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Abstract

We consider fragments of first-order logic over finite words. In particu-
lar, we deal with first-order logic with a restricted number of variables and
with the lower levels of the alternation hierarchy. We use the algebraic ap-
proach to show decidability of expressibility within these fragments. As
a byproduct, we survey several characterizations of the respective frag-
ments. We give complete proofs for all characterizations and we provide
all necessary background. Some of the proofs seem to be new and simpler
than those which can be found elsewhere. We also give a proof of Simon’s
theorem on factorization forests restricted to aperiodic monoids because
this is simpler and sufficient for our purpose.

Keywords: First-order logic, monoids, factorization forests, piecewise-
testable languages

Preamble

There are many brilliant surveys on formal language theory [36, 41, 48, 85, 86].
Quite many surveys cover first-order and monadic second-order definability. But
there are also nuggets below. There are deep theorems on proper fragments of
first-order definability. The most prominent fragment is FO2; it is the class of
languages which are defined by first-order sentences which do not use more than
two names for variables. Although various characterizations are known for this
class, there seems to be little knowledge in a broad community. A reason for
this is that the proofs are spread over the literature and even in the survey [76]
many proofs are referred to the original literature which in turn is sometimes
quite difficult to read.

This is our starting point. We restrict our attention to fragments strictly
below first-order definability. We concentrate on algebraic and formal language
theoretic characterizations for those fragments where decidability results are
known, although we do not discuss complexity issues here. We give a clear
preference to full proofs rather than to state all results. In our proofs we tried
to be minimalistic. All technical concepts which are introduced are also used in
the proofs for the main results.

1 Introduction

Probably all courses on formal languages speak about regular languages and the
basic transformations between finite automata and rational expressions. How-
ever, very often the connection to logic and algebra is completely ignored al-
though highlights in formal language theory can be found here. The connection
between automata and logic goes back to Büchi. He used monadic second-order
logic (MSO) for describing properties of words. Hence, every sentence in MSO
defines a language by specifying the set of all words having this property. He
gave effective transformations of MSO sentences into finite automata and vice
versa [12]. This shows that definability in MSO yields exactly the class of regu-
lar languages. This complements Kleene’s characterization of regular languages
using rational expressions [30] and Myhill’s characterization in terms of finite
monoids [40].
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Many results on the interplay between regular languages seem to be less
known than they deserve. We focus on the world below first-order definability.
The focus is here, because we think that the least knowledge is here. When
considering subclasses of regular languages, it turns out that finite monoids are
a very advantageous point of view. For instance, Schützenberger has shown that
a language is star-free if and only if it is recognized by some finite and aperiodic
monoid [57]. Brzozowski and Simon as well as McNaughton have shown inde-
pendently that it is decidable whether a regular language is locally testable by
describing an algebraic counterpart [11, 38]. Simon has characterized piecewise-
testable languages in terms of finite J -trivial monoids [60]. Inspired by these
results, Eilenberg has proposed a general framework for such correspondences
between classes of regular languages and classes of finite monoids [21]. More
recent presentations of the algebraic approach in the study of regular languages
can be found in [1, 44] or the annex of [43].

McNaughton and Papert have considered definability in first-order logic for
finite words and they showed that this coincides with the class of star-free lan-
guages [39]. Together with Schützenberger’s Theorem this gives decidability of
the problem whether a regular language is definable in first-order logic. Kamp
has shown that every first-order sentence is equivalent to a formula in linear
temporal logic [29]. Since linear temporal logic can be considered as a fragment
of first-order logic, both mechanisms have the same expressive power. Every
modality in linear temporal logic can be defined in first-order logic with at
most three variables. Therefore, three variables are sufficient to express every
first-order definable language. A survey of these results can be bound in [20].

Within first-order logic, one can restrict several resources. The first limi-
tation we consider is the number of variables. Definability in first-order logic
with only two variables yields a class of languages for which even more dif-
ferent characterizations are known than for star-free languages. The alge-
braic counterpart is the class DA of finite monoids. The first letter D stands
for one of Green’s relations [25] and the second letter comes from Aperiodic.
Schützenberger has characterized DA by unambiguous polynomials which are
particular regular languages [58]. Later, several other characterizations were
added [23, 33, 53, 54, 59, 81, 90]. If we allow only one variable, the situa-
tion is rather trivial since all binary relation symbols are useless. Another re-
source of formulae is the number of quantifier alternations. Here, algebraic and
language theoretic characterizations of the so-called alternation hierarchy are
known [54, 84], but decidability is only known for a few small levels [3, 4, 46, 60].
Weis and Immerman have combined both restrictions, number of variables and
alternation depth. They initiated the research on the alternation hierarchy
within first-order logic with only two variables [90].

The aim of this survey is to present complete proofs for the decidability of
the expressibility within the following first-order fragments:

• First-order logic with only one variable, denoted FO1[<].

• First-order logic with two variables, denoted FO2[<].

• Existential first-order logic, denoted Σ1[<].

• The Boolean closure of Σ1[<], denoted BΣ1[<].

3



• Formulae with two blocks of quantifiers and starting with a block of exis-
tential quantifiers, denoted Σ2[<].

We stop here because we are not aware of any decidable fragment between Σ2[<]
and full first-order logic. The class Πn[<] consists of negations of formulae in
Σn[<]. The decidability of expressibility within Σ1[<] and within Σ2[<] yields
decidability for Π1[<] and Π2[<], respectively. The usual way to obtain the
above decidability results is to find algebraic characterizations in terms of prop-
erties of finite monoids. Deciding the expressibility then goes by verifying that
property of a canonical finite monoid which is effectively computable. We also
obtain some other (well-known) properties of the above fragments of first-order
logic, such as Schützenberger’s characterization of DA in terms of unambigu-
ous polynomials, which in turn corresponds to FO2[<]. We try to use as little
background in semigroup theory as possible. Some proofs are new and might be
considered as simplifications of the existing ones. An exception is the character-
ization of BΣ1[<] where we use the original proof of Straubing and Thérien [71].
We try to keep all sections as self-contained as possible. It should be possible
to read the proof of every characterization without the need to read (the hard
parts of) the characterizations of the other fragments. An important tool in
the study of the alternation hierarchy is the existence of factorization forests of
finite height for every homomorphism to a finite monoid [62].

2 Words, languages, logic, and finite monoids

Words and languages. A word means here a finite sequence over some finite
alphabet Γ. A word of length n is usually written as a product a1 · · · an with
ai ∈ Γ; it is also viewed as a labeled linear order over the set of positions
{1, . . . , n} with the natural linear order and labels λ(j) = aj for 1 ≤ j ≤ n. A
position labeled by a is also called a-position. The length of a word w is denoted
by |w|, and ε is the empty word. The alphabet alph(w) of a word w = a1 · · · an
is the set {a1, . . . , an} ⊆ Γ; a subword of a1 · · · an is here a word of the form
ai1 · · · ait where 1 ≤ i1 < · · · < it ≤ n. A factor of w is a word u such that we
can write w = puq. By Γ∗ we denote the set of all words. It is the free monoid
over Γ. Remember that a semigroup is a set equipped with a binary associative
operation and a monoid is a semigroup that contains a neutral element. If N
is a subset of a monoid M , then N∗ denotes the submonoid of M generated by
N . A language is a set of words, i.e., a subset of Γ∗. Essentially all languages in
this survey will be regular. Thus, they can be specified by a (non-deterministic)
finite automaton or equivalently by an MSO-formula.

Polynomials. An important class of regular languages in our setting are the
polynomials. By definition it is the smallest family containing all finite subsets
of Γ∗, all subsets of the form A∗ for A ⊆ Γ, and which is closed under finite
union and concatenation. In order to define also the degree of a polynomial we
use the following. A monomial of degree k is a language of the form

A∗0a1A
∗
1 · · · akA∗k with ai ∈ Γ and Ai ⊆ Γ.

A polynomial is a finite union of monomials. Its degree is given by the mini-
mal value which appears as a maximal degree of the monomials over all such
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descriptions. For example, Γ∗abΓ∗ is a monomial of degree 2. If Γ = {a, b},
then the complement is a polynomial of degree 1 since it is given as a∗ ∪ b∗ba∗.
But Γ∗ \Γ∗abΓ∗ is not a polynomial as soon as Γ contains at least three letters.
Indeed, consider (acb)∗. Assume this subset is contained in a polynomial of
degree k, then at least one factor acb in (acb)k+1 sits inside some factor of the
form A∗i , so we cannot insist to see the letter c; and therefore we cannot avoid
a factor ab in some words of the polynomial.

As we will see later unambiguous polynomials form a proper subclass. A
monomial is unambiguous if for all w ∈ A∗0a1A

∗
1 · · · akA∗k there exists exactly

one factorization w = w0a1w1 · · · akwk with wi ∈ A∗i . A language is an unam-
biguous polynomial if it is a finite disjoint union of unambiguous monomials. For
every alphabet, Γ∗a1Γ∗ · · · akΓ∗ is an unambiguous monomial. To see this let
Ai = Γ\{ai+1}, then we have Γ∗a1Γ∗ · · · akΓ∗ = A∗0a1A

∗
1 · · · akΓ∗. The language

{a, b}∗ ab {a, b}∗ is also an unambiguous monomial, because {a, b}∗ ab {a, b}∗ =
b∗ a a∗ b {a, b}∗ . However, for Γ = {a, b, c} the monomial Γ∗abΓ∗ is not unam-
biguous, since the complement is no polynomial, but the class of unambiguous
polynomials is closed under complementation, as we will see below.

First-order logic. In this paper we are interested in subclasses of first-order
definable languages. The syntax of first-order logic formulae FO[<] is built upon
atomic formulae of type

λ(x) = a or x < y or >.

Here, x and y are variables, a ∈ Γ is a letter, and > is a constant which means
true. If ϕ, ψ are first-order formulae, then

¬ϕ and ϕ ∨ ψ and ∃xϕ

are first-order formulae, too. We use the usual shorthands as ⊥ = ¬> meaning
false, ϕ ∧ ψ = ¬(¬ϕ ∨ ¬ψ), and ∀xϕ = ¬∃x¬ϕ. By FO[<] we denote the
set of all first-order formulae. The notation FOm[<] means the set of formulae
where at most m distinct variables occur. By definition, FOm[<] is closed under
Boolean operations.

Given ϕ ∈ FO[<], the semantics is defined as follows: The variables range
over positions in words and hence, the atomic formulae x < y and λ(x) = a have
a well-defined truth value. Boolean operations and quantification of variables
are as usual. A variable which is not quantified is called free. A sentence is a
formula in FO[<] without free variables. Let the free variables in ϕ be a subset
of {x1, . . . , xn}. If each xi is associated with a position ji of w, then (under this
interpretation) ϕ has a well-defined truth value, which is written as

w, j1, . . . , jn |= ϕ.

We identify formulae by semantic equivalence. Hence, if ϕ and ψ are for-
mulae with free variables from x1, . . . , xn, then we write ϕ = ψ as soon as
w, j1, . . . , jn |= ϕ ↔ ψ for all words w and all positions j1, . . . , jn of w. A
first-order sentence ϕ yields the language

L(ϕ) = {w ∈ Σ∗ | w |= ϕ} .

Languages of this form are called first-order definable.
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The quantifier depth of a formula is defined inductively. For atomic formulae
it is zero, for logical connectives it is the maximum over the subformulae, and
adding a quantifier in front increases the quantifier depth by one. For example,
the following formula in FO2[<] has quantifier depth three:

ϕ1 = ∃x :
(
λ(x) = a ∧ ∀y :

(
x ≤ y ∧ ∃x : (y ≤ x ∧ λ(x) = b)

))
Another important measure for the complexity of a formula is the number of
quantifier alternations. Remember that every formula is equivalent to a formula
in prenex normal form, i.e., to a formula where all quantifiers stand at the
beginning of the formula. For example, the above formula ϕ1 is equivalent to:

ϕ2 = ∃x∀y∃z :
(
λ(x) = a ∧ x ≤ y ∧ y ≤ z ∧ λ(z) = b

)
We can now count the number of blocks of different quantifiers (existential or
universal). This yields the fragments Σn[<] and Πn[<] of first-order formulae, in
which we allow n blocks of quantifiers. The formulae in Σn[<] start with a block
of existential quantifiers whereas those in Πn[<] start with a block of universal
quantifiers. Thus, ϕ2 ∈ Σ3[<]. It is possible that some of the quantifier blocks
are empty. This yields the inclusion

Σn[<] ∪Πn[<] ⊆ Σn+1[<] ∩Πn+1[<].

According to our convention to identify equivalent formulae, it makes sense to
write e.g.:

ϕ ∈ Σn[<] ⇔ ¬ϕ ∈ Πn[<].

The fragments Σn[<] and Πn[<] are both closed under conjunction and disjunc-
tion (but not under negation). The intersection Σn[<] ∩ Πn[<] is denoted by
∆n[<]. The fragment ∆n[<] is the largest class of formulae within Σn[<] and
within Πn[<] which is closed under Boolean operations. In the above example,
we have ϕ1 = ϕ2 ∈ Σ3[<]. On the other hand, ϕ1 is also equivalent to

ϕ3 = ∃x∃z∀y :
(
λ(x) = a ∧ x ≤ y ∧ y ≤ z ∧ λ(z) = b

)
and therefore we have ϕ1 = ϕ2 = ϕ3 ∈ FO2[<]∩Σ2[<]. Note that L(ϕ1) = aΓ∗b.

Example 1 The language Γ∗a1Γ∗ · · · akΓ∗ is definable with only two variables
x and y. This is best seen by induction. Define ϕ1(x) =

(
λ(x) = a1

)
and for

1 < i ≤ k let

ϕi(x) =
(
λ(x) = ai ∧ ∃y : y < x ∧ ϕi−1(y)

)
.

We obtain L
(
∃x : ϕk(x)

)
= Γ∗a1Γ∗ · · · akΓ∗. It is clear that ∃x : ϕk(x) is a Σ1[<]

sentence, but in prenex normal form we need more variables than two. 3

Finite monoids. A language L ⊆ Γ∗ is recognized by a monoid M if there
exists a homomorphism µ : Γ∗ → M such that L = µ−1(µ(L)). A language
L ⊆ Γ∗ is called recognizable, if it is recognized by a finite monoid. It is well-
known that recognizable languages are regular and vice versa.
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For every language L there exists a unique minimal monoid which recognizes
L which is given by the syntactic congruence ≡L. For words v, w ∈ Γ∗ we write
v ≡L w if and only if

∀p, q ∈ Γ∗ : pvq ∈ L ⇔ pwq ∈ L.

The congruence classes of ≡L constitute the syntactic monoid M(L) which is
Γ∗/ ≡L. The syntactic monoid M(L) recognizes the language L via the natural
homomorphism mapping a word w to its class [w]. A simple observation shows
that if a monoid M recognizes L, then M(L) is a homomorphic image of a
submonoid ofM . In terms of semigroup theory this means thatM(L) is a divisor
of every recognizing monoid for L. A language L is recognizable if and only if
its syntactic monoid M(L) is finite. Moreover, the syntactic monoid M(L) is
effectively computable as the transition monoid of the minimal automaton of L.
All syntactic monoids under consideration will be finite.

Next, we recall some notations. A monoid M is commutative if uv = vu for
all u, v ∈ M . An element e is idempotent if e2 = e and a monoid is idempotent
if all its elements are idempotent. For a finite monoid M with n elements let
ω = n!, then uω is idempotent for all u ∈ M ; and a simple calculation shows
that it is the unique idempotent positive power of u. In the following, we will
use the notation uω to denote this idempotent power in every finite monoid M
whatever the cardinality of M is. A monoid M is called aperiodic, if for all
u ∈ M there is some n ∈ N such that un+1 = un. A direct consequence is that
homomorphic images of aperiodic monoids are aperiodic. Note also that a finite
monoid M is aperiodic if and only if uω+1 = uω for all u ∈M .

Example 2 The syntactic monoid of the monomial Γ∗abΓ∗ is aperiodic and
can be represented by the following six elements: {1, a, b, c, ba, 0} where 0 cor-
responds to ab, and c appears only if |Γ| ≥ 3. The multiplication table is:

1 a b c ba 0
1 1 a b c ba 0
a a a 0 c 0 0
b b ba b b ba 0
c c a c c a 0
ba ba ba 0 b 0 0
0 0 0 0 0 0 0

Hence, this monoid is neither commutative nor idempotent. Later we will reuse
this example on several occasions. 3

Some of our proofs use Green’s relations. Let M be a monoid and let u, v ∈
M . Those of Green’s relations which play a role here are defined by:

u J v ⇔ MuM = MvM, u ≤J v ⇔ MuM ⊆MvM,

uR v ⇔ uM = vM, u ≤R v ⇔ uM ⊆ vM,

u L v ⇔ Mu = Mv, u ≤L v ⇔ Mu ⊆Mv.

The letter J refers to ideal whereas R and L refer to right- and left-ideal,
respectively. Let G ∈ {J ,R,L} be one of Green’s relations. We write u <G v if
u ≤G v but not u G v. It is very common to interpret Green’s relations in terms
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of factors, prefixes, or suffixes. For example, u ≤R v if and only if there exists
x ∈ M such that u = vx, i.e., v is a prefix of u. Therefore, uR v if and only if
u and v are prefixes of one another.

Example 3 We consider the syntactic monoid of Γ∗abΓ∗ as in Example 2. If
|Γ| ≥ 3, then ba R b since b = ba · c and ba = b · a. On the other hand, if
Γ = {a, b}, then ba <R b since there is no element x with b = ba · x. 3

3 One variable

The following theorem on the fragment FO1[<] is treated as a warm-up. It serves
as an archetype for most proofs of the characterizations of logical fragments
given in this survey. The first step is to show that if a language satisfies some
algebraic property, then it belongs to a particular class of languages; the second
step is to show that all languages within this class can be expressed by a formula
of the given fragment; and the third step consists in verifying the algebraic
property of the logical fragment. Usually, the first step is the most difficult one.
It often uses deep theorems from the theory of finite semigroups. In some cases
the second step gives a non-trivial normal form for formulae within the logical
fragment. Usually, the algebraic characterization has several benefits. The
most important one in the considered cases is that it yields decidability of the
membership problem for the logical fragments. The näıve approach to solve this
problem is to compute the syntactic monoid and verify the algebraic properties.
Another advantage of the algebraic characterization is that one obtains certain
closure properties of the logical fragments for free, such as closure under inverse
homomorphisms.

Theorem 1 Let L ⊆ Γ∗. The following assertions are equivalent:

1. L is recognized by some finite, idempotent, and commutative monoid M .

2. L is a Boolean combination of languages of the form A∗ with A ⊆ Γ.

3. L is definable in FO1[<].

Proof: “1⇒ 2”: Let µ : Γ∗ → M recognize L. If alph(u) = alph(v) =
{a1, . . . , an}, then µ(u) = µ(a1 · · · an) = µ(v) since M is idempotent and com-
mutative. Hence, u ∈ L if and only if v ∈ L. This shows that L is a finite
(disjoint) union of languages of the form

{w | alph(w) = A} = A∗ \

(⋃
a∈A

(A \ {a})∗
)
.

“2⇒ 3”: Note that FO1[<] is closed under Boolean operations. Thus, the
claim follows because A∗ for A ⊆ Γ can be expressed by the formula

∀x :
∨
a∈A

λ(x) = a.

We decompose “3⇒ 1” into “3⇒ 2⇒ 1”. An alternative approach would be
verifying idempotency and commutativity of the syntactic monoid.
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“3⇒ 2”: In the fragment FO1[<] the binary predicate < is useless since
x < x is always false. We can only use atomic formulae of the form λ(x) = a or
>. Thus, we can express only Boolean combinations of alphabetic conditions.

“2⇒ 1”: For every A ⊆ Γ the language A∗ is recognized by the two element
monoid {1, 0} which is idempotent and commutative. A Boolean combination
of languages of type A∗ is recognized by a direct product of {1, 0}, which is still
idempotent and commutative. 2

Note that A∗ = Γ∗\
(⋃

b6∈A Γ∗bΓ∗
)

and Γ∗bΓ∗ = Γ∗\(Γ\{b})∗. An alternate
proof of Theorem 1 using the emerging reformulation of “2” can be found in
[78].

4 Two variables and the variety DA

In this section we consider the fragment FO2[<] with only two different variables.
We will show that FO2[<] admits the class DA of finite monoids as an algebraic
characterization. The notation DA goes back to Schützenberger. It means that
regular D-classes are aperiodic semigroups. We do not intend to explain this
notation here, but we give an alternate algebraic definition in terms of equations.
We say that a finite monoid M belongs to DA, if for all u, v, w ∈M we have

(uvw)ω v (uvw)ω = (uvw)ω. (1)

Remember that uω denotes the idempotent element generated by u. Every
monoid M ∈ DA is aperiodic since equation (1) with u = w = 1 implies
vω+1 = vω for all v ∈M .

Remark 1 Sometimes DA is given by the identity (uv)ω v (uv)ω = (uv)ω. This
definition is asymmetric, but in fact equivalent to equation (1). The reason
is that if M satisfies one of the following equations, then it satisfies all three
equations.

1. (uv)ω v (uv)ω = (uv)ω.

2. (uv)ω u (uv)ω = (uv)ω.

3. (uvw)ω v (uvw)ω = (uvw)ω.

First, let us show that the first equation implies the second one. We may use
that wω+1 = wω for all w. Hence we obtain

(uv)ω = u (vu)ω v = u (vu)ω u (vu)ω v = (uv)ω u (uv)ω+1 = (uv)ω u (uv)ω.

Thus, by symmetry the first two equations are in fact equivalent. The third
equation implies the first one with w = 1. For the converse, let e = (uvw)ω

and assume that M satisfies both the first and second equation. Then the first
equation implies e = e(vw)e = (ev)(we). Thus, ev is a prefix of e and the second
equation now yields e = eω =

(
(ev)(we)

)ω = eω(ev)eω = e(ev)e = eve.

Schützenberger showed the correspondence between DA and unambiguous
polynomials [58]. As an intermediate step from DA to unambiguous polyno-
mials we will use the fragment TL[Xa,Ya] of temporal logic. The syntax is as
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follows. The sole atomic formula is >. We allow Boolean connectives and for
each letter a ∈ Γ we allow temporal operators Xa (neXt-a) and Ya (Yesterday-
a); hence if ϕ and ψ are formulae in TL[Xa,Ya] then so are ¬ϕ, ϕ∨ψ, Xa ϕ and
Ya ϕ. The operator depth of a formula ϕ ∈ TL[Xa,Ya] is the maximal number
of nested (unary) temporal operators. The semantics is as follows: > is true at
all positions, Boolean operations are as usual, and Xa ϕ is true at a position x if
at the first a-position y after x the formula ϕ holds. More formally, w, x |= Xa ϕ
is defined by:

∃y : (w, y |= ϕ) ∧ x < y ∧ λ(y) = a ∧ ∀z : x < z < y → λ(z) 6= a.

Note that w, x |= Xa ϕ does not hold, if there is no a-position after x. The
operator Ya is left-right symmetric to Xa: w, x |= Ya ϕ is true if at the last
a-position before x the formula ϕ holds. In order to define the truth value of
w |= ϕ for ϕ ∈ TL[Xa,Ya] we imagine that we start at a position outside the
word w. Now, w |= Xa ϕ is true if at the first a-position of w the formula ϕ holds
and symmetrically, w |= Ya ϕ is true if at the last a-position of w the formula
ϕ holds. A language L is definable in TL[Xa,Ya] if there exists ϕ ∈ TL[Xa,Ya]
such that L = L(ϕ) = {w ∈ Γ∗ | w |= ϕ}. For example, with ϕ = Xa ¬Xa> we
have L(ϕ) = {w0aw1 | a 6∈ alph(w0w1)} and the operator depth of ϕ is 2.

Every sequence of the operators Xa and Ya defines at most one position
in a word. In [90] this concept is called a ranker. More formally, a ranker is a
nonempty word over the alphabet {Xa,Ya | a ∈ Γ}. A ranker r can be identified
with the formula r> ∈ TL[Xa,Ya]. For instance, r = Ya Xb is identified with
r> = Ya Xb>. For a word u and a ranker r with u |= r> we define r(u) as
the position of u reached by the formula r>. Therefore, Ya Xb(u) is the first
b-position after the last a-position of u. If u 6|= r>, then r(u) is undefined. We
let Rn be the set of rankers of length at most n. For u ∈ Γ∗, we define Rn(u) =
{r(u) | r ∈ Rn, u |= r>} as the set of positions in u reachable by a ranker of
length at most n. This induces the factorization u = u0a1u1 · · · akuk with ai ∈ Γ
and ui ∈ Γ∗ such that the ai’s correspond exactly to the positions in Rn(u). We
call RWn(u) = a1 · · · ak the ranker word of u of depth n. Note that RWm(u) =
RWm(RWn(u)) for all m ≤ n. The language {v ∈ Γ∗ | RWn(v) = RWn(u)} is
called the ranker class of u of depth n. A ranker language is a finite union of
ranker classes.

Another fragment of temporal logic is TL[XF,YP] with two unary operators
XF (neXt Future) and YP (Yesterday Past), also sometimes called strict future
and strict past. The syntax is similar to TL[Xa,Ya] with the only difference that
for every a ∈ Γ we allow an atomic formula a. The semantics, apart from the
classical Boolean connectives, is as follows:

w, x |= a for a ∈ Γ ⇔ λ(x) = a,

w, x |= XFϕ ⇔ ∃y : x < y ∧ w, y |= ϕ,

w, x |= YPϕ ⇔ ∃y : y < x ∧ w, y |= ϕ.

Next, we define when w |= ϕ holds for ϕ ∈ TL[XF,YP]. We again imagine that
we start at a position outside the word w. For a ∈ Γ the truth value of w |= a is
false and w |= XFϕ is equivalent to w |= YPϕ which holds if and only if there is a
position x such that w, x |= ϕ. For example with ϕ = XF(a ∧ ¬XF a ∧ ¬YP a)
we again have L(ϕ) = {w0aw1 | a 6∈ alph(w0w1)}. Also, ψ = ¬XF> defines
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L(ψ) = {ε}. The operator depth of ϕ is 2 and the operator depth of ψ is 1. We
are now ready to state the main theorem of this section. As advocated in [76]
it is indeed a diamond in formal language theory.

Theorem 2 Let L ⊆ Γ∗. The following assertions are equivalent:

1. L is recognized by a monoid in DA.

2. L is definable in TL[Xa,Ya].

3. L is a ranker language.

4. L is an unambiguous polynomial.

5. L is definable in TL[XF,YP].

6. L is definable in FO2[<].

7. L is a polynomial and Γ∗ \ L is also a polynomial.

8. L is definable in ∆2[<].

The equivalence of DA and TL[Xa,Ya] has been shown in [32, 33] in the
more general context of Mazurkiewicz traces. A slightly modified result can
be found in [59] where so-called turtle automata are used to describe languages
whose syntactic monoid is in DA. A refinement of this characterization is used
to relate the number of quantifier alternations within FO2[<] with the number
of changes in the direction, see [90]. This yields the characterization of ranker
languages. The connection between DA and unambiguous polynomials is due
to Schützenberger [58]. An algebraic counterpart for the language operation of
taking finite unions of unambiguous products over more general classes of lan-
guages can be found in [53]. In [81] the relationship between DA and TL[XF,YP]
has been stated. The equivalence of TL[XF,YP] and FO2[<] does not only hold
on the language level. In [23], a syntactic conversion of FO2[<]-formulae with at
most one free variable into equivalent TL[XF,YP]-formulae has been given. The
characterizations by polynomials whose complement is also a polynomial and
by ∆2[<] follow from a characterization of the fragment Σ2[<] which we present
in Section 9, see Theorem 9. These two characterizations rely on [3, 4, 54, 84].
A survey dedicated to the class DA and its numerous appearances can be found
in [76]. See [73, 77] for FO2 with modular quantifiers, or [7, 31] for applications
of FO2 in circuit complexity, or [9] for FO2 over words with data. A decom-
position technique in terms of so-called block products for monoids in DA has
been introduced in [72].

Example 4 Consider the language L = Γ∗abΓ∗ ∩ Γ∗b. If |Γ| ≥ 3, then the
syntactic monoid of L is not in DA since for all n ≥ 1 we have (bacb)na(bacb)n ∈
L whereas (bacb)n 6∈ L. If Γ = {a, b} then we have L = Γ∗aΓ∗b which is easily
definable in TL[Xa,Ya] by Xa> ∧ Yb ¬Xa>. Using Theorem 2, we see that L
is definable in FO2[<] if and only if Γ = {a, b}. 3

To handle the class DA we need a little algebraic background which we
provide now. The following lemma states an important property of aperiodic
monoids.

Lemma 1 Let M be an aperiodic monoid and let u, v ∈ M . If u ≤L v and
v ≤R u, then u = v.

11



Proof: Since u ∈ Mu ⊆ Mv, there exists x ∈ M such that u = xv. Similarly,
there exists y ∈ M such that v = uy. We have u = xv = xuy = xωuyω =
xωuyω+1 = uy = v. 2

The crucial properties for monoids in DA are aperiodicity (as used in the
lemma just above) and the property as given in the next lemma. Of course,
there is also a symmetric statement using Green’s relation L.

Lemma 2 Let u, v, a ∈M ∈ DA. If u R uv and v ∈MaM , then u R uva.

Proof: We have uw ≤R u for all u,w ∈ M . Therefore, it suffices to show
u ≤R uva. Let x, y, z ∈M be such that v = xay and u = uvz. Then

uv = uv · zv = uv · zxay
= uv · (zxay)ω

= uv · (zxay)ωa(zxay)ω since M ∈ DA

= uva · (zxay)ω ∈ uvaM.

This shows uv ≤R uva and together with u R uv we conclude u ≤R uva. 2

Proposition 1 Let L ⊆ Γ∗. If L is recognized by a monoid in DA, then L is
definable in TL[Xa,Ya].

Proof: Let M ∈ DA and let µ : Γ∗ →M be a homomorphism with µ−1µ(L) =
L. We define an equivalence relation on words, called operator-depth-equivalence.
For n ≥ 0 and u, v ∈ Γ∗ we have u ≡n v if u and v satisfy exactly the same
formulae in TL[Xa,Ya] of operator depth at most n. Let n > 2 |M | · |Γ| and
u, v ∈ Γ∗ with u ≡n v. We show that this implies µ(u) = µ(v). From n ≥ 1
we conclude that alph(u) = alph(v). If alph(u) = ∅, then u = ε = v and hence
µ(u) = µ(v). Thus, we may assume alph(u) 6= ∅ and we perform an induction
on the size of this alphabet.

We can write u = u0a1u1 · · · akuk where ui ∈ Γ∗ and ai ∈ Γ such that:

• 1M R µ(u0),

• µ(u0a1u1 · · · ai) R µ(u0a1u1 · · · aiui) for all 1 ≤ i ≤ k,

• µ(u0a1u1 · · · aiui) >R µ(u0a1u1 · · · aiuiai+1) for all 0 ≤ i < k.

The idea is that exactly the letters ai are reducing the level of the R-classes.
Since there are at most |M | many R-classes, we have k < |M |. By Lemma 2 we
see µ(ui−1) /∈Mµ(ai)M for all 1 ≤ i ≤ k and hence ai 6∈ alph(ui−1). It follows

u |= Xa1 Xa2 . . .Xak
>

and the operator depth of this formula is k < |M | < n. From u ≡n v we
conclude that v = v0a1v1 · · · akvk with ai 6∈ alph(vi−1) for 1 ≤ i ≤ k. A position
x of u is within the factor ui for i < k if and only if u, x |= ϕi with

ϕi =
(
Yai Yai−1 . . .Ya1 >

)
∧
(
Xai+1 ¬Yai+1 Yai . . .Ya1 >

)
using the convention that for i = 0 the subformula Ya0 . . .Ya1 > is true. Sim-
ilarly, v, y |= ϕi if and only if y is a position within the factor vi of v. The
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operator depth of the formulae ϕi is at most |M |. As above, we can reach the
positions of ai and ai+1 with formulae of depth at most < |M |, and we can
use the formulae ϕi to ensure that we stay inside the factor ui (or vi, respec-
tively). With this relativization technique, u ≡n v implies ui ≡n−2|M | vi for all
0 ≤ i < k. By induction on the size of the alphabet we obtain µ(ui) = µ(vi) for
all 0 ≤ i < k (we cannot use the induction hypothesis for i = k since we may
have alph(uk) = Γ). Thus

µ(v) ≤R µ(v0a1 · · · vk−1ak) = µ(u0a1 · · ·uk−1ak) R µ(u).

This means µ(v) ≤R µ(u). Symmetrically, by starting with a factorization of v
with respect to Green’s L-relation we see that µ(u) ≤L µ(v). From Lemma 1
we conclude µ(u) = µ(v).

Up to equivalence there are only finitely many formulae of operator depth
≤ n. By specifying which of them hold and which of them do not hold we see
that each ≡n-class can be expressed by a TL[Xa,Ya] formula. Now, we have
seen that u ≡n v implies µ(u) = µ(v). Hence, for all p ∈M the language µ−1(p)
is a finite union of ≡n-classes. We deduce that µ−1(p) can be expressed by a
TL[Xa,Ya] formula. The proposition follows since L =

⋃
p∈µ(L) µ

−1(p). 2

Extending the definition of unambiguous monomials, we say that a product
L = L0a1L1 · · · akLk with ai ∈ Γ and Li ⊆ Γ∗ is unambiguous if for all w ∈ L
there exists a unique factorization w = w0a1w1 · · · akwk with wi ∈ Li.

Lemma 3

1. Let L = L0a1L1 · · · akLk be an unambiguous product of unambiguous poly-
nomials L0, . . . , Lk. Then L is also an unambiguous polynomial.

2. Let A,B ⊆ Γ. Then [A,B] = {w | A ⊆ alph(w) ⊆ B} is an unambiguous
polynomial.

Proof: “1”: If each Li is an unambiguous monomial, then L is also an unam-
biguous monomial. For the general case, we can write each Li =

⋃
j Li,j as a

finite disjoint union of unambiguous monomials Li,j . Then,

L =
⋃
L0,j0a1 · · · akLk,jk .

Since the product L0a1L1 · · · akLk is unambiguous, we see that this union is in
fact a disjoint union. Moreover, each product L0,j0a1 · · · akLk,jk is unambiguous,
hence it is an unambiguous monomial.

“2”: For A = ∅ we obtain [A,B] = B∗. Otherwise we can write

[A,B] =
⋃
a∈A

(B \A)∗a[A \ {a} , B].

This is a disjoint union. Every language (B\A)∗a[A\{a} , B] is an unambiguous
polynomial using “1” and induction on the size of A. 2

Proposition 2 Every ranker class is an unambiguous polynomial.
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Proof: We fix n ∈ N. Let u ∈ Γ∗ and consider the factorization u = u0a1u1 · · · akuk
with ai ∈ Γ and ui ∈ Γ∗ such that the ai’s correspond exactly to the positions
in u reachable by a ranker of length at most n. Let L(u) = L0a1L1 · · · akLk
with Li = {w | alph(w) = alph(ui)}.

Let v ∈ L(u) and write v = v0a1v1 · · · akvk with alph(vi) = alph(ui). By
induction on the length of a ranker, we see that RWn(v) = RWn(u). In par-
ticular, the above factorization of v is unique and hence, the product L(u) =
L0a1L1 · · · akLk is unambiguous. Furthermore, it follows that L(u) = L(v).
Therefore, the ranker class of u of depth n is the finite disjoint union of lan-
guages of the form L(v) with RWn(v) = RWn(u). By Lemma 3 it follows that
the ranker class of u of depth n is an unambiguous polynomial as desired. 2

Proposition 3 Every unambiguous monomial L = A∗0a1A
∗
1 · · · akA∗k is defin-

able in TL[XF,YP].

Proof: We perform an induction on k. For k = 0 the result is obvious, hence
we may assume k ≥ 1. Since the product L = A∗0a1A

∗
1 · · · akA∗k is unambiguous,

we cannot have all letters a1, . . . , ak contained in A0 ∩ Ak, because otherwise
(a1 · · · ak)2 would admit two different factorizations. Thus, by symmetry we
may assume that for some i we have ai 6∈ A0. Every word w ∈ L can be written
as w = w′aiw

′′ with ai 6∈ alph(w′). There are two cases. The first one is that
the left-most ai in w is one of the aj ’s, i.e., for some 1 ≤ j ≤ i we have:

w′ ∈ A∗0a1A
∗
1 · · · aj−1A

∗
j−1, ai = aj , w′′ ∈ A∗jaj+1A

∗
j+1 · · · akA∗k.

The other case is if the first ai in w is not one of the aj ’s, i.e., for some 0 ≤ j < i
we have:

w′ ∈ A∗0a1A
∗
1 · · · ajA∗j , ai ∈ Aj , w′′ ∈ A∗jaj+1A

∗
j+1 · · · akA∗k.

Since ai 6∈ A0, we even have 1 ≤ j < i ≤ k in the second case. Note that
the four expressions are unambiguous, because L is unambiguous. Thus, all
four products above have shorter unambiguous expressions than L, and, by
induction, we have formulae in TL[XF,YP] describing them. Obviously, we can
also express intersections with languages of type B∗ for B ⊆ Γ. So there is
a finite list of formulae in TL[XF,YP] such that for each w ∈ L there are ϕ
and ψ from the list and a letter a with w ∈ L(ϕ)aL(ψ) ⊆ L and L(ϕ) ⊆
(Γ \ {a})∗. Now, the first a-position in each w ∈ L(ϕ)aL(ψ) is uniquely defined
by ξa = a ∧ ¬YP a. Using relativization techniques, we now define formulae
ϕ<a, ψ>a ∈ TL[XF,YP] such that

L(ϕ) aL(ψ) = L(ϕ<a ∧ XF a ∧ ψ>a).

We give the inductive construction for ϕ<a. The other one for ψ>a is symmetric.

b<a = b, (α ∨ β)<a = α<a ∨ β<a, (XFα)<a = XF(α<a ∧ XF ξa),
><a = >, (¬α)<a = ¬(α<a), (YPα)<a = YP(α<a ∧ XF ξa).

The formula for L becomes a disjunction of the formulae ϕ<a ∧ XF a ∧ ψ>a. 2

Proposition 4 Every FO2[<]-definable language is recognized by a monoid in
DA.
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Proof: It suffices to show that the syntactic monoid of an FO2[<]-definable
language satisfies the defining equation (uvw)ωv(uvw)ω = (uvw)ω of DA. Since
alph(v) ⊆ alph(uvw), it is enough to prove Lemma 4. 2

Lemma 4 Let n ≥ 1 and ϕ be a sentence in FO2[<] of quantifier depth at most
n. Let p, q, u, v ∈ Γ∗ and alph(v) ⊆ alph(u). Then we have punvunq |= ϕ if and
only if pu2nq |= ϕ.

Proof: The assertion is trivial for v = ε. In particular, we may assume u 6= ε.
In the proof we identify positions of w′ = pu2nq with a subset of the positions of
w = punvunq in a natural way. The positions of w′ cover inside w the common
prefix pun and the common suffix unq. Hence, we consider positions x, y, x′, y′

in w only, but x′, y′ are never taken from the middle factor v. It follows that x′

and y′ are positions in w′. We say that a tuple (x, y, x′, y′) is legal if

neither x′ nor y′ lies in v,

x = y ⇔ x′ = y′,

x < y ⇔ x′ < y′,

λ(x) = λ(x′) and λ(y) = λ(y′).

For n ≥ k ≥ 0 we let Bk be a ball around v. More precisely, we define Bk by
set of positions of the middle factor ukvuk of w. Below, we depict the positions
in Bk and Bk+1:

w = pun−k−1 u

Bk︷ ︸︸ ︷
uk v uk u︸ ︷︷ ︸
Bk+1

un−k−1q.

We say that (x, y, x′, y′) is k-close, if it is legal and if in addition the following
conditions hold:

x = x′ or x, x′ ∈ Bk,
y = y′ or y, y′ ∈ Bk.

For example, let z be the first position in w. Then (z, z, z, z) is 0-close, because
it is legal due to n ≥ 1 (otherwise pun could be empty).

We are going to prove the following claim by induction on k: If (x, y, x′, y′)
is k-close and if ϕ(x, y) is an FO2[<]-formula with quantifier depth at most n−k
then

w, x, y |= ϕ(x, y) ⇔ w′, x′, y′ |= ϕ(x′, y′).

For k = n the claim holds since (x, y, x′, y′) is legal and ϕ(x, y) is a Boolean
combination of atomic formulae. Let now k < n. Without restriction we can
assume that ϕ(x, y) = ∃xψ(x, y). Suppose w, x, y |= ϕ(x, y). Then there exists
a position x1 in w such that w, x1, y |= ψ(x1, y). If x1 = y, then we can
choose x′1 = y′ and obtain a (k + 1)-close tuple (x1, y, x

′
1, y
′) and by induction,

w′, x′1, y
′ |= ψ(x′1, y

′). Therefore, w′, x′, y′ |= ϕ(x′, y′).
If x1 < y and x1 6∈ Bk, then we can choose x′1 = x1 so that x′1 < y′ and

we obtain a (k + 1)-close tuple (x1, y, x
′
1, y
′). If x1 < y and x1 ∈ Bk, then we

can choose x′1 to be the first position in Bk+1 with label λ(x1). This is possible
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since alph(v) ⊆ alph(u). Note that x′1 ∈ Bk+1 \ Bk, because u is nonempty.
Hence, x′1 < y′ and again, (x1, y, x

′
1, y
′) is (k + 1)-close. As before, we see

that w′, x′, y′ |= ϕ(x′, y′). The case x1 > y is symmetric to the case x1 < y.
Therefore, the implication w, x, y |= ϕ(x, y) ⇒ w′, x′, y′ |= ϕ(x′, y′) holds. The
converse w′, x′, y′ |= ϕ(x′, y′) ⇒ w, x, y |= ϕ(x, y) is similar, but slightly easier
since it does not rely on alph(v) ⊆ alph(u).

This proves the lemma, since we can apply the above claim where k = 0 and
x = y = x′ = y′ is the first position of w. 2

Proof (Theorem 2): The implication “1⇒ 2” is Proposition 1. The implication
“2⇒ 3” follows from the following equivalences of formulae in TL[Xa,Ya]: The
formula Xa ¬ϕ is equivalent to Xa> ∧ ¬Xa ϕ. Also, Xa(ϕ ∨ ψ) and Xa(ϕ ∧ ψ)
are equivalent to Xa ϕ ∨ Xa ψ and Xa ϕ ∧ Xa ψ, respectively. Symmetric equiva-
lences hold for Ya. Hence, any formula ϕ ∈ TL[Xa,Ya] with operator depth at
most n is equivalent to a Boolean combination of rankers of length at most n.
Therefore, RWn(u) = RWn(v) implies that u and v satisfy the same formulae
with operator depth at most n. Hence, L(ϕ) is a union of ranker classes of
depth n. The direction “3⇒ 4” follows from Proposition 2, since by increasing
the depth of the rankers, we can assume that every ranker language is a disjoint
union of ranker classes. The direction “4⇒ 5” follows from Proposition 3 and
the implication “5⇒ 6” is trivial since every TL[XF,YP]-formula can be imme-
diately translated into an FO2[<]-formula. Finally, “6⇒ 1” is Proposition 4.
The characterizations “7” and “8” are postponed to Theorem 9. 2

5 Ordered monoids

If a monoid M recognizes a language L ⊆ Γ∗, then M recognizes its comple-
ment Γ∗ \ L, too. Therefore, this notion of recognition by finite monoids is
inadequate for language classes which are not closed under complementation.
Such a language class is given for example by polynomials. The idea of Pin [46]
to cope with classes which are not closed under complementation is to consider
ordered monoids instead; and to refine the notion of recognizability. A pair
(M,≤) forms an ordered monoid if M is a monoid and ≤ is a partial order on
M such that for all u, v, v′, w ∈M we have

v ≤ v′ implies uvw ≤ uv′w,

i.e., ≤ is compatible with multiplication. In particular, (M,=) is an ordered
monoid. An ordered monoid comes with a natural closure operator. A subset
D ⊆ M is called downward closed, if q ≤ p ∈ D implies q ∈ D. For D ⊆ M
we denote by ↓D the smallest downward closed subset containing D. We say
that a language L ⊆ Γ∗ is recognized by an ordered monoid (M,≤) via a
homomorphism µ : Γ∗ → M , if L is the inverse image of a downward closed
subset, i.e.,

L = µ−1(↓µ(L)).

Requiring that L is the inverse image of a downward closed subset, restricts the
class of languages which can be recognized by an ordered monoid.
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The notion is very natural in our context, because the syntactic monoid of
a language L has a canonical order. For words u and v one defines u ≤L v by:

∀p, q ∈ Γ∗ : pvq ∈ L ⇒ puq ∈ L.

The preorder ≤L over Γ∗ induces a partial order over the syntactic monoid M(L)
such that (M(L),≤L) forms an ordered monoid called the syntactic ordered
monoid of L. Note that the image of L under its syntactic homomorphism is
downward closed in (M(L),≤L). The syntactic ordered monoid is the smallest
ordered monoid which recognizes L. Actually, if L is recognized by any ordered
monoid (M,≤) via a homomorphism µ, then µ induces a monotone surjective
homomorphism from (µ(Γ∗),≤) onto (M(L),≤L). Finally note that if (M,≤)
recognizes L, then (M,≥) recognizes Γ∗ \ L.

Let us consider again a polynomial L of degree k and words u, v with
alph(v) ⊆ alph(u). Then for all p, q we have that puk+1q ∈ L implies that
pukvukq ∈ L, too. Thus, the syntactic ordered monoid of L satisfies an equa-
tion of type uωvuω ≤L uω as soon as some alphabetic constraints are satisfied.
We will make this precise later, but we can see it on an example.

Example 5 As we have seen in Example 2, the syntactic monoid of Γ∗abΓ∗

can be represented by the elements {1, a, b, c, ba, 0}. The order relation of the
syntactic ordered monoid is depicted in the following diagram:

c

1

a b

ba

0

The element 0 is the minimal element and c is the maximal element. 3

6 Existential first-order logic

A language L ⊆ Γ∗ is called a simple polynomial, if it is a finite union of
languages of the form Γ∗a1Γ∗ · · · akΓ∗. The aim of this section is to prove the
following characterization of the fragment Σ1[<].

Theorem 3 Let L ⊆ Γ∗. Then the following assertions are equivalent:

1. L is recognized by a finite ordered monoid (M,≤) which satisfies u ≤ 1 for
all u ∈M .

2. L is regular and for all p, q, w ∈ Γ∗ with pq ∈ L we have pwq ∈ L, too.

3. L is a simple polynomial.

4. L is definable in the existential first-order logic Σ1[<].
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Property “2” is a reformulation of “1” in terms of the syntactic ordered
monoid. The equivalence of “1” and “3” is due to Pin [46] and the correspon-
dence of simple polynomials and Σ1[<] is due to Thomas [84]. In fact, they have
given a more general connection between the fragments Σn[<] and a language
operation called the polynomial closure, see [17, 37, 66, 67, 79, 87] for hierarchies
involving this language operation. A profound relation between the polynomial
closure and an algebraic operation called Mal’cev product has been shown by
Pin and Weil [54]. The equivalence of “1” and “3” can be seen as a special case
of this relation. From Theorem 3 together with Example 1 it follows that every
Σ1[<]-definable language is also FO2[<]-definable.

Proof (Theorem 3): The equivalence “1⇔ 2” is trivial. To see “2⇒ 3”, fix
any automaton which accepts the regular language L. Assume that it has n
states, and let a1 · · · ak be the label of a path that visits every state at most
once from some initial to a final state. We have k ≤ n, and it is clear that
the simple monomial Γ∗a1Γ∗ · · · akΓ∗ is a subset of L. Hence L is a finite
union of simple monomials of degree at most n. For “3⇒ 4” note that Σ1[<] is
closed under disjunction. It therefore suffices to show that every monomial of
the form Γ∗a1Γ∗ · · · akΓ∗ is definable in Σ1[<], which is obvious. For “4⇒ 2”
let ϕ be a propositional formula with free variables x1, . . . , xk. Suppose pq |=
∃x1 . . . ∃xk ϕ. We have to show that pwq |= ∃x1 . . . ∃xk ϕ for all w ∈ Γ∗, but
this is trivial again, because we can choose the k positions inside p and q. 2

Remark 2 The property that L is regular in assertion “2” of Theorem 3 is
redundant. Indeed, let L be any subset of Γ∗, then Higman’s Lemma [27] says
that there is a finite list of words a1 · · · ak ∈ L such that every other word
w ∈ L contains one of these a1 · · · ak as a subword. Therefore, if pq ∈ L implies
pwq ∈ L for all p, q, w ∈ Γ∗, then L is a simple polynomial.

Phrased differently, Higman’s Lemma says that the subword ordering is a
well-quasi-ordering. A short proof of this fact can be found in [56].

7 The Boolean closure of existential first-order
logic

The first-order fragment BΣn[<] consists of all Boolean combinations of Σn[<]-
formulae. In particular, BΣn[<] is closed under complementation. It follows that
BΣn[<] = BΠn[<] where BΠn[<] contains all Boolean combinations of Πn[<]-
formulae. In this section u ∼k v means for words u and v that u and v have
exactly the same subwords of length up to k. Note that ∼k is a congruence of
finite index (for every finite alphabet). A language is called piecewise-testable,
if it is a union of ∼k-classes for some k ∈ N. An easy reflection shows that
piecewise-testable languages can be defined in the first-order fragment BΣ1[<].

It turns out that there is also an algebraic characterization by so-called
J -trivial monoids, known as Simon’s Theorem [60]. A monoid M is called J -
trivial, if MuM = MvM (i.e., u J v in terms of Green’s relation) implies u = v
for all u, v ∈ M . The aim of this section is to provide the following characteri-
zation of the Boolean closure of existentially first-order definable languages, i.e.,
of BΣ1[<].

Theorem 4 (Simon) Let L ⊆ Γ∗. The following assertions are equivalent:
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1. L is recognized by some finite and J -trivial monoid.

2. L is piecewise-testable.

3. L is definable in BΣ1[<].

The direction from “2” to “3” is trivial. We will see that the direction from
“3” to “1” is actually a corollary of Theorem 3. Hence the key point in Simon’s
Theorem is the direction from “1” to “2”. We concentrate on this. First, we
consider J -trivial monoids in order to prove a result of Straubing and Thérien
[71]. Our proof follows the original proof in [71].

Example 6 In Example 2 we have considered the syntactic monoids {1, a, b, ba, 0}
and {1, a, b, c, ba, 0} of L = Γ∗abΓ∗. A direct calculation shows that the first one
is J -trivial, whereas the larger one is not, because a, b, ba, c are J -equivalent.
Therefore, L is definable in BΣ1[<] if and only if |Γ| = {a, b}. 3

All finite J -trivial monoids are aperiodic. Actually, they are in DA. In
every finite monoid we have:

(uv)ω = (uv)ω(uv)ω ≤J (uv)ωu ≤J (uv)ω.

Therefore, (uv)ωu and (uv)ω are J -equivalent (in fact, they are R-equivalent).
Now, if M is a finite J -trivial monoid, we have (uv)ωu = (uv)ω for all u, v ∈M .
Using Remark 1, we conclude M ∈ DA.

The infinite monoid N = (N,+, 0) is J -trivial, whereas its quotient Z/2Z is
not J -trivial since it is a non-trivial group. Hence, a homomorphic image of a
J -trivial monoid needs not to be J -trivial. Again, finiteness is crucial. See the
next lemma for some basic properties of J -trivial monoids.

Lemma 5 Let M be a finite J -trivial monoid.

1. The product over all elements of M is a zero-element in M .

2. Let µ : M → N be a surjective homomorphism onto a monoid N . Then
N is J -trivial.

Proof: “1”: Let u be a product over all elements of M . Then u ≤J y for all
y ∈ M . In particular, for all x ∈ M we have u ≤J xu and we deduce that
u J xu, which implies u = xu since M is J -trivial. Similarly, u = ux for all
x ∈M and we have shown that u is a zero.

“2”: Let u, v ∈ M and suppose µ(u) and µ(v) are J -equivalent in N . We
have to show µ(u) = µ(v). There exist x, y, x, y ∈ M with µ(xuy) = µ(v) and
µ(xvv) = µ(u). Define u′ = (xx)ωu(yy)ω and v′ = xu′y. Now, u′ and v′ are
J -equivalent in M . Since M is J -trivial, we conclude u′ = v′. By construction,
µ(u) = µ(xxuyy) = µ(u′) and therefore µ(u) = µ(u′) = µ(v′) = µ(v). 2

We obtain a family of examples of J -trivial monoids by the family of ordered
monoids (M,≤) where 1 is the greatest element. These monoids are always J -
trivial, because pvq ≤ 1 · v · 1 = v shows u ≤ v if u ≤J v. Hence, u J v implies
u = v. The following theorem clarifies the relation between J -trivial monoids
and ordered monoids of the above type.

Theorem 5 (Straubing and Thérien) A finite monoid M is J -trivial if and
only if it is a homomorphic image of a finite ordered monoid (K,≤) satisfying
u ≤ 1 for all u ∈ K.
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Proof: Suppose (K,≤) satisfies u ≤ 1 for all u ∈ K, then K is J -trivial as
explained above. By Lemma 5, all homomorphic images of a J -trivial monoid
are J -trivial. Therefore we have to show that a finite J -trivial monoid is a
quotient monoid (i.e., homomorphic image) of a finite ordered monoid (K,≤)
satisfying u ≤ 1.

Thus, let M be finite and J -trivial. We construct the finite ordered monoid
(K,≤) inductively on the size of M . Consider the natural homomorphism

η : M →
∏
x 6=0

M/MxM

where M/MxM = M \MxM ∪ {MxM} denotes the Rees-quotient of M by
the ideal MxM , i.e., all elements in MxM are identified with the new element
MxM . Note that if |MxM | = 1 then x = 0, hence |M/MxM | < |M | if x 6= 0.
If η is injective, we are done by induction. So assume, there are m,n ∈M with
η(m) = η(n) and m 6= n. We may assume n 6= 0. We show that this implies
m = 0. Indeed, by contradiction assume m 6= 0 as well. Then m ∈ MnM and
n ∈ MmM because η(m) = η(n). But M is J -trivial, hence m = n, which
contradicts the assumption. Hence m = 0 and thus n ∈

⋂
x 6=0MxM . In fact,

we obtain:
{0, n} =

⋂
x 6=0

MxM.

So the ideal N =
⋂
x 6=0MxM has exactly two elements.

Next, assume n2 = n. We show that this implies that M\{0} is a submonoid.
Let x, y ∈ M \ {0}, we have to show that the product xy is still in M \ {0}.
Since n ∈ MxM ∩MyM , we have n = pxq = syt for some p, q, s, t ∈ M and
hence

n = n2 = pxqpxq ≤J pxqpx ≤J pxq = n.

Since M is J -trivial, we obtain n = pxqpx ∈ Mx. By symmetry we also have
n = ytsyt ∈ yM . But this implies n = n2 ∈ MxyM and therefore xy 6= 0.
Now, M \ {0} is a submonoid, and by induction, it is a quotient of some finite
ordered monoid (K,≤) satisfying u ≤ 1. We may add a new zero element to K
as a least element and we are done.

Hence from now on, N = {0, n} =
⋂
x 6=0MxM with 0 6= n and n2 = 0 since

n2 ∈ N \ {n}. In particular, 0, n, and 1 are three different elements. We choose
a finite set Γ and a surjective homomorphism

µ : Γ∗ →M.

We let M̃ = M/N be the quotient monoid and

µ̃ : Γ∗ →M → M̃.

Remember that we realize M̃ as (M \N)∪{N}. Thus, µ̃(u) = µ̃(v) 6= N implies
µ(u) = µ(v) for all words u, v ∈ Γ∗.

By induction, M̃ is a quotient of some finite ordered monoid (K̃,�) satisfying
u � 1. Let κ : Γ∗ → K̃ be a lifting of µ̃. Thus, κ(u) = κ(v) implies µ̃(u) =
µ̃(v) for all words u, v ∈ Γ∗. Moreover, we may assume that κ is a surjective
homomorphism. We let Γε = Γ ∪ {ε}. Thus, Γε ⊆ Γ∗. For a, b ∈ Γε we write
a � b, if either a = b or b = ε.
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The crucial step comes now. We are considering the Birget-Rhodes con-
struction. For each word u ∈ Γ∗ we define

ϕ(u) =
{

(κ(p), a, κ(q)) ∈ K̃ × Γε × K̃
∣∣∣ u = paq

}
.

Note that ϕ(u) is never empty and that there are only finitely many different val-
ues for ϕ(u). We introduce a natural preorder ≤ on the finite set {ϕ(u) | u ∈ Γ∗}
such that ϕ(u) ≤ ϕ(u′) if and only if

∀(x, a, y) ∈ ϕ(u)∃(x′, a′, y′) ∈ ϕ(u′) : x � x′ ∧ a � a′ ∧ y � y′.

We have the following facts for all words u, u′, v and w:

1. ϕ(u) ≤ ϕ(ε),

2. ϕ(u) ≤ ϕ(u′) implies κ(u) � κ(u′),

3. ϕ(u) ≤ ϕ(u′) implies ϕ(vuw) ≤ ϕ(vu′w).

Define a relation ≈ ⊆ Γ∗×Γ∗ such that u ≈ u′ if and only if both ϕ(u) ≤ ϕ(u′)
and ϕ(u′) ≤ ϕ(u). Then ≈ is a congruence due to 3. The preorder ≤ induces
an order on the finite quotient monoid

K = Γ∗/ ≈ .

Thus, (K,≤) is an ordered monoid satisfying u ≤ 1 for all u ∈ K due to 1. The
homomorphism κ : Γ∗ → K̃ induces a surjective homomorphism from K to K̃
which respects the ordering due to 2. It is clear that µ̃ : Γ∗ → M̃ factorizes
through K. We want to show that µ : Γ∗ → M factorizes through K. We fix
words u, u′ ∈ Γ∗ such that u ≈ u′. We have to show that µ(u) = µ(u′). We
know µ̃(u) = µ̃(u′). Hence, if µ̃(u′) 6= N we are done. If µ(u) = 0 and µ(u′) = 0,
then we are done, too. Hence we may assume that µ(u) = n and we have to
show that µ(u′) = n, too.

Consider the factorization u = paq with µ(p) 6∈ N and µ(pa) = n, where
a ∈ Γ is a letter. We cannot have µ(q) ∈ N , because this would mean µ(u) =
n2 = 0, but n 6= 0. Hence there is (κ(p), a, κ(q)) ∈ ϕ(u) with µ(p) 6= n 6= µ(q).
Choose some maximal triple (x, b, y) ∈ ϕ(u) such that κ(p) � x and a � b and
κ(q) � y. Because ϕ(u) ≤ ϕ(u′) ≤ ϕ(u) there are triples (x′, b′, y′) ∈ ϕ(u′) and
(x′′, b′′, y′′) ∈ ϕ(u) with

x � x′ � x′′ ∧ b � b′ � b′′ ∧ y � y′ � y′′.

Due to the maximality of (x, b, y) we obtain

x = x′ ∧ b = b′ ∧ y = y′.

We choose factorizations u = rbs and u′ = r′bs′ with κ(r) = κ(r′) = x and
κ(s) = κ(s′) = y. Note that this implies µ̃(r) = µ̃(r′) and µ̃(s) = µ̃(s′). Since
µ(u) = µ(r)µ(b)µ(s) and µ(u′) = µ(r′)µ(b)µ(s′), it is enough to show that both
µ̃(r) 6= N and µ̃(s) 6= N . The equalities µ(r) = µ(r′) and µ(s) = µ(s′) then
follow.

By symmetry it is enough to show µ̃(r) 6= N . There are two cases, either r
is a prefix of p or vice versa. If r is a prefix of p, then we cannot have µ(r) ∈ N ,
because µ(p) 6∈ N = NM . Thus, we can assume that p is a prefix of r. This
implies κ(r) � κ(p), but κ(p) � x = κ(r) and hence κ(r) = κ(p). Now, µ(p) 6∈ N
implies µ̃(p) 6= N and therefore µ̃(r) 6= N as desired. 2
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Theorem 6 (Simon) Every language that is recognized by some finite J -trivial
monoid is piecewise-testable.

Proof: Let µ : Γ∗ → M be a homomorphism such that M is a finite and J -
trivial monoid. By Theorem 5 we can assume that there exists a partial order
relation ≤ on M such that (M,≤) is an ordered monoid satisfying p ≤ 1 for all
p ∈ M . By Theorem 3 we know that µ−1(↓p) is a simple polynomial, so it is
piecewise-testable. Thus, µ−1(p) = µ−1(↓p)\

⋃
q<p µ

−1(↓q) is piecewise-testable,
too. 2

Proof (Theorem 4): The direction “1⇒ 2” is exactly Theorem 6.
“2⇒ 3”: Every ∼k-class is uniquely described by the set of words of length

≤ k that occur as a subword and by those that do not occur as a subword.
Since BΣ1[<] is by definition closed under Boolean operations, it suffices to
show that there exists a Σ1[<] formula that describes the set of words which
contain the subword a1 · · · ak, which is obvious and has also been used in the
proof of Theorem 3.

“3⇒ 1”: By Theorem 3, every language definable in Σ1[<] is recognized by
a finite ordered monoid (M,≤) satisfying u ≤ 1. By Theorem 5, M is J -trivial.
Hence, any Boolean combination of Σ1[<] languages can be recognized by a
direct product of J -trivial monoids, which is J -trivial itself. 2

8 Factorization forests and polynomials

Let M be a finite monoid. A factorization forest of a homomorphism µ : Γ∗ →
M is a function d which maps every word w with length |w| ≥ 2 to a factorization
d(w) = (w1, . . . , wn) of w = w1 · · ·wn with |wi| < |w| for all i and such that
n ≥ 3 implies both µ(w1) = · · · = µ(wn) and µ(w1) is idempotent in M . The
height of a word w is defined as

h(w) =

{
0 if |w| ≤ 1,
1 + max {h(w1), . . . , h(wn)} if d(w) = (w1, . . . , wn).

We can think of the words of length ≤ 1 as the trees of height 0. If d(w) =
(w1, . . . , wn) and if all wi’s are roots of trees, then w is the root of a tree with
children w1, . . . , wn. Now, w is the root of the tree defined by the “branching”
d and h(w) is the height of this tree.

Example 7 Let Γ = {a, b, c} and let µ : Γ∗ → M be the syntactic homomor-
phism of Γ∗abΓ∗ as in Example 2. Then w = bbacbcb has some factorization
tree of height 3 and it is easy to check that this height is minimal for w:

bbacbcb

b bac

ba

b a

c

bc

b c

b

3
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Since we consider all words simultaneously, we obtain a forest. The height
of the factorization forest d is therefore finite if and only if h(w) ≤ n for all
w ∈ Γ∗ and some n ∈ N . A famous theorem of Simon, Theorem 7, says that
every homomorphism µ : Γ∗ →M has a factorization forest of finite height, see
[61, 62, 63] for the original papers.

Before we go into details of the proof of Theorem 7 let us see how we can
apply this concept. The idea is that every factorization forest of height h comes
with a canonical finite set of monomials of degree at most 2h. Let d be a factor-
ization forest of height h. We can assume that all factors wi in a factorization
d(w) = (w1, . . . , wn) are nonempty. For each word w we define a monomial
Pd(w) as follows. For |w| ≤ 1 we let Pd(w) = {w}. If d(w) = (w1, w2), we
let Pd(w) = Pd(w1)Pd(w2). Finally, if d(w) = (w1, . . . , wn) with n ≥ 3, then
we let Pd(w) = Pd(w1) · alph(w)∗ · Pd(wn). Note that the degree of Pd(w) is
indeed bounded by 2h(w). This bound holds, because Pd(w) begins and ends
with a letter, if w is nonempty. Using these monomials, Simon’s result yields
the following application.

Proposition 5 Let µ : Γ∗ → (M,≤) be a homomorphism to a finite ordered
monoid. If each idempotent e ∈ M is the greatest element in the subsemigroup
e {s | e ∈MsM}∗ e, then µ−1(↓p) is a polynomial of degree at most 23|M | for
all p ∈M .

Proof: We can assume that µ is surjective. The algebraic property of M applied
with s = µ(u) and e = sω implies µ(u)ω+1 = µ(u)ωµ(u)µ(u)ω ≤ µ(u)ω. It
follows

µ(u)ω ≥ µ(u)ω+1 ≥ µ(u)ω+2 ≥ µ(u)ω+3 ≥ · · · ≥ µ(u)2ω = µ(u)ω,

i.e., M is aperiodic. By Theorem 7 below there exists a factorization forest d
whose height is bounded by 3 |M | for the homomorphism µ. For a word w,
consider the canonical monomial Pd(w) defined above. We show that

µ−1(↓p) =
⋃

µ(w)≤p

Pd(w).

Since the height of d is finite, there are only finitely many monomials of the
form Pd(w) and hence this union is finite. The assertion w ∈ Pd(w) is trivial.
All we have to show is that v ∈ Pd(w) implies µ(v) ≤ µ(w). This is trivial if
|w| ≤ 1 or if d(w) = (w1, w2) by induction. Now, let d(w) = (w1, . . . , wn) with
n ≥ 3. In particular, µ(w1) = µ(wn) = µ(w) and this element is idempotent.
If v ∈ Pd(w) = Pd(w1) · alph(w)∗ · Pd(wn), then v = v1uvn with v1 ∈ Pd(w1),
alph(u) ⊆ alph(w), and vn ∈ Pd(wn). We have

µ(v) = µ(v1uvn) ≤ µ(w1uwn) = µ(wuw) ≤ µ(w)

where the first inequality follows by induction and the last inequality from the
assumption on M , since alph(u) ⊆ alph(w) implies µ(u) ∈ {s | µ(w) ∈MsM}∗.

2

Example 8 Let Γ = {a, b, c} and let (M,≤) be the ordered syntactic monoid
of Γ∗abΓ∗ as in Example 2, i.e., M = {1, a, b, c, ba, 0} with the ordering de-
picted in Example 5. Let us see whether the condition in Proposition 5 holds.
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The idempotent c is on the top and e {s | e ∈MsM}∗ e ⊆ {0, e} for the other
four idempotents, so the condition is valid. Note that the condition is vio-
lated for (M,≥), which is the syntactic ordered monoid of Γ∗ \ Γ∗abΓ∗. If,
on the other hand, Γ = {a, b} and c is missing, then it is enough to consider
M ′ = {1, a, b, ba, 0}. Now, we always have e {s | e ∈M ′sM ′}∗ e = {e}, so the
condition holds for all orderings of M ′. 3

It remains to show the following theorem which we state in its general form.
With a weaker bound, it is due to Simon [62].

Theorem 7 Let M be a finite monoid. Every homomorphism µ : Γ∗ →M has
a factorization forest of height ≤ 3 |M |.

The proof is far from trivial and rather technical. In order to avoid too much
machinery, we give the proof for aperiodic monoids, only. This is sufficient for
our application in Proposition 5. A concise proof for the general case can be
found in [13] and we use similar techniques here. The main difference is that
we give an improved bound for the height. A full proof with the bound above
is in [18] or [34]. Our proof (as many others) is based on Green’s relations J ,
R, and L, as defined in Section 2. We start with two auxiliary results.

Lemma 6 Let M be a finite monoid. If u J v, then there exists w ∈ M with
u R w and w L v.

Proof: Since u J v, there exist x, x, y, y ∈ M such that v = xuy and u = xvy.
Let w = uy. We have

u = xx · u · yy = (xx)ωu(yy)ω = (xx)ωu(yy)ω(yy)ω = u(yy)ω ∈ uyM.

It follows that u R uy = w. A symmetric reasoning as above shows u = (xx)ωu.
Therefore, uy = (xx)ωuy ∈Mxuy = Mv and hence w = uy L v. 2

Lemma 7 Let M be a finite monoid. If u J v and u ≤R v (resp. u ≤L v),
then u R v (resp. u L v).

Proof: There exist x, y, z ∈M with u = vx and v = zuy. We have

v = zuy = zvxy = zωv(xy)ω = zωv(xy)ω(xy)ω = v(xy)ω ∈ vxM = uM.

This shows v ≤R u and hence u R v. The case for u ≤L v is symmetric. 2

Proof (of Theorem 7 for aperiodic monoids): Let [w] denote µ(w). In the
proof we use the following notion. A relaxed factorization tree for a word w is
obtained from a usual factorization tree by replacing each subtree whose root
is labeled with a word v which is not in the J -class of w by a leaf labeled v. In
the usual definition, leaves are letters. Here we are more flexible and we allow
leaves from {ε}∪Γ∪{v | [w] <J [v]}. Thus, a relaxed factorization tree for w is
constructed top-down using the rules of usual factorization trees until each leaf
has a label which is either the empty word, or a letter, or belongs to another
J -class which is greater in the ordering <J .

A simple reflection shows that it is enough to construct for each word w a
relaxed factorization tree of height at most 3 |{x ∈M | [w] J x}|. Indeed, the
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resulting (usual) factorization forest has height at most 3 times the length of
the longest chain (x1, . . . , x`) of pairwise different elements in M with xi ≤J xj
for i ≤ j.

Consider w ∈ Γ+. The word w has a unique factorization

w = v0w1 · · ·wm

with m ≥ 1, wi = aivi, ai ∈ Γ and vi ∈ {ε}∪{v | [w] <J [v]} satisfying [w]J [wi]
for all 1 ≤ i ≤ m: We successively choose wi = aivi ∈ Γ+ from right to left to
be the shortest nonempty word such that [aivi]J [w]. We are going to construct
a relaxed factorization tree for w of height at most 3 |{x ∈M | [w] J x}| and
where the leaves are v0, a1, v1, . . . , am, vm. For each 1 ≤ i < m we define a
pair (Li, Ri) where Li is the L-class of [wi] and Ri is the R-class of [wi+1].
The intersection Li ∩ Rj is never empty by Lemma 6. If x, y ∈ Li ∩ Rj then
x ≤L y ≤R x and by Lemma 1 we obtain x = y. Hence, Li∩Rj contains exactly
one element. We use the abbreviation wij = wi+1 · · ·wj for 0 ≤ i < j ≤ m. We
have

• [wij ] ≤R [wi+1],

• [wij ] ≤L [wj ], and

• [w] ≤J [wij ] ≤J [wi+1] J [wj ] J [w].

Together with Lemma 7 we conclude [wij ] R [wi+1] and [wij ] L [wj ]. If Lm is the
L-class of [wm], then [wij ] is the unique element in Ri∩Lj for all 1 ≤ i < j ≤ m.

We use some book keeping for counting the levels in the tree with respect
to some cost function. For the balance between the money and the cost, we
use a bank account. Initially we put S(w) = 3 |{x ∈M | [w] J x}| euros to the
bank account of w as a start. For every level in the factorization tree of w we
are willing to pay 1 euro from its bank account. If a node has s euros on its
account, then it hands down s − 1 euros to each and every one of its children.
So the amount of money has multiplied, but each child has 1 euro less than its
parent.

We define the cost C(w) = 3 |{(Li, Ri) | 1 ≤ i < m}|. Every pair (Li, Ri)
can be represented by the unique element in Li ∩ Ri, and if x ∈ Li ∩ Ri then
Li is the L-class of x and Ri is the R-class of x. Since the representative of
(Li, Ri) is in the J -class of [w], we have C(w) ≤ S(w). The problem is that for
a final step we need 1 euro more. As we will see, it is possible to save it in the
first step of the factorization. We say that a word w is rich if there are more
than C(w) euros on its account and if v0 = ε.

Let us see what happens, if for some element u ∈ M with u J [w] the pair
(L,R) consisting of the L-class L and the R-class R of u occurs at most twice,
i.e., (L,R) = (Li, Ri) = (Lj , Rj) for at most two indices i, j ∈ {1, . . . ,m− 1}.
If there is no occurrence of the pair (L,R), we consider the following tree:

w

v0 w1 · · ·wm

Note that v0 is a leaf and that w1 · · ·wm became rich, since S(w) is at least
C(w) + 3. Also note that this case includes m = 1 since indices must be in
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{1, . . . ,m− 1}. Now, we treat the case that there is at least one index but at
most two indices with (L,R) = (Li, Ri) = (Lj , Rj) and i ≤ j. Consider the
following tree of height 2 where wij = ε if i = j:

w

v0w1 · · ·wi

v0 w0i

wi+1 · · ·wjwj+1 · · ·wm

wij wjm

This reduces the cost of each nonempty word among w0i, wij , and wjm at least
by 3, but the bank account of each word has decreased only by 2. Hence, each
nonempty word among w0i, wij and wjm is rich.

Now, suppose that all possible pairs of L- and R-classes within the J -class
of [w] occur at least 3 times. Define L as the L-class of [wm] and R as the
R-class of [wm]. Let i1, . . . , ik with 1 ≤ i1 < · · · < ik < m be the sequence
of all positions with (L,R) = (Lij , Rij ). By the observation above, we have{

[wiji` ]
}

= Rij∩Li` = Rik∩L = {[wikm]} for all ij < i`. Hence, [wiji` ] = [wikm]
for all ij < i` and since k ≥ 3, this element is idempotent. We obtain the
following tree of height 2 for w:

w

v0w0i1

v0 w0i1

wi1m

wi1i2 · · · wik−1ik wikm

Again, all remaining factors of the form wij are rich, once they have inherited
the money from w.

After this preprocessing, we can assume that w is rich. We consider the set
{(Li, Ri) | 1 ≤ i < m} as before. If there exists a pair (L,R) in the list which
occurs at most twice, we can use a tree of height 2 as before. If there exists some
pair (L,R) which occurs at least three times, we can use the occurrences of the
pair to obtain a tree of height 3: Let i1, . . . , ik with 1 ≤ i1 < · · · < ik < m
be the sequence of all positions with (L,R) = (Lij , Rij ). As before, we see
that [wiji` ] = [wi1i2 ] for all ij < i` and this element is idempotent. We cannot
guarantee [wi1i2 ] = [wikm], and hence, we are not able to use the tree of height
2 as above. Instead, we consider the following tree of height 3:

w

w0i1 wi1m

wi1ik

wi1i2 · · · wik−1ik

wikm

Since w was rich, all descendants of the form wij are still rich. The process
continues and ends in a situation where {(Li, Ri) | 1 ≤ i < m} is empty, i.e.,
m = 1. But now w = w1 is rich, which means there is at least 1 euro left. We
can spend the last euro for the factorization d(w1) = (a1, v1). 2
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9 Two blocks of quantifiers

This section deals with the fragments Σ2[<] and ∆2[<]. Note that every char-
acterization of Σ2[<] yields a symmetric characterization of Π2[<].

Theorem 8 Let L ⊆ Γ∗. Then the following assertions are equivalent:

1. The syntactic ordered monoid (M(L),≤L) is finite and the syntactic ho-
momorphism Γ∗ → M(L) : w 7→ [w] has the following property: For all
e, s ∈ Γ∗ we have

[e] = [e]2 and alph(s) ⊆ alph(e) imply [ese] ≤L [e].

2. L is recognized by a finite ordered monoid (M,≤) where each idempotent
e ∈M is the greatest element in the subsemigroup e {s | e ∈MsM}∗ e.

3. L is a polynomial.

4. L is definable in Σ2[<].

The subsemigroup e {s | e ∈MsM}∗ e = e {s | e ≤J s}∗ e is also called the
J -localization at e. It is a monoid where e is the identity. We can phrase the
condition in “2” differently: es1 · · · ske ≤ e holds as soon as e ∈MsiM for all i.
The equivalence of “1” (in a slight reformulation) and “3” is due to Arfi [3, 4]
and the connection between polynomials and Σ2[<] is a result of Thomas [84].
In a more unified framework these results can be found in [54].

Proof (Theorem 8): For “1⇒ 2” we show that (M(L),≤L) satisfies the con-
dition in “2”. Let [e] = [e]2. We can assume that alph(e) =

⋃
[e]=[f ] alph(f),

i.e., the alphabet of e ∈ Γ∗ is maximal. If [u] is contained in the set [e] ·
{s | [e] ≤J s}∗ · [e], then [u] = [es1 · · · ske] with [e] ≤J [si] for all 1 ≤ i ≤ k.
Since the alphabet of e is maximal we deduce that alph(si) ⊆ alph(e). There-
fore, alph(s1 · · · sk) ⊆ alph(e) and “1” implies

[u] = [es1 · · · ske] ≤L [e].

Therefore, the syntactic ordered monoid of L satisfies the property in “2”.
The direction “2⇒ 3” follows from Proposition 5.
For the step “3⇒ 4” note that Σ2[<] is closed under disjunction. It therefore

suffices to show that every monomial

A∗0a1A
∗
1 · · · anA∗n

is definable in Σ2[<]. This can be done by the following Σ2[<] sentence, where
λ(y) ∈ Ai is a macro for

∨
a∈Ai

λ(y) = a.

∃x1 . . . ∃xn∀y :
( ∧

1≤i<n

xi < xi+1

)
∧
( ∧

1≤i≤n

λ(xi) = ai

)
∧

(y < x1 → λ(y) ∈ A0) ∧ (xn < y → λ(y) ∈ An)∧( ∧
1≤i<n

xi < y < xi+1 → λ(y) ∈ Ai
)
.
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For “4⇒ 1” let ϕ = ∃x∀y : ψ(x, y) ∈ Σ2[<] where x = (x1, . . . , xm), y =
(y1, . . . , ym), and ψ is a propositional formula. Let p, q, s, t ∈ Γ∗ and assume
alph(s) ⊆ alph(t). We show that for all k ≥ m2 +m we have

ptkq |= ϕ ⇒ ptkstkq |= ϕ. (2)

If u = ptkq models ϕ, then there exist positions j1, . . . , jm in the word u such
that

u, j |= ∀y : ψ(x, y) (3)

where j = (j1, . . . , jm). We refer to the k copies of the factor t in u as blocks
numbered by 1 to k from left to right. By choice of k there exist m consecutive
blocks such that no ji is a position within these blocks, i.e.,

u = ptk1 · tm · tk2q

and all ji’s are positions either in the prefix ptk1 or in the suffix tk2q of u.
Consider the following factorization:

v = ptkstkq = ptk1 · tm+k2stk1+m · tk2q.

Since the prefix and suffix in this factorization are equal to that in the factor-
ization of u and since all ji’s are positions in these parts of u, we can choose the
corresponding positions j′1, . . . , j

′
m in the identical parts of v. We claim that for

j′ = (j′1, . . . , j
′
m) we have

v, j′ |= ∀y : ψ(x, y).

Let `′1, . . . , `
′
m be positions in v and let `′ = (`′1, . . . , `

′
m). If `′i is a position in

the prefix ptk1 or in the suffix tk2q of v, we can choose an analogous position `i
in u. We order the remaining positions `′i1 ≤ `

′
i2
≤ · · · ≤ `′in with n ≤ m. We let

`i1 be some position labeled by λ(`′i1) in the block k1 +1 of u. For 1 ≤ j < n, we
let `ij+1 = `ij if `′ij+1

= `′ij and otherwise we let `ij+1 be some position labeled
by λ(`′ij+1

) in the block k1 + j+ 1 of u. This is possible since alph(s) ⊆ alph(t).
Now, all positions `i1 , . . . , `in are in the middle factor tm of u. By construction,
the structures (u, j, `) and (v, j′, `′) satisfy the same propositional formulae. By
(3) we have u, j, ` |= ψ(x, y) hence we get v, j′, `′ |= ψ(x, y). This proves (2).
For L = L(ϕ) it follows that [tkstk] ≤L [tk] holds in the syntactic ordered
monoid (M(L),≤L) of L. Property “1” now follows since [tk] = [t] if [t] = [e] is
idempotent. 2

Remember that ∆2[<] denotes those formulae in Σ2[<] which have an equiv-
alent formula in Π2[<]. This is often written as ∆2[<] = Σ2[<] ∩ Π2[<]. We
can now establish the following characterizations of languages whose syntactic
monoid is in DA. These characterizations were already stated in Theorem 2.

Theorem 9 Let L ⊆ Γ∗. Then the following are equivalent:

1. L is recognized by a monoid in DA.

2. L is a polynomial and Γ∗ \ L is also a polynomial.

3. L is definable in ∆2[<].
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The main part of the theorem is a corollary of Theorem 8. It remains to show
that the algebraic characterization of “2” and “3” which results from Theorem 8
yields exactly DA. A direct proof of this algebraic correspondence is given
in [53]. Our proof uses the characterization of DA in terms of unambiguous
polynomials in Theorem 2 and actually does not rely on Proposition 5 and the
Factorization Forest Theorem 7.

Proof (Theorem 9): The equivalence of “2” and “3” follows from Theorem 8.
For “3⇒ 1” let L be definable in ∆2[<] and let Γ∗ → (M(L),≤L) : w 7→
[w] be its syntactic homomorphism onto its syntactic ordered monoid. Then
(M(L),≥L) is the syntactic ordered monoid of Γ∗ \ L. From Theorem 8 we
get the following property of M(L): if [e] = [e]2 and alph(s) ⊆ alph(e) then
[ese] ≤L [e] and [ese] ≥L [e]. Hence

[e] = [e]2 and alph(s) ⊆ alph(e) imply [ese] = [e].

If we apply this property to [e] = [uvw]ω and s = v, we get

[uvw]ω[v][uvw]ω = [uvw]ω.

This shows M(L) ∈ DA. For “1⇒ 2” let M ∈ DA be the syntactic monoid of
L. The complement Γ∗ \ L has the same syntactic monoid M . By Theorem 2
both L and its complement are (unambiguous) polynomials. 2

10 Summary

The following picture repeats the various relations between logics, languages,
and monoids. The expressive power of the logical fragments is strictly increasing
top down with the sole exception that FO1[<] and Σ1[<] are incomparable. We
use the following notation: Pol denotes the language class of polynomials, co-Pol
contains all languages whose complement is a polynomial, and UPol is the class
of unambiguous polynomials.

Logic Languages Algebra

FO1[<] B {A∗ | A ⊆ Γ} commutative and
idempotent Thm. 1

Σ1[<] simple polynomials u ≤ 1 Thm. 3

BΣ1[<] piecewise testable J -trivial Thm. 4

FO2[<] UPol DA Thm. 2
= ∆2[<] = Pol ∩ co-Pol Thm. 9

= TL[Xa,Ya] = ranker languages
= TL[XF,YP]

Σ2[<] Pol e {s | e ≤J s}∗ e ≤ e Thm. 8

FO star-free aperiodic see e.g. [20]
= FO3[<] for a survey
= TL[X,U]
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11 Related topics

Alternation hierarchies. For the fragments obtained by restricting the num-
ber of variables we have given an exhaustive characterization in Sections 3 and
4. This has mainly been possible because this hierarchy is not strict: three vari-
ables are already sufficient to express arbitrary first-order properties [28, 29].
The situation is different if we instead restrict the number of quantifier alterna-
tions. Here, the hierarchy is strict [10, 84], and decidability is only known for
Σ1[<], the Boolean closure of Σ1[<] and for Σ2[<] (and hence also for Π1[<]
and Π2[<]). For example, about the membership problem for Σn[<] for n ≥ 3
very little is known. Concerning the Boolean closure of Σ2[<], decidability is
only known for a few special cases, such as two-letter alphabets [68] or inverse
monoids [19]; see also [45, 51, 55, 74, 88] for necessary or sufficient conditions
for definability within BΣ2[<].

In [42, 84], it has been shown that BΣn[<] corresponds to the n-th level of
the Straubing-Thérien hierarchy, see e.g. [49] for definitions. A similar result
holds for BΣn[<, suc] and the n-th level of the so-called dot-depth hierarchy
[84]. Here, suc denotes the successor predicate.

The class of first-order formulae with n variables and at most m−1 quantifier
alternations (on every path in their parse tree) is denoted by FOn

m[<]. Recently,
Weis and Immerman have initiated the study of the classes FO2

m[<], see [90].
They related the number of alternations with the number of changes of direction
in rankers.

Quantifier depth. Another measure for first-order formulae is the quantifier
depth. Tesson and Thérien have presented an algebraic characterization of the
quantifier depth hierarchy [78]. In the same article they have also given an
algebraic counterpart of the quantifier depth hierarchy within FO2[<]. The
membership problem for hierarchies defined by a bounded quantifier depth is
trivially decidable since over a fixed alphabet, up to equivalence, there is only
a finite number of first-order sentences of a given quantifier depth.

The successor relation. The successor predicate suc(x, y) can be expressed
by the FO3[<]-formula x < y ∧ ∀z : z ≤ x ∨ y ≤ z. This requires quantification
over a new variable z. Hence, although we have FO3[<, suc] = FO3[<] =
FO[<] = FO[<, suc], additionally allowing the successor predicate increases the
expressive power of fragments of first-order logic. For example, FO2[<, suc] has
strictly more expressive power than FO2[<]. Thérien and Wilke have given an
algebraic counterpart for FO2[<, suc], see [81], and Almeida has shown that the
membership problem for this class of monoids is decidable [2]. Etessami, Vardi,
and Wilke have given a transformation of FO2[<, suc]-formulae into equivalent
ones in unary temporal logic [23].

If we forbid < and only allow suc as a binary relation symbol, we obtain
the fragment FO[suc]. It was shown by Thomas that this fragment corresponds
to the class of so-called locally threshold testable languages [84]. This is an
instance of a more general theorem of Hanf about first-order logic [26]. In [5, 6],
Beauquier and Pin observed that locally threshold testable languages have an
algebraic characterization, for which decidability follows from a proof by Thérien
and Weiss [80]. In particular, the membership problem for FO[suc] is decidable;
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a complete proof of this fact can also be found in Straubing’s textbook [69].
An efficient algorithm for the membership problem is given by Pin [50] and an
easily accessible (though inefficient) algorithm based on Presburger arithmetic
has been presented by Bojańczyk [8]. One can consider the alternation hierarchy
within FO[suc]. Thomas has shown that this hierarchy collapses at level 2 [84],
i.e., FO[suc] = Σ2[suc] and since FO[suc] is closed under Boolean operations,
we indeed have FO[suc] = ∆2[suc] where ∆2[suc] = Σ2[suc] ∩ Π2[suc]. The
Boolean closure of Σ1[suc] is a strict subclass of FO[suc] and decidability of the
membership problem for this subclass has been shown by Pin [50].

More logics. Kamp has shown that first-order logic and linear temporal logic
have the same expressive power [29], see also [16]. The main advantage of tem-
poral logic is that several computational problems can be solved more efficiently
than in the case of using first-order formulae [64, 65], see also [22, 24]. A huge
variety of fragments defined in terms of temporal logic has been researched. The
most remarkable results are due to Thérien and Wilke who showed the decidabil-
ity of the membership problem of a hierarchies defined in terms of nesting the
until- and the since-operator [82, 83]. Further fragments of temporal logic are
considered in Wilke’s survey [91]. An overview of the relation between several
hierarchies can be found in the PhD thesis of Strejček [75].

If we additionally allow quantification over sets of positions, we obtain a
generalization of first-order logic called monadic second-order logic (MSO). A
famous result of Büchi says that expressibility in MSO characterizes exactly
the class of regular languages [12]. We note that in MSO it is possible to
express the order relation x < y in terms of the successor relation suc(x, y)
and therefore MSO[<] = MSO[suc], see e.g. [86]. We also refer to [47] for
a survey on fragments of second-order logic. If we additionally allow so-called
modular quantifiers in first-order logic, we obtain an extension which lies strictly
between first-order logic and MSO. We refer to Straubing’s textbook for more
information on this subject [69]. Another extension of first-order logic can be
obtained by additionally allowing numerical predicates such as x+ y = z. This
generalization exceeds the class of regular languages, but one gets connections
between (circuit) complexity classes and certain classes of numerical predicates.
Again, an introduction can be found in [69].

We have already seen that language classes which are not closed under com-
plementation can be captured by using ordered monoids instead of monoids
[46], but still these descriptions imply some non-trivial closure properties which
makes this approach useless for classes of languages which do not have those
closure properties. For example, stutter-invariant languages are not closed un-
der inverse homomorphisms. A language L is stutter-invariant, if pa2q ∈ L ⇔
paq ∈ L for all p, q ∈ Γ∗ and all a ∈ Γ. Intuitively, the syntactic monoid of
a stutter-invariant language satisfies a2 = a for letters a but it does not need
to satisfy x2 = x for arbitrary words x. This kind of restriction is formalized
in classes of homomorphisms called C-varieties [70]; see also [14, 35, 52]. An
application of C-varieties to first-order logic can be found in [15].

A good starting point concerning logics over other structures such as infinite
words, trees, or Mazurkiewicz traces is Weil’s survey [89].
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matique Théorique et Applications, 35(6):597–618, 2001.

[56] J. Sakarovitch and I. Simon. Subwords. In M. Lothaire: Combinatorics
on Words, volume 17 of Encyclopedia of Mathematics and its Applications,
chapter 6, pages 105–144. Addison-Wesley, Reading, MA, 1983.

[57] M. P. Schützenberger. On finite monoids having only trivial subgroups.
Information and Control, 8:190–194, 1965.

[58] M. P. Schützenberger. Sur le produit de concaténation non ambigu. Semi-
group Forum, 13:47–75, 1976.

35
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