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ABSTRACT Voice disability is a barrier to effective communication. Around 1.2% of theWorld’s population
is facing some form of voice disability. Surgical procedures namely laryngoscopy, laryngeal electromyogra-
phy, and stroboscopy are used for voice disability diagnosis. Researchers and practitioners have beenworking
to find alternatives to these surgical procedures. Voice sample based diagnosis is one of them. The major
steps followed by these works are (a) to extract voice features from voice samples and (b) to discriminate
pathological voices from normal voices by using a classifier algorithm. However, there is no consensus
about the voice feature and the classifier algorithm that can provide the best accuracy in screening voice
disability. Moreover, some of the works use multiple voice features and multiple classifiers to ensure high
reliability. In this paper, we address these issues. The motivation of the work is to address the need for
non-invasive signal processing techniques to detect voice disability in the general population. This paper
conducts a survey related to voice disability detection methods. The paper contains two main parts. In the
first part, we present background information including causes of voice disability, current procedures and
practices, voice features, and classifiers. In the second part, we present a comprehensive survey work on
voice disability detection algorithms. The issues and challenges related to the selection of voice feature and
classifier algorithms have been addressed at the end of this paper.

INDEX TERMS Algorithms, issues and challenges, signal processing, surgical methods, survey, voice
disability, voice features.

I. INTRODUCTION

Voice is a primitive natural tool for communication exercised
by humans. Voice communication used to be an integral part
of our personal and professional life. However, there are
always barriers to effective voice communication. Speech
impairment, due to voice disability, is one of them. An esti-
mated 17.9 million U.S. adults of ages 18 or older report
voice problems in a year [1], [2]. Among them, approxi-
mately 9.4 million adults are having problems using their
voice that lasts for one week or longer [3]. According to a
recent report, published by the National Center for Education
Statistics, about 20% of children and youth in the age group
of 3-21 years suffer from voice disability [4]. The American
Speech-Language-Hearing Association suggests that voice
disability occurs mainly from a disruption in the human voice
generation system [4].

The associate editor coordinating the review of this manuscript and
approving it for publication was Jiafeng Xie.

The human voice generation system mainly consists of
lungs, larynx, and vocal tract as shown in Fig. 1. The lungs
are power sources of our voice generation system. During
voice generation, we inhale air by expanding the rib cage
surrounding the lungs and then we expel air from the lungs
by lowering diaphragm located at the bottom of the lungs.
We maintain a steady flow of air by controlling the muscles
around the rib cage depending on the length of a sentence
or phrase. This action causes air to rush in through vocal
trachea to the epiglottis. The larynx is the most complicated
part of our voice generation system. It consists of cartilages,
muscles, and ligaments. The main purpose of larynx is to
control vocal folds, which consist of two masses stretched
between the front and back of the larynx. A slit-like orifice
called glottis exists between the two masses.

During normal condition, vocal folds are in a state called
‘breathing’. Under a breathing state, the vocal fold masses are
relaxed and the glottis is opened. The air from the lungs flows
through the glottis without much obstruction and no vocal
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FIGURE 1. Components of the human voice generation system [5].

fold vibration occurs. During voice generation, vocal folds
can be in two states namely unvoiced and voiced. Under the
unvoiced condition, the vocal folds come closer and gener-
ate turbulence by themselves. While under voiced condition
(i.e., during the generation of a vowel), the vocal folds come
closer, become more tensed, and partially close the glottis.
The partially closed glottis and increased vocal fold tension
cause oscillation of the folds. The air stream from the lungs is
interrupted by vocal cords and a quasi-periodic pressure wave
is generated. The impulses of this pressure wave are called
pitch and the frequency of the pressure is called pitch fre-
quency. Themasses of the larynx adjust the length and tension
of vocal folds to ‘fine-tune’ pitch and tone. The articulators
(i.e., tongue, palate, cheek, and lips) articulate and filter
the sound emanating from the larynx. The vocal fold and
articulators produce highly intricate sounds.
The causes of all kinds of voice disorders are still unknown.

However, calluses on the vocal cords, swelling or bumps like
blisters on the vocal cords, vocal cord paralysis, vocal cord
shutting, and spasmodic dysphonia are the main causes of
voice disability. Some of the other causes include hearing
loss, neurological disorder, brain injury, intellectual disabil-
ity, drug abuse, and malfunction of the human voice system.
Also, people may encounter temporary voice disorders due to
allergies, large tonsils or adenoids, smoking-related illnesses,
respiratory infections, and poor voice habits.
Invasive surgical procedures are commonly used to detect

voice disorders. Physicians insert some kind of probe
into the mouth during the endoscopic procedures namely
laryngoscopy, laryngeal electromyography, and stroboscopy.
These procedures are painful and often traumatize patients.
Extensive researches have been conducted to find alternatives
to these surgical procedures. Detecting voice pathology using
voice signal processing is one of them [6].
Voice pathology detection using voice signals involve

voice features extraction and analysis. Voice samples are
collected in a controlled environment. Then, voice signals
are analyzed to extract voice features. The next step is to

classify voice samples into two categories namely normal and
pathological.

While classifying the voice signals, an appropriate tool
needs to be smartly selected. The most common tool is the
classification algorithm. Numerous classifier algorithms have
been used in the literatures. The published works show that
the accuracy level highly depends on the classifier. However,
there are many issues and challenges related to voice signal
based pathology detection techniques. Some important issues
are (a) selection of appropriate voice features, and (b) selec-
tion of an appropriate classifier tool. These issues will be
discussed in this survey.

The rest of the paper is organized as follows. The med-
ical conditions related to voice disability are discussed in
section II. The current procedures and practices used to detect
voice pathology are presented in section III. The voice fea-
tures used in voice detection techniques have been presented
in section IV. The common classifier algorithms are discussed
in section V. The survey works on voice disability detection
algorithms are presented in section VI. The issues and chal-
lenges related to voice pathology detection are addressed in
section VII and the paper is concluded with section VIII.
A list of acronyms used throughout this paper is provided in
the Appendix.

II. MEDICAL CONDITIONS FOR VOICE DISABILITY

The speech pathologists have related certain medical condi-
tions to voice disability. Some of these medical conditions
include asthma, Alzheimer’s disease, Parkinson’s disease,
depression, schizophrenia, autism, and cancer. These medical
conditions are briefly explained in the following subsections.

Asthma causes swollen and inflamed vocal folds that do
not vibrate properly during voice generation. This makes
the voice sound hoarse and impaired. A detail investigation
on this issue can be found in [7]. In the work, speech seg-
ments, of variable lengths, for asthma patients are analyzed.
The speech segments include five minutes of conversa-
tion, a monologue, and counting numbers. Voice parameters
namely onset time, word duration, pause time, and total
activity duration for normal subjects and asthmatic subjects
are considered in the work. The results show that asthmatic
subjects show longer pause between speech segments, pro-
duce fewer syllables per breath, and spend a larger percentage
of time in voiceless ventilator activity than their healthy
counterparts.

Another major cause of voice disability is Alzheimer’s
disease [8]. The common symptoms of Alzheimer’s disease
are memory loss, confusion, inability to retain information,
aggressiveness, trouble with language, and mood swings.
Studies show that Alzheimer’s diseases also cause apha-
sia [9], [10]. Although memory impairment has generally
been considered as the major symptom of Alzheimer’s dis-
ease, it is now reported that language deficits occur in about
8%-10% of Alzheimer patients and hence they can be used
as a primary symptom to detect this disease at its early
stage [11]–[13]. Similar work shows that about 5% of
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Alzheimer patients’ language capacity steadily impairs
during this disease [14]. Other works [15], [16] also show
that disrupted language is an early symptom of Alzheimer’s
disease. A comprehensive study on voice disability due to
Alzheimer’s disease can be found in [17].
Parkinson’s disease is another major cause of voice disabil-

ity. Generally, Parkinson’s disease causes loss on neurons in
the brain and hence affects the motor and non-motor body
functions of the human body. Parkinson’s disease patients
face problems related to recognition, behavioral changes,
insomnia, and sensory difficulties [18]. These symptoms
are often followed by other symptoms including slower
movement, rigidity, tremor, and postural instability. The
Parkinson’s disease also affects patients’ muscles of voice
generation system and hence patients speak slowly, loosely,
and breathily. Even, they find difficulty in pronouncing words
correctly. They also generate undesired voices due to their
faulty vocal folds [19]–[21]. Recent research shows that voice
disability can indicate an early symptom of Parkinson’s dis-
ease [22].
Depression is a psychiatric disorder that affects the mood,

behavior, thoughts, senses, ailments, and feelings of a human
being. This disease can make a patient anxious, fatigued,
irritable, and worried. The patient may have a problem in
making a decision, memorizing, and losing interest in activi-
ties. Studies show that depression can also affect the patients’
voice system [23]. The patients speak softly, slowly, hesitat-
ingly, and monotonously. They often stutter and mute in the
middle of a sentence [24]. Hence, voice features including
pitch, energy, speaking rate, formants, and power spectral
density can be used to identify a depressed patient [25], [26].
It is also shown in [27] that acoustic patterns of voice for
depressed patients can be used to track the disease from an
early stage to a treatment stage. These findings suggest that
acoustic measures of patients’ voices can provide an objective
procedure to evaluate depression.
Schizophrenia is a neurodevelopmental disorder that

affects voice disability [28]. Schizophrenia patients usually
suffer from delusions, hallucinations, movement disorders,
and disorganized speech. They even sometimes talk about
strange and unusual ideas. A study [29] shows that the fluctu-
ations in speech can be used as biomarkers for schizophrenia.
Hence, advanced signal processing techniques and artificial
intelligence can be employed to investigate voice features that
contain substantial emotional information of a schizophrenia
patient. In [30], two spectral features namely Mel-frequency
Cepstral Coefficient (MFCC) and Linear Predictive Cod-
ing (LPC) have been used to differentiate patient groups
from the normal group. It is shown that MFCC scores are
significantly lower, and LPC scores are significantly higher
in the schizophrenic patient group than in the normal group.
Autism spectrum disorder is another neurodevelopmental

disorder that can affect voice disability. One of the earliest
works on autism can be found in [31]. In the work, autism
is characterized by impairment in social interaction, behav-
iors, and communication skills. The autistic patient often

says something irrelevant and it does not match with the
situation [32]. Hence, speech and prosody-voice profiles can
characterize the autistic patient and patients with Asperger
Syndrome (AS) [33]. It is shown in the work that patients
suffering from these two diseases cause residual articulation
distortion errors, not understandable utterances, inappropri-
ate in the domains of phrasing, stress, and resonance. Another
study [34] correlates acoustic measurements to communica-
tion impairment due to autism. The work shows that fun-
damental frequency variation in the narrative of the autistic
patient can be related to intelligence quotient (IQ) and verbal
abilities of the autistic patient. In the work, PRAAT [35]
software has been used to extract the fundamental frequency
of several autistic and controlled patients. The comparison
shows that the fundamental frequency of autistic patients has
a higher standard deviation compared to controlled patients.
The inflection of voice, pattern of pauses, relative duration
of syllables, relative loudness, and rhythm are often included
in the prosodic features of voice [36]. Hence, prosody, par-
ticularly prominence and prosodic contours, can be used
to investigate the communicative intent and conversational
skills of autistic patients. The results presented in [37] show
that abnormal prosody is the core deficit in autistic patients.

Cancer is another cause of voice disability. Study shows
that voice features can be related to the cancer stage [38].
Based on the speech content analysis of 71 patients, it is
shown that voice features can be used to detect signs of cancer
in the head and neck. The results show that the systematic
quantification of lexical choice can be used as an indicator for
cancer detection. Automatic speech recognition has also been
used in [39] to detect cancer of neck and head. The authors
conclude that speech recognition can provide the percentage
of correctly recognized words of a sequence. The same work
shows that cancer patients have significantly lower word
recognition rates than the control group. Hence, automatic
speech recognition can serve as a good means to objectify
and quantify cancer patients. Another study [40] shows that
the role of emotional expression and progression of cancer are
related. In the study, the voice samples of 25 breast cancer sur-
vivors and 25 controlled patients are used. The results show
that cancer patients use significantly less inhibition words
than controlled patients. The results also show that cancer
diagnosis and treatment can alter the emotionally expressive
behavior of a patient.

III. CURRENT MEDICAL PROCEDURES

To detect voice disability, the physicians use some common
procedures namely, laryngoscopy, laryngeal electromyogra-
phy, stroboscopy, and imaging tests [41]. In laryngoscopy,
the throat is examined by a light source. There are three
types of laryngoscopy namely direct laryngoscopy, indirect
laryngoscopy, and fiber optic laryngoscopy. Direct rigid
laryngoscopy procedure is used to examine the vocal cords or
larynx of patients. A laryngoscope is a rigid and hollow tube
with a light attached to the top. Using this tool, the physi-
cians can examine behind the patient’s tongue and down the
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FIGURE 2. The direct laryngoscopy.

FIGURE 3. Fiber-optic laryngoscopy.

throat to the vocal cords as shown in Fig. 2. With indirect
laryngoscopy, a small mirror is held at the back of the throat
illuminated by a light source.With fiber optic laryngoscopy, a
laryngoscope is inserted through the nose down into the throat
as shown in Fig. 3.
By using laryngeal electromyography (LEMG), electrical

activity in the muscles of the throat is measured. LEMG is
a useful diagnostic tool to examine the human larynx. The
larynx is a complex system consisting of various muscles that
help humans to speak. Even a minor absence of vocal cord
movement can cause respiratory and vocal problems. LEMG
can help to find the original cause of reduced muscle move-
ment. Major reasons for reduced vocal fold movement are
related to the disruption of the laryngeal nerve and superior
laryngeal nerve. By using LEMG, it is possible to determine
the vocal folds’ tonicity. In this method, a thin needle is
pierced into the neck muscles and conductivity of the muscles
is measured with electrodes.
With stroboscopy, a light source and a video camera are

used to examine the vocal cord vibration. The vocal folds
vibrate very fast during voice production and this type of
vibration is impossible to be noticed clearly with the naked
eye. Hence, a stroboscopy is used. During this procedure,
a bright flashing light is used to illuminate the vocal folds.
By taking multiple snapshots at different phases of the vibra-
tion, it is possible to examine the movement of the vocal
folds. Other medical imaging techniques including X-rays,
computerized tomography (CT) scans, and magnetic reso-
nance imaging (MRI) are also used to diagnose voice disabil-
ity. These medical imaging techniques are very effective to

FIGURE 4. The voice samples used in the analysis.

examine the growths of tissue or other related problems in
the throat.

IV. VOICE FEATURES USED IN VOICE PATHOLOGIES

To detect voice disability, researchers use several voice fea-
tures. The most common voice features are MFCCs, spectro-
gram, formants, wavelets, LPC, perceptual linear prediction
(PLP), relative spectral transform – PLP (RASTA-PLP), Jit-
ter, Shimmer, glottal to noise ratio (GNR), harmonic to noise
ratio (HNR), cepstral based HNR (CHNR), noise energy to
total energy ratio (NNR), zero-crossing rate (ZCR), linear
frequency cepstral coefficient (LFCC), and Teager energy
operator (TEO). These voice features are briefly described in
the following subsection. To describe these we consider two
voice samples – one for pathological baby and the other for
a normal baby. These voice samples are shown in Fig. 4. The
two babies, in the age group of 6-8 years, are asked to narrate
the same story. The samples are taken, for feature extraction,
from the beginning of their story narration.

A. THE MEL FREQUENCY CEPSTRAL

COEFFICIENTS (MFCCS)

The MFCCs have been widely used in voice disability detec-
tion algorithms. The main advantage of MFCCs over other
voice features is that they can completely characterize the
shape of vocal tract. Once the vocal tract is accurately char-
acterized, one can estimate an accurate representation of the
phoneme being produced by the vocal tract. The shape of the
vocal tract manifests itself in the envelope of a short-time
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power spectrum, and the MFCCs accurately represent this
envelope.
The MFCCs are determined by the following proce-

dure [5]. The voice sample x[n] is first windowed with an
analysis window w[n] and the short-time Fourier transform
(STFT), X (n, ωk) is computed by

X (n, ωk) =
∞
∑

m=−∞
x [m]w [n-m] e−jωkm, (1)

where ωk = 2πk
N

with N is the discrete Fourier transform
(DFT) length. The magnitude of X (n, ωk) is then weighted
by a series of filter frequency responses whose center fre-
quencies and bandwidth are roughly matched with those of
auditory critical band filters called mel scale filters. The next
step is to compute the energy in STFT weighted by each mel
scale filter frequency response. The energies for each speech
frame at time n and for l-th mel-scale filter is given by

Emel (n, l) =
1

Al

Ul
∑

k=Ll

|Vl (ωk)X (n, ωk)|2 , (2)

where Vl (ω) is the frequency response of lth mel-scale filter,
Lland Ul are the lower and upper-frequency indices over
which each filter is nonzero, while Al is defined as

Al =
Ul
∑

Ll

|Vl (ωk)|2 (3)

The cepstrum, associated with Emel(n, l) is then computed for
the speech frame at time n by

Cmel[n,m] =
1

R

R−1
∑

l=0

log (Emel (n, l)) cos
2πml

R
, (4)

where R is the number of filters. An example of MFCCs of
a normal voice and a pathological voice (presented in Fig. 4)
are shown in Fig. 5. The plot shows the distribution of the
magnitudes for MFCCs with respect to frame index and cep-
strum index. It shows that the magnitude of themel frequency
cepstrum coefficients are high with the lower frame indices
for normal voice. On the other hand, MFCCs for pathological
voices are randomly distributed among a wide range of frame
indices. Hence, MFCCs are extensively used in several works
for discriminating pathological voice from normal voice.

B. THE SPECTROGRAMS

A speech waveform consists of a sequence of different events
that vary with time. This time-varying nature corresponds to
highly fluctuating spectral characteristics over time. Hence,
a single Fourier transform cannot capture this type of fast
time varying signal and STFT is used instead [42]. The STFT
consists of a separate Fourier transform for pieces of the
waveform under a sliding window. Then, the spectrogram of
the voice signal is derived from STFT by

S (ω) = |X (m, ωk)|2 (5)

FIGURE 5. The MFCCs of normal and pathological voice samples.

FIGURE 6. The Spectrograms of normal voice and pathological voice.

The spectrogram can be presented in 3-D plot to show the dis-
tribution of power densities with time and frequency as shown
in Fig. 6. It is depicted in the figure that the power density
distribution of the voice signal widely varies with time and
frequency and it can be used to distinguish between normal
and pathological voices. It is also seen in the figure that
power distribution for normal voice is uniform with respect
to time and frequency. However, the same is not uniform

VOLUME 8, 2020 66753



R. Islam et al.: Survey on Signal Processing Based Pathological Voice Detection Techniques

FIGURE 7. The comparison of the formants.

for pathological voice. Hence, the spectrogram is considered
as a good indicator to discriminate pathological voice from
normal voice.

C. FORMANTS

The formant frequency or simply formant analysis is another
important voice feature investigated by the researchers. The
formant frequencies are the resonance frequencies of the
vocal tract and they change with different vocal tract con-
figurations [43]. The formant usually refers to the entire
spectral contribution of a resonance. The peaks of the spec-
trum for vocal tract response correspond approximately to
its formants. The formants can be plotted with frequency as
shown in Fig. 7. The formant plot shows distinct peaks at
certain frequencies. It also shows that the peaks are separated
by some frequency band and are of decreasing magnitudes.
The formant plot shows that the pathological voice exhibits

very distinct formants compared to normal voice. For exam-
ple, the first three peaks are closely located and are almost
having the same magnitude for pathological voice. On the
other hand, normal voice shows peaks that are located at
almost equal distances and the peak values decrease in mag-
nitude. Although the first formant of a normal voice carries a
power similar to that of pathological voice, the other formants
carry low power compared to those of pathological voice.

D. WAVELET ANALYSIS

The wavelet transform is another important tool used in
voice disability detection. Its main advantage over the Fourier
transform is that wavelet can provide accurate information
about the fast fluctuations of signals in the time domain.

FIGURE 8. Wavelet analysis comparisons.

It maps a time function into two functions namely scale, a and
translation, b [44]. The continuous wavelet transform (CWT)
of a signal f (t) is defined as

W (a, b) =
∞
∫

−∞

f (t) ϕab (t) dϕ, (6)

where W (a, b) is the wavelet transform and ϕab (t) is the
mother wavelet, which is defined as

ϕab (t) =
1

√
a
ϕ

(

t − b

a

)

(7)

A scaled version of the function ϕ(t) with a scale factor
of a is defined as ϕ

(

t
a

)

. The wavelet is a useful tool to
investigate the discontinuity in pathological voice. The plot
of wavelet coefficients for normal and pathological voices are
shown in Fig. 8. The discontinuity in the pathological voice
is more visible in the plots. Fig. 8(b) shows some disconti-
nuity in voice signals in the range of 2500-5000 samples and
8000-8500 samples. This kind of discontinuity of voice signal
does not exist in a normal voice as shown in Fig. 8(a).

E. THE LINEAR PREDICTIVE CODING (LPC)

Primarily, LPC has been introduced to compress digital sig-
nals for efficient transmission and storage. However, now
LPC has become one of the most powerful speech analysis
techniques and it has gained popularity as a formant estima-
tor [45]. The LPC method is based on modeling the vocal
tract as a linear all-pole infinite impulse response (IIR) filter,
which is defined by

H (z) =
G

1 +
p
∑

k=1
ap (k) z−k

, (8)
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FIGURE 9. The LPC coefficients.

where p is the number of poles, G is the filter gain, and
ap(k) are the coefficients. Given a short-time segment of a
speech signal (i.e., 20 ms) sampled at 8 kHz sampling rate,
a speech encoder determines proper excitation function, pitch
period for voiced speech, gain parameter G, and the coeffi-
cients ap(k). The LPC is computed based on the least mean-
squared error approach [46]. In this approach, the speech
signal is approximated as a linear combination of its previous
samples. LPC plots are generated by PRAAT [35] software
and the plots (original signal and estimated signal) are shown
in Fig. 9, which shows that LPC coefficients have distinc-
tively varying magnitude in some portion of voice signal.
However, the magnitude is not significant for other portion
of the voice signal. The magnitude distribution can be used
to differentiate pathological voice from normal voice.

F. THE PERCEPTUAL LINEAR PREDICTION (PLP)

PLP, introduced by Hermansky [47], models the human
speech based on the concept of the psychophysics of hearing.
The main function of PLP is to discard irrelevant informa-
tion contained in the speech. PLP has spectral characteristics
that are transformed to match the human auditory system
unlike LPC. Hence, PLP is more adapted to human hearing
compared to LPC. The other main difference between PLP
and LPC is that both use two different types of transfer
functions. For example, the LPC model assumes an all-pole
transfer function of the vocal tract with a specified number of
resonances within the analysis band. On the other hand, the
transfer function of PLP is also an all-pole model; however,
it approximates the power distribution of equal magnitude at
all frequencies of the analysis band. The detailed steps of PLP
computation are shown in Fig. 10.

FIGURE 10. The computation of PLP [46].

The speech samples are weighted by a window function
and transformed into the frequency domain by using the
Fast Fourier Transform (FFT). Then the power spectrum is
determined by

P (ω) = [Re (S(ω))]2 + [Im (S(ω))]2, (9)

where S (ω) is the Fourier transform of the windowed voice
signal. A frequency warping into the Bark scale [48] is
applied. The first step is a conversion from frequency to bark
scale frequency, which is a better representation of the human
hearing resolution in frequency. The bark frequency [47]
corresponding to an audio frequency is given by

R (ω) = 6ln

[

ω

1200π
+
√

( ω

1200π

)2
+ 1

]

. (10)

The auditory warped spectrum is then convoluted with the
power spectrum of the simulated critical-band masking curve
to simulate the critical-band integration of human hearing.
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FIGURE 11. The computation of RASTA-PLP [49].

The smoothed spectrum is then down-sampled. The three
steps: frequency warping, smoothing, and sampling, are usu-
ally integrated into a single filter-bank. An equal-loudness
pre-emphasis is applied to the filter-bank outputs. The equal-
ized values are then warped and processed by linear predictor
(LP). Finally, the cepstral coefficients are obtained from the
LP coefficients by a recursive method.

G. THE RASTA PERCEPTUAL LINEAR PREDICTION

(RASTA-PLP)

Another popular speech feature used in voice disability detec-
tion is known as RASTA-PLP. A special bandpass filter
called RASTA filter is used in computing the RASTA-PLP.
An example of the system function for RASTA filter is
defined by

H (z) = 0.1z4 ·
2 + z−1 − z−3 − 2z−4

1 − 0.98z−1
(11)

The lower cut-off frequency of the filter determines the
fastest spectral change ignored at the output. On the other
hand, the high cut-off frequency determines the fastest spec-
tral change preserved in the output. The main function of the
filter is to suppress the frequency that varies more quickly
or slowly in the voice signal. The steps of computing the
RASTA-PLP is shown in Fig. 11.
The RASTA-PLP is computed in the following steps:

(a) compute the critical-band power spectrum, (b) transform
spectral amplitude through a compressing static nonlinear
transformation, (c) filter the time trajectory for each trans-
formed spectral component, (d) transform the filtered speech
representation through expanding static nonlinear transfor-
mation, (e) multiply by equal loudness curve and raise to
the power 0.33 to simulate the power of law for hearing,
(f) compute all-pole model of the resulting spectrum,
following the conventional PLP technique. The plots of

FIGURE 12. The RASTA-PLP spectra comparison.

RASTA-PLP for normal voice and pathological voice are
shown in Fig. 12. The RASTA-PLP plots for normal and
pathological voice samples show clear differences in magni-
tude with respect to time and frequency.

H. THE JITTER

Jitter reflects the variation of successive periods in the voice
signal. Determining Jitter needs to detect the timing of the
fundamental period. After the determination of onset time
for the glottal pulses, Jitter can be determined for its several
measured shapes given by the expressions shown below.

Jitter (local, absolute): It is defined by (12) and it represents
the average absolute difference (overN periods) between two
consecutive periods (i.e., Ti − Ti−1). The Ti is extracted from
period length, F0 and N is the number of extracted period.
This is also known as Jitta. This parameter can be used to
detect voice pathology by comparing it with a threshold value.
The threshold value to detect pathologies in adults is 83.2 µs
as reported in [50], [51].

Jitta =
1

N − 1

N−1
∑

i=1

|Ti − Ti−1| (12)

Jitter (local): It represents the average absolute difference
between two consecutive periods, divided by the average
period. It is also known as Jitt and is given by (13), and
has 1.04% as the threshold limit for detecting pathologies.

jitt =
jitta
1

N
N
∑

i=1
Ti

, (13)

where Ti is the duration in seconds for each period.
Jitter (rap): It represents the average absolute difference of

one period and the average of periods with its two neighbors,
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divided by the average period. The rap is defined by (14) and
its threshold value to detect pathologies is 0.68%.

rap =

1
N−1

N−1
∑

i=1

∣

∣

∣

∣
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Ti −

(

1
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i+1
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Tn

)∣

∣

∣

∣

∣

1
N

N
∑

i=1
Ti

(14)

Jitter (ppq5): The ppq5 is defined by (15) and it represents
the average absolute difference between a period and the
average containing its four nearest neighbor periods divided
by the average period.

ppq5 =

1
N−1
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1
N

N
∑
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Ti

(15)

I. THE SHIMMER

The shimmer is another voice feature widely used in voice
disability detection [52], [53]. Unlike Jitter, Shimmer focuses
on the peak values of a signal. To determine Shimmer param-
eters, the algorithm begins by determining the onset time of
glottal pulses of a signal and the respective magnitude of
the signal at that sample. Then the algorithm is applied to
determine the values of each parameter of Shimmer similarly
as for Jitter. There are several Shimmer parameters as follows:
Shimmer (local): It represents average absolute difference

between the amplitudes Aiand Ai+1 of two consecutive peri-
ods Ti and Ti+1, divided by the average amplitude. It is called
a ‘Shim’ and this parameter is set to 3.81% as the limit for
detecting pathologies. The expression of Shim is given by

Shim =

1
N−1

N−1
∑

i=1
|Ai − Ai+1|

1
N

N
∑

i=1
Ai

(16)

Shimmer (local, dB): It represents the average absolute
difference of base 10 logarithms for the difference between
two consecutive periods and is called ShdB. The limit to
detect pathologies is 0.350 dB. ShdB (local dB) is given by

ShdB =
1

N − 1

N−1
∑

i=1

∣

∣

∣

∣

20 ∗ log
(
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Ai

)∣

∣

∣

∣

(17)

Shimmer (apq3): It represents the quotient of amplitude
disturbance within three periods. In other words, the average
absolute difference between the amplitude of a period and the
mean amplitudes of its two neighbors, divided by the average
amplitude. It is given by

apq3 =

1
N−1

N−1
∑

i=1
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∣
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(18)

Shimmer (apq5): It represents the ratio of perturbation
amplitude of five periods. In other words, the average abso-
lute difference between the amplitude of a period and the
mean amplitudes of it and its four nearest neighbors, divided
by the average amplitude. The apq5 is given by

apq5 =

1
N−1
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i=2
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1
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N
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(19)

J. NNE, GNR, HNR, AND CHNR

Normalized noise energy (NNE) is the ratio between the
energy of noise and the total energy of the signal (both
measured in dB) [54]. Between harmonics, the noise energy
is directly obtained from the spectrum. Within a harmonic,
the noise energy is assumed to be the mean value of both adja-
cent minima in the spectrum. If the harmonics are broadened
because of Jitter or Shimmer, the energy outside the window
defined for the harmonic is erroneously assigned to noise
energy. Hence, the noise measured by NNE appears to be
increasing. To overcome this problem it is common practice
to vary the frequency range to obtain the best discrimination
between normal and pathological (glottal cancer) voice.

The implementation of HNR is based on the mathematical
fundamentals presented by Boersma [51]. It is determined
by the detection of the autocorrelation function for the voice
signal. The HNR is defined by

HNR = 10.log
ACV (T )

1 − ACV (T )
(20)

where the ACV (T ) is the peak at the index position corre-
sponding to the period of the signal.

Roughly speaking, CHNR is the cepstrum-basedHNR [55]
and is the inverse of NNE. It is the ratio between total
energy and energy of noise (both measured in dB). How-
ever, the energies are obtained differently. At first, the cep-
stral peaks at the fundamental period and its multiples are
removed. Essentially, the spectral energy between harmonics
below the lines that connect minima is considered as noise
energy. Therefore, the inverse CHNR is generally larger than
NNE. Due to Jitter and Shimmer, the harmonics are broad-
ened and the minima of the spectrum are less deep. Hence,
in the presence of Jitter and Shimmer, the noise energy is
overestimated by CHNR. It is based on the correlation coeffi-
cient for Hilbert envelopes of different frequency bands. The
parameter indicates whether a given voice signal originates
from the vibrations of vocal folds or from turbulent noise
generated in the vocal tract and is thus related to breathi-
ness. Therefore, it is called Glottal-to-Noise Excitation Ratio
(GNE). The GNE factor is calculated in the following way
(a) down-sampling speech signal to 10 kHz, (b) inverse filter-
ing of the speech signal, (c) calculating the Hilbert envelopes,
(d) calculating the cross-correlation function between such
envelopes, (e) picking the maximum of each correlation func-
tion, and (f) picking the maximum from the maxima in step.
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K. THE ZERO CROSSING RATE (ZCR)

In the context of discrete-time signals, a zero crossing is
said to occur if successive samples have different algebraic
signs. The rate of zero crossings is a simple measure of
the frequency content of a signal. The zero-crossing rate is
a measure of the number of times in a given time interval
divided by the frame that the amplitude of speech signals
passes through a value of zero [56]. The zero-crossings rate
is defined by

Zn =
∞
∑

m=−∞
|sgn [x (m)] − sgn [x (m− 1)]|w(n− m),

(21)

where sgn [x (n)] =
{

1, x (n) ≥ 0
−1, x(n) < 0

}

, and

w (n) =
{

1
2N , 0 ≤ n ≤ N − 1
0, otherwise

}

Based on the speech production model, we conclude that
the energy of voiced speech is concentrated below 3 kHz
because of the spectrum fall introduced by the glottal wave.
On the other hand, unvoiced speech is concentrated in the
higher frequencies. Since high frequencies imply high zero
crossing rates, and low frequencies imply low zero-crossing
rates, there is a strong correlation between zero-crossing rate
and energy distribution of a signal with respect to frequency.

L. THE LINEAR FREQUENCY CEPSTRAL

COEFFICIENT (LFCCS)

LFCC is computed as MFCC with a filter bank of 40 bands
MFCC-FB40 [57]. The only difference is that the mel fre-
quency warping step is skipped [58]. In this algorithm,
the desired frequency range is implemented by a filter-bank
of 40 equal-width and equal-height linearly spaced filters.
The bandwidth of each filter is 164 Hz, and the whole filter
bank covers the frequency range of 133-6857 Hz. The com-
putation of LFCC is done in the following steps: (a) apply
N -point Discrete Fourier Transform (DFT) to the discrete-
time domain input signal x(n), (b) apply triangular filtering,
(c) compute logarithmically compressed filter bank outputs,
and (d) apply Discrete Cosine Transform (DCT) to the filter
bank outputs to obtain LFCC FB-40 parameters.

M. THE TEAGER ENERGY OPERATOR (TEO)

TEO is introduced by Teager in [59]. More works on the same
topic can be found in [60], [61]. In the discrete-time domain,
the Teager energy operator is given by

ϕ [x (n)] = x2 (n) − x (n+ 1) x (n− 1) . (22)

There are several applications of the Teager energy oper-
ator including tracking several information sets in speech
signals. This operator can track vowel and formants in the
voice signal. It is also used to find the center frequency and
bandwidth of the formants. A very recent application of the
Teager energy operator can be found in implementing voice
pathology detection algorithm.

V. THE CLASSIFIERS

An important final purpose of voice signal analysis is to
classify a given signal into one of a few known categories and
to arrive at a diagnostic decision about the voice disability.
The classification of a given voice signal into one of many
categories is very helpful in the diagnostic procedure. Pattern
recognition or classification algorithms are used for this pur-
pose. Several of classifiers have been used in voice disability
detection. The most commonly used classifiers are explained
in this section.

A. SUPPORT VECTOR MACHINE (SVM)

SVM applies the statistical concept of support vector to
classify data [62]. It uses the concept of the supervised
learning model. The supervised learning algorithm maps
between input and output by using a function. SVM uses a
training algorithm to build a model based on the provided
data. Once the learning model is established, SVM can clas-
sify data into two categories. Generally, SVM constructs
a hyperplane for decision making. This type of decision
making is called classification. The hyperplane can be a
linear line or non-linear line. Intuitively, the performance of
SVM depends on separation defined by an optimum hyper-
plane. Hence, a good separation provides high accuracy.
A good separation is defined as the largest distance to the
nearest training-data point of any class. The larger margin
between two data sets, minimizes the error produced by the
classifier.

B. GAUSSIAN MIXTURE MODEL (GMM) AND

GMM-UNIVERSAL BACKGROUND

MODEL (GMM-UBM)

GMM is a probabilistic model for classifying normally dis-
tributed data within an overall data [63]. It is a widely used
algorithm to classify voice features. Unlike the SVM clas-
sifier, GMM is an unsupervised algorithm. An unsupervised
algorithm does not need prior knowledge about the subpopu-
lation of data. The model learns the subpopulation automati-
cally. Generally, the GMM algorithm is considered suitable
for modeling large real-world data. Particularly, this algo-
rithm is suitable for datasets that are Gaussian distributed.
The GMM algorithm exploits the theoretical and computa-
tional benefits of Gaussian models.

GMM-UBM framework is a modified version of the GMM
model. GMM-UBM can handle a large datasets and hence
it is considered suitable in classification of large voice sam-
ples extracted from a large number of speakers [61]. Once
voice features are extracted, speaker-specific models are then
adapted from UBM using maximum a posterior probabil-
ity algorithm (MAP). This MAP algorithm has mainly two
steps. In the first step, information about the parameters are
estimated. In the second step, the new information regarding
the parameters is mixed with old parameters and the model
is updated. This kind of mixing is highly influenced by
language-specific data.
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C. ARTIFICIAL NEURAL NETWORK (ANN)

In many practical applications, no prior probabilities of
patterns belonging to a certain class are available. Hence,
no general classification rule can be used for pattern recogni-
tion. In such applications, conventional pattern classification
methods are not well suited. However, ANN is considered
an effective tool to solve such classification problems [67].
ANN possesses some properties including experience-based
learning and fault tolerance. These properties make ANN
particularly suitable to solve classification problems.
ANN has one hidden layer and one output layer for pat-

tern classification. The network learns similarities among
patterns directly from their instances based on an initially
provided training dataset. Classification rules are determined
from training data without prior knowledge of patterns in the
data. ANN is trained by an algorithm called backpropaga-
tion. Backpropagation is a method used in artificial neural
networks to calculate weights that are used in the network.
The backpropagation is also known as backward propagation
of errors. Because the error is computed at the output of the
network and distributed backward through the upper layers.

D. HIDDEN MARKOV MODEL (HMM)

HMM is a statistical model used to model data that can
be defined by the Markov process with unobserved states,
called hidden states. It can be represented by a dynamic
Bayesian network. The mathematical formulation of HMM
can be found in [65], [66]. The differences between the
simple Markov model and HMM are as follows. The states
of simple Markov models are directly visible to an observer;
therefore, these models only consider state transition proba-
bilities. On the other hand, the states of HMM are not directly
visible. However, the output of HMM is in the form of data.
Each state has a probability distribution over the possible
output data. Therefore, an HMM generates some sequence of
data containing the sequence of states. Some of the common
applications of HMM models include speech recognition,
handwriting recognition, and gesture recognition. Recently,
they are being used in voice disability detection algorithm.

E. DEEP NEURAL NETWORK (DNN)

DNN is an ANN with multiple layers [68], [69]. It can
find both linear and nonlinear relationships between input
and output data. DNN is trained through different layers to
find the probability of each output. In DNN, each mathe-
matical relation is considered as a layer. A complex DNN
uses many layers to model complex non-linear relationship
between input and output. The architectures of DNN generate
compositional models based on the data. The extra layers
used by DNN enable the composition of features from lower
layers.DNN is typically a feedforward network, where data
flows from the input layer to the output layer without a
feedback loop. At first, DNN creates amap of virtual neurons,
assigns random weights, and then establishes a connection
between them. The weights and inputs are multiplied and an

output between ‘0’ and ‘1’ is returned. If the network fails to
recognize a particular pattern, the algorithm adjusts weights
and the whole process repeats.

F. CONVOLUTIONAL NEURAL NETWORK (CNN)

CNNs are deep artificial neural networks. CNNs are com-
monly used to classify data, cluster them by similarity, and
perform object recognition [70]. Some applications of CNNs
include identifying faces, individuals, street signs, tumors,
and platypuses. CNNs are popularly applied in voice analysis
and image recognition. It is, particularly, suitable for spectro-
gram analysis of voice signals. CNNs have been considered
very effective in computer vision. Their other applications
include self-driving cars, robotics, drones, security, medical
diagnosis, and treatments for visually impaired people.

G. PROBABILISTIC NEURAL NETWORK (PNN)

PNN is designed to solve classification problems using a
statistical memory-based approach. It can use both supervised
and unsupervised algorithm [71]. In PNN, a Parzen window
is used for determining a parent probability distribution func-
tion (PDF) for each class of the population. Then, Bayes’ rule
is employed to allocate class with the highest posterior prob-
ability to new input data. This is done to minimize the proba-
bility of misclassification. PNN uses the Kernel functions that
make it suitable for discriminant analysis and pattern recogni-
tion. Hence, it is popularly used in voice disability detection
algorithm.

With given input, the first layer of PNN computes the dis-
tance from the input vector to the training input vectors. This
produces a vector to indicate the proximity of input to training
input. The second layer sums the contribution for each class
of inputs and produces net output as a vector of probabili-
ties. Finally, a complete transfer function on the output of
the second layer picks the maximum of these probabilities,
and produces a ‘‘1’’ and a ‘‘0’’ for non-targeted classes. There
are several advantages of PNN over perceptron networks.
PNN is faster than other multilayer perceptron networks. It is
also more accurate than multilayer perceptron networks.

H. DEEP BELIEF NETWORK (DBN)

In machine learning, DBN is a multilayer deep neural net-
work, with a connection between layers [72].When trained on
a set of examples without supervision, DBN can reconstruct
its inputs based on probabilistic models. After this learning
step, DBN can be further trained with supervision to per-
form classification. A DBN can be viewed as a composition
of simple and unsupervised networks based on the concept
of restricted Boltzmann machines (RBMs). In RBMs, each
hidden layer in subnetworks serves as a visible layer for the
next layer. RBM consists of a visible input layer connected
to a hidden layer with connections in between. This type of
architecture leads to a fast unsupervised training procedure.
The contrastive divergence is applied to each sub-network
in turn, starting from the lowest pair of layers. DBNs can
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be trained greedily and hence are considered as the effective
deep learning algorithm.

I. GENERALIZED REGRESSION NEURAL

NETWORK (GRNN)

GRNN [73] is a memory-based network to estimate con-
tinuous variables and converges to an underlying regression
surface. GRNN is a one-pass learning algorithm with a paral-
lel structure. GRNN algorithm provides a smooth transition
of data from one state to another state even in multidimen-
sional space. The algorithm uses both linear and nonlinear
regression models to predict, model, map, and interpolate
the model. The structure of GRNN is similar to that of
PNN. The main difference is that PNN determines decision
boundaries between pattern; whereas, GRNN estimates val-
ues for continuous variables. GRNN has the following several
advantages over other neural networks. The network learns in
one pass through the data and converges to conditional mean
regression surface as more examples are learned. The esti-
mate is bounded by a minimum and a maximum number of
observations. The estimate cannot converge to a poor solution
corresponding to a local minimum of the error criteria. The
main disadvantage of the GRNN algorithm is that it requires
substantial computation to evaluate the algorithms.

J. BAYESIAN CLASSIFIER

The Bayesian classifier is another popular classifier used
to classify data based on the common features [74], [75].
The Bayesian classifier is a probabilistic model, where the
classification is a latent variable related to the observed
variables by a probabilistic model. The Bayesian classifier
works based on the following principles. If an agent knows
the class, it can predict the values of other features. If it
does not know the class, a rule called Bayes’ rule is applied
to predict the class. In the Bayesian classifier, the learning
agent builds a probabilistic model based on the provided data
features and uses the model to predict the classification of a
new dataset. Then, classification becomes an inference in the
probabilistic model. A naive Bayesian classifier is based on
assumption that input features are conditionally independent
of each other. It is a belief network, where the features are the
nodes, the target variable has no parents, and the classification
is the only parent of each input feature.

K. THE K-MEANS CLUSTERING

The k-means clustering is a method of vector quantization
that is popularly used for cluster analysis in data mining [76].
The k-means clustering aims to partition n observations into
k clusters. Each observation belongs to a cluster with the near-
est mean. This results in partitioning a data space into cells
called Voronoi cells. The k-mean clustering algorithms are
computationally expensive. However, some efficient heuristic
algorithms have been proposed to reduce the computations
by converging quickly to a local optimum. These algorithms
are similar to expectation-maximization algorithm used in
clustering Gaussian mixture modeling.

L. THE DECISION TREE ALGORITHM

The decision tree algorithm is a flowchart-like tree struc-
ture [77]. In decision algorithms, an internal node represents
feature (or attribute), the branch represents a decision rule,
and each leaf node represents an outcome [77]. The top-
most node, in a decision tree, is known as the root node.
The decision tree algorithms learn to partition data based on
the attribute value. It partitions decision tree in a recursive
manner. This flowchart like structure helps in decision mak-
ing process similar to that of human level thinking. Unlike
other neural networks, decision tree algorithms share internal
decision-making logic. The main advantage of decision tree
algorithms is that it is faster compared to other neural net-
works. The complexity of decision trees lies in the number
of records and the number of attributes in a given dataset.
The decision tree algorithms do not depend upon probability
distribution assumptions. Hence, they can handle high dimen-
sional data with good accuracy.

M. LINEAR DISCRIMINANT ANALYSIS (LDA)

LDA is a generalization of Fisher’s linear discriminant [78],
which is used in statistics, pattern recognition, and machine
learning to find a linear combination of features that charac-
terizes the classes of objects. LDA classifier is loosely related
to regression analysis and analysis of variance (ANOVA).
However, ANOVA uses categorical independent variables
and a continuous dependent variable. On the other hand,
LDA uses continuous independent variables and a categorical
dependent variable. LDA is also closely related to principal
component analysis (PCA) and factor analysis. Because they
both look for linear combinations of variables that match the
data. LDA is used when groups are known a priori. One of
the main applications of LDA is to assess the severity state of
a patient and prognosis of disease outcome. For example, an
LDA classifier is commonly used in determining the severity
of voice pathology into mild, moderate, and severe form.

VI. SURVEY ON VOICE PATHOLOGY DETECTION

TECHNIQUES

Voice disability detection algorithms presented in the litera-
ture can be classified based on voice features. In this section,
we classify the related research works based on voice features
namely MFCCs, multiple features, time-domain features,
pitch, spectrogram, and formants.

A. THE MFCC TECHNIQUES

MFCCs are the most common features used in pathological
voice detection. It is widely accepted that MFCCs can be
used to fully characterize the human voice generation system.
Hence, it is considered as an effective tool for voice disability
detection.

In [79], the authors develop a deep learning-based
approach for the detection of pathological voice. In the work,
normal and pathological samples of eight common clini-
cal voice disorders are collected from a tertiary teaching
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FIGURE 13. The proposed method for phoneme independent
pathological voice detection [77].

hospitals. The distinct pathological voice with vocal fold nod-
ules, polyps, cysts, neoplasm, vocal fold paralysis and adduc-
tor spasmodic dysphonia are considered in the investigation.
The MFCCs are extracted from the voice samples containing
sustained vowel sound for a duration of three seconds and
then used in three machine learning algorithms namely DNN,
SVM, and GMM using a five-fold cross-validation. To evalu-
ate the performances of these classifiers, the authors use voice
disorder database of MEEI (Massachusetts Eye and Ear Infir-
mary). The results show that the highest accuracy achieved
by the DNN classifier is 94.26% and 90.52% for male and
female subjects, respectively.While validatingwith theMEEI
database, the highest accuracy of 99.32% is achieved by the
DNN classifier. Based on the results, the authors conclude
that having several layers of neurons and optimized weights
helps DNN to outperform compared to other algorithms.
Wavelet sub-band based hybrid classifiers are used in [80].

Hybrid classifiers namely GMM-UBM and Gaussian Mix-
ture Model Support Vector Machine (GMM-SVM) are used
in the work. The voice samples are divided into three
sub-bands using discrete wavelet transform (DWT). The
MFCCs are computed from each sub-band. Later, the authors
model the MFCCs using GMM-UBM and score them by
SVM as shown in Fig. 13. The results show that the accuracy
of hybrid GMM-UBM for wavelet sub band MFCCs is
96.96% that is significant compared to that of conventional
MFCCs with GMM-UBM (i.e., 85.18%). The novelty of the
proposed classifier is that it is independent of any phonemes
‘/a/’, ‘/i/’, and ‘/u/’. The proposed method considers the
database of 142 normal voice samples and 147 pathological
voice samples of the age group 30-70 years. For each person
the vowels ‘/a/’,‘/i/’, and ‘/u/’, with 1.5-second duration for
each, are recorded at 44.1 kHz sampling frequency. The
proposed method decomposes the signal into several sub-
bands using discrete wavelet transform and then MFCCs
are calculated for each sub-band. The GMM scores are
extracted from each sub-band MFCCs by using GMM-UBM
and are applied as input to SVM for final classification. In the
investigation, the authors use different types of wavelets. The
accuracies of different wavelet types are listed in Table 1. It is
shown that DB2 wavelet family provides the best accuracy

TABLE 1. The effects of wavelet families.

TABLE 2. The performances of GMM-UBM and hybrid method.

(i.e., 92.19%). Finally, the performance matrix for
GMM-UBM and GMM-SVM are recorded in Table 2. Based
on the data we can conclude that GMM-SVM provides the
best accuracy (i.e., 96.61%) compared to the conventional
GMM-UBM.

Another MFCCs based pathological voice detection algo-
rithm is presented in [81]. The authors’ main focus is on
the capacity of the classifier to improve the accuracy of
voice pathology detection. They divide the classifiers into
two categories namely (a) generative (GMM and HMM), and
(b) discriminative (SVM and ANN). The main advantages
of generative classifiers is their capacity in handling data
and in separating classes. Hence, the hybrid combination of
these two types is important. The authors analyze the normal
and pathological voice samples from Saarbruecken Voice
Database (SVD) at the Institute of Phonetics, University of
Saarland Germany. They investigate normal and pathological
samples for (a) vowels with different intonations, (b) sen-
tences (c) electroglottogram (EGG) sampled at 50 kHz at
16-bit resolution. The pathological voice sample considered
in the work is neurological. Since this disease is more fre-
quently seen among females, the authors choose a female
voice database only. The major findings of the work are
summarized in Table 3 and Table 4. The main focus of the
work is to find a better choice of distance metric in the radial
basis function (RBF) kernel. The authors have introduced two
new distancemetrics namelymodifiedKullback Leibler (KL)
distance and modified Bhattacharyya distance (BH) in the
paper. They have obtained an improvement of 2 % and 7 %
in terms of sensitivity compared to classical KL (KL-MCS)
and BH respectively.

Voice pathology due to Parkinson’s disease is addressed
in [82]. The proposed approach operates on cepstral features
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TABLE 3. GMM-SVM results using classical and modified KL.

TABLE 4. GMM-SVM results using classical and modified BH.

extracted from voice samples using a 30 ms Hamming win-
dow. For each frame of a signal, 12 MFCCs together with
log-energy are calculated. The authors argue that biomedical
acoustic distortions of voice signal occur during acquisition
and transmission process and those distortions affect acoustic
features extracted from pathological voice. Hence, the infor-
mation about these distortions can be used to compensate for
the effect. The authors propose an algorithm for detecting
four major types of acoustic distortions in the work. The
authors use GMM and LDA to detect noises. They also use
two more classifiers namely SVM and probabilistic LDA to
determine specific types of distortion in voices. In the work,
the authors use clean and acoustically distorted pathological
voices and they achieve an 88% overall classifier accuracy.
To diagnose vocal pathology, a computerized classification

model is presented in [83]. The authors use the state of
the art machine learning algorithms and various classifiers
in the work. The authors transfer the acoustic waveform of
voice record into mel spectrogram and then extract features
for Dense Net Recurrent Neural Network (DNRNN) and
feature-based classifiers. The results show that the DNRNN
algorithm achieves an accuracy of 71%, Recurrent Neural
Network (RNN) achieves an accuracy of 30% and a random
forecast approach achieves an accuracy of 68%. Based on
the results, the authors conclude that frequency domain voice
features are more appropriate to detect voice pathology com-
pared to its time-domain counterparts.
In [84], the authors claim that most of the vocal fold

pathologies cause changes in the voice signal. Therefore,
voice signals can be a useful tool to diagnose them. The paper
presents a vocal fold pathology detection technique with
the aid of voice signal processing. The authors first extract
MFCC voice features, then they classify the feature vector
using GMM. The authors also present the design and imple-
mentation of their system in the work. They show that their
proposed method is less computationally complex compared
to other related algorithms. The experiment is conducted on
30 speakers and the speech duration is 60 seconds. The signal
processing steps performed in the work is shown in Fig. 14.
The preprocessing step reduces the effect of noise, removes

dc offset, and performs pre-emphasis. The framing and win-
dowing step samples the voice using a 32 ms Hamming

FIGURE 14. The signal processing steps used in [84].

window. The feature extraction uses a filter bank of size 12
in the frequency range of 0-8 kHz. Eleven coefficients are
taken from MFCCs. In the training step, the GMM algorithm
of different orders is used. In the test phase, a decision is made
regarding normal and pathological samples. The performance
matrix shows that GMM of the highest order gives the best
accuracy.

In [52], the authors argue that problems like a brain tumor,
lesions, neural degeneration, and brain injury may affect the
speech producing center in the human brain. Hence, the voice
contains hidden information about the disorders in the ner-
vous system. The authors use a speech processing algorithm
to detect the pathological condition of the brain. The work
investigates the adaptation of MFCC and SVM for the diag-
nosis. The voice signal of 1.5-second duration is segmented
by a Hamming window of 20 ms with overlays of 10 ms.
Thus, 149 frames are generated and for each frame 13MFCCs
are computed. The authors use normal and pathological sub-
jects with multiple voice disorders to test and train the SVM
classifier. The accuracy level is significantly high with SVM.

A method for identification and classification of patho-
logical voice using ANN is presented in [53]. Several other
classifier algorithms namely Multilayer perceptron neural
network (MLPNN), GRNN, and PNN are used for classify-
ing pathological voices. The MFCC features, extracted from
audio recordings, are used for this purpose. Results show that
PNN behaves in a similar way to GRNN. It is also found
that MLPNN performs better than PNN and GRNN in the
classification of pathological voices using MFCC features.

MFCC based voice disability detection algorithms are
summarized in Table 5. Based on the data listed in Table 5,
we can conclude the followings. Most of the works use
‘vowels’ for generating a voice sample. SVM is the most
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TABLE 5. Summary of MFCC based techniques.

popular algorithm used in MFCC based voice disability
detection algorithms and MLPNN classifier achieves the best
accuracy (i.e., an accuracy of 100%).

B. THE MULTIPLE FEATURES

The main motivation for using multiple voice features is to
improve detection accuracy. The researches show that a single
feature may not detect voice pathology with high accuracy.
Hence, multiple voice features can improve accuracy.
An automatic speech recognition (ASR) system called

Hidden Markov Model Tool Kit (HTK) is used in [85] for
identifying pathological voice. By using HTK, the highest
accuracy achieved is 94.44% for normal voice and 88.63%
for pathological voice. The authors develop their algorithm
based on the HTK tool. In their algorithm, voice features
including MFCCs, PLP, RASTA-PLP and LPC are used.
In their analysis, they consider voice samples of 297 speakers
— 121 of them are normal and the remaining 176 have five

types of vocal fold disorders. The results show that the best
accuracy achieved is 94.44% for MFCC with normal sam-
ples and LPC shows the least performance of 77.25%. The
other parameters show accuracies of 94.44% and 89.62% for
PLP and RASTA-PLP respectively. For pathological voice,
PLP provides the best accuracy (i.e., the accuracy of 88.63%).
Others are respectively MFCC (accuracy of 87.65%),
RASTA-PLP (accuracy of 87.14%), and LPC (accuracy
of 76.16%). The main shortcoming of this work is that the
authors use manual segmentation. They use 5-fold cross-
validation. Arabic digits (‘0’ to ‘10’) and the Arabic words
‘ganal’, ‘gazal’, and ‘zarf’ are used for classification. The
authors also present an automatic segmentation technique
using fuzzy logic in the same work.

In [86], the authors present a computer-based algorithm
for classifying a pathological voice from a normal voice.
In the work, 50 voice samples are investigated (20 normal
samples and 30 pathological samples). The features used in
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TABLE 6. Accuracy, sensitivity, and specificity as a summary of single
features and combined ones.

the work include energy means, ZCR max, ZCR mean, LPC,
and MFCCs for different voice segment durations of 200,
300, 400, and 500 ms. The threshold value for each feature
is calculated based on the values that are best to distinguish
normal and pathological voices. The work is focused on
detecting laryngeal voice disorder. The results of the work
are summarized in Table 6. It can be inferred from the table
that the highest accuracy is achieved with ZCR features and
the lowest accuracy is achieved with MFCC features.
LPC based cepstral analysis is used to discriminate patho-

logical voices in [87]. The main focus is to detect vocal fold
edema. The voice features used in the work include cep-
stral (CEP), delta cepstral (DCE), weighted cepstral (WCEP)
and weighted delta cepstral (WDCEP) coefficients. Vector
quantization technique is used to classify normal and patho-
logical voices. The authors consider 44 pathological voices
(33 women and 11 men), most of them (i.e.,32) with bilateral
edema. The normal samples considered in the works are
53 patients (21 male, and 32 female). In this work, all normal
voice samples are down sampled to 25 kHz. The database
contain more than 1400 voice samples with sustained vowel
‘/a/’ from around 700 subjects. The results of the work are
summarized in Table 7. The authors also present the ROC
curve for all coefficients. The results show that DCE provides
the best efficiency in terms of pathological voice detection;
however, CEP provides the best correct acceptance rate.
A supervised algorithm is used in [88] to classify patho-

logical voice from a normal voice. The voice features that
are considered in the work are MFCCs and energy varia-
tion of Jitter and Shimmer. The authors classify the data
using GMM. The procedure used in the work is illustrated

FIGURE 15. Pathological voice detection by GMM [88].

in Fig. 15. The results presented in [88] are summarized
in Table 8 and Table 9. The main focus of the work is to
detect spasmodic dysphonia only. The results show that the
best accuracy achieved is with 39 coefficients including Jitter
and Shimmer as shown in Table 9. The author also claims
that pathology detection is more efficient with the second
derivative of MFCCs.

Pathological voice detection using HMM, GMM, and
SVM is addressed in [89]. The authors compare their results
with previously published work based on ANN. Six charac-
teristic parameters namely Jitter, Shimmer, NHR, soft phona-
tion index (SPI), Amplitude Perturbation Quotient (APQ),
and Relative Average Perturbation (RAP) of normal and
pathological voice samples are investigated in the study. The
pattern recognition algorithm is used to categorize a nor-
mal voice from a pathological voice. The authors discover
that GMM based method can provide superior classifications
rate compared to other classification methods. In the study,
the authors consider cases with vocal fold diseases namely
Cyst, Edema, Laryngitis, Nodule, Palsy, Polyp, and Glottis
cancer.

Detection of dysphonia is addressed in [90]. The dys-
phonia is a disorder that occurs when the voice quality,
pitch, and loudness are altered. About 10% of the population
suffers from dysphonia. It is caused by mainly unhealthy
social habits and voice abuse. The authors use a mobile
device to detect voice pathology. In the study, several voice
features namely MFCC, noise features, temporal deriva-
tives, Jitter, Shimmer, Wavelet transform, noise-to-harmonic
ratio (NHR), SPI, APQ, RAP, spectral features, perturba-
tion, noise, and energy parameters are used. Several machine
learning algorithms including SVM, Decision Tree, Bayesian
classification, logistic model tree, and instance-based learn-
ing are used in the work. The results are compared in terms
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TABLE 7. Performance comparison of different cepstral methods.

TABLE 8. The confusions matrix with MFCC and energy coefficients.

TABLE 9. The confusions matrix with MFCC, Jitter and Shimmer
coefficients.

of accuracy, sensitivity, specificity, and receiver operating
characteristic. The results show that the best accuracy is
achieved by the SVM or decision tree algorithm.
The work, presented in [91], evaluates the accuracy of

different characterization methods for automatic detection
of multiple speech disorders. The pathologies considered
in the paper include dysphonia due to Parkinson’s disease,
laryngeal pathologies, and hyper nasality in children with
cleft lip and palate. The authors use four different methods
namely noise content measure, spectral-cepstral modeling,
non-linear features, and stability in fundamental frequency.
The authors conclude that stability measure is suitable for
Parkinson’s disease and laryngeal pathologies. The spectral
cepstral features are suitable for the detection of hyper nasal
voice. Noise measures are suitable for dysphonic voices. The
authors also conclude that individual feature is not suitable
equally to model all voice pathologies. Hence, it is important
to study the physiology of each impairment to choose the
most appropriate set of features.
In [92], Jitter, Shimmer, periodic correlation, and GNE

are used for the detection of voice pathology. An additional
feature namely the noise content of a speech signal is used in
the work. The authors argue that GNE is an acoustic measure
that has advantages over NNE or Cepstrum based harmonics
to noise ratio. Because GNE is found to be independent of
variations of the fundamental frequency (Jitter) and ampli-
tude. A two-dimensional ‘‘hoarse’’ diagram is also presented
in the paper. The ‘‘hoarse’’ diagram can be used to determine
the severity of voice disability. In the hoarse diagram Jitter,

Shimmer, and periodic correlation contribute in equal parts
to the x-coordinates while a linear function of GNE defines
the y-coordinate. The authors consider that a hoarse diagram
is a suitable tool in differentiating various phonation mecha-
nisms and specific vocal pathologies as well as in monitoring
progress of voices during voice rehabilitation.

Detection of vocal fold pathology with the aid of speech
signal recorded from the patients is presented in [93]. The
authors separate pathological voice from normal voice by
using voice feature analysis. Their method consists of two
steps. In the first step, voice features includingMFCC, LFCC,
and ZCR are extracted from the voice samples. In the second
step, the classification is done by using ANN. The main
advantage of the proposed method is that it has less compu-
tation and it supports real-time system development.

The aim of the work presented in [94] is to compare
and evaluate dynamic feature sets that are suitable for the
classification of pathological voice using HMM. The fea-
tures used to model speech are MFCC, HNR, GNE, NNE,
and energy envelopes. The feature extraction is carried out
using PCA and the classification is done using discrete and
continuous HMM. The results show that there is a direct
relationship between principal direction and classification
performance. The authors claim that dynamic feature anal-
ysis using PCA reduces the dimension of original feature
space while keeping the topological complexity unchanged.
The algorithm is tested with Kay Elemetrics (DB1) and
UPM (DB2) databases. The results show that an accuracy
of 91% can be achieved from the proposed algorithm with
a 30% computational cost reduction for DB1.

The work, presented in [95], explores and compares var-
ious classification models to find the ability of acoustic
parameters in differentiating normal voices from pathologi-
cal voices. The authors use different classification algorithm
namely SVM and Radial Basis Functional Neural Networks
(RBFNN). Acoustic parameters used in the work include
signal energy, pitch, formant frequencies, mean square resid-
ual signal, reflection coefficients, Jitter and Shimmer. In the
study, various acoustic features are combined to form a fea-
ture set. The results show that an accuracy of 91% can be
achieved by the RBFNN algorithm compared to an accuracy
of 83% that can be achieved by SVM.

Stuttering voice disability is addressed in [96]. The authors
claim that over 3 million American stutter when they speak
and many voice interfaces that exist with the consumer tech-
nology often neglect population with voice ailment including
TV and car systems. For example, Apple’s Siri is tested
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against various speech disorders including stutter and slurred
speech. It is found that accuracy ranges from as low as 18.2%
to only as high as 73%. In the work, the authors propose
a method to improve the performance of automatic speech
recognizers on speech containing stuttering. Specifically, the
authors develop a classifier that can better detect stuttering
in speech signals as well as study techniques on applying
these classifiers to automatic speech recognition mode. It is
shown that the classifier can effectively parse out stuttered
speech before processing the same. The classification algo-
rithm used in the work includes ANN, HMM, and SVM.
The authors implement a six-layer neural network algorithm
using MATLAB.
A system, for remotely detecting vocal fold pathology

using telephone-quality speech, is implemented in [97]. The
system uses a linear classifier to process measurement of
pitch perturbation, amplitude perturbation, and harmonic to
noise ratio derived from speech samples. The results show
that an accuracy of 89.1% can be achieved when the voice
is recorded in a controlled environment. However, the same
declines to 74.2% when telephone quality speech is used.
In the work, the authors classify voices into four subclasses
namely normal, neuromuscular, physical, and mixed (neuro-
muscular and physical). The significance of this study is that
it combines telephony and server-side speech processing to
diagnose pathological voices from a remote location.
In [98], the authors argue that pathological voice detec-

tion algorithms often fail to correctly detect voice pathol-
ogy. Additionally, classification rates are still insufficient for
reliable and large scale screening. The work reviews per-
formance of state-of-the-art methods and their weaknesses.
The authors include the features in the time and frequency
domain. The features are evaluated by different machine
learning techniques. Based on the results, they conclude that
the spectral features are the most important features. On the
other hand, pitch related features are least important. The
most useful feature set is the residual from the inverse LPC
filtered signal. The authors also show the effectiveness of
their algorithm.
In [99], the authors investigate dysphonic voices. Sustained

vowels from male and female speakers with mild to severe
dysphonia are analyzed in the work. Multiple voice features
are used in the work. The authors make several important
conclusions in the paper. The reliability of F0 measurement
decreases significantly with increasing dysphonia. The shim-
mer measures vary much more in reliability at all levels of
severity than F0 measures and the reliability is not related
significantly to increasing dysphonia. The overall reliability
is even worse for Jitter and HNR than for F0 and Shimmer.
Vocal disorders are investigated in [100]. The work inves-

tigates five-voice qualities. Six acoustic measures are exam-
ined in the work. The authors extract all the measures from
residue signals obtained by inverse filtering the speech signal
using the LPC technique. The authors conclude that pitch
amplitude (PA) and HNR are the two most useful parameters
for predicting vocal quality.

TABLE 10. The recommended ranges of the parameters for voice
disability detection.

The main focus of the work presented in [101] is on the
automatic assessment of pathological voice quality by identi-
fying four attributes based on Grade Roughness Breathiness
Strain (GRBS) categorization. The proposed method adopts
higher-order local autocorrelation (HLAC) features, which
are calculated from the excitation source signal obtained
by an automatic topology generated autoregressive higher-
order HMM (AR-HMM) analysis. Additionally, the proposed
method identifies the four attributes using a feed-forward
neural network (FFNN) based classifier.

In [102], the authors argue that although there are many
research works published to detect pathological voices; how-
ever, only a few of them deal with the severity of estimation of
voice disabilities. The authors present an automatic classifier
using an acoustical measurement of sustained vowel ‘/a/’ and
pattern recognition tool based on neural networks. In the
work, the authors include four acoustic features. The degree
of severity is estimated depending on how these parameters
are far from standard values. In the analysis, the authors
use healthy and pathological voice samples from the Ger-
man database. The performance of the proposed algorithm
is evaluated in terms of accuracy (97.9%), sensitivity (1.6%),
and specificity (95%). The results show that the classification
rate is 90% for the normal class and 95% for pathological
class. The authors recommend the values, shown in Table 10,
to differentiate between pathological and normal voices.

The research, presented in [103], compares the effective-
ness of pitch rate, Jitter, Shimmer, and harmonics-to-noise
ratio as indices of voice disability in English, German, and
Japanese language speakers. This study includes recitation of
a page instead of using only long vowel sounds. The results
show that for English, Jitter, Shimmer, and HNR are effective
indices for long vowel sounds. On the other hand, Shimmer
and HNR for reading speech are considerably worse although
the effectiveness of Jitter is an index that is maintained for
reading speech. The pitch rate is better in distinguishing
healthy individuals from patients with illness affecting their
voices. The reading speech results in German, Japanese, and
English are similar. The pitch rate shows the greatest effi-
ciency for identification.

An automatic speech recognition system using HTK is
presented in [85]. The authors suggest that the voice produced
by a pathological patient is not like a normal speaker due
to irregular vibration and incomplete closure of vocal fold.
Four voice features are used in the work. The voice sam-
ples of 297 speakers are used. Among them 121 are normal
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TABLE 11. The classifications using MDVP.

TABLE 12. The classifications using HMM with MFCC and MFCC+Pitch.

speakers and the rest of them are pathological patients with
vocal fold disorders. The authors have used a fuzzy controller
for automatic segmentation of normal and pathological voice.
The authors also suggest that a genetic algorithm and other
optimization techniques can be used to improve the perfor-
mance of the fuzzy logic control algorithm.
In a study, presented in [104], the authors present a robust,

rapid, and accurate system for automatic detection of normal
and pathological speech. The system uses fully automated
measures of vocal tract characteristics and excitation infor-
mation. In the work, the authors use MFCC coefficients
and pitch dynamics to model the Gaussian mixture in the
HMM classifier. The authors compare their work with the
existing best performing work and it is shown that their
method outperforms other classifiers by 8%. In the paper,
the authors use two methods namely Multi-dimensional
Voice Program (MDVP) and HMM. The results, summarized
in Table 11 and 12, show that GMM provides the highest
accuracy using MDVP. However, the accuracy is 99.44%
when MFCC and Pitch are combined.
The summary of the mixed features-based voice disability

detection algorithms is presented in Table 13. Based on the
table, we can conclude the following. Although more than
one voice features have been used, MFCC is one of the most
common features used and most of the works use multiple
classifiers. Mostly vowels are used for generating voice sam-
ples. Among the classifiers, SVM and ANN are commonly
used in multiple features based algorithms.

C. TIME DOMAIN

In voice disability detection algorithms, voice features, other
than time domain, have been mainly used. However, some
recent works show that time-domain parameters can also be
used effectively in voice disability detection. Some of these
works are now presented.
The main focus of the work presented in [105] is to detect

voice disability among children. In that work, the authors
use the envelope of voice signals to detect pathological cases
of speech-disabled children. The speech samples of children
in the age group of 5-8 years are used in the study. The
speech signals are first digitized and then speech envelopes

are detected. The envelopes are then used for ratio mean
analysis to estimate speech disability. The authors classify the
voice disability into three levels.

It is claimed in [106] that the short-term parameters com-
bined with dynamic classifiers such as HMMs are suitable for
the pathological voice detection system. The authors argue
that most approaches rely on complex procedures or add new
parameters that increase the processing time and do not favor
the system performance. The paper presents an approach that
improves the standard scheme of HMM-based classifier to
detect voice pathologies. The authors use HMMs to derive
discriminative voice features defined by specific compo-
nents. The results show that the proposed system significantly
outperforms other classification systems. It achieves high
accuracy using a relatively simpler procedure to generate an
optimal decision boundary.

In [107], the authors use a new feature called the TEO
phase for automatic detection of normal and pathological
voices. The authors get the idea of TEO from a work that used
the LP residual phase for speaker recognition. The authors use
second-order polynomial classifier on a subject. They also
use two different methods namely the TEO phase and score
level fusions in the work. The comparison of the two methods
is listed in Table 14 in terms of classification accuracy (ACC)
and equal error rate (EER).

RASTA-PLP is used in [108] to identify four different
types of vocal fold disorders. In this study, dysphonic patients
consisting of 40 males and 20 females are investigated. The
diseases are classified by using a multi-class SVM. The
results show that a 100% classification rate can be achieved
by choosing a suitable word for each disease. In the work,
RASTA-PLP voice features are first extracted from the voice
samples. Then the voice features are compressed by using
a vector quantization, which is implemented by using the
k-mean algorithm.

Table 15 presents the summary of time-domain features-
based voice disability detection algorithms. Based on the data
presented in the table, we can conclude the followings. The
highest accuracy obtained is 100% for a specific pathology.
The vowels and other native words have been used for gener-
ating voice samples.

D. THE PITCH

Pitch is another important feature used in voice disability
detection. In the past, the pitch was considered as an effective
tool for voice recognition. Nowadays, many voice pathology
detection algorithms use pitch.

In [109], the authors present a new pitch detection algo-
rithm that is suitable for detecting pathological voices. The
main target of the work is to detect dysphonia. The proposed
method uses the frame size of half-way rectified autocorre-
lation adjusted to a smaller frame after two potential pitch
candidates are identified within the preliminary frame. This
method is compared to PRAAT’s standard autocorrelation
tool and the results show a significant improvement in detect-
ing pitch for pathological voices. The method is more reliable
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TABLE 13. Summary of mixed features based classification.
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TABLE 14. The comparison between TEO Phase and Score Level Fusions.

to detect pitch, either in a low or high pitched voice without
adjusting the window size. The authors argue that PRAAT
works better for normal voices. However, the results shown in
the paper dictates that PRAAT works poorly for pathological
voices. The results also show that, in some cases, PRAAT
exceeds 40% of error, but their proposed algorithm never
exceeds 40% of error.
A software system for pathological voice analysis using a

personal computer with a sound card is presented in [110].
The software system can evaluate pitch period, degree of
unvoiceness (DUV), pitch perturbation quotients (PPQ),
and amplitude perturbation (APQ) quotients, dissimilarities
in surfaces of the pitch pulses (DPP), the ratio of aperi-
odic/periodic components in cepstral energy (APR), HNR,
degree of hoarseness (DH), the ratio of cepstral energies
(PECM), and glottal closing quotient (CQ). The results show
that the software can detect pathological voices by examining
the above-mentioned voice features.
Unlike other works, unvoiced part of voice samples is

investigated in [111]. The authors argue that most of the

existing works depend on the voiced part of a speech sample
to detect voice pathology and these works use a pitch detector
to separate voiced part from the unvoiced part. However,
the existence of voice pathology affects the speakers’ vocal
fold and produces a more irregular vibration pattern. All
these consequently cause degradation of voice quality within
less voiced segments. Hence, selecting only clear-voiced seg-
ments for the classifier may not be appropriate. In the paper,
the authors propose a new approach that enables the classifi-
cation of voice pathology by analyzing the unvoiced informa-
tion of the continuous speech. The signal frames are divided
into turbulent or non-turbulent, instead of voiced/unvoiced
part. The results show that useful pathological information
is indeed present in turbulent or near unvoiced segments.

The summary of the pitch based voice disability detection
algorithms is presented in Table 16. Based on the data, we can
conclude the followings. The pitch feature is very useful to
detect voice disabilities. Although PRAAT is widely used
in voice pathology detection; however, some algorithms in
time domain can provide even better accuracy for dysphonia,
laryngeal, and neurological voice disorder. The vowels are
mostly used in the analysis.

E. THE SPECTROGRAM FEATURES

The spectrogram is computed based on frequency domain
information. In many pathological voice detection algorithms
spectrogram of the voice signals solely have been used.

Pathological voice disorder, due to vocal cord paralysis
or Reinke’s edema, is investigated in [112]. In the paper,

TABLE 15. Summary of time domain features.
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TABLE 16. Summary of pitch based voice disability detection algorithms.

FIGURE 16. The signal processing steps used in [112].

the authors claim that deep learning method is widely used in
speech recognition; however, it can also be applied in patho-
logical voice detection. The authors use CNN in the work
instead. The spectrograms of pathological and normal speech
are computed and used as the input to the convolutional deep
belief network (CDBN) to train CNN. Then, CNN is trained
using supervised back propagation learning algorithm to do
fine tuning of the weights. The signal processing steps are
shown in Fig. 16.
In [113], the authors argue that the most commonly used

acoustic measures for the diagnosis of voice disability are
Jitter, Shimmer, and harmonics-to-noise ratio. However, these
measurements are not independent and therefore, may give
ambiguous information. For example, the addition of ran-
dom noise causes increased Jitter measurement and the intro-
duction of Jitter causes a reduced harmonic to noise ratio.
The authors suggest that to increase accuracy in detect-
ing voice pathology by analyzing the spectrogram, it is
required to remove the effects of Jitter and Shimmer on
the speech spectrum. The authors test their algorithm by
initially moving them on specially designed synthesis data
files.
The spectrogram-based voice disability detection algo-

rithms are summarized in Table 17. We can conclude the
following based on the data. Vowels are mostly used as voice
samples. A deep learning algorithm is helpful for detecting
voice disability. Jitter and Shimmer adversely affect the voice
disability decision.

F. THE FORMANTS

Like spectrogram, formants are also a frequency domain fea-
ture. It has been widely used in voice recognition algorithms.
However, some voice pathology detection algorithms have
used formants as the primary tool.

The first two formants of vowels are used in [114] for voice
disorder classification. Five voice disabilities are addressed
in the work. The four features are used by two types of
classifier namely vector quantization and neural network. The
results show that neural networks perform better than vector
quantization in terms of accuracy.

Four fundamental frequencies (F0) and two F0- indepen-
dent measures are used to quantify pathological voice [115].
Two of F0-dependent measures are computed in the time
domain, and two others are computed using spectral infor-
mation from a vowel. The F0-independent measure is based
on LP modeling of vowel samples. The results show that
the measures on the LP model are much superior to other
measures. The authors conclude that LP modeling approach
to quantify vocal noise is attractive for several reasons as
follows. The LP model is known to be a good model for
normal voice speech. As a result, it is applied in many speech
processing applications, including speech coding, speech
recognition, and speech synthesis. The LP modeling is F0-
independent. This eliminates the need for a computationally
intensive high precision F0 extraction algorithm. The LP
model is sensitive to the presence of noise. Thus, the presence
of vocal noise is reflected in the LP model output, which can
be used as an indicator of voice pathology.

The summary of the formant based voice disability detec-
tion algorithm is presented in Table 18. Based on the data,
we can conclude the followings. The best accuracy achieved
is only 70.72%, which is less than other voice features based
algorithms. The formants help detect multiple voice patholo-
gies including vocal noise, Cyst, Polyp, Gerd, voice Paralysis,
and Sulcus.

VII. ISSUES AND CHALLENGES OF VOICE DISABILITY

DETECTION ALGORITHMS

Voice disability detection is usually initiated by using a
screening method after receiving concern from patients, par-
ents, teachers, and healthcare service providers. During the
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TABLE 17. Summary of spectrogram based voice disability detection algorithms.

TABLE 18. Summary of formants based voice disability detection algorithms.

screening, any deviation from a normal voice is detected by
the physicians. Vocal characteristics including respiration,
phonation, and resonance are investigated during the screen-
ing process. If any deviation is detected, a comprehensive
assessment is followed. The typical components of com-
prehensive assessment include case history, oral-peripheral
examination, assessment of respiration, and auditory percep-
tual assessment. Voice quality is assessed by examining the
voice features including roughness, breathiness, strain, pitch,
loudness, and overall severity. Also, other voice features
including MFCC, spectrogram, formants, wavelets, LPC,
PLP, RASTA-PLP, Jitter, Shimmer, GNR, HNR, CHNR,
NNR, ZCR, LFCC, and Teager energies are popularly used
in voice pathology detection. Primarily, from voice sample
collection and assessment to final classification stage, the fol-
lowing issues need to be considered.

A. SAMPLE COLLECTION ENVIRONMENT

Voice samples must be collected and assessed in a controlled
environment [116]. It is suggested that voice data must be
collected in a quiet environment. The other requirements
are: (i) microphone with a sensitivity of -60 dB should be
used, (ii) mouth to microphone distance should be around
10 cm, (iii) sampling frequency should be 20-100 kHz, and
(iv) recording should be done in a sound-treated room with
the ambient noise of less than 50 dB, and (v)microphonemust
be aligned 450 with respect to mouth.

B. VOICE SAMPLES

There is no consensus about the most representable voice
samples. However, most of the voice detection algorithms
use common vowels. The rest of the works use sentences and
running speeches. The followings are recommended in [116].

• Sustained vowels Two vowels namely ‘/a/’ and ‘/i/’ shall
be used. The vowel ‘/a/’ is considered a lax vowel.
On the other hand, the vowel ‘/i/’ is a tense vowel. It is
also recommended that the patients should be asked to
say vowel ‘/a/’ for a sustained period of 3-5 second. Then
the patient should be asked to say vowel ‘/i/’ for a similar
sustained period.

• Sentences The sentences used in voice sample collec-
tion should be carefully designed so that they can elicit
various laryngeal behaviors. For example, the following
six sentences that have been recommended in [112] are:
(a) the blur spot is on the key again, (b) how hard did
he hit me?, (c) we were away a year ago, (d) we eat
eggs every Easter, (e) my mama makes lemon jam and
(f) Peter will keep at the pack. The first sentence contains
all the vowels in the English language. The second sen-
tence emphasizes ‘/h/’. The third sentence is all voiced.
The fourth sentence elicits a glottal attack. The fifth
sentence elicits nasal sound, and the sixth sentence is
mostly voiceless. In addition to these sentences, other
works have used the ‘‘Rainbow Passage’’ [117] for voice
disability detection. The specialists use this passage to
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diagnose a patient, who is suffering from vocal cord
paralysis or vocal cord paresis. This passage is consid-
ered suitable to assess the mobility of vocal cords for a
patient.

• Running speech The clinicians urges the patients to
answer some standard interview questions for at least
20 seconds such as ‘‘Tell me about your voice problem’’,
or ‘‘Tell me how your voice is functioning’’. The patients
are also sometimes asked to tell a simple story.

C. THE DATA SOURCES AND SAMPLE

The common sources of voice samples are the local clinics.
One of the main sources of a database is Massachusetts Eye
and Ear Infirmary (MEEI) Voice Disorders Database [118].
However, voice recording environment and voice recording
techniques are not mentioned in the database. Hence, these
are also important aspects that need to be considered in
implementing voice pathology detection algorithms.

D. SAMPLE SIZE

The data sample size is also varied widely in different works.
It is shown in the paper that some works have used a few
samples; however, other works have used a very large sam-
ples. For example, only a few voice samples (i.e., 20) are
used in [53]. On the other hand, large samples (i.e., 3750) are
analyzed in [82]. Although it is recommended to use large
samples for training and classification, there are no general
recommendations about the sample size.

E. VOICE FEATURES

Voice features namely MFCC, spectrogram, formants,
wavelets, LPC, PLP, RASTA-PLP, Jitter, Shimmer, GNR,
HNR, CHNR,NNR, ZCR, LFCC, and TEO have been used in
the research works. It is mostly recommended that frequency
domain voice features are more helpful for detecting voice
disability. However, some researchers also argue that time-
domain features are more helpful for detecting voice disabil-
ity [105]–[108].

F. CLASSIFICATION ALGORITHMS

Several classification algorithms have been used by the
researchers. Some of them include SVM, GMM, GMM-
UBM, SVM-Universal Background Mode (SVM-UBM),
HMM, ANN, DNN, CNN, PNN, DBN, GRNN, Bayesian
classifier, the K-mean clustering, the decision tree, and linear
discrimination. Also, other common tools used are HMM
tool, and PRAAT software. Among these algorithms, SVM
is the most popular classifier algorithm that has been widely
used in voice disability detection.

G. VOICED OR UNVOICED

Most voice disability detection algorithms use the voiced part
of speech samples. It is shown that the voiced part of speech
samples elicit the glottal structure. However, some works
suggest that unvoiced portions of speech are useful. Because

the pathological voices are noisy and hence they should be
used as samples to correlate the voice pathology.

H. VOICE PATHOLOGY

Most of the works, presented in the paper, are suitable for
detecting a particular voice pathology. Only a few works
deal with more than one types of voice disability. It is
also recommended that the algorithm development must tar-
get a particular voice disability, not all types of disability
simultaneously.

VIII. CONCLUSION

This paper presents a survey work on voice disability detec-
tion techniques available in the literature. It is shown in the
literature that voice disability detection is a very challenging
work, because the voice signal is very difficult to analyze.
The voice signals widely vary depending on the disability
type. There have been many algorithms reported in the lit-
erature. However, none of these algorithms is suitable for
detecting any specific type of voice disability. Hence, it is
very important to target a particular disability while designing
the algorithm. In this survey paper, it is also shown that choos-
ing the voice samples is also challenging. The researchers
should focus on voiced as well as unvoiced components of the
samples, since there is also evidence of pathology detection
in the unvoiced part of the speech samples. In the survey,
it is also found that a single letter, word or a full-sentence
with pause can be used as voice samples. While using a
full sentence some extra consideration should be given on
transitional words and pause. Though many databases are
available as voice sources, some researchers can also collect
samples according to their pathology detection criterion in a
controlled environment. But during sample collection, some
extra precautions should be taken by the researchers as is
mentioned in this survey paper. The selection of features
from the samples is the next challenge for the researchers.
From the survey, it is clear that most of the researchers are
more confident in using the features in the frequency domain
though few researchers also rely on time-domain measures
for a specific pathology. Using acoustic features is also not
uncommon. However, it is a long time measurement that can
be sensitive to the pathological status of the patient. Multiple
features analysis is also a common practice as seen in the
survey. Many classification algorithms have been used by
researchers. Among these classification algorithms, SVM is
considered the most suitable tool for voice disability detec-
tion. However, the SVM algorithm is not particularly suitable
to categorize levels of voice disability. To achieve good accu-
racy in classification, a large data set is required to train the
classifiers as well as to test the algorithms. Some researchers
also use different tools for classification as found in the
literature. Hence, the limitation arises when there is a need to
detect the level of voice disability. To design an efficient voice
pathology detection algorithm, researchers must focus on the
selection of proper voice samples and appropriate features
collection. Above all, they should focus on the design of a
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level based voice pathology detection algorithm suitable for
a distinct pathology.

APPENDIX

LIST OF ACRONYMS AND THEIR DEFINITIONS

AS Asperger syndrome
ASR Automatic speech recognition
APQ Amplitude perturbation quotient
ANN Artificial neural network
APR The ratio of aperiodic/periodic components

in cepstral energy
ACC Classification accuracy
AR-HMM Autoregressive higher-order HMM
ANOVA Analysis of variance
BH Bhattacharyya distance
CWT Continuous wavelet transform
CHNR Cepstral based HNR
CT Computerized tomography
CNN Convolutional neural network
CDBN Convolutional deep belief network
CEP Cepstral
CQ Glottal closing quotient
CSL Computerized speech laboratory
DWT Discrete wavelet transform
DFT Discrete Fourier transform
DCE Delta cepstral
DNRNN Dense Net Recurrent Neural Network
DBN Deep belief network
DH Degree of hoarseness
DPP Dissimilarities in the surfaces of the pitch

pulses
DUV Degree of unvoiceness
EE Emotional expression
EGG Electroglottogram
EER Equal error rate
FFT Fast Fourier transform
FFNN Feed forward neural network
GNR Glottal to noise ratio
GMM Gaussian mixture model
GMM-UBM GMM-Universal background model
GMM-SVM Gaussian Mixture Model Support Vector

Machine
GRNN Generalized regression neural network
GRBS Grade Roughness Breathiness Strain
GNN Graph neural network
HNR Harmonic to noise ratio
HTK Hidden Markov Model Tool Kit
HLAC Higher-Order Local Autocorrelation
IQ Intelligent quotient
IIR All-pole infinite impulse response
JIT Jitter
KL Kullback Leibler
KL-MCS Classical KL
LFCC Linear frequency cepstral coefficient
LPC Linear Predictive Coding

LP Linear predictor
LEMG Laryngeal electromyography
LDA Linear discriminant analysis
MFCC Mel-frequency Cepstral Coefficient
MRI Magnetic resonance imaging
MEEI Massachusetts Eye and Ear Infirmary
MLPNN Multilayer perceptron neural network
MAP Maximum a posterior probability algo-

rithm
MDVP Multi-dimensional Voice Program
NNR Noise energy to total energy ratio
NNE Normalized noise energy
NHR Noise- to- Harmonic ratio
PLP Perceptual linear prediction
PA Pitch amplitude
PCA Principal component analysis
PNN Probabilistic neural network
PDF Probability density function
PPQ Pitch perturbation
PECM Ratio of cepstral energies
RASTA-PLP Relative spectral transform – PLP
RAP Relative Average Perturbation
RNN Recurrent Neural Network
RBM Restricted Boltzmann machines
RBF Radial basis function
RBFNN Radial Basis Functional Neural Networks
SVD Saarbruecken Voice Database
SVM Support vector machine
SPI Soft phonation index
SIR Spectral Flatness of the Residue Signal

STFT Short time Fourier transform

TEO Teager energy operator

WCEP Weighted cepstral

WDCEP Weighted delta cepstral

ZCR Zero crossing rate
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