MRI

2D-CNN refines segmentations from an
Active Appearance Model

Fan et al.
(2020)

Intra-
Cholear
Anatomy

Combining model- and deep-learning-based
methods for the accurate and robust
segmentation of the intra-cochlear anatomy
in clinical head CT images

U-Net refines ASM segmentations

Nguyen et al.
(2019)

Uveal
Melanoma

A novel segmentation framework for uveal
melanoma based on magnetic resonance
imaging and class activation maps

U-Net segmentations based on a CRF that
uses ASM as prior knowledge

Pipelines with multiple ASM and CNN models & Hybrid approaches

Ambellan et al.
(2019)

Knee Bone /
Cartilage

Automated Segmentation of Knee Bone
and Cartilage combining Statistical Shape
Knowledge and Convolutional Neural
Networks: Data from the Osteoarthritis
Initiative

Three CNN and two SSM models

Tack et al.
(2018)

Knee
Menisci

Knee Menisci Segmentation using
Convolutional Neural Networks: Data from
the Osteoarthritis Initiative

3D CNN and SSM initialized by 2D models

Brusini et al.
(2020)

Hippocampus Shape Information Improves the
Cross-Cohort Performance of Deep
Learning-Based Segmentation of the
Hippocampus

ASM as input for CNN

Ma et al.
(2018)

Pancreas A novel bayesian model incorporating deep
neural network and statistical shape model
for pancreas segmentation

U-Net and SSM segmentations combined
within Bayesian model

Qin et al.
(2020)

Prostate A weakly supervised registration-based
framework for prostate segmentation via
the combination of statistical shape model
and CNN

Segmentations combined of U-Net and
SSM-Net predictions
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Table 2: CNNs combined with Active Shape Models

Authors Anatomy Title Method

Tilborghs et al.
(2020)

Left Ventri-
cle

Shape Constrained CNN for Cardiac MR
Segmentation with Simultaneous Prediction
of Shape and Pose Parameters

Hybrid approach where CNN generates
segmentations and ASM parameters

Karimi et al.
(2018)

Prostate Prostate segmentation in MRI using a
convolutional neural network architecture
and training strategy based on statistical
shape models

CNN predicts segmentations and 3D-ASM
parameters

Schock et al.
(2020)

Knee Bone
& Cartilage

A Method for Semantic Knee Bone and
Cartilage Segmentation with Deep 3D
Shape Fitting Using Data from the
Osteoarthritis Initiative

CNN that predicts segmentations and
3D-ASM parameters is refined by U-Net

4 Active contour approaches

A last type of models that often combined with deep learn-
ing models to incorporate shape knowledge are Active
Contour Models (ACM) Kass et al. (1988) , also known
as snakes. A snake is a deformable controlled continuity
spline that is pushed towards edges or contours by mini-
mizing an energy function under the influence of different
forces and constraints. It consists of an internal energy that
keeps the contour continuous and smooth, an image energy
that attracts it to contours, and an external constraint force
that adds user-imposed guidance. A similar approach are
level set functions (LSF) introduced by Andrew (2000)
and firstly applied to image segmentation by Malladi et al.
(1995). An LSF is a higher dimensional function where a
contour is defined as its zero level set. With a speed func-
tion, derived from the image, that controls the evolution of
the surface over time, a Hamilton-Jacobi partial differential
equation can be obtained.

ACM models for post-processing Since ACM models
are based on the idea of evolving a contour, it makes sense
to apply them as a post-processing step to improve an ini-
tial segmentation map. An early model by Middleton and
Damper (2004) uses only a simple multilayer perceptron
(MLP) that creates binary pixel-wise boundary predictions
for lung segmentation. Since these are very rough and
contain misclassifications the ASM is used to improve and
close the contour. Salimi et al. (2018) is also based on an
MLP, but adds an vector field convolution to the ACM to
make it more robust for prostate segmentation.
However, the more recent ACM post-processing models
are exclusively based on different CNN architectures and
are applied to a variety of anatomies. Li et al. (2017b) use
a FCN that is refined by a classic ACM for left ventricle
segmentation. The same approach is taken by Guo et al.
(2019) for liver segmentation and Zhao et al. (2018a) uti-
lize it for nucleus segmentation. In the approaches by Xu
et al. (2019) the ACM refinements are not yet the final steps
and additional adaptive ellipse fitting is used to segment
breast nuclei. Hu et al. (2018) and Fang et al. (2019) trans-
fer the basic refinement method to breast tumor detection
with a phase-based ACM that improves over multiple iter-
ations. A different slightly modified ACM post-processing

method is based on geodesic computations and is further
used by Ma and Yang (2019) for dental root segmenta-
tion and Nunes et al. (2020) for lung segmentation. Zhang
et al. (2020b) also introduces a special ACM that integrates
a fourth-order partial differential equation and segments
plaque based on an initial R-CNN segmentation. Instead
of just refining an initial CNN predicted per-pixel segmen-
tation map, da Silva et al. (2020) use a Chan-Vese ACM to
generate prostate segmentation on DCNN coarsely classi-
fied superpixels which only represent rough initialization
for the contour model. The authors of Kot et al. (2020) fur-
ther separate the two models where the CNN masks bone
tissue which is removed for the ACM to segment brain
tumors. The last special approach in the ACM category by
Zhang et al. (2020c) is a hybrid model that integrates an
ACM into a U-Net. The resulting deep active contour net-
work (DACN) is end-to-end trainable with a special ACM
based loss function and automatically segments cervical
cells and skin lesions. Besides ACM, another large number
of approaches rely on level set functions (LSF). Same as
before a CNN is used for generating initial segmentation
maps which are then refined by the LSF. Hatamizadeh et al.
(2019) uses this for brain, liver, lung segmentation, Gong
et al. (2019) for pancreas segmentation, Carbajal-Degante
et al. (2020) for ventricle and liver segmentation, and Xie
et al. (2020) for left ventricle segmentation. Some extra
processing is made in Yang et al. (2021) for dental pulp seg-
mentation where the initial CNN segmentations are used
to calculate elliptic curves which are used to guide the LSF.
In general, for the LSF it is often sufficient to initialize
them only with a rough bounding boxes or region of inter-
est annotations. So, Liu et al. (2019) use a Faster RCNN
to generate location boxes of left atriums which serve as
input for the LSF after Otsu thresholding. Avendi et al.
(2016) inserts an additional step between CNN ROI detec-
tion and LSF segmentation where the initial left-ventricle
shape is inferred with an stacked auto-encoder. In com-
parison to these two approaches, in Cha et al. (2016) the
CNN is not used to predict ROI, but to classify if an ROI
is part of the bladder. The outputs are then refined by three
different 3D LSF and a final 2D LSF afterwards. Another
idea is to use recurrent pipelines where the segmentations
are refined iteratively. Such an approach is introduced by
Tang et al. (2017) where both models are integrated into a
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FCN-LSF. The method is used for left ventricle and liver
segmentation with semi-supervised training where the LSF
gradually refines the segmentation and backpropagates a
loss to improve the FCN. Hoogi et al. (2017) proposed
a different iterative process. Hereby the CNN estimates
if the zero level set is inside, outside or near the lesion
boundary. Based on these the LSF parameters are calcu-
lated and the contour is evolved. The process then repeats
until convergence.

Using a CNN to refine ACM segmentations Besides
the majority of approaches that use ACMs for post-
processing, there are also methods where ACMs are used
to obtain the initial segmentations or are guided by CNNs.

The earliest of these approaches by Ahmed et al. (2009)
uses an ACM to remove skull tissue from images and
applies a simple artificial neural network to classify the
remaining brain regions. Rupprecht et al. (2016) intro-
duce an approach where the ACM is guided by the CNN.
The ACM generated rough segmentations of the left ven-
tricle. A CNN then predicts vectors on patches around
each pixel of this initial contour that point towards closes
object boundary points and are used to further evolve the
contour. The latest method for this category by Kasinathan
et al. (2019) also uses the ACM to generate initial seg-
mentations, more specific it segments all lung nodules.
A post-processing CNN afterwards classifies them or re-
moves false positives.

Table 3: CNNs combined with Active Contour Models

Authors Anatomy Title Method

ACM for post-processing

Middleton and
Damper (2004)

Lung Segmentation of magnetic resonance
images using a combination of neural
networks and active contour models

ACM refines MLP segmentation

Salimi et al.
(2018)

Prostate Fully automatic prostate segmentation in
MR images using a new hybrid active
contour-based approach

ACM refines MLP segmentation

Li et al.
(2017b)

Left Ventri-
cle

Left ventricle segmentation by combining
convolution neural network with active
contour model and tensor voting in
short-axis MRI

ACM refines FCN segmentation

Hu et al.
(2018)

Breast
Tumor

Automatic tumor segmentation in breast
ultrasound images using a dilated fully
convolutional network combined with an
active contour model

Phase-based ACM refines dilated FCN
segmentation

Guo et al.
(2019)

Liver Automatic liver segmentation by
integrating fully convolutional networks
into active contour models

ACM refines multi-branch FCN
segmentation

Zhao et al.
(2018a)

Nucleus Improved Nuclear Segmentation on
Histopathology Images Using a
Combination of Deep Learning and Active
Contour Model

Hybrid ACM refines multi-branch FCN
segmentation

Hatamizadeh
et al. (2019)

Liver / Brain
Lesion /
Lung

Deep Active Lesion Segmentation ACM refines signed distance maps from
FC-CNN

Tang et al.
(2017)

Liver / Left
Ventricle

A Deep Level Set Method for Image
Segmentation

Level-set ACM refines FCN segmentations
iteratively

Cha et al.
(2016)

Bladder Urinary bladder segmentation in CT
urography using deep-learning
convolutional neural network and level sets

Multiple level-set functions segment CNN
output ROIs

Hoogi et al.
(2017)

Liver Lesion Adaptive Estimation of Active Contour
Parameters Using Convolutional Neural
Networks and Texture Analysis

Level-set function iteratively improves
CNN segmentation

Fang et al.
(2019)

Breast
Tumor

Combining a Fully Convolutional Network
and an Active Contour Model for
Automatic 2D Breast Tumor Segmentation
from Ultrasound Images

Phase-based ACM refines initial contours
from dilated FCNN

Xu et al.
(2019)

Breast Can-
cer Nuclei

Convolutional neural network initialized
active contour model with adaptive ellipse
fitting for nuclear segmentation on breast
histopathological images

ACM refines CNN segmentations
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Table 3: CNNs combined with Active Contour Models

Authors Anatomy Title Method

Ma and Yang
(2019)

Teeth Automatic dental root CBCT image
segmentation based on CNN and level set
method

ACM refines CNN segmentations

Carbajal-
Degante et al.
(2020)

Ventricles Active contours for multi-region
segmentation with a convolutional neural
network initialization

Phase level-set function refines CNN
segmentations

Liu et al.
(2019)

Left Atrium A Framework for Left Atrium
Segmentation on CT Images with
Combined Detection Network and Level
Set Model

3D level-set model initialized by Faster
RCNN

Yang et al.
(2021)

Teeth Accurate and automatic tooth image
segmentation model with deep
convolutional neural networks and level set
method

Level-set based on contours derived from
U-Net predictions

Nunes et al.
(2020)

Lung Adaptive Level Set with region analysis via
Mask R-CNN: A comparison against
classical methods

ACM improves Mask R-CNN
segmentations

Xie et al.
(2020)

Left Ventri-
cle

Automatic left ventricle segmentation in
short-axis MRI using deep convolutional
neural networks and central-line guided
level set approach

Level-set model improves CNN
initialization

Gong et al.
(2019)

Pancreas Convolutional Neural Networks Based
Level Set Framework for Pancreas
Segmentation from CT Images

Level-set model based on initial contour
from CNN

Zhang et al.
(2020c)

Cervical Cell
/ Skin Lesion

Deep Active Contour Network for Medical
Image Segmentation

ACM integrated into CNN that learns initial
parameters (end-to-end)

Zhang et al.
(2020b)

Plaque Faster R-CNN, fourth-order partial
differential equation and global-local active
contour model (FPDE-GLACM) for plaque
segmentation in IV-OCT image

ACM initialized with bounding box from
R-CNN

da Silva et al.
(2020)

Prostate Superpixel-based deep convolutional neural
networks and active contour model for
automatic prostate segmentation on 3D
MRI scans

ACM refines DCNN segmentations

Kot et al.
(2020)

Brain Tumor U-Net and Active Contour Methods for
Brain Tumour Segmentation and
Visualization

ACM refines U-Net segmentations

Avendi et al.
(2016)

Left Ventri-
cle

A combined deep-learning and
deformable-model approach to fully
automatic segmentation of the left ventricle
in cardiac MRI

CNN and AE initialize level set function

CNN refines ACM

Kasinathan
et al. (2019)

Lung Tumor
/ Nodule

Automated 3-D Lung Tumor Detection and
Classification by an Active Contour Model
and CNN Classifier

CNN refines multiple ACM segmentations

Rupprecht
et al. (2016)

Left ventric-
ular cavity

Deep Active Contour CNN refines ACM

Ahmed et al.
(2009)

Brain A Hybrid Approach for Segmenting and
Validating T1-Weighted Normal Brain MR
Images by Employing ACM and ANN

ANN based on ACM preprocessed images

5 Topology based Approaches

An alternative approach to integrating shape priors into
network-based segmentation was presented in Lee et al.
(2019). Here, the segmentation started with a candidate
shape which was topologically correct (and approximately
correct in terms of its shape), and the network was trained

to provide the appropriate deformation to this shape such
that it maximally overlapped with the ground truth segmen-
tation.

Such methods can be considered to have a ‘hard prior’
rather than the ‘soft-prior’ of the methods presented above
in the sense that the end result can be guaranteed to have
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the correct shape. However, this approach may be limited
by a requirement that the initial candidate shape be very
close to an acceptable answer such that only small shape
deformations are needed. A further potential issue is that
the deformation field provided by the network may need to
be restricted to prevent the shape from overlapping itself
and consequently changing its topology.

The differentiable properties of persistent homology Edels-
brunner et al. (2000) make it a promising candidate for the
integration of topological information into the training of
neural networks. The key idea is that it measures the pres-
ence of topological features as some threshold or length
scale changes. Persistent features are those which exist
for a wide range of filtration values, and this persistence
is differentiable with respect to the original data. There
have recently been a number of approaches suggested for
the integration of PH and deep learning, which we briefly
review here.

In Chen et al. (2018) a classification task was considered,
and PH was used to regularise the decision boundary. Typ-
ical regularisation of a decision boundary might encour-
age it to be smooth or to be far from the data. Here, the
boundary was encouraged to be simple from a topologi-

cal point of view, meaning that topological complexities
such as loops and handles in the decision boundary were
discouraged. Rieck et al. (2018) proposed a measure of
the complexity of a neural network using PH. This mea-
sure of ‘neural persistence’ was evaluated as a measure of
structural complexity at each layer of the network, and was
shown to increase during network training as well as being
useful as a stopping criterion.

PH is applied to image segmentation, but the PH calcu-
lation has typically been applied to the input image and
used as a way to generate features which can then be used
by another algorithm. Applications have included tumour
segmentation Qaiser et al. (2016), cell segmentation As-
saf et al. (2017) and cardiac segmentation from computed
tomography (CT) imaging Gao et al. (2013). Recently
Clough et al. (2019a) proposed to use PH not to the input
image being segmented, but rather to the candidate seg-
mentation provided by the network. In an extended work
Clough et al. Clough et al. (2020) the topological informa-
tion found by the PH calculation can be used to provide a
training signal to the network, allowing an differentiable
loss function to compare the topological features present
in a proposed segmentation, with those specified to exist
by some prior knowledge.

6 Discussion

As the deep learning research effort for medical image
segmentation is consolidating towards incorporating shape
constraints to ensure downstream analysis, certain patterns
are emerging as well. In the next few subsections, we dis-
cuss such clear patterns and emerging questions relevant
for the progress of research in this direction.

6.1 End-to-End vs post/pre-hoc

With the maturity of research, this field is clearly mov-
ing beyond post-/pre-hoc setting towards more systematic
end-to-end training approaches. This effect is depicted in
Figure 4 where the paper counts are aggregated from this
work and Jurdi et al. (2020). The maturity of deep learn-
ing frameworks (especially PyTorch), novel architectures
(especially generative modeling) and automatic differentia-
tion make it possible to incorporate complex shape-based
loss functions during training. With the availability of
these tools, large models can be trained with tailored shape
streams in the model architecture to incorporate shape
information.
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Figure 4: Temporal trend towards end-to-end approaches

6.2 Semi-supervised segmentation

The ability to incorporate additional information using
shape as a prior can aid in reducing the total number of
necessary annotations in achieving a good segmentation.
The shape priors can useful in generating controlled data
augmentations for the medical image analysis task in hand
and reduce the number of unrealistic augmentations. This
would be instrumental in particular in the case of rare
diseases, where there is not enough of data and manual
annotations to train a neural network. The shape priors
that are giving clues about the expected pathology in such
cases can lead to better segmentation accuracy in the final
output.
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6.3 Effectiveness in pathological cases

One common theme identified by last few decades worth
research on shape modeling is the difficulty in represent-
ing the pathological shapes. While the "typical shapes"
i.e. normal shapes lie in a low-dimensional sub-manifold,
the pathological cases have a long tail in the distribution
(e.g. congenital heart diseases). That is normal shapes
are self-similar but pathological cases contain atypical
shapes along with typical pathologies. Traditional lin-
earized shape modeling had trouble addressing this issue
whereas the non-linear modeling of shape statistics had its
issue in terms of intractable numerics. Whether a neural
approach can address this overarching problem of encod-
ing pathological shapes is an open problem. Unfortunately,
from our literature search, we have not found any clear
direction to address this perennial issue of shape modeling.

6.4 Evaluation

While the shape constraints are becoming increasingly
commonplace for medical image segmentation, we believe
the visual perception and human comprehension plays a
significant role behind the interest of the community. The
more general question of real world effectiveness of these
methods are not often studied. For example, how effective
these shape constraints are under noisy annotation is an
open question? While the segmentation quality is most of-
ten measured by the Dice metric, Maier-Hein et al. (2018)
has already prescribed to move beyond Dice to evaluate the
segmentation quality. Topological accuracy of anatomical
structures is increasingly used as an evaluation metric to
address the shortcomings of classical image segmentation
evaluation metric in medical image analysis Byrne et al.
(2020). Finally, segmentation is typically a mean to an
end. As such, the effectiveness of these segmentation tech-
niques should be measured quantitatively for downstream
evaluation tasks such as visualization, planning Fauser et al.
(2019) etc.

7 Conclusion

Bringing prior knowledge about the shape of the anatomy
for semantic segmentation is a rather well-trodden idea.
The community is devising new ways to incorporate such
prior knowledge in deep learning models trained with fre-
quentist approach. While the Bayesian interpretation of
deep learning segmentation networks is an upcoming trend,
it is already shown that under careful considerations, prior
knowledge about the shape can be incorporated even in
frequentist approaches with significant success.

We see the future research concentrating more on end-to-
end networks with the overarching theme of learning using
Analysis-by-synthesis. Early work has demonstrated the
effectiveness of shape constraints in federated learning and
this will be a major direction in the coming years.

We believe the community needs to address the issues dis-
cussed in Section 6 before shape constrained segmentation

can be considered as a trustworthy technology in practi-
cal medical image analysis. To this end, we can think of
shape constrained segmentation as a technical building
block within a bigger image analysis pipeline rather than a
stand-alone piece of technology. For example, in the case
of surgical planning and navigation pipeline, such shape
constraints can be meaningful provided the performance
is thoroughly validated under pathological cases with mul-
tiple quality metrics. Important steps have already been
taken in this direction. In short, along with exciting results,
shape constrained deep learning for segmentation opens
up many possible research questions for the next few years.
Proper understanding and answering those hold the key to
their successful deployment in the real clinical scenario.
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