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Abstract—With the deep combination of both modern in-
formation technology and traditional agriculture, the era of
agriculture 4.0, which takes the form of smart agriculture,
has come. Smart agriculture provides solutions for agricultural
intelligence and automation. However, information security issues
cannot be ignored with the development of agriculture brought
by modern information technology. In this paper, three typical
development modes of smart agriculture (precision agriculture,
facility agriculture, and order agriculture) are presented. Then,
7 key technologies and 11 key applications are derived from the
above modes. Based on the above technologies and applications, 6
security and privacy countermeasures (authentication and access
control, privacy-preserving, blockchain-based solutions for data
integrity, cryptography and key management, physical counter-
measures, and intrusion detection systems) are summarized and
discussed. Moreover, the security challenges of smart agriculture
are analyzed and organized into two aspects: 1) agricultural
production, and 2) information technology. Most current research
projects have not taken agricultural equipment as potential
security threats. Therefore, we did some additional experiments
based on solar insecticidal lamps Internet of Things, and the
results indicate that agricultural equipment has an impact
on agricultural security. Finally, more technologies (5G com-
munication, fog computing, Internet of Everything, renewable
energy management system, software defined network, virtual
reality, augmented reality, and cyber security datasets for smart
agriculture) are described as the future research directions of
smart agriculture.

Index Terms—Smart agriculture, Agricultural Internet of
Things, Agricultural Artificial intelligence, Security, Agricultural
automation.
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A
GRICULTURE is the primary industry in the world, and

it plays an important role in social stability and economic

development [1]. Overcoming the contradiction between the

population explosion and the limited grain yield is a challenge

that motivates an increasing number of studies on smart

agriculture. The development of agriculture is based on both

the improvement in productivity and the restrictions of the

era, and the progress of science and technology drives the

revolution of agriculture [2]. Fig. 1 is used to help readers

understand the characteristics and confronted issues of agri-

culture development (from Agriculture 1.0 to Agriculture 4.0).

• Agriculture 1.0: the traditional agricultural era (between

1784 and around 1870) dominated by human and animal

resources, the main issue of agriculture was the low

efficiency of operation.

• Agriculture 2.0: the era of mechanized agriculture (in

the 20th century), the main issue was the inefficient use

of resources.

• Agriculture 3.0: the era of high-speed development of

automatic agriculture (between 1992 to 2017), the main

issue was the low level of intelligence.

• Agriculture 4.0: the era of smart agriculture (which is

characterized by unmanned operations, begin at 2017) is

mainly marked by the use of modern information technol-

ogy to both serve agriculture and develop it intelligently.

Smart agriculture is a new agricultural production mode,

that contributes to agricultural information perception, quanti-

tative decision-making, intelligent control, precise investment,

and personalized service through the deep integration of

modern information technologies, e.g., the internet, Internet

of Things (IoT), big data, cloud computing, and Artificial

Intelligence (AI) with agriculture. In short, the new mode is

a smart agricultural solution that combines agriculture with

modern information technology. Although modern information

technology brings new opportunities to the development of

agricultural production, it also creates great demands and chal-

lenges to security and privacy in the field of smart agriculture.

For instance, both intellectual and unmanned operations are the

development goals of smart agriculture, whose characteristics

not only increase productivity but also increase the security

risks of equipment and data.

A. Motivation for the article

This article has three motivational factors:
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Fig. 1. Characteristics and confronted issues of agriculture development (from
Agriculture 1.0 to Agriculture 4.0).

1) Smart agriculture is an emerging paradigm that extends

information technology to traditional agriculture, and it

has the potential as the development trend of agriculture

due to the limited productivity of traditional agriculture

and the wide application of information technology.

Therefore, it is very important to summarize the existing

production mode and specific researches.

2) Although smart agriculture has been extensively studied,

little work has been done on the analysis of security

challenges compared with industrial security solutions.

3) There is a great difference between urban (industry)

conditions and rural (agriculture) conditions, as shown

in Table I. It indicates that security countermeasures

based on urban conditions may not suitable for rural

conditions. Therefore, it is critical to analyze the char-

acteristics of security issues under the smart agriculture

scenarios.

For the above factors, this article aims to present a survey

of the security topics that arise from smart agriculture, which

naturally leads to a large number of open research issues.

B. Related works

1) Works related to smart agriculture: Some of the articles

related to smart agriculture and its security issues are listed

in Table III. In [3], typical applications of cloud computing

technology in agricultural IoT were discussed, and a simple

IoT agriculture model was addressed with a wireless network.

Gondchawar et al. sought to make agriculture smart by using

automation and IoT technology, e.g., smart GPS-based remote-

controlled robot, smart irrigation with decision-making sys-

tem, and smart warehouse management [4]. Antonacci et al.

discussed the application of nanostructured sensors to support

farmers in accessing fast and accurate analyses [5]. In [6],

IoT deployment challenges and specific issues were discussed.

In addition, the wireless communication technologies that are

associated with agricultural applications were analyzed. Elijah

et al. depicted the applications of IoT and data analytics in

agriculture and analyzed the benefits of these applications

[7]. Khanna et al. highlighted the applications of IoT in

precision agriculture [8]. In [9], the research initiatives and

scientific literature of smart agriculture were discussed in

detail. The applications of big data in smart agriculture were

discussed in [10], especially in terms of the food supply chain.

In addition, the study mentioned that ensuring privacy and

security is one of the greatest challenges of big data. Bacco

et al. presented ground and aerial vehicles, along with the

vision systems of UAVs in smart agriculture scenarios [11].

To identify the differences between UAV missions, the study

also proposed a simple taxonomy. In [12] and [13], climate-

smart agriculture was mainly used in precision agriculture by

monitoring and predicting meteorological factors and environ-

mental conditions. Various applications, services, and sensors

based on IoT devices and communications techniques in smart

agriculture were introduced in [14]. In [3]–[10], these studies

also mentioned security issues without further discussion.

2) Works related to security issues in smart agriculture:

Security issues in smart agriculture have been studied in [15]–

[20], among them privacy-oriented blockchain-based solutions

were introduced in [15], [16] proposed a holistic study on

security and privacy in a smart agriculture ecosystem, and [17]

studied the cyber security in smart agriculture. A prediction

model framework for cyber-attacks in precision agriculture

was presented in [18], and it is suggested that anomaly detec-

tion is needed to eliminate false alarms. Furthermore, Haseeb

et al. proposed a security mechanism based on symmetric data

encryption in agricultural sensors and a robust transmission

strategy for IoT-based smart agriculture applications [19].

Moreover, Farooq et al. made a brief overview of security

requirements, security challenges, stack challenges, thread

model, and attack taxonomy on smart agriculture without fur-

ther discussion about them [20]. Although the above surveys

reviewed various smart agriculture applications and described

security issues from the aspect of various information tech-

nologies, there is little discussion about security challenges in

agricultural production.

C. Contribution

The contributions of this paper are listed as follows.

1) The development status of smart agriculture is sum-

marized and classified into three typical development

modes: precision agriculture, facility agriculture, and

order agriculture. Furthermore, 7 key technologies and

11 key applications are discussed.

2) Security and privacy countermeasures are summarized

as (1) authentication and access control, (2) privacy-

preserving, (3) blockchain-based solutions for data in-

tegrity, (4) cryptography and key management, (5) phys-

ical countermeasures, and (6) intrusion detection sys-

tems.

3) Potential security challenges of smart agriculture are

highlighted and divided into two aspects: (1) agricultural

production and (2) information technology.

4) Agricultural equipment will also affect the security

strategy. For instance, it is suggested that high volt-

age discharge interference of Solar Insecticidal Lamps

Internet of Things (SIL-IoT) should be considered as

attacks or have an impact on security strategy. In [25],

[26], we did some experiments and the results indicate
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TABLE I
COMPARISON OF SECURITY ISSUES BETWEEN URBAN (INDUSTRY) AND RURAL (AGRICULTURE)

Urban-industry Rural-agriculture Security issue for rural

Communication More base stations Fewer base stations Vulnerable to false base station attacks

Resident More security-conscious Lack of security-conscious Hard to deal with security threats

Facility density High Low
Data of the attacked node cannot be

replaced by neighbor nodes

Facility deployment Mostly deployed indoor Mostly deployed outdoor
Facilities are vulnerable to be stolen or

damaged

Facility characteristics QoS preferential Low power consumption, low cost
Complex security methods cannot be

applied in facility

Production data Strong security measures Weak security measures
Vulnerable to unauthorized access, data

theft attacks

Production cycle
Production line, short production

cycle
Based on crop growth cycle, long

production cycle
More loss due to the attacks

Transport Perfect transportation facilities Farmland environment, bad traffic
Facilities cannot be repaired timely when

they are stolen or damaged

Facility Ascription Public space Private facilities for farmers
Private devices contain more privacy

information

Management system
Mature architecture, a lot of

security measures
Immature architecture, lack of

security measures
Vulnerable to control system intrusion and

key theft

that the interference of high voltage discharge affects

data transmission. Then, we found that the interference

has an impact on data acquisition from the results of

our additional experiments in this paper. Furthermore,

the electromagnetic interference of photovoltaic power

generation may also be potential attacks in photovoltaic

agricultural Internet of Things.

The remaining part of this paper is structured as Fig. 2:

Section II describes the development modes of smart agricul-

ture. Section III lists some key technologies and applications

in smart agriculture. Section IV summaries the security and

privacy countermeasures for smart agriculture. Section V dis-

cusses the security challenges of smart agriculture. Section

VI summarizes the future trends and opportunities of smart

agriculture and Section VII concludes the article. To help

readers understand this paper, acronyms found in this paper

are shown in II.

II. DEVELOPMENT MODES OF SMART AGRICULTURE

At present, smart agriculture is the common goal of agri-

cultural development in all countries worldwide. The world’s

typical smart agriculture development modes are divided into

three types, as shown in Table IV. Considering the character-

istics of the vast territory and uneven population distribution

in China, the development modes need to be modified before

they are applied to the different regions of China. These modes

have a strong impact on promoting production management,

industrial operation, and unmanned development of agricul-

ture. Fig. 3 shows three types of development modes and their

characteristics in smart agriculture.

A. Precision agriculture

According to the environmental conditions of each operation

unit in the field and the temporal-spatial differences of crop

yield, various agronomic measures should be carefully and

accurately applied to optimize the quantity, quality and timing

of water, fertilizer, seeds, pesticides, etc., so as to obtain the

highest yield and maximum economic benefits, and protect

the agricultural ecological environment and protect the agri-

cultural natural resources. Precision agriculture is an advanced

technology to improve crop yields, in which Wireless Sensor

Networks (WSNs) is the main developmental driving force

[30]. The combination of WSNs and agriculture can effectively

reduce the potential risks of the production process and help

farmers make favorable decisions by deploying a large number

of low-power, multi-function, wireless communication sensors

on farmland to collect relevant data throughout the agricultural

production process (e.g., environmental data, crop growth data,

and livestock health data) [31].

The modern information technology used in precision agri-

culture is mainly “3S”, which includes remote sensing tech-

nology (RS), geographic information system (GIS), and global

positioning system (GPS) [15]. Various types of data (e.g.,

GPS data, GIS data, RS data), as well as AI methods, are used

in precision agriculture to deduce the crop growth process and

propose crop production management in an expert decision

system, which is different from the traditional agricultural pro-

duction management methods based on subjective experience.

The functions of precision agriculture include:

• Reducing environmental pollution by reasonably control-

ling the pesticide dosage;

• Reducing the waste of resources by improving the effi-

ciency of agricultural irrigation;

• Enhancing the land utilization by improving the ecolog-

ical environment of farmland;

• Improving the yield and quality of agricultural products

by analyzing the law of crop growth and thereby main-

taining the best crop growth conditions.

The main security threats in precision agriculture are:
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Fig. 2. Organization of this paper. Development modes, 7 key technologies, and 11 applications of smart agriculture are summarized in Section II and III,
which contribute to discuss security issues in Section IV, V and VI.

• Sensors being vulnerable to eavesdrop, steal and inject

malicious data due to signal loss from their long-distance

of deployment strategy and harsh environment;

• Location tampering of outdoor sensors and actors re-

sulting in agricultural facilities failure and abnormal

operation.

B. Facility agriculture

Facility agriculture has the goal of good quality and high

yield, and this agricultural production mode is in the industrial

style. This type of agriculture is a remarkable sign in the

development of modern agriculture, and it is characterized by

high demand for capital, technology, and labor. Using engi-

neering technology, facility agriculture can provide man-made

conditions suitable for crop growth, and facility protection; it

can also remove the environmental restrictions on agricultural

production and improve the efficiency of automatic produc-

tion. Compared with traditional agriculture, facility agriculture

can meet the multi-level consumption demands derived from

societal development without the constraints of the natural

environment and seasonal agricultural products [32].

Moreover, facility agriculture, facility horticulture, and fa-

cility breeding share a similar mode of production, and all of

them are outfitted with the technologies, i.e., biotechnology,

engineering technology, meteorology technology, IoT technol-

ogy, and computer technology. The cores of the above three

production modes consist of prediction models and decision-

making management systems that are based on historical data,

e.g., environmental data, crop growth data under different

conditions, and crop growth data with different types of genes.

Considering the different environmental requirements of crops,

elements in the facility (e.g., temperature, air pressure, relative

humidity, light intensity, and fertilizer application rate) are

monitored and controlled in real time to ensure crops grow in

the most favorable conditions. The most typical example is the

intelligent greenhouse. The differences between specific stud-

ies (i.e., greenhouse, aquaculture, plant factory and poultry and

livestock breeding) include different environmental elements,

different sensor devices, and specific computer-controlled pro-

grams. The functions of facility agriculture include:

• Ensuring sustainable and efficient production within a

completely closed environment with the function of in-
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Fig. 3. Research fields of smart agriculture based on 1) precision agriculture, 2) facility agriculture, and 3) order agriculture.

telligent control;

• Ensuring agricultural production against the restriction of

geographical conditions;

• Shortening the production cycle of agricultural products;

• Improving the quality and yield of products.

As a combination of both agriculture and industry, facility

agriculture, will be the development trend of agriculture, and

it has become a pillar industry in developed countries e.g., the

U.S., the Netherlands, and Japan. Due to the characteristics

of centralized administration and automatic management, fa-

cility agriculture is vulnerable to control system intrusion and

unauthorized access.

C. Order agriculture

With the advancement of urbanization in China, urban

development is rapid, while rural development is slow. There

are three main problems that hamper rural development:

• A weak agricultural foundation,

• Hidden dangers in the quality and security of agricultural

products,

• Information island transactions within agricultural prod-

ucts [33].

It implies that on its own, advanced agricultural production

technologies are not sufficient, and it helps to create value only

when it meets an enabling market opportunity [34]. Therefore,

order agriculture has achieved an effective business model by

outsourcing the production demand for agricultural products in

advance, which can reduce the planting and breeding risks, and

avoid blind production [29]. Besides, to ensure food security

and manage agricultural products, a traceability system which

makes consumers obtain the appropriate information agricul-

tural productions is applied to agricultural product supply

chain. Furthermore, agricultural product supply chain plays a

vital role in the market supervision of agricultural products

trade. The functions of agricultural product supply chain

include:

• Improving the transparency of agricultural product infor-

mation by modern e-commerce and blockchain technol-

ogy;

• Eliminating the information island of an agricultural

product transaction [35];

• Reducing the information asymmetry between farmers

and suppliers;

• Reducing the imbalance between the supply of and de-

mand for agricultural products.

For instance, Leng et al. [36] proposed a public agricultural

supply chain system based on double chain architecture to

provide a security guarantee mechanism for the public plat-

form and improve the utilization of business resources. In [37],

an agricultural provenance system based on blockchain was

presented to solve the trust crisis in product supply chain.

D. Summary

Precision agriculture, facility agriculture, and order agri-

culture are the main development modes of smart agricul-

ture, which combine traditional agricultural forms (outdoor),
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TABLE II
ACRONYMS FOUND IN THIS PAPER

Acronym Description

5G Fifth generation communication

IoT Internet of Things

WSNs Wireless Sensor Networks

FC Fog Computing

IoE Internet of Everything

SDN Software Defined Network

AI Artificial Intelligence

GPS Global Positioning System

UAV Unmanned Aerial Vehicle

UGV Unmanned Ground Vehicle

GSM Global System/Standard for Mobile Communication

CDMA Code Division Multiple Access

3GPP 3rd Generation Partnership Project

LET Limited Technical Evaluation

TMSI Temporary Mobile Subscriber Identity

WEP Wired Equivalent Privacy

WPA Wi-Fi Protected Access

AES Advanced Encryption Standard

DES Data Encryption Standard

SUPI Subscription Permanent Identifier

RFID Radio Frequency Identification

SIL Solar Insecticidal Lamps

DAS Direct Attached Storage

NAS Network Attached Storage

SAN Storage Area Network

GNSS Global Navigation Satellite System

TTP Trusted Third Party

RS Remote Sensing

GIS Geographic Information System

IP Internet Protocol

PCA Principal Components Analysis

ICS Industrial Control Systems

SVM Support Vector Machine

DDoS Distributed Denial Of Service attack

EMS Energy Management System

VR Virtual Reality

AR Augmented Reality

emerging agricultural forms (indoor), and agricultural products

industry chain with emerging technologies. Various applica-

tions of smart agriculture based on the above development

modes contribute to the improvement of grain products and the

quality of agricultural products, the reduction of agricultural

production costs, and the transparency of agricultural products

trading.

III. KEY TECHNOLOGIES AND APPLICATIONS IN SMART

AGRICULTURE

In this section, 7 key technologies and 11 key applications

in smart agriculture based on the three development modes

mentioned in Section II are introduced. The arrangement of

this section is shown in Fig. 2. Agricultural IoT (key technol-

ogy, introduced in Subsection A) is the information carrier of

the other technologies and applications in smart agriculture.

Seven Typical applications of it (introduced in Subsection B)

are: 1) IoT in field agriculture, 2) IoT in aquaculture, 3) IoT

in poultry and livestock breeding, 4) IoT in greenhouse, 5)

plant factory, 6) photovoltaic agricultural IoT, and 7) SIL-IoT).

Besides, agricultural IoT has the functions of data acquisition,

data transmission, data storage, and data analysis. According

to the four functions, six key technologies are: 1) sensors

and actuators, and 2) agriculture satellite remote sensing (data

acquisition technologies, introduced in Subsection C); 3) vari-

ous data transmission technologies (listed in V); 4) agriculture

blockchain (data storage technology, introduced in Subsection

E); 5) agriculture AI and 6) agriculture edge computing (data

analysis technologies, introduced in Subsection F). And four

key applications are: 1) agriculture crowd sensing, and 2) plant

phenotype information system (data acquisition applications,

introduced in Subsection D); 3) agriculture UAV, and 4)

driverless tractor (data analysis applications, introduced in

Subsection G).

A. Agricultural Internet of Things technology

Agricultural IoT is a key technology in smart agriculture

which makes it possible to quantify the environmental factors,

crop growth, and process of agricultural production by au-

tomatic processing, analysis, and access [38]. According to

the definition of IoT, IoT architecture can be divided into

perception layer, transmission layer, and application layer, as

shown in Fig. 4.

In the perception layer, various types of sensors are used

to collect both field environment information and crop growth

information, and these sensors are also used to describe the

state of the environment [39].

The transmission layer includes all types of network com-

munication protocols in which the data collected by the per-

ception layer can be transmitted to the application layer based

on these protocols. Various wireless communication technolo-

gies and their parameters are listed in Table V (adapted

from [6], [7], [38], [40], [41], and Wikipedia). Due to the

characteristics of the large-scale and outdoor environment

in precision agriculture, technologies with low transmission

range (e.g., WiFi and Thread) and high energy consumption

(e.g., WiFi) cannot apply to precision agriculture. In addition,

low data rate technologies (e.g., 2G(GSM), Z-Wave, LoRa)

are not applicable for some technologies with high throughput

data transmission (e.g., plant phenotype information system).

The application layer plays a vital role in agriculture, and

it can be the cloud-based (i.e., multiple servers) and local-

based (i.e., edge computing based on the gateway) system.

The application layer consists of the following functions:
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TABLE III
RELATED WORKS

Reference Main technology Scenario Security

Mekala et al. [3] IoT, cloud computing Water and energy management, crop monitoring Metioned

Gondchawar and Kawitkar [4] Automation, IoT
Smart machinery, smart irrigation, smart warehouse

management
Theft detection by motion detector

Antonacci et al. [5] Nanotechnology, sensors Climate-smart agriculture, sensing systems
Working without interference

from electric or magnetic fields

Ray et al. [6] IoT
Bee keeping, greenhouse service platform, wheat
disease detection, tomato pest control, UAV based

precision agriculture
Metioned

Elijah et al. [7] IoT, WSNs, data analysis
Monitoring, tracking and tracing, agricultural
machinery, precision agriculture, greenhouse

production
Metioned

Khanna et al. [8] IoT Precision agriculture Metioned

Wolfert et al. [10] Big data
Farm management, network management, data

chain
Metioned

Bacco et al. [11] UAVs, UGVs Agriculture UAVs, agriculture UGVs Not metioned

Bacco et al. [9] Digitisation
Cloud/edge-based systems, unmanned vehicles,

satellite-based activities
Metioned

Makate [12] Scale agriculture,
climate-smart agriculture

Approaches, policy and strategy in climate-smart
agriculture

Not metioned

Totin et al. [13] Climate-smart agriculture A systematic review in climate-smart agriculture Not metioned

Ayaz et al. [14] IoT
Various applications, services and sensors in smart

agriculture
Not metioned

Koksal and Tekinerdogan [21] IoT Farm management information systems Metioned

Malche et al. [22] IoT Environmental monitoring system for smart city
Authenticating IoT sensor device

and sending encrypted data

Munir et al. [23] IoT, blockchain Intelligent and secure smart watering system

Decentralized storage of irrigation
and plants database by

implementing the concept of
blockchain

Ferrer [24] Blockchain Swarm robotic systems for precision farming
Public key cryptography by

blockchain

Farooq et al. [20] IoT
Livestock management, precision farming,

greenhouse monitoring

Brief overview of security
requirements, security challenges,
stack challenges, thread model,
and attack taxonomy on smart

agriculture

Ferrag et al. [15] Blockchain, IoT Security and privacy in green-IoT based agriculture
Privacy-oriented blockchain-based

solutions

Gupta et al. [16] IoT, AI
Precision agriculture based multi-layered security

and privacy architecture

A holistic study on security and
privacy in a smart agriculture

ecosystem

Barreto et al. [17] Smart agriculture IoT

Water Management, Fertigation, Livestock Safety
and Maturity Monitoring, Crop Communication,

Drilling, Seeding and Spraying, Aerial Crop
Monitoring, Supply Chain Monitoring

Cyber security in smart agriculture

West [18] Parameters detection, IoT
system

Precision agriculture threat prediction model based
Common Vulnerability Scoring System

A prediction model framework for
cyber-attacks in precision

agriculture

Haseeb et al. [19] WSNs, data encryption
Efficient and secure cluster routing for IoT-based

smart agriculture applications

A security mechanism based on
symmetric data encryption

between agricultural sensors and a
robust transmission

Our paper

Agricultural IoT, sensors
and actuators, satellite

remote sensing,
blockchain, artificial

intelligence, and edge
computing

Smart agriculture based 6 security and privacy
countermeasures and 7 security challenges

Summarizing development modes,
technologies and applications of
smart agriculture, and discussing

security issues based on smart
agriculture scenarios



8 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. X, NO. X, X X

TABLE IV
THREE TYPICAL DEVELOPMENT MODES OF SMART AGRICULTURE

Type Country Feature Trends Characteristics of type

Precision agriculture [27] U.S.
Less population, more land, and

developed industry

Develop field agriculture, replace
manpower with mechanization,

and decrease manpower operation.

Large-scale, climate
affected, ourdoor

environment

Facility agriculture [28] Japan
More population and less land,

scientific and technological
progress

Improve crop genes, improve
production conditions, and

improve the land utilization rate.

Industrial model, closed
environment, controlled

conditions

Order agriculture [29] Western Europe
Moderate population and land,

developed economy

Increase agricultural scale,
develop agricultural management,

increase output rate.

Business model,
data-driven

TABLE V
COMPARISON OF THE EXISTING WIRELESS COMMUNICATION TECHNOLOGIES

Year Technology Standard(s) Transmission range Frequency Bands Data rate Power Security

1991 2G(GSM) GSM,CDMA Mobile network area 865MHz, 2.4GHz 50-100kb/s Medium TMSI

1999 WiFi IEEE 802.11/a/c/b /d/g/n 20-100m 2.4, 3.6, 5, 60GHz 1Mb/s-6.75Gb/s High WEP, WPA, WPA2

1999 Bluetooth IEEE 802.15.1 <100m 2.4GHz 1-24Mb/s Medium 56/128bit

2001 WiMAX IEEE 802.16 <50km 2-66GHz 1Mb/s-1Gb/s Medium AES, DES

2001 ZigBee IEEE 802.15.4 <1km 2.4GHz 250kb/s Low 128bit

2001 3G UMTS, CDMA2000 Mobile network area 865MHz, 2.4GHz 0.2-100Mb/s Medium
SNOW 3G,

Stream Cipher

2004 Z-Wave Z-Wave <100m 908.42MHz 100kb/s Low Triple DES

2009 4G UMTS, CDMA2000 Mobile network area 865MHz, 2.4GHz 100Mb/s-1Gb/s Medium
SNOW 3G,

Stream Cipher

2010 SigFox SigFox Rural: 30-50km 908.42MHz 10-1000b/s N/A N/A

2014 Thread IEEE 802.15.4 <30m 686/915/ 2450MHz 250kb/s Low N/A

2015 LoRa LoRaWAN <20km Various sub-GHz 0.3-50kb/s Very low AES 128bit

2015 NB-IoT 3GPP Rel.13 LTE/4G base stations 180kHz
DL:234.7kb/s,
DI:204.8kb/s

Low LTE encryption

2019 5G 3GPP, ITU, IMT-2020 Mobile network area
0.6-6GHz, 26,28,

38,60Hz
3.5-20Gb/s Medium SUPI

• Data storage, e.g., cloud-based platform and Hadoop

distributed file system for quick and safe accessing to

data [42];

• Data management, e.g., Supervisory Control And Data

Acquisition (SCADA) for monitoring real-time data [18];

• Data analytics, e.g., decision-making system, yield mod-

els and plant instructions for automatic control in agri-

cultural production [43];

• Data marketing, e.g., data visualization, traceability

system of agricultural products for ownership, privacy,

new business models [44].

B. Agricultural Internet of Things application

1) Internet of Things in field agriculture: Field crops

mainly refer to such products as wheat, rice, and corn, which

are of great significance to ensuring grain security [45].

In field agriculture, the main research topics include field

resource management and agricultural condition monitoring,

and IoT plays an important role in both of these areas. Based

on the characteristics of various regions in field agriculture,

it is difficult to apply wired transmission in that setting.

Therefore, WSNs technology is mainly used instead of wired

transmission in field agriculture [46]. After analyzing the data

transmitted by the transmission layer, the application layer can

be expanded into a variety of digital tools that benefit the

agricultural production e.g., decision support systems, expert
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Fig. 4. Various technologies and applications based on IoT architecture.

systems, and cloud data storage.

Although IoT technology improves the efficiency and qual-

ity of field agricultural production, it also entails some security

problems (e.g., agricultural facility damage).

2) Internet of Things in aquaculture: China has become the

largest aquaculture country with aquaculture production that

accounts for approximately two-thirds of the world’s produc-

tion [47]. Currently, aquaculture is transferred from traditional

extensive aquaculture to industrialized and precise aquaculture.

IoT in aquaculture is a symbol of the transformation of aqua-

culture, it is an intelligent aquaculture system based on WSNs

that collects environmental data for real-time monitoring, early

warning analysis, and auxiliary decision-making [48]. Special

facilities, e.g., water quality parameter sensors, underwater

robots, underwater cameras, and meteorological stations, are

applied to monitor environment elements such as the water

temperature, dissolved oxygen, pH value, salinity, and chloride

in real time. In addition, actuators are used to adjust the

water quality of the culture pond to ensure the most suitable

environmental conditions for the growth of aquatic organisms

[49].

The differences between IoT in aquaculture and IoT in field

agriculture include not only the monitoring objects but also

the complex aquaculture environment and various influencing

factors during the growth of aquatic organisms. Thus, it

is difficult to implement accurate and effective monitoring,

detection, and optimization management [50].

3) Internet of Things in poultry and livestock breeding:

Compared with the other forms of agricultural production,

poultry and livestock breeding have higher production scales

and requirements in terms of the technology, facility, and funds

[51]. IoT in poultry and livestock breeding is based on both

indoor conditions and outdoor environment, as shown in Fig.

5. Indoor conditions include facilities e.g., environmental con-

trol equipment (to ensure environmental stability), automatic

feeding equipment (to ensure forage supply), video monitoring

equipment (to monitor animal behavior). In addition, to track

the growth status of each animal under indoor conditions and

outdoor environment and increase the traceability of meat

products, Radio Frequency Identification (RFID) technology

is generally used to set the electronic identification, assign a

serial number to each animal, and simplify data storage and

tracing [52]. Hence, the advantages of monitoring, identifi-

cation, and positioning of animals through RFID technology

are:

• Effectively strengthening the detection of the breeding

environment;

• Preventing the spread of various epidemic diseases among

animals;

• Ensuring the price stability of meat products [53].

For instance, the recent sharp rise in the price of pork

in China, which resulted from African swine fever in 2019,

will not happen again if IoT technology is well applied in

poultry and livestock breeding. Currently, important studies of

IoT in poultry and livestock breeding include the electronic

identification of animals, database management of animal

information, the quality control and safety traceability of

product, and auxiliary disease diagnosis using AI technology

[54]. Due to the high production value of poultry and livestock

breeding, high data sensitivity is required for the decision-

making system. Failures in sensors, links, and decision-making

systems may lead to irreparable economic losses to farmers.

4) Internet of Things in greenhouse: Through the environ-

mental control system, IoT in a greenhouse provides a closed

growing environment to ensure the healthy growth of crops

without the restrictions of an external environment, which

helps improve the yield and quality of crops [55]. Agriculture

production of IoT in greenhouse can be divided into the

following steps:

• Collecting the environmental data through sensors, in-

cluding the temperature, relative humidity, carbon diox-

ide concentration, light intensity, soil temperature, soil

humidity, and pH value;

• Uploading the collected data to the control system

through signal transmission facilities;

• Modeling and analyzing the heterogeneous data through

the prediction model in the control system [56].
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Fig. 5. Indoor conditions and outdoor environment of poultry and livestock
breeding, e.g., (a) indoor conditions for chicken farm, (b) outdoor environment
for sheep breeding, (c) indoor conditions for hog farm, and (d) outdoor
environment for cattle breeding.

Through the above three steps, the facilities in a greenhouse,

e.g., the sprinkler irrigation facility, drip irrigation facility, and

temperature regulation facility, can execute commands intel-

ligently and automatically to maintain steady environmental

conditions.

5) Plant factory: Due to the growing scarcity of both

arable land and water sources, a type of low-consumption,

environmental-protection, high-yield, and safe agricultural

production mode has emerged as the most suitable mode

for agriculture. The plant factory is one of the representative

technologies, which is a reflection of the transformation from

traditional agriculture to modern industry [57]. The plant

factory’s characteristics include:

• No limitation due to the environmental conditions;

• Less pollution;

• Less waste of resources;

• A controllable production cycle, these features ensure the

agriculture production even with a deterioration of the

ecological environment [58].

Similar to the production mode of IoT in a greenhouse, a

plant factory cultivates crops under the controlled conditions

of factors such as the temperature, humidity, carbon dioxide

concentration, and light intensity. The differences are that the

plant factory has:

• Higher mechanization;

• Higher automation;

• More hydroponics;

• A higher space utilization rate;

• Proximity to a city;

• A closed and clean environment.

At present, plant factories are mainly distributed among East

Asia, Europe, and the U.S., and artificial light plant factories

are being developed rapidly in Japan. Due to the reduction

of arable land, frequent natural disasters, and the shortage of

rural labor, agriculture is also trending to plant factories in

China [59]. The key technologies of the plant factory are as

follows:

• Three-dimensional and multi-layer soilless cultivation

technology;

• Artificial lighting luminous technology;

• Intelligent environment control technology;

• Automatic control technology of the plant production

space.

The above technologies are associated with the production

efficiency and production cost of a plant factory [60]. A plant

factory is confronted with the following issues:

• The high cost of the initial construction and maintenance;

• Limited types of crop cultivation;

• A low level of intelligent production;

• Low security and privacy [60].

Because the above issues hinder the development of plant

factories, they should gain more attention and emphasis.

6) Photovoltaic agricultural Internet of Things: With the

reduction of natural resources and the aggravation of envi-

ronmental pollution, clean and renewable energy plays an

indispensable role in the energy transformation of the world

[61]. In China, photovoltaic power generation occupies a

significant position in new energy power generation, and there

is vast potential for its development [62]. In addition, photo-

voltaic power generation has the advantages of low operation

cost, no greenhouse gas emissions, and a low maintenance

cost [63]. However, the development of photovoltaic power

generation is limited by the low energy conversion efficiency,

the high correlation with meteorological factors, and the waste

of residual power after the grid connection [64], [65]. With the

combination of photovoltaic power generation and agricultural

IoT, the residual power can be utilized effectively.

Generally, if the actual generation exceeds the demand of

the grid, power will be limited to protect the grid, which leads

to energy waste. With the application of residual power for

agricultural IoT facilities through battery storage, the wasted

power and farm operation costs can be effectively reduced.

For example, photovoltaic energy was used for the irrigation of

farmland, and SolarCoin (similar to Bitcoin) was proposed for

energy and water trading [66]. In addition, because a large area

of land is required for both field agricultural production and

photovoltaic power generation, deploying photovoltaic panels

over farmland can optimize land usage [67]. Moreover, sensors

for monitoring field crops can acquire power from a pho-

tovoltaic system and monitor photovoltaic power generation

facilities [68]. However, this technology also brings some se-

curity challenges. For instance, photovoltaic power generation

may have a great impact on information transmission and

further increase the risk of receiving malicious data.

7) Solar insecticidal lamps Internet of Things: Solar in-

secticidal lamps (SIL) kill migratory pests by releasing a

high voltage pulse current, which contributes to reducing the

usage of pesticides [69]. At present, SIL are widely applied

in China, for instance, 20000 SIL have been deployed for

pest control in Xinyu City, Jiangxi Province, China. With

a low level of intelligence, most of the traditional SIL are

deployed only for killing pests among the fields. However,

pest information cannot be obtained to make forecasts of pests

and adjust the work time of insecticidal lamps adaptively.
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Fig. 6. SIL-IoT component and communication diagram. The insecticidal
range is smaller than the communication range, which ensures that the SIL-
IoT nodes deployed in the field meet the communication requirements.

Therefore, the application situation of SIL was investigated

and the structure diagram of SIL-IoT node was introduced

in [69]. It has been found that the effective killing distance

of SIL (SIL deployment radius 6 110m) [70] is in the

valid communication radius of wireless sensor nodes (e.g.,

ZigBee, LoRa), as shown in Fig. 6. Due to the advantages

of SIL-IoT (i.e., pollution-free, high insecticidal efficiency,

and easy for scheduling), SIL-IoT will be applied widely for

pest prevention and control, as well as the data acquisition

of field agriculture. Recently, Yang et al. [70] proposed a

node deployment strategy based on partition structure for SIL-

IoT. The node deployment problem is transformed into a

secondary allocation problem by using the natural partition

structure of farmland, and the problem is solved by genetic

algorithm. Under the constraint of ensuring full coverage, this

strategy significantly reduces the number of SIL-IoT nodes.

In addition, Huang et al. [25], [26] found that high voltage

pulse discharge released by SIL has been as an interference

to ZigBee-based device in SIL-IoT. It is metioned that the

device in [25], [26] can be used as a method to attack WSNs,

leading to the abnormal working state, and it is suggested that

the installing space between SIL and ZigBee-based device is

at least 25cm. Moreover, Yang et al. [71] mentioned that the

interference will affect fault diagnosis of SIL-IoT and thereby

affect the reliability of SIL-IoT. In [71], the characteristics and

challenges of fault diagnosis in SIL-IoT are analyzed and it

is highlighted that security attacks will lead to the failure of

fault diagnosis.

Although the application of IoT technology expands the

functions of insecticidal lamps and improves their utilization

rate, it entails some new security challenges. For example,

signal interference is serious when the insecticidal lamp is dis-

charged, and traditional signal transmission security methods

may not suitable for this situation.

C. Data acquisition technology

Data acquisition is an interface that uses a device to collect

data from the outside of the system and input them into the

internal system. Data acquisition technology mainly includes:

• RS232, RS485 serial ports for connecting multiple detec-

tion instruments to implement automatic data acquisition;

• USB interface for outputting data;

• The wireless communication module for transmit data;

• Various sensors for collecting data and various actuators

for maintaining the controlled variable;

• Satellite for obtaining, measuring and processing the

related data through the interaction between electromag-

netic wave and object.

These technologies can be applied to agriculture crowd

sensing and plant phenotype information system, which obtain

data from perception module of mobile devices, camera,

spectrometer, various weather sensors, etc..

1) Sensors and actuators: Agricultural sensors are mainly

used to collect both environmental conditions and crop growth

information [39] and then transmit the data to the cloud [38].

Various sensors in smart agriculture can be classified into

location sensors, photoelectric sensors, mechanical sensors,

electrochemical sensors, airflow sensors, and optical sensors,

as shown in Table VI (adapted from [5], [7], [72]). These

sensors are applied to collect meteorological information (e.g.,

temperature, humidity, carbon dioxide concentration), crop

information (e.g., crop growth conditions, crop disease), soil

information (e.g., tensiometers, soil type, and moisture level

of the soil), location information (e.g., precision location of

crops), etc..

Then, these information are transmitted to the cloud. If the

data collected by the sensor meet certain judgment conditions,

actuators will activate or deactivate agricultural equipment.

The main actuators in facility agriculture are:

• Irrigation equipment to ensure the sufficient moisture for

crop growth;

• Lighting control equipment to ensure the suitable lighting

conditions for crop growth;

• Air circulation to ensure the carbon dioxide concentration

in closed growth conditions;

• Crop disease control to ensure the healthy growth of the

crop.

2) Agricultural satellite remote sensing: Agricultural satel-

lite remote sensing is a technology that monitors:

• Various types of agricultural systems e.g., field planting

and aquaculture;

• The process of agricultural production;

• Multiple elements of agriculture i.e., production, environ-

ment, and ecology information [73].

It is mainly applied to the following fields: area estimation,

crop growth monitoring, pest information monitoring, yield

prediction, grassland vegetation monitoring, and agricultural

resources mapping [74]. Moreover, the trends of agricultural

satellite remote sensing development in the world include

both joint observation and high spatial-temporal resolution

monitoring.

In China, the demand for sky-air-ground-integration in

agriculture was proposed in the “Outline of the National

Rural Development Plan of Sky-air-ground Digital Agriculture

(2018-2025)”. The requirements also include realizing (1) the

digitalization of all factors and all production processes, and
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TABLE VI
SENSORS IN SMART AGRICULTURE

Type of sensors Function Application

Location sen-
sors

Locate precision loca-
tion of crops

Locate precision location
of crops

Photoelectric
sensors

Analyze signal by pho-
toelectric effect

Monitor temperature, il-
lumination, humidity, car-
bon dioxide

Mechanical
sensors

Convert the measured
quantity (physical
quantity) to mechanical
quantity

Tensiometers to detect the
force used by the roots in
water absorption

Electrochemical
sensors

Detect specific ions in
the soil by electrodes

Monitor temperature, hu-
midity, gas composition

Airflow
sensors

Convert a gas volume
fraction into a corre-
sponding electrical sig-
nal

Measure compaction,
structure, soil type, and
moisture level of the soil

Nanostructured
(bio)sensors

Exploit features of nano-
materials for different
purposes

Analyze soil humidity,
water and soil
nutrients/pesticides,
and plant pathogens

Fig. 7. Massive data fusion among satellites, aircraft, UAVs, and surface
stations.

(2) intelligent dynamic monitoring in field planting, animal

husbandry, and related areas [75]. To implement sky-air-

ground-integration, several problems must be solved, e.g.,

we need both cooperative observation among satellites, and

massive data fusion among satellites, aircraft, UAVs, and

surface stations, as shown in Fig. 7.

D. Data acquisition application

1) Agricultural crowd sensing: Crowd sensing employs the

functions of perception computing, common measurement,

and information sharing by a large number of personal mobile

devices (e.g., smartphones and wearable devices) to complete

large-scale and complex perception tasks [76]. Mobile terminal

equipment is used as the basic sensing unit to complete

the collection of sensing data through the wireless network.

Furthermore, with the combination of the ideas of both mobile

perception and crowdsourcing, crowd sensing has the advan-

tages of low cost, strong scalability, and strong mobility. The

emphases of crowd sensing are:

• The data processing technology;

• The incentive mechanism;

• The crowd sensing software platform.

To date, crowd sensing has been widely used in intelligent

transportation, public security, environmental monitoring, and

other applications. It is mainly applied in urban environments,

and there have been few applications in rural ones. Due to

the increasing proportion of farmers with smartphones and

the demands of collecting agricultural data, agricultural crowd

sensing has huge potential for data acquisition [77]. For in-

stance, Ginige et al. [78] proposed a mobile-based information

system which consists of a smart computing framework, and

was studied for farmers to report pest and disease outbreak

events. As a new IoT sensing technology, agriculture crowd

sensing will inevitably entail a variety of security challenges

[79]. For example, a SmartfLAIr system was proposed for

an increased resolution of leaf area index and a perturbation

based privacy mechanism with Trusted Third Party (TTP)

architecture was designed to ensure user privacy [80].

2) Plant phenotype information system: The plant pheno-

type information system is a technology that quantitatively

analyses the interaction effect of both the genotype and the

environment on crop products’ quality and other traits. It has

the following functions:

• Monitoring the growth of crops by deploying various

types of sensors and measuring instruments under Spec-

ified conditions [81];

• Analyzing the data from both UAVs and satellite remote

sensing to quantify the growth state and yield of crops

under different genes and environmental factors;

• Selecting stable and high-yield crop genes and their

suitable growth environment.

All the functions are based on abundant plant phenotype

information, which is mainly composed of massive images,

videos, and text data. To make the data suitable for analytics,

the main studies of plant phenotypic information systems are:

• Massive data annotation [82], management [83] and in-

tegration [84] (i.e., data annotation, data association and

data storage by knowledge graph technology);

• Massive image data analysis [85], [86] (e.g., machine

learning, and deep learning algorithms).

Due to the characteristics of interdisciplinary fusion, multi-

team cooperation is required for a plant phenotype information

system. Hence, Ubbens et al. [87] proposed a deep plant

phenomics system, which was an easy platform by providing a

pre-trained model for plant scientists. In addition, a plant phe-

notype information system involves various technologies, e.g.,

sensor facility, network communication, big data platform, and

data processing method, which entails many security issues.
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E. Data storage technology

Data storage objects include temporary files generated by

data stream or information that needs to be searched in

the process of processing. At present, the main data storage

methods include:

• Direct Attached Storage (DAS), a storage device di-

rectly connected to the host system without centralized

management solution;

• Network Attached Storage (NAS), a device with data

storage function connected to the network;

• Storage Area Network (SAN), a network in which

storage devices are connected to each other and connected

to a server or group of servers.

Moreover, database is the most commonly used data storage

software, which consists of:

• Relational database, the relational model is used to orga-

nize data in database, e.g., Oracle, SQLServer, MySQL;

• Non-relational database, removing the relational char-

acteristics of relational database to ensure the scalability

of data, e.g., Redis, MongoDb, Neo4J).

From the aspects of storage mode, traditional databases

mostly adopts centralized storage mode, which are confronted

with capacity bottleneck issue. Therefore, distributed database

is presented, which provides scalable service capacity and

storage capacity by the way of sub database and sub table,

and provides transparent data access and smooth capacity

expansion and reduction by database agent. Similar to the

characteristics of distributed database, blockchain is a decen-

tralized distributed database, which collectively maintains a

reliable database by decentralizing and trusting mechanisms.

1) Agriculture blockchain: Blockchain technology was pro-

posed by scholars with the pseudonym of ”Satoshi Nakamoto”

in 2008. It is a point-to-point distributed data-storage-

architecture scheme, and it uses a variety of consensus mech-

anisms to achieve collaborative trust among multiple par-

ticipants [88]. Furthermore, the application of cryptographic

methods ensures the security of data transmission. At present,

the intelligent operation of node data can be implemented by

deploying smart contracts (a kind of script code) on distributed

nodes [89]. Blockchain supplies a reliable technical guarantee

for both the integrity and immutability of information, and it

is widely used in product information traceability [90].

In agriculture, blockchain has the following functions: (1)

establishing the backtracking mechanism of agricultural prod-

ucts. Reliable and safe information about agricultural products

including their planting, processing, and selling are provided to

improve information transparency. In addition, the distributed

information storage method based on digital encryption and

verification technology ensures the information security of

agricultural products [91]; (2) establishing a new agricultural

product trading market. The distributed storage technology of

blockchain is used to digitize the upstream and downstream in-

formation of agricultural products. Moreover, the information

is shared across the entire agricultural blockchain alliance [92].

Although blockchain can be used as an information security

solution, it is essentially data storage and releases technology.

Because blockchain technology is still in the exploration stage

Fig. 8. Comparison of edge computing and cloud computing. The advantages
of edge computing are low cost and low delay, which benefit to high time
efficiency tasks, e.g., SIL-IoT, agricultural UVAs, driverless tractors.

in agriculture, the security challenges of blockchain remain to

be explored.

F. Data analysis technology

Data analysis is a process of detailed research and summary

of data to extract useful information, which uses appropriate

methods (e.g., statistical analysis method, machine learning

method) to analyze the large amount of data. Artificial in-

telligence is an emerging technology which contributes to

the accuracy of data analysis. In addition, edge computing

technology greatly reduces the traffic amount and delay by

deploying artificial intelligence algorithms on the device rather

than cloud server.

1) Agricultural artificial intelligence: With the develop-

ment of IoT technology, the amount of agricultural data

has increased dramatically. AI technology can provide an

expert system to analyze agricultural big data, select valuable

information, and increase agricultural productivity finally [93],

[94]. At present, there are many studies and applications in

agriculture AI [95], [96]. The main studies of agriculture AI

include:

• Intelligent robots based on pre-set machine learning mod-

els and computer vision technology that complete basic

agricultural tasks much more quickly than manpower

and traditional robots, e.g., intelligent seeding robot and

intelligent harvesting robots;

• Crop and soil monitoring, which have applied both com-

puter vision technology and deep learning algorithms to

analyze the crop growth data and soil health data;

• Predictive analysis, which forecasts the impact of weather

changes on crop harvests by training machine learning

model [97].

Based on the above studies, manual operations are being

replaced by intelligent machines and decision-making systems,
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which contribute to the development of smart agriculture [10].

However, AI technology will result in huge losses (e.g., a

wrong decision for the irrigation system and plant factory

environment control) if it suffers from attacks.

2) Agricultural edge computing: Cloud computing pro-

vides scalable, on-demand, and virtualized resources for users

[98]. Therefore, cloud computing has been widely applied in

planting, aquaculture, poultry and livestock breeding, plant

factories, and related applications [54]. However, it is diffi-

cult to use the centralized data processing method of cloud

computing to meet the growing amount of data, which stem

from the explosive growth of agricultural data. Although cloud

computing has the advantages of both strong computing power

and fast processing speed, the demands of data analysis cannot

be fully met by it due to its disadvantages (e.g., high cost, high

delay, and low capacity of protecting the privacy of users).

Thus, edge computing is applied in agriculture to solve

these problems, as shown in Fig. 8. The “edge” refers to any

network and computing resources between the data source

(e.g., sensors) and the cloud data center [99]. For instance,

the smartphone is the edge between the user and the cloud.

By transmitting sensor data to edge devices for calculation,

communication delay can be reduced effectively [100]. There-

fore, edge computing is suitable for tasks with both low

computational cost and high timeliness requirements [101].

In the area of SIL-IoT, if insect pest location data are

transmitted to the cloud for decision-making and then returned

to an actuator, the pest outbreak area may be transferred

before the implementation of relevant measures. However, if

the data are transmitted to the edge nodes and then returned

to the actuator, the delay caused by the data transmission

will be greatly reduced. Therefore, it is important to promote

agricultural edge computing and find its potential security

problems [102].

G. Data analysis application

1) Agricultural unmanned aerial vehicle: With the de-

velopment of “3S” technology, UAVs have become widely

used in agriculture, industry, and commerce. Furthermore, the

UAVs’ characteristics of labor-saving and high efficiency are

consistent with the development goal of smart agriculture. At

present, the studies of agricultural UAVs mainly focus on plant

protection operations, forestry monitoring, crop pollination,

and herd positioning [103].

Due to the advantages of high operating efficiency, low

pollution, and no poisoning risks for farmers in agricultural

applications, the development of agricultural UAVs has been

rapidly growing in some countries e.g., the U.S., Russia, South

Korea, and especially Japan. With more than 2400 registered

agricultural UAVs and more than 14000 operators, Japan has

become the country that has the largest number of agricultural

UAVs [104]. Compared with the above countries in the fields

of UAVs, the development of Chinese UAVs has lagged, but

the investment in agricultural UAVs has increased in recent

years.

There are various types of agricultural UAVs on the market,

as shown in Fig. 9. For instance, UAVs can be divided

Fig. 9. (a) Fixed-wing UAV, (b) single-rotor hydraulic UAV, and (c) multi-
rotor electric UAV. Currently, electric multi-rotor UAVs have a major market
share due to their low cost, low failure rate, simple operation, and environ-
mental protection.

into both hydraulic UAVs and electric UAVs according to

the dynamic system. Furthermore, UAVs can be divided into

fixed-wing UAVs, single-rotor UAVs, and multi-rotor UAVs

according to the model structure. Currently, electric multi-

rotor UAVs have a major market share due to their low

cost, low failure rate, simple operation, and environmental

protection. Besides, the plant protection UAV is one of the

most common applications of agricultural UAVs, based on

high operating efficiency, good spraying effect, low pollution

level, and operation without limitations due to the crop height.

The technology gaps in the production areas where plant

protection cannot be carried out manually are addressed by

agricultural UAVs [103].

2) Driverless tractor: The traditional tractor is indispens-

able power machinery in field agriculture, as it provides

traction for cultivating machines, traction seeders, a machine

that spray insecticide, harvesters, etc. [105]. The driverless

tractor is a combination of the traditional tractor and modern

driverless technology. The advantages of driverless tractors

include both optimal operation path planning by the map

transmission system and dynamic obstacle avoidance by lidar,

which contribute to improving the quality and efficiency of

operations, and maximizing the utilization rates of land, seed

and fertilizer [106], [107].

Currently, the applications of the global navigation satellite

system (GNSS) and laser system in driverless tractors have

been generalized in Europe, so as to avoid obstacles and

operate in the appointed paths effectively [108]. In [109],

further studies have been conducted in North America on the

key components of automatic navigation, including navigation

sensors, vehicle motion models, navigation plan devices, and

steering controllers. Liu et al. [110] proposed an artificial

vehicle powertrain system to build a general framework for

data-driven intelligent control, which can be applied to the

driverless tractor.

Furthermore, China has begun to develop driverless tractors

in recent years. For instance, the major research program

“Cognitive Computing of Audio-visual Information” of the

National Natural Science Fund of China (NSFC) was estab-
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lished in 2008, and it has provided finance and policy support

for driverless driving.

H. Summary

In this section, we described 7 key technologies and 11

key applications in smart agriculture based on IoT architec-

ture (perception layer for data acquisition, transmission layer

for data transmission, and application layer for data storage

and data analysis). Some applications of agricultural IoT are

introduced: IoT in field agriculture, IoT in aquaculture, IoT

in poultry and livestock breeding, IoT in greenhouse, plant

factory, photovoltaic agricultural IoT, and SIL-IoT, which have

unique characteristics in specific agricultural scenarios and are

confronted with various security threats (e.g., agricultural fa-

cility damage for IoT in field agriculture, failures in sensors for

IoT in poultry and livestock breeding, control system intrusion

for IoT in greenhouse and plant factory, malicious data attacks

for photovoltaic agricultural IoT, and signal interference for

SIL-IoT).

In addition, sensors and actuators, and agriculture satellite

remote sensing are introduced as data acquisition technolo-

gies, which contribute to the applications of data acquisition

(agriculture crowd sensing, and plant phenotype information

system). There are some security threats for data acquisition

technologies and applications, e.g., facility damage and in-

terception of node communication for sensors and actuators,

unauthorized access for agriculture satellite remote sensing,

privacy leaks for agriculture crowd sensing, and control system

intrusion for plant phenotype information system.

Agriculture blockchain is described as a distributed data

storage technology to ensure data storage security, which

is also confronted with security threats (e.g., access control

failure, unsafe consensus agreement).

Moreover, agriculture artificial intelligence and agriculture

edge computing are introduced as data analysis technologies.

They are confronted with various security threats e.g., mali-

cious data attacks, unauthorized access, and control system

intrusion. The above data analysis technologies are applied

in agriculture UAV and driverless tractor for path planning,

automatic operation, local information processing, etc.. There

are some security threats for agriculture UAV and driverless

tractor, e.g., false location information by malicious data

attacks, facility damage by control system intrusion, data

interception by interception of node communication.

Therefore, effective security and privacy countermeasures

play a vital role in ensuring security of smart agriculture.

IV. SECURITY AND PRIVACY COUNTERMEASURES

The summary of existing security and privacy countermea-

sures which are suitable for smart agriculture are presented

in Table VII. The relationship between some key technologies

and applications in smart agriculture and security and privacy

countermeasures are shown in Fig. 10.

A. Authentication and access control

To enhance the security and privacy of smart agriculture,

user authentication systems should ensure the following se-

curity and performance requirements: resilience to various

Fig. 10. Different security and privacy countermeasures for 7 key technologies
and 11 key applications in smart agriculture.

attacks, device anonymity, session key agreement, mutual

authentication, and unlinkability. Lee et al. [111] proposed

a three-factor anonymous user authentication scheme, which

can be applied in a network model composed of three types of

nodes, namely, a mobile node, a sensor node, and a gateway.

Based on the bio-hash function, Lee et al.’s scheme can

satisfy user anonymity, users untraceability, and resists stolen

mobile device attacks. For achieving cross-domain permission

delegation and access control, Gauhar et al. [112] proposed a

decentralized blockchain-based framework, named xDBAuth,

which the blockchain technology is used for providing trans-

parent to all the users in the IoT network. The xDBAuth

framework considers a network model composed of five main

elements, including, smart contract, IoT devices, blockchain

manager, overlay network, and underlay network. Based on

the two algorithms, namely, cross-domain resource access

algorithm and proof-of-authenticity/integrity algorithm, the

xDBAuth framework can provide authentication/authorization,

availability, integrity, and non-repudiation.

In addition, Shin et al. [113] designed a privacy-preserving

authentication scheme for wireless sensor networks in 5G-

integrated IoT, which the IoT architecture is based on a

wireless sensor network, gateways, cloud computing, and with

three types of layers, including, network layer, application

layer, and support layer. The Shin et al.’s scheme uses elliptic

curve cryptography to guarantees gateway anonymity, user

anonymity with untraceability, and resistant to four types of

attacks, including, offline password guessing attacks, mobile

device loss attacks, stolen verifier attacks, and user imperson-

ation attacks.

B. Privacy-preserving

For achieving privacy-preserving, Wang et al. [114] pro-

posed a privacy-preserving spectrum sharing framework for

the IoT network, which can be applied for smart agricul-

ture by considering at the same time the spatial spectrum

reuse and truthfulness. Specifically, the proposed framework

considers three units, including, a cryptographic authority,

multiple bidders, and an auctioneer. Based on the Elgamal
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TABLE VII
SUMMARY OF SECURITY AND PRIVACY COUNTERMEASURES FOR SMART AGRICULTURE

Authentication

model
Scheme Year Network model Security analysis Performance (+) Limitation (-) Performance analysis

Informal security

analysis

Lee et al.

[111]
2020

The network model composed

of three types of nodes,

namely, a mobile node, a

sensor node, and a gateway

Mutual

authentication

+ Resistance to stolen mo-

bile device attack

+ Ensures a session key

agreement

- Location privacy is not

considered

High communication

cost

Informal security

analysis

Gauhar et al.

[112]
2020

The network model is com-

posed of five main elements:

smart contract, IoT devices,

blockchain manager, Overlay

network, and underlay net-

work

Authentication and

Authorization

+ Protects the network

availability

+ Provides non-repudiation

- Stolen mobile device at-

tacks

Medium overhead ra-

tio

Privacy-

Preserving

Shin et al.

[113]
2020

The IoT architecture is based

on a wireless sensor network,

gateways, cloud computing,

and with three types of lay-

ers, including, network layer,

application layer, and support

layer

BAN logic

+ Guarantees gateway

anonymity and the

user anonymity with

untraceability

+ Resistant to offline

password guessing and

mobile device loss attacks

- The network availability

is not considered

Medium computation

cost

Privacy-

Preserving

Wang et al.

[114]
2020

The network model is com-

posed of three units, including,

a cryptographic authority, mul-

tiple bidders, and an auction-

eer

Simulation-based

+ Can hide the user’s bid

+ Achieving user satisfac-

tion ratio

- There is no security

analysis against attacks

High communication

cost

Privacy-

Preserving

Wei et al.

[115]
2020

A cloud-centric network

model with smart devices

Informal security

analysis

+ Message authenticity and

integrity

+ Preserving the location

and identity privacy

- Non-repudiation is not

considered
Low computation cost

Privacy-

Preserving

Zhang et al.

[116]
2020

The network model is

composed of four parts,

namely, a trusted authority,

edge servers, control center,

and cloud server

q-strong

Diffie–Hellman

(q-SDH)

assumptions

+ Privacy-preserving and in-

tegrity verification

- Location privacy is not

considered

Medium computation

cost

Intrusion

detection system

Ferrag et al.

[117]
2020

Three-tier fog computing ar-

chitecture (i.e., cloud comput-

ing, fog computing, and IoT

devices)

Simulation-based + Detecting cyber attack
- Authentication and pri-

vacy are not achieved

High accuracy and de-

tection rates

Data integrity
Hang et al.

[118]
2020

The network model is com-

posed of four main com-

ponents, including, end-user,

blockchain network, fish farm,

and data storage

Simulation-based
+ Provides reliable and se-

cure storage

- There is no security

analysis against attacks
Low computation cost

Data integrity
Shahid et al.

[119]
2020

The network architecture is

composed of three layers, in-

cluding, data layer, blockchain

layer, and storage layer

Simulation-based

+ Achieves accountability

and authenticity

+ Robust against denial of

service attacks

- Location privacy is not

considered
Low computation cost

Intrusion

detection system

Anthi et al.

[120]
2019

Three layers, including, layer

1 for scanning the network,

layer 2 for classifying the

packets, and layer 3 for clas-

sifying malicious packets

Simulation-based

+ Detecting cyber attack

+ Identifying malicious

packets

- Authentication and pri-

vacy are not achieved
High F-measure rates

Physical

countermeasure

Li et al.

[121]
2019

Learning-based IoT security

system
Simulation-based

+ Detect physical attacks

and threats

+ Use only energy audit

data

- Non-repudiation is not

considered
Medium storage cost

Intrusion

detection system

Ahmim et

al. [122]
2018

Learning-based IoT security

system
Simulation-based + Detecting cyber attack

- Authentication and pri-

vacy are not achieved

High accuracy and de-

tection rates

Key management
Esposito et

al. [123]
2018

Group nodes with the cluster

head and the border nodes
Simulation-based

+ Lower the costs of re-

keying

+ Achieves confidentiality

- Integrity is not achieved Low computation cost

Physical

countermeasure

Ali and

Awad [124]
2018

The network model of com-

posed of three parts, including,

IoT devices, a gateway, and a

web server.

Information risk

assessment

+ Highlight various security

vulnerabilities

+ Mitigating the identified

risks

- Authentication and pri-

vacy are not achieved

Efficient for resource-

constrained devices

Key management
Wazid et al.

[125]
2017

The network model is com-

posed of three different nodes,

including, the sensing nodes,

the gateway node, and cluster

head nodes

AVISPA tool

+ Resilience against sensing

node capture attack

+ Providing anonymity and

untraceability

- The network availability

is not considered

Medium computation

cost

Intrusion

detection system

Sforzin et al.

[126]
2016

The network model is based

on a small, portable device,

pre-packaged with an intrusion

detection system

Simulation-based + Detecting cyber attack
- Authentication and pri-

vacy are not achieved

Efficient for resource-

constrained devices
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encryption scheme, the proposed framework can keep the

bidders¡¯ bids confidential and achieving user satisfaction

ratio. Therefore, in order to enable offline/online computation

and support IoT devices with various cryptographic settings,

Wei et al. [115] designed privacy-preserving message au-

thentication scheme, named SAMA, for IoT networks, which

can be applied for smart agriculture. The SAMA scheme

uses various systems such as RSA-type and ElGamal-type for

preserving the location and identity privacy of a data source

as well as message authenticity and integrity. Zhang et al.

[116] proposed a privacy-preserving data aggregation scheme,

named LVPDA, which can be applied for the edge-computing-

enabled smart agriculture. During the data aggregation pro-

cess, the LVPDA scheme combines an online/offline signature

technique and Paillier homomorphic encryption method for

privacy-preserving and integrity verification. Based on the q-

strong Diffie¨CHellman (q-SDH) assumptions, the LVPDA

scheme is proven unforgeable under the chosen message

attack.

C. Blockchain-based solutions for data integrity

The blockchain technology is used as a security solution

to provide data integrity in smart agriculture. To provide

automated data processing in fish farming, Hang et al. [118]

designed a blockchain-based fish farm platform, which is

based on smart contracts. The proposed platform uses four

main components, including, end-user, blockchain network,

fish farm, and data storage. Based on the blockchain network,

the proposed platform can provide reliable and secure stor-

age. Therefore, to provide traceability and trust in the agri-

food supply chain, Shahid et al. [119] proposed a security

solution deployed over the Ethereum blockchain network. The

proposed solution considers an agri-food supply chain with

a layered architecture and is categorized into three layers,

including, data layer, blockchain layer, and storage layer. To

achieve accountability and authenticity, the proposed solution

uses an interplanetary file storage system that receives the data

and returns a hash of these data to the blockchain network.

D. Cryptography and key management

The symmetric encryption/decryption along with the cryp-

tographic hash function are used by Wazid et al. [125] for de-

signing a secure user authenticated key management protocol,

which can be applied in smart agriculture. The network model

used by the proposed protocol is composed of three different

nodes, including, the sensing nodes, the gateway node, and

cluster head nodes. To verify the biometric authentication,

the proposed protocol uses the fuzzy extractor technique.

To ensure confidentiality with end-to-end security guarantees,

Esposito et al. [123] proposed a clustered and distributed key

management framework, which is based on the group-based

keys. Specifically, the proposed framework uses a network

model composed of group nodes with the cluster head and

the border nodes. In addition, within the proposed protocol,

the key to be shared, is divided into encoded parts, and only

a part of the received parts is transmitted by the cluster head

to its neighboring nodes.

E. Physical countermeasures

Both cyber and physical attacks are in high demand in smart

agriculture. Li et al. [121] proposed an auditing and analytics-

based IoT monitoring mechanism. The proposed mechanism

uses disaggregation-aggregation architecture using the eval-

uation of the power usage of the system’s sub-components.

Therefore, the proposed mechanism adopts two deep learning

models, including, the aggregation model and disaggregation

model. Therefore, to provide a comprehensive view of the

security status of smart homes in smart agriculture, Ali and

Awad [124] proposed the operationally critical threat, asset,

and vulnerability evaluation methodology, named OCTAVE,

which focuses on information assets. The OCTAVE method

is applied in the network model composed of three parts,

including, IoT devices, a gateway, and a web server. In

addition, the OCTAVE method uses four main phases to allow

comprehensive risk assessment, including: 1) establish drivers

phase, 2) profile assets phase, 3) identify threats phase, and 4)

risk mitigation phase.

F. Intrusion detection systems

Cyber-attacks for smart agriculture infrastructures are

emerging as an increasingly important concern for both orga-

nizations and nations. To detect these cyber-attacks in smart

agriculture, security researchers have proposed intrusion de-

tection systems based on machine learning and data mining

algorithms. Ferrag et al. [117] and Maglaras et al. [127]

designed a hybrid intrusion detection system, named RDTIDS,

for internet-of-things networks, which can be applied for smart

agriculture. Specifically, the RDTIDS system uses decision

tree and rules-based concepts to classify the network traffic as

attack/benign. The experimental results on the BoT-IoT dataset

and the CICIDS2017 dataset shows that the RDTIDS system

achieves the highest accuracy with 96.995% and 96.665%,

respectively.

In addition, Anthi et al. [120] designed a three-layer intru-

sion detection system for detecting a series of cyber-attacks

on IoT networks, which can be applied for smart agriculture.

The proposed system uses a supervised approach to classifies

attacks such as replay attack, reconnaissance attack, man-in-

the-middle attack, spoofing attack, and denial of service attack.

The experimental results on cyber attacks dataset show that

the proposed system achieves an F-measure of: 1) 96.2%,

2) 90.0%, and 3) 98.0%. Sforzin et al. [126] proposed an

intrusion detection architecture for the IoT network, named

RPiDS, which can be applied for smart agriculture. The RPiDS

architecture uses a small, portable device, pre-packaged with

an intrusion detection system for detecting an active attack

and or suspicious network-related activity. The experimental

results on Raspberry Pi equipped with Snort show that RPiDS

architecture is adapted to conduct intrusion detection in an

IoT framework. Ahmim et al. [122] designed an intrusion

detection system that can be applied for smart agriculture.

Specifically, the proposed system can be installed at the fog

computing layer for detecting cyber-attack using the combi-

nation of the probability predictions of a tree of classifiers.

The experimental results on KDD’99 and NSL©datasets show
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Fig. 11. Interference on different distances between SIL and receiving node.
Average communication duration values of 0cm, 5cm, and 10cm are 45.6s,
116.5s, and 765.9s. Maximum values of 0cm, 5cm, and 10cm are 151s, 422s,
and 1970s. Minimum values of 0cm, 5cm, and 10cm are 4s, 4s, and 45s.

that the proposed system achieves the highest accuracy with

96.27% and 89.75%, respectively.

V. SECURITY CHALLENGES OF SMART AGRICULTURE

Most of the existing security and privacy countermeasures

are based on industrial scenarios or only based on simulation

performance, without considering the actual application sce-

narios. Therefore, it is necessary to analyze security challenges

based on smart agriculture, which contributes to applying the

above security and privacy countermeasures to various smart

agriculture scenarios.

A. Security challenges in agricultural production

1) Harsh environment: The modes of agricultural pro-

duction mainly include large-scale field farming, small-scale

greenhouse farming, aquaculture, and poultry and livestock

breeding. However, the maintenance problems of sensors and

farm implements by the above modes cannot be ignored. The

primary maintenance problems include hardware protection

for the facilities and the energy consumption design of the

facilities. Due to the characteristics of sparse deployment

and the absence of supervision in agricultural IoT facilities,

sensor nodes may be stolen and used by malicious users,

which would lead to serious security problems (e.g., data

leakage and network paralysis). In addition, agricultural IoT

facilities are required to have reliable long-distance signal

transmissions, and they must reduce their energy consumption

to ensure their long-term stable operation. Therefore, a balance

between energy consumption and the reliability of the signal

transmission is critical for agricultural IoT facilities.

2) Threats from agricultural equipment: Except for the

harsh environment, the security issues caused by the working

characteristics of agricultural equipment cannot be ignored.

For instance, SIL release high voltage (2̃150V to 6̃000V)

pulse discharge while migratory insects with phototaxis feature

contact with the metal mesh, which has a great impact on

ZigBee [25]. In [25], [26], we did some experiments and

the results indicate that the interference of high voltage dis-

charge affects data transmission. In this paper, we did the

following experiments under the same experimental devices

[26] (parameter, evaluating indicator, purpose, and device are

shown in Table VIII). The first experiment (only indicating

that the interference affects sending node) has been done in

[26] before, we did that again with three evaluating indicators

and extended it to two additional experiments, which are used

to verify whether the interference has an impact on receiving

node and sensors.

• Observing the interference of high voltage pulse dis-

charge for sending node under the distances of 10, 15,

20, and 25cm. Table IX illustrates that the interference

is stronger to ZigBee with the closer distance between

SIL and sending node (there is a positive correlation

between FET and interference intensity). It is mentioned

in [26] that the interference (quantified by FET times)

has an impact on the ZigBee-based device. However, the

influences of the interference on data transmission and

data acquisition are not mentioned. Therefore, we did the

next two experiments.

• Observing the interference of high voltage pulse dis-

charge for receiving node under the distances of 0, 5,

and 10cm. The results are depicted in Fig. 11, and com-

munication duration is the time difference between node

receiving data normally and not receiving data normally.

It is observed from the results that the communication du-

ration has a positive correlation with the distance between

SIL and receiving node. Moreover, when the distance

between SIL and receiving node is more than 10cm, the

interference is not obvious under the existing experimen-

tal equipment and conditions. The distance may increase

with the increase of the interference intensity generated

by the equipment.

• Observing the interference of high voltage pulse dis-

charge for sensors under the distances of 0 and 5cm. The

sensors with ID 1 and 2 were used for the experiment

(distances between them and SIL are 0 and 5cm), and the

sensor with ID 3 was used as the control group (distance

between it and SIL is 1m). As shown in 12, when we turn

on the discharge module at 15:34:30, the data acquisition

is abnormal and the device reset after a few seconds. The

proportion of abnormal data (the proportion of abnormal

data to all data in a certain period) and the proportion of

device reset are shown in Table X. When the distance

is 0cm, sensors with ID 1 and 2 can hardly collect

data normally. The interference is not obvious when the

distance between SIL and sensors is more than 5cm.

However, in the case of a harsh environment and aging

equipment, the effective range and extent of injury of

interference may be unpredictable.

The above experiments indicate that the interference of high

voltage pulse discharge has an impact on data transmission

and data acquisition. The interference is a kind of security

threat and may mislead the execution of security strategy. For

instance, if the receiving node cannot receive data normally
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TABLE VIII
INTERFERENCE EXPERIMENTS FOR DIFFERENT DEVICES

Experiment Parameter Evaluating indicator Purpose Affected Device

1

1. Discharge frequency: 4
2. Distances between SIL and the
sending node: 10, 15, 20, 25 cm
3. Experimental duration: 5min

1. Average Packet Reception Ratio
(PRR)
2. Average CRC error times new-
line
3. Average Falling Edge Trugger
(FET) times

Verifying the interference of high
voltage pulse discharge for sending
node

ZigBee (Webee)

2
1. Discharge frequency: 4
2. Distances between SIL and the
receiving node: 0, 5, 10 cm

Communication duration
Verifying the interference of high
voltage pulse discharge for receiv-
ing node

ZigBee (Webee)

3
1.Discharge frequency:4
2.Distances between SIL and the
sensors: 0, 5 cm

1. Proportion of abnormal data
2. Proportion of device reset

Verifying the interference of high
voltage pulse discharge for data
acquisition

Sensors (DHT11)

TABLE IX
INTERFERENCE ON DIFFERENT DISTANCES BETWEEN SIL AND SENDING

NODE

Distance Average PRR Average CRC times Average FET times

10cm 99.96% 0.017 34.4
15cm 99.98% 0.03 33.11
20cm 99.98% 0.017 24.18
25cm 99.99% 0.02 9.62

Fig. 12. Data acquisition under interference. For the first line, “2020-07-08-
15-15:34:32” is time format, “02” is sensor ID in red dotted box, “26.6” is
temperature (◦C) in yellow dotted box, and “72” is relative humidity (%) in
green dotted box. Besides, data in blue dotted box are normal data, data in
violet dotted box are abnormal data, and data in grey dotted box are device
reset information.

due to interference, the security strategy may classify it as a

DDoS attack.

B. Security challenges in information technology

1) Unauthorized access: Unauthorized access refers to

unauthorized use of system resources and unauthorized access

to a database, which results in serious network security chal-

lenges. To access data and control agricultural IoT facilities

beyond the limit of users’ authority, hackers attack the access

control mechanism of the system by forging a counterfeit

identity [128]. The main reasons for unauthorized access are:

TABLE X
INTERFERENCE ON DIFFERENT DISTANCES BETWEEN SIL AND SENSORS

Distance Sensor ID
Proportion of
abnormal data

Proportion of
device reset

0cm

1 78.61% 10.98%

2 89.45% 3.52%

3 0% 0%

5cm

1 45.31% 3.01%

2 57.27% 1.48%

3 0% 0%

Fig. 13. When a variety of data is transmitted to the cloud or edge node,
hackers access the database through unauthorized access.

• Rapid change of accessing the particular user account

from the unrecognized location;

• Accessing the user account with an unrecognized device;

• Sudden IP, server domain and gateway change [128].

Identity authentication, which identifies legal users by their

passwords and biometrics, is applied to prevent unauthorized

access [129]. Furthermore, access control strategies should be

set up to manage user rights, and to ensure the security of

various resources in the system. As shown in Fig. 13, hackers

can illegally access edge nodes and cloud databases to obtain

crop growth data and modify control system information,

which would have an impact on crop growth and data quality.

2) Interception of node communication: Wireless commu-

nication technology is widely applied in various agricultural

IoT facilities. Unfortunately, the information transmitted by

wireless communication is easily copied and stolen [130].
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Fig. 14. In the process of node communication, hackers intercept data by
invading receiving nodes.

The information usually contains both environmental data

collected by sensors and facility control signals in agricultural

production. Data tampering and interception by hackers may

have serious consequences [131]. To ensure the security of

wireless communication, appropriate encryption strategies for

wireless devices are required to encrypt data [132]. Simulta-

neously, various wireless sensors may not be able to support

complex encryption algorithms for communication security.

Therefore, a balance between the encryption strength and

the facility capacity must be sought. As presented in Fig.

14, data collected by sensors can be sent to a gateway

through the communication terminal. Hackers steal data by

invading wireless communications, which results in serious

consequences.

3) Facility damage: Due to the complex conditions in

an agricultural production environment, facilities that are

deployed in an agricultural environment may send incorrect

data, be damaged, or lose the capacity to collect data. Facility

damage may result in data distorted and missing, which would

affect the data analysis and the decision-making system [133].

Therefore, it is necessary to establish a facility detection

mechanism. If the facility stops working or the data collected

by the sensors deviate from the normal range, faults should

be detected and related measures should be implemented

promptly by the neighboring nodes or diagnosis nodes. Fig. 15

shows various faults that result from facility damage, which

have negative impacts on the daily operation of agricultural

UAVs.

4) Malicious data attacks: AI technology can be applied

with its ability to analyze massive data and sensory data is the

main factor in any decision-making process [134]. In addition,

a pre-trained model with optimal environmental parameter

settings contributes to improving the yield and quality of

agricultural products. However, by inserting malicious data

into the database, the model training process is affected, which

would cause a deviation in the model results. The primary

solutions include the privacy protection of agricultural IoT

facilities [135], and online and real-time monitoring system

[136]. As presented in Fig. 16, due to malicious data attacks,

the solar insecticidal lamps in an actual pest outbreak area are

sleeping, which leads to crops damage. Simultaneously, we

have a waste of energy caused by incorrect responses of the

Fig. 15. System fault, link fault, sensor fault, and other factors lead to uneven
spraying of pesticides.

Fig. 16. Due to malicious data attacks, the solar insecticidal lamps in
an actual pest outbreak area are sleeping, which leads to crops damage.
Simultaneously, we have a waste of energy caused by incorrect responses
of the solar insecticidal lamps that are in the false pest outbreak area.

solar insecticidal lamps that are in the false pest outbreak area.

5) Control system intrusion: After the data collection and

analysis, the control system sends commands to the machinery

to complete the corresponding production operation. There-

fore, the security of the control system plays a vital role

in agricultural production. Control system intrusion may lead

to no response from the production machinery [137], which

would have a strong impact on agricultural production. There-

fore, protecting the decision-making system from intrusion,

and protecting the control signals from interference has a great

impact on the performance of agricultural production. Fig. 17

illustrates a driverless tractor operating on the wrong route

after a control system intrusion.

C. Summary

Due to the harsh environment and threats from agricultural

equipment, the protection measures and anti-interference de-

sign of the agricultural equipment are very important. Fur-

thermore, severe weather prediction and interference filtering

at the software layer contribute to the security of agricultural

production. However, ensuring the security of agricultural pro-

duction is a very complex task, mainly because of changeable
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Fig. 17. A driverless tractor operating on the wrong route after a control
system intrusion.

climatic conditions, large-scale and harsh environments, and

various agricultural equipment with different standards.

In addition, recent works related to information security

are shown in Table XI. Key distribution and authentication

mechanisms are a major research direction of unauthorized

access, and among these works, machine learning algorithms

have been used to improve the accuracy of the classifications

[138]. Furthermore, hypothesis testing is a method that can

estimate false alarm rate and false negative rate (i.e., 5% false

rejection rate with four PCA dimensions [129]).

Recent studies of the interception of node communication

focus on the decode-and-forward protocol, and the affected

layer is typically the cyber-physical layer. Intercept proba-

bility is mainly used to estimate the performance of model,

increasing power-splitting factor signal power, and the number

of relays may improve the security of wireless transmission

[130], [132], [139]. In addition, Zou and Wang [131] demon-

strated that sensor scheduling method contributes to against

eavesdropping attack.

The perception layer is the main affected layer in facility

damage. Various methods are used to protect sensors and

actuators, and the effective ones include node privacy and

source encryption methods [140].

Malicious data attacks mainly happen in smart grids and

position systems, and statistical methods and deep learn-

ing algorithms have primarily been applied to mitigate this

problem [136]. In [141], an analytical method based on no

previous knowledge of attack was adapted to multiple and

simultaneous cyber-attacks. Alromilh et al. [134] proposed

a randomized watermarking filtering method to ensure data

security in transmission layer and save as up to 85% more

energy than Cui et al. [142]. In addition, an online robust

PCA-based algorithm was proposed to reconstruct the original

data when the corruption rate is no more than 20% [136].

Industrial control systems (ICS) are the major attack target

of control system intrusions, which have strong impacts on

these systems’ transmission layer and application layer. Mod-

bus/TCP oriented attack is a major type of control system in-

trusion. Ndona and Sadre [143] proposed a two-level intrusion

detection system to efficient against Modbus/TCP oriented

attacks with a small impact on communication latency. In

[144], a new intrusion detection algorithm based on one-

class SVM was presented with advantages of fast and strong

generalization ability, less support vector, simple mode, and

great practical value. Moreover, A stereo depth intrusion

detection system with a low rate of false positive (not exceed

0.045%) was proposed [145]. With the development of smart

agriculture, agricultural production will be the novel attack

target, and above intrusion detection algorithms will contribute

to the security of the agricultural control system.

In summary, analyzing types of attacks for different smart

agriculture researches and security strategies suitable for var-

ious agricultural scenarios is critical to ensuring the security

of smart agriculture.

VI. FUTURE TRENDS AND SECURITY ISSUES

The following issues may be the future research trends

of smart agriculture, and they may result in novel security

challenges. We briefly describe the concepts below.

A. Fifth generation communication (5G)

5G is the next generation wireless communication tech-

nology with characteristics of high-frequency electromagnetic

wave and low latency. Compared with the existing wireless

communication technology, 5G provides faster data transmis-

sion speed and larger data throughput, which support the

device communication, AI algorithm deployed in user end,

distributed fault diagnosis method, and complex security strat-

egy. However, 5G is also vulnerable to security threats, e.g.,

interception of node communication. In addition, the security

defined in the 3rd Generation Partnership Project (3GPP)

focuses on resistance to network attacks, authenticity, integrity,

and confidentiality. However, some emerging cryptographic

techniques, e.g., public key infrastructure, anonymization, se-

curity mechanisms of IPsec, and differential privacy, etc., can

be considered for achieving security and privacy requirements.

To design efficient and secure privacy-preserving schemes

using these techniques for 5G-enabled smart agriculture net-

works, the following critical challenges need to be solved:

• How to protect the confidentiality of transmitted data

between network entities?

• How to authenticate the source of the received data?

• How to protect the integrity of transmitted data between

different network entities?

• How to detect and prevent attacks (e.g., falsification

of multiple identities and replays data between network

entities)?

A possible research direction in this topic could be related to

developing an efficient secure and privacy-preserving scheme

for 5G-enabled smart agriculture networks. For instance, the

physical-layer threats in UAVs’ communication based on 5G

was discussed in [148].

B. Fog computing (FC) and Internet of Everything (IoE)

FC is a computing paradigm that reduces communication

delays by moving the cloud computing facilities and services

to the access network. Since the FC is designed upon tradi-

tional networking components, it is highly vulnerable to secu-

rity attacks (e.g., wiretapping, tampering, loss of information,
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TABLE XI
SUMMARY OF RECENT WORKS RELATED TO INFORMATION SECURITY

Security issue Reference Model Affected layer Performance Object

Unauthorized

access

Rumyantsev et al.

[146]

A two-pass auto-compensation fiber-

optic quantum key distribution system

Transmission

layer

Improve the effectiveness of the pre-

liminary stage synchronization algo-

rithm QKDS by eliminating false so-

lutions

Fiber-optic communication

Joe et al. [128]

Two novel authentication mechanisms

based on Multi kernel Fuzzy C-Means

and group search optimizer algorithms

Application

layer

Two authentication procedures are

more effective than password, privacy,

e-mail authentication

Authentication algorithms in Online

Social Network platform

Fukami et al. [129]

An authentication system based on

steady state visual evoked potential

and principal component analysis

Application

layer

Lowest false rejection rate of 5% with

four PCA dimensions

9% equal error rate considering unreg-

istered individuals

Authentication system based on elec-

troencephalography evoked by sen-

sory stimuli

Kim et al. [138]

SVM, C4.5, KNN, and MLP applied

in unauthorized access point dataset

created by round trip time

Transmission

layer

KNN and C4.5 have the most accurate

(%92.9)in True Positive value

KNN is the closest to ROC curve

compared with SVM, C4.5 and MLP

Wireless access point

Interception of

node

communication

Milošević et al.

[130]

New close-form expressions for the

intercept probability of decode-and-

forward relaying system

Physical layer
The increasing signal power at the

source/relay enhance

Wireless communication over

Nakagami-m faded environment

system performance up

Zou and Wang [131]

An optimal sensor scheduling method

for wireless communication against

eavesdropping attack

Physical layer

The proposed scheme outperforms the

conventional round-robin scheduling

in terms of the intercept probability

Industrial WSN sensor schedule

Jameel et al. [132]

A system based on two-way decode-

and-forward relay assisting transmis-

sion

Physical layer

Increasing power-splitting factor from

0.1 to 0.7 causes the intercept proba-

bility to increase from 0.48 to 0.80

Energy harvesting relays

Ding et al. [139]

A so-called secrecy maximization

oriented relay selection method

(SMORS)

Physical layer

SMORS scheme outperforms the

traditional max-min relay selection

scheme in intercept probability

Increasing the number of relays can

improve the physical-layer security

of wireless transmissions based on

SMORS

Cooperative relay network consisting

of a source, a destination, and multiple

decode- and-forward (DF) relays

Facility

damage

Mohamed et al.

[140]

SMASheD framework under Android

ecosystem

Perception

layer

Consumes few resources, utilizes vari-

ous channels to send the extracted data

to the malware owner, wipes out all

attack traces with touch injects

Android¡¯s sensor security model

Milošević et al.

[133]

An actuator security index and a

method for computing the index in

small-scale systems

Perception

layer

Actuator security can be increased by

placing additional sensors

Proposed index can characterize actu-

ators vulnerable in any realization

Actuator security

Malicious data

attacks

Bretas et al. [141]
An analytical method for smart grids

cyber-physical security
Physical layer

Highlight the improved accuracy un-

der multiple and simultaneous cyber-

attacks

A previous knowledge of attack is not

required

Smart grids cyber-physical security

Che et al. [135]
A cybersecured corrective dispatch

method (CSCD)

Perception

layer

Mitigate the physical overloads and

under an assumed risk level of cyber-

overloads attack

Operator¯s security-constrained eco-

nomic dispatch

Alromih et al. [134]
A randomized watermarking filtering

method (RWFS)

Transmission

layer

RWFS can save as up to 85% more

energy than Cui et al. [142]

Network lifetime of RWFS is almost

twice as that of Cui et al. [142]

IoT applications

Mahapatra et al.

[136]

An online robust principal component

analysis-based algorithm

Application

layer

Reconstruct the original data from the

corrupted signal when corruption is

present in 20% of the total number of

signals at any instant

Wide-area mode metering application

Control system

intrusion

Ndonda and Sadre

[143]

A two-level intrusion detection system

for industrial control systems (ICS)

networks

Transmission

layer

Only a small impact on communica-

tion latency in the ICS

Efficient against Modbus/TCP ori-

ented attacks

Industrial Control Systems

Shang et al. [144]

A new intrusion detection algorithm

based on one-class support vector ma-

chine

Application

layer

Fast and strong generalization ability,

less support vector, simple mode, and

great practical value

Industrial Control Systems

Wang et al. [145]

A stereo depth intrusion detection sys-

tem based on rule extraction and deep

inspection

Transmission

layer

A low rate of false positive (not ex-

ceed 0.045%) and false negative
Modbus over TCP/IP protocol

Teng et al. [147]
An adaptive collaboration intrusion

detection method

Application

layer

Higher accuracy (89.02%), lower er-

ror (12.19%) and less training time

(7.247s) compared with SingleType-

Support Vector Machine

KDD CUP 1999 data set
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Fig. 18. The novel mode of agricultural production by FoE architecture.

and Trojan horses) [149]. IoT mainly focuses on machine-to-

machine sensor-based smart facility communication, as well

as IoE aims at providing services to people by IoT. Due to

the resource-limited sensors and bandwidth-limited wireless

communication, the Fog of Everything (FoE) was proposed in

[150] to set up a complexity system. It will contribute to SIL-

IoT and photovoltaic agricultural IoT which have multi-tasking

requirements (i.e., operating, monitoring, and scheduling).

In addition, data of farmers, consumers and sensors are

fused by FoE, and part of processing modules of agricultural

information, agricultural products trading and other data can

be deployed in the local network layer, as shown in Fig.

18. With the application of new generation of communication

technology, e.g., 5G, FoE can meet more intelligent agricul-

tural production demands, and improve the security of existing

smart agriculture applications. Simultaneously, in the process

of data fusion, transmission, storage and analysis, new security

issues will inevitably arise due to the application of novel

computing paradigm and information carrier, especially cyber

security at the edge.

C. Renewable Energy Management System (Renewable EMS)

With the aggravation of the global energy crisis, consider-

able attention has been paid to the study of integrating and

using high penetration of renewable energy in past decades

[151]. Renewable energy has been widely applied in various

domains, and agriculture is one of the most potential applica-

tion scenarios. Energy management plays a vital role in smart

multi-microgrids for agriculture (e.g., energy management of

photovoltaic agricultural IoT), and it can ensure the energy

supply of sensors deployed outdoors with the combination of

wireless charging technology.

Fig. 19. The security scheme of renewable EMS, including 1) fault self-
diagnosis of hardware and software in agricultural facilities and renewable
energy equipment, 2) identity authentication and data encryption in data
transmission layer, 3) intrusion detection and data backup in background
management.

At present, the security scheme of renewable EMS usually

includes fault self-diagnosis of hardware and software, identity

authentication, data encryption, intrusion detection, and data

backup, as shown in Fig. 19. Because agricultural facilities are

mainly deployed in outdoor environment, fault self-diagnosis

of hardware and software is very important to ensure the secu-

rity scheme. In addition, blockchain technology may contribute

to the security of renewable energy management system.

D. Software Defined Network (SDN)

Software defined network is characterized as a centrally-

control network. With user-defined virtualization and program-

ming, the relaying and controlling are performed separately,

which can provide flexibility and reliability to the network

management [152]. In recent years, SDN has been a hot

subject, especially multi-domain SDN that controls large-scale

networks, i.e., precision agriculture [153]. Moreover, It can

effectively simplify the network, and manage heterogeneous

network equipment. The SDN controller can monitor the

security situation of whole network in real-time.

However, centralizing the network control plane and en-

abling network programmability are the emphases of hacking,

and may lead to new security challenges, controllers¡¯ safety

from applications, controller¡¯s scalability and availability,

resilience and placement, etc. [154]. For instance, a plant

phenotype information system integrates multiple data sources,

and SDN architecture can improve its performance and secu-

rity, but new security threats are an urgent problem. As shown

in Fig. 20, if hackers attack the SDN controller, it will transmit

wrong control instructions, which results in abnormal data flow

and affects the trust between the SDN controller and the plant

phenotype information system applications.
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Fig. 20. A plant phenotype information system based on SDN architecture
(including multiple data sources, control pane, data pane, and application
layer) and security issues (trust between applications and controller, wrong
control instructions, and abnormal data flow) result from hacker attacks.

E. Virtual reality (VR) and augmented reality (AR)

VR is a simulated experience that can be similar to or

completely different from the real world. AR is the technology

of superimposing virtual objects upon the real world [155]. Al-

though VR has been widely applied as an educational method

in industry, there are a few researches about VR in agriculture

domain. For instance, Kim et al. developed an educational

simulator by VR technology for a better farmer education

compared with two-dimensional screens [156]. Besides, a VR

simulator that contributes to technical training of maintenance

of agricultural machinery was developed [157]. Huuskonen

et al. designed a wearable AR equipment to aid and guide

the farmer to collect soil samples [158]. Both VR and AR

technologies contribute to the automation and intelligence of

agriculture. For instance, farmers can remotely and precisely

control agricultural robots through VR and AR equipment in

the control center. In addition, farmers can study the fault

diagnosis and security countermeasures by VR educational

simulator, which contribute to the improvement of security-

conscious and prevention skills of farmers.

However, both VR and AR technologies are vulnerable to

various types of attacks, which have an impact on reliability

of systems as they are designed to replace our perception of

the physical world (e.g., tracking attacks) [159].

F. Cyber security datasets for smart agriculture

When proposing intrusion detection systems, it is struggling

to find comprehensive and valid cyber security datasets to

test and evaluate the performance of cyber security intrusion

detection. The study in [160] reviewed the most cyber security

datasets used in deep learning approaches for cyber security

intrusion detection such as NSL-KDD dataset, KDD Cup

1999 dataset, and UNSW-NB15 dataset. These datasets are

not simulated for smart agriculture environments. Therefore,

the development of a new dataset to build a network intrusion

detector under a smart agriculture environment is one of the

significant research challenges. In addition, we believe that a

comparative study of machine learning approaches for cyber

security intrusion detection is needed for smart agriculture

environments.

G. Summary

The integration of the above issues and agriculture pro-

vides the opportunity to promote intelligent and automatic

agriculture. In addition, faster data transmission speed (5G),

lower communication cost and latency (FC), lower energy

consumption (renewable energy management system), separate

relaying and controlling (SDN), simulation environment (VR

and AR), and datasets for evaluating model (Cyber security

datasets for smart agriculture) contribute to the development

of smart agriculture, as shown in Fig. 21. However, the above

issues are confronted with more severe security challenges

because security threats of them have not been fully explored.

When the above issues are widely used in smart agriculture,

there will be a quantity of security problems. And these

problems may lead to serious consequences, e.g., tracking

attacks to VR equipment will result in improper positioning

and harm to users.

Therefore, secure and privacy-preserving schemes play a

vital role in reliability of smart agriculture. Researches on the

existing security and privacy countermeasures in the above

issues can prevent security threats of them in smart agriculture.

For instance, the authentication and access control and privacy-

preserving scheme for 5G-enabled smart agriculture networks

is required with the rapid development of smart agriculture.

To ensure the security of 5G in agriculture, the researches

on existing security and privacy countermeasures, and specific

strategies will become hot issues in this field and promote the

development of smart agriculture.

From the above sections, it is suggested that:

• Expanding and improving the existing security and pri-

vacy countermeasures in smart agriculture (most of them

are in the theoretical stage, and few actual cases).

• Analyzing the characteristics and challenges of security

issues in smart agriculture scenarios, and applying the

existing security and privacy countermeasures mainly for

industrial scenarios to smart agriculture scenarios (indus-

trial scenarios are widely used, but the characteristics of

agricultural production are not taken into consideration).

• Following the development of novel technologies, apply-

ing them to smart agriculture scenarios, and highlighting

the new security issues brought by them simultaneously.

VII. CONCLUSION

With rapidly advancing modern technology, smart agricul-

ture, which is a combination of agriculture and information

technology, is becoming a trend of agricultural development.

However, information technology also entails various security

challenges. This paper surveys the state-of-the-art works re-

lated to smart agriculture and discusses the security challenges
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Fig. 21. Future research trends, security challenges, and lessons learned about smart agriculture.

of smart agriculture. We introduce three smart agriculture

development modes (precision agriculture, facility agriculture,

and order agriculture), and investigate 7 key technologies

and 11 key applications of smart agriculture. It is followed

by a summary of security and privacy countermeasures for

smart agriculture. Authentication and access control, privacy-

preserving, blockchain-based solutions for data integrity, cryp-

tography and key management, physical countermeasures, and

intrusion detection systems are introduced and discussed in

detail. Then, we discuss the security challenges in agricultural

production and information technology. In addition, we did

some experiments based on SIL-IoT, and the results indicate

that the interference of high voltage pulse discharge has an

impact on data transmission and data acquisition. Moreover,

we present six issues which may be the future research

trends of smart agriculture and introduce the novel security

challenges.
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[133] J. Milošević, A. Teixeira, K. H. Johansson, and H. Sandberg, “Ac-
tuator security indices based on perfect undetectability: computation,
robustness, and sensor placement,” IEEE Trans. Automat. Contr., pp.
3816–3831, 2020.

[134] A. Alromih, M. Alrodhaan, and Y. Tian, “A randomized watermarking
technique for detecting malicious data injection attacks in heteroge-
neous wireless sensor networks for internet of things applications,”
Sensors, vol. 18, no. 12, p. 4346, 2018.

[135] L. Che, X. Liu, and Z. Li, “Mitigating false data attacks induced
overloads using a corrective dispatch scheme,” IEEE Trans. Smart Grid,
vol. 10, no. 3, pp. 3081–3091, 2018.

[136] K. Mahapatra and N. R. Chaudhuri, “Online robust pca for malicious
attack-resilience in wide-area mode metering application,” IEEE Trans.

Power Syst., vol. 34, no. 4, pp. 2598–2610, 2019.

[137] A. W. Aldabbagh, Y. Li, and T. Chen, “An intrusion detection system
for cyber attacks in wireless networked control systems,” IEEE Trans.

Circuits Syst. II, vol. 65, no. 8, pp. 1049–1053, 2017.

[138] D. Kim, D. Shin, and D. Shin, “Unauthorized access point detection
using machine learning algorithms for information protection,” in
Proc. 17th IEEE Int. Conf. Trust, Security And Privacy In Computing

And Communications/ 12th IEEE Int. Conf. Big Data Science And

Engineering, 2018, pp. 1876–1878.

[139] X. Ding, T. Song, Y. Zou, and X. Chen, “Intercept probability analysis
of relay selection for wireless communications in the presence of
multiple eavesdroppers,” in Proc. IEEE Wireless Communications and

Networking Conf. Doha, Qatar: IEEE, 2016, pp. 1–6.

[140] M. Mohamed, B. Shrestha, and N. Saxena, “Smashed: sniffing and
manipulating android sensor data for offensive purposes,” IEEE Trans.

Inf. Forensics Security, vol. 12, no. 4, pp. 901–913, 2016.

[141] A. S. Bretas, N. G. Bretas, B. Carvalho, E. Baeyens, and P. P.
Khargonekar, “Smart grids cyber-physical security as a malicious data
attack: An innovation approach,” Electr. Power Syst. Res., vol. 149, pp.
210–219, 2017.



YANG et al.: A SURVEY ON SMART AGRICULTURE: DEVELOPMENT MODES, TECHNOLOGIES, AND SECURITY AND PRIVACY CHALLENGES 29

[142] J. Cui, L. Shao, H. Zhong, Y. Xu, and L. Liu, “Data aggregation with
end-to-end confidentiality and integrity for large-scale wireless sensor
networks,” Peer Peer Netw. Appl., vol. 11, no. 5, pp. 1022–1037, 2018.

[143] G. K. Ndonda and R. Sadre, “A two-level intrusion detection system for
industrial control system networks using p4,” in Proc. 5th Int. Symp.

ICS & SCADA Cyber Security Research. University of Hamburg,
Germany: Electronic Workshops in Computing, 2018, pp. 31–40.

[144] W. Shang, P. Zeng, M. Wan, L. Li, and P. An, “Intrusion detection al-
gorithm based on ocsvm in industrial control system,” Secur. Commun.

Netw., vol. 9, no. 10, pp. 1040–1049, 2016.
[145] W. Yusheng, F. Kefeng, L. Yingxu, L. Zenghui, Z. Ruikang, Y. Xi-

angzhen, and L. Lin, “Intrusion detection of industrial control system
based on modbus tcp protocol,” in Proc. IEEE 13th Int. Symp. Au-

tonomous Decentralized System. Bangkok, Thailand: IEEE, 2017, pp.
156–162.

[146] K. Rumyantsev and A. Pljonkin, “Preliminary stage synchronization
algorithm of auto-compensation quantum key distribution system with
an unauthorized access security,” in Proc. Int. Conf. Electronics,

Information, and Communications. Da Nang, Vietnam: IEEE, 2016,
pp. 1–4.

[147] S. Teng, N. Wu, H. Zhu, L. Teng, and W. Zhang, “Svm-dt-based
adaptive and collaborative intrusion detection,” IEEE/CAA J. Automat.

Sinica, vol. 5, no. 1, pp. 108–118, 2018.
[148] N. Wang, P. Wang, A. Alipourfanid, L. Jiao, and K. Zeng, “Physical-

layer security of 5g wireless networks for IoT: challenges and oppor-
tunities,” IEEE Internet Things J., vol. 6, no. 5, pp. 8169–8181, 2019.

[149] P. Zhang, M. Zhou, and G. Fortino, “Security and trust issues in fog
computing: a survey,” Future Gener. Comput. Syst., vol. 88, pp. 16–27,
2018.

[150] E. Baccarelli, P. G. V. Naranjo, M. Scarpiniti, M. Shojafar, and J. H.
Abawajy, “Fog of everything: energy-efficient networked computing
architectures, research challenges, and a case study,” IEEE Access,
vol. 5, pp. 9882–9910, 2017.

[151] B. Huang, Y. Li, H. Zhang, and Q. Sun, “Distributed optimal co-
multi-microgrids energy management for energy internet,” IEEE/CAA

J. Automat. Sinica, vol. 3, no. 4, pp. 357–364, 2016.
[152] Y. Duan, W. Li, X. Fu, Y. Luo, and L. Yang, “A methodology for

reliability of wsn based on software defined network in adaptive
industrial environment,” IEEE/CAA J. Automat. Sinica, vol. 5, no. 1,
pp. 74–82, 2018.

[153] T. Huang, S. Yan, F. Yang, and J. Liu, “Multi-domain sdn survivability
for agricultural wireless sensor networks,” Sensors, vol. 16, no. 11, p.
1861, 2016.

[154] I. Ahmad, S. Namal, M. Ylianttila, and A. Gurtov, “Security in software
defined networks: a survey,” IEEE Commun. Surveys Tuts., vol. 17,
no. 4, pp. 2317–2346, 2015.

[155] R. Azuma, “A survey of augmented reality,” Presence (Camb), vol. 6,
no. 4, pp. 355–385, 1997.

[156] R. Kim, J. Kim, I. Lee, U. Yeo, and S. Lee, “Development of a vr
simulator for educating cfd-computed internal environment of piglet
house,” Biosyst. Eng., vol. 188, pp. 243–264, 2019.

[157] V. Figueredo, A. V. dos Reis, F. Garcia, and F. C. Araújo, “Virtual
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