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Abstract

The concept of smart manufacturing has become an important issue in the manufacturing industry since the start of the

twenty-first century in terms of time and production cost. In addition to high production quality, a quick response could

determine the success or failure of many companies and factories. One the most effective concepts for achieving a smart

manufacturing industry is the use of computer-aided process planning (CAPP) techniques. Computer-aided process planning

refers to key technology that connects the computer-aided design (CAD) and the computer-aided manufacturing (CAM)

processes. Researchers have used many approaches as an interface between CAD and CAPP systems. In this field of

research, a lot of effort has been spent to take CAPP systems to the next level in the form of automatic computer-aided

process planning (ACAPP). This is to provide complete information about the product, in a way that is automated, fast, and

accurate. Moreover, automatic feature recognition (AFR) techniques are considered one of the most important tasks to create

an ACAPP system. This article presents a comprehensive survey about two main aspects: the degree of automation in each

required input and expected output of computer-aided process planning systems as well as the benefits and the limitations

of the different automatic feature recognition techniques. The aim is to demonstrate the missing aspects in smart ACAPP

generation, the limitations of current systems in recognising new features, and justifying the process of selection.

Keywords Automatic CAPP · Smart manufacturing · Automatic feature recognition · Process selection

1 Introduction

Process planning is an essential link between design and

manufacturing. It determines the manufacturing processes,

their sequences, and the conditions to convert a design into a

physical component economically and competitively [1–6].

With the traditional approach, manufacturing experts used

their experience and knowledge to solve process planning issues

and gave instructions about how to manufacture products [7,

8]. Since the early 1960s, computers have been used to assist

design, process planning, and manufacturing activities due to

their ability to perform complex functions in a fast and

accurate way [1, 9]. Thus, the three traditional con-

cepts (design, process planning, and manufacturing) have
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now become known as computer-aided design (CAD),

computer-aided process planning (CAPP), and computer

aided manufacturing (CAM) in the industrial world [9].

The term CAD refers to the use of computer systems

to assist in generating surfaces and 3D solids of products

[9, 10]. Design information needs to be shared accurately

among designers, process planners, and other participants

in the production process [2, 11]. A part’s information is

represented internally in CAD systems, and thus, it is log-

ical to let computers analyse that database of information

directly to create a process plan. This is instead of con-

verting the design from the computer into a drawing on

paper and back again, to produce the manufacturing report

[12]. However, sharing design information might be chal-

lenging because different enterprises, which are involved in

designing and manufacturing, use different CAD systems

[13, 14]. As an ideal solution, many companies and organi-

sations have designed and presented formats of international

Product Data Exchange (PDE) standards to solve this issue,

examples being: Drawing Exchange Format (DXF), Initial

Graphic Exchange Specification (IGES), and Standard for

the Exchange of Product (STEP) [13–15]. The benefits of
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these standards are not limited to handling and saving the

product data, for it is also possible for them to be used in

identifying the manufacturing features of the product [15,

16]. In fact, the standard formats are essential requests,

since manufacturing features are used for almost all CAPP

systems for product description [2].

CAPP is the use of computers to aid process planners

in a systematic determination of convenient methods in

the manufacturing of a part or product [17, 18]. Niebel

in 1965 was the first who discussed the use of computers

to assist in the selection of basic processes in order to

plan manufacturing processes for a given functional design

[1, 6, 19]. To date, much research and many publications

have been devoted to developing CAPP systems. However,

in comparison with CAD and CAM systems, few CAPP

systems have reached the stage where they could provide

significant solutions to manufacturing industry [20]. Part of

this slow progress is due to the enormous complexity of the

nature, and the dynamic aspects of the process planning task

[12, 19, 20]. Furthermore, it might be discouraging to know

that since Sutton mentioned in 1989 that “there are no fully

automated CAPP systems and almost all of them still require

extensive manual operations” [21], this statement still holds

true, in spite of the significant efforts that have been made

to take the traditional CAPP systems to the next automated

level [22].

There are many methods and technologies of CAPP,

with those that are widely used including feature-based

technologies, knowledge-based systems, artificial neural

networks, genetic algorithms (GAs), fuzzy set theory and

fuzzy logic, Petri nets (PNs), agent-based technologies,

internet-based technologies, and the STEP data-compliant

method [1, 6]. It is important to re-examine and analyse, as

much as possible, the current methodologies and approaches

to determine whether they will lead to convincing solutions

of automated computer-aided process planning (ACAPP).

The following aspects will be discussed to achieve a smart

ACAPP system:

1. What are the required inputs and expected outputs to

generate ACAPP?

2. What optimisation functions can be implemented (cost,

productivity, etc.)?

3. What factors and strategies are needed, and what further

knowledge could be added?

The paper is organised as follows: Section 2 introduces

the CAPP concept and structure. Principles, functions,

requirements, and different methodologies and approaches

to CAPP regarding inputs and outputs are discussed in

Sections 3 and 4, respectively. A vision about how it is

possible to optimise the covered aspects will be mentioned

in Section 5.

Figure 1 shows a smart manufacturing system as a

sequence of a product life cycle, which is supported

by computers throughout the three main stages (design

process/CAPP based on automatic feature recognition

(AFR)/manufacturing process).

2 The concept of CAPP

Process planning is an essential activity that transforms the

design of a product into detailed instructions on exactly how

to manufacture the parts or assemblies of that product at

a given factory. From this, it is clear that the decisive role

of process planning is as a bridge between the design and

manufacturing processes and that an efficient CAPP can

reduce the lead time [21, 23]. In addition, essential issues

such as cost of components, company competitiveness,

production planning, and production efficiency could be

determined with the associated CAPP [24]. Owing to the

reduction in the number of experienced process planners

in industry, the field of CAPP research is growing and

receiving greater attention than ever before [23].

Whilst there has been much research to automate CAPP,

the results are still considered to be lagging behind where

they should be due to the multidisciplinary nature of process

planning [5, 25]. Most of the recent research has been

concentrated on the generative CAPP approach instead

Fig. 1 The architecture of a smart manufacturing system. Where the

analysis includes features extraction and recognition in addition to all

other information, such as dimensions and tolerances, surface finish,

and the part datum
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of the variant one [25]. The various aspects of process

planning are classified according to the required inputs and

operational details (outputs). The required inputs of a CAPP

include:

1. Feature technology;

2. Dimensions and tolerances (GD&T);

3. Materials;

4. Surface finishes;

5. Machining process and process capabilities (MP&PC).

These inputs should be accurately analysed and evaluated

in order to generate process planning based on available

machinery and processes [4, 17].

The final output of the process planning activities

includes:

1. Processes selection;

2. Sequence of operation;

3. Cutting tools;

4. Cutting conditions;

5. Selection of jigs and fixtures;

6. Identifying the tool path for both the rough and finish

cycles;

7. Estimating the time and the cost to manufacture the part

[3, 17, 25].

Figure 2 shows the general structure of CAPP systems

with their inputs and outputs.

3 Required inputs of the CAPP

In order to generate instructions to manufacture a part,

CAPP has to recognise and analyse the product model data

provided by a CAD system. The product data includes

manufacturing features, which are identified based on

geometric features including dimensions, tolerances, and

roughness as well as relevant non-geometric information,

such as materials and hardness [26]. However, CAD and

CAPP systems have different product data descriptions, for

example, the former is geometry-based, whereas the latter is

manufacturing feature-based [27]. In addition, it is difficult

to embed non-geometric information as real attributes in

most, if not all, current CAD models. As a matter of fact,

even if the non-geometric data are incorporated in these

models, they are represented as text in the same way as

technical notes in a drawing. Hence, human intervention is

needed to regenerate the manufacturing information when

a CAD model is to be transferred to downstream users,

such as the process planner [28]. This section explains

the concepts of the required CAPP inputs and is aimed at

diagnosing the shortcomings that prevent auto interlinking

between CAD and CAPP systems.

3.1 Feature technology

Computer-aided design systems have been used since

the 1960s to assist draftsmen with tedious drawings and

redrawing tasks, as well as to improve drafting efficiency

[17, 29]. All CAD packages contain detailed information

of geometric features of a part, and they store the

information in their own databases. However, each package

has a different database structure, for there is no one

standard that has been developed to be used by all [28].

Furthermore, the geometric feature information of a part

is not suitable to be used directly in CAPP systems.

However, feature technology is expected, in the near future,

to achieve better integration between CAD and CAPP.

Feature technology represents an essential tool for computer

integrated manufacturing (CIM), which is considered a

focal research area in manufacturing industry. The main two

approaches in this field are design by features (DBF) and

automated feature recognition [30–34].

In the DBF methodology, a part is designed using a set

of predefined features in the modelling system libraries,

such as slots, holes, and pockets [31, 33]. This approach

facilitates modelling design data by storing high-level

information in the CAD module’s data structure [35]. In

addition, this method can speed up the design process,

since it remarkably reduces the amount of work required to

recognise the features [33]. Despite the advantages of DBF,

it has not yet reached expectations. The main drawback

is the unlimited set of features in design [30]. Also, as

this approach stores high-level feature information in CAD

packages, it is difficult to transfer and exchange this level

of information among different systems [36]. Furthermore,

despite DBF reducing the work of feature recognition, the

need for it still exists [30, 37]. Hence, all the systems

that include feature modelling require feature recognition

techniques [33].

In AFR techniques, low-level geometric entities of part

design models, which are created in CAD systems, are

converted to manufacturing features. This is to be used

in various engineering tasks, such as CAPP, CAM, and

inspection [30, 38]. Different AFR approaches have been

developed, since there are various classifications of features,

and they are used in different application areas [38]. The

main five categories of the AFR are:

1. Syntactic pattern recognition;

2. Graph based;

3. Hint based;

4. Logic rule based;

5. Artificial neural network [39, 40].

Whilst AFR methods have been used widely in the

intelligent manufacturing environment, each method still
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Fig. 2 CAPP system with its

inputs and outputs

has drawbacks, such as limited ability of learning, specific

range of features to be recognised, and low speed [33].

3.1.1 Syntactic pattern recognition

Syntactic pattern recognition (SPR) is a formalised tech-

nique to represent a pattern as a structure of the form of

string, a tree, or a graph. In a recognition process, a pattern

is analysed and assigned to a predefined class of features.

If the pattern is complex, it is defined in a hierarchical way,

whereby primitives are used at the bottom of the hierarchy

in order to build simple substructures with symbols [41].

There are three major components in this approach: pre-

processing, pattern description or representation, and syntax

analysis. In the pre-processing, a pattern is coded using

a convenient form to be prepared for further processing.

The coded pattern could be represented as a language-like

code, such as a string of alphabets. During the pattern rep-

resentation process, the pattern is segmented into simpler

sub-patterns called primitives, and the segmentation process

helps to identify relations between these primitives. The

decision on whether or not the primitive belongs to the class

that is described by an existing grammar will be achieved

by the syntax analyser [42]. Figure 3 shows the outlines of

this approach, and how an analogy is drawn between the

structure of patterns and the syntax of languages.

Ketan and Yaqoub [43] introduced a AFR system to

recognise symmetrical features of rotational parts. The

system includes two modules: extraction module and

automatic feature recognition module. A new extraction

algorithm has been provided to extract the low-level entities

from a STEP file that is generated from a CAD package.

Then, a SPR technique, sweeping operation, and logic rule

are implemented to recognise different types of 3D features

based on 2D entity input patterns. The system is limited to

recognising 13 symmetrical rotational features.

Perng et al. [44] proposed a SPR method to extract man-

ufacturing features from 3D constructive solid geometry

(CSG). Whilst the system is able to recognise 18 pris-

matic features, it cannot handle intersecting ones. However,

the output feature information from this algorithm can be

passed to CAPP systems for the rough-cut machining.

Arivazhagan et al. [45] developed a feature recognition

methodology that uses STEP files to extract geometrical

information directly from a B-rep model. The proposed

approach implements SPR to recognise five classes of

prismatic parts features: interacting, tapering, interacting-

tapering, curved base features, and tapering cross-sections.

Each edge loop of a prismatic part includes details of edges,

vertices, coordinate points, and directions. With all the

implicit information of an edge loop, a basic feature can

be described by comparing it with pattern strings, which

have been developed for every class of features. The final

shape of a feature is recognised by checking: the presence of

similar edge loops on parallel faces and the connectivity of

faces between these parallel edge loops. The system is able

to recognise 195 types of tapered features. Furthermore, the

output provides the following: the tool path direction, details

about edge loops, and the dimensions of features, including

the value of taper angles.

Whilst the syntactic pattern recognition method has

succeeded in identifying classes of features, it has a narrow

area of application. That is, the method is limited to

turning features of rotational parts and 2D prismatic parts.

The implementation of this method lacks success, if it is

implemented with rotational parts that have non-turning
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Fig. 3 Block diagram of a SPR

system [42]

features or 3D parts with non-axis symmetry. Because of

this weakness, it has been replaced by newer techniques that

have overcome these limitations [41, 46].

3.1.2 Graph based

The first graph-based (GB) feature recognition formal

approach was developed by Joshi and Chang in 1988. It is

highly regarded as a successful features recognition method,

since it has been implemented in many commercial FR sys-

tems. Moreover, many techniques have been incorporated

based on this approach and used in different applications,

such as process planning software [46]. Joshi and Chang

[47] developed the GB approach to recognise machined fea-

tures from a B-rep solid model. Their approach uses an

attributed adjacency graph (AAG), which can be defined as

a graph G = (N, A, T ), where:

N = a set of nodes,

A = a set of arcs (or angles);

T = a set of attributes to arcs in A.

The AAG method assumes that a unique node N exists at

each face of a part. Also, for each two adjacent faces, there

is a unique arc A that connects their nodes. Finally, each arc

is assigned an attribute T , which is usually a concave angle

(T = 0), or a convex angle (T = 1). Figure 4a, b shows an

example of the AAG for a part. The part has 14 faces, and

each face is represented by a unique node in the AAG net.

After that, a line is drawn between each two adjacent faces

and indicated either by “0” or “1” to refer to concave and

convex angles, respectively.

Figure 5 shows three different parts that have identical

topological information and AAG representation. Hence,

the features need to be accurately defined, and that involves

identifying the minimal set of essential conditions that

classify a feature uniquely. In this example, the value of the

two angles formed by the slot faces specifies the difference

between the definitions of the three slots [47].

At that level, the use of AAGs to recognise features was

limited to polyhedral parts, which have flat faces, straight

edges, and sharp corners as isolated features. However, the

concept could be extended to identify features formed by

both planer and cylindrical faces [47]. Whilst the number

of primitive features is countable, the configurations when

two or more features intersected are unlimited [48, 49].

The difficulty of recognising interacted features is one

of the major issues in a GB features recognition system.

Consider the example part in Fig. 6, theoretically, two

slots are recognised by applying the initial concepts of GB

systems, and these are (f1, f2, f3) and (f5, f6, f7). But

practically, there is a third slot (f1, f4, f7), which intersects

with the other two. This example reveals the shortcoming

of the unmodified graph-based systems [49]. To overcome

this issue, Marefat and Kashyap [48] presented a novel

solution that includes simplifying and restoring the AAG

representation by creating a conceptual face, which is the

result of unifying two or more unifiable faces. For example,

in Fig. 6, a slot with f1, f4, and f7 can be recognised after

restoring f2, f3, f5, and f6. However, the system cannot work

correctly, if the AAG representation of a primitive feature

consists of several disconnected components [48, 49].

Zhu et al. [50] presented an automatic process planning

system for multi-tasking machines, which are able to

perform turning and milling machining. In this system, a

CAD model is saved as a STEP file and represented in the

structure of an AAG. In total, the system is able to recognise

nine turning features and eight milling features. In addition,

a sub-feature combination method was developed in order

to recognise intersecting features and save the computation

cost for process planning.

According to Woolridge [51], an agent is “a computer

system that is situated in some environment and that is

capable of autonomous action in this environment in order

to meet its design objectives”. Fougères and Ostrosi [52]

have used the intelligent agents concept to enhance the
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Fig. 4 a Example of a part that

has 14 faces, and b explanation

of AAG for the part in a [47]

graph-based method in order to recognise a set of features

in prismatic parts. Topological and geometrical information

of features is represented by adopting two formalisms,

namely, graphs and grammar. A feature is transformed into

an agent, with sub-features forming a network of agents

that communicate and share knowledge with each other.

The feature recognition approach performs three stages that

are carried out by the multi-agent system and assisted by

the designer: (1) identifying possible areas where features

may be created, called regioning; (2) building links and

Fig. 5 Three different parts with

identical AAG representation

[47]
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Fig. 6 An example of intersecting features [49]

virtual faces, called virtual extension; and finally, (3) feature

identification includes identifying features in these zones.

Currently, the approach is limited to manufacturing features.

However, there is potential to extend the approach of

the multi-agent system to update knowledge continuously

through new rules that are learnt, and hence, the set of

recognised features could be extended.

3.1.3 Hint based

Initially, each proposed feature has a frame, which could be

represented as a hint. A hint is a proof about the existence

of a specific machining feature in a part. For example,

primitive linear slots or grooves are produced by a pair

of parallel opposing faces, whereas hole hints are formed

by either cylindrical or conical face and one can also be

triggered by a thread attribute [53, 54].

Vandenbrande and Requicha were the first to present

the hint-based approach in 1993 [49, 55], proposing an

Object-Oriented Feature Finder (OOFF) system. It starts by

generating hints for the existence of features, and posting

them on a blackboard. Then, the hints are analysed by

a hint classifier and the results placed in one of three

categories: promising, unpromising, and rejected hints. If

the hints seem promising, they are processed by a feature

completer to confirm them as actual features and if they are

evaluated as rejected, then they are neglected. Otherwise, if

the features are unpromising, they are temporarily stored,

because they may be reactivated later to be identified as part

of a composite feature.

The algorithm also includes the implementation of

another set of rules in an attempt to combine the stored

processed features and check the possibility of getting more

complex features. Finally, verification is undertaken, since

it is important to check the machinability of the proposed

features. Figure 7 shows the architecture of the hint-based

approach [53].

A feature hint may be generated from different sources,

for example, nominal geometry, design feature, tolerance

or surface attributes to infer parts machining features and

process planning aspects.

Kang et al. [26] presented a system that starts with the

generation of a STEP 203 file from a UniGraphics CAD

modeller. Then the STEP file is interpreted and transformed

into parasolid entities to check the correctness of the

STEP 203 import. Next, hint-based reasoning is used to

convert the geometric features into manufacturing features

by applying an Integrated Incremental Feature Finder (IF2).

Finally, the manufacturing information is translated into a

physical STEP AP224 file that contains the relevant data for

manufacturing the designed part. According to the authors,

although the system is able to remove the main barrier

between CAD and CAPP, recognition of complex shapes

remains a bottleneck.

3.1.4 Logic rule based

In 1984, the logic rule-based approach for feature recog-

nition was introduced by Henderson and Anderson, being

presented as a FEATURES system. The system replaces the

human role with logic programming in the part interpre-

tation to extract high-level knowledge from a stored part

description. The FEATURES system consists of three main

components: feature recogniser, feature extractor, and fea-

ture organiser as shown in Fig. 8. The feature recogniser can

define cavities made up of various types of features, such

as pockets, holes, and slots, whereas the feature extractor

can separate these features based on their respective enti-

ties. Finally, the feature organiser arranges the separated

features as a graph structure, which is defined as volumes

to be removed. The structure of the graph consists of nodes

for the features and links for their relationships. Moreover,

the feature graph can be used in subsequent manufacturing

processes, since it provides information about each feature

as well as the stock material [56].

Oussama et al. [57] developed a new methodology

for recognising both interacting and isolated features

for rotational parts. The system consists of three main

modules: geometrical and topological data extraction,

feature recognition, and feature generator. The first module

includes the extraction of dimensional, topological, and

geometric of the part features from a STEP file using C++

programming. The extracted information is reorganised and

stored in a database. The geometrical and topological data is

analysed in the second module using a rule-based approach.

Also, a library of thirty predefined turning manufacturing

features is associated in this module in order to recognise

high-level features. In the third module, there is a feature

generator analysis of the recognised features to generate

all possible combinations of interacting features. However,

multiple combinations of interacting features are given to

machine the same workpiece, which can lead to complex

computational processes in the feature recognition stage and

is time-consuming during the tool selection stage.
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Fig. 7 Architecture of the hint-based approach [53]

As a combination between the DBF and AFR

approaches, Zehtaban and Roller [58] developed a frame-

work for an automatic classification of product shape infor-

mation. The aim of their work was to consider high-level

manufacturing entities in the first stage of product develop-

ment. To achieve this goal, a rule-based feature recognition

method based on Opitz coding system was developed as

group technology (GT) classification. The system uses a

STEP file to represent the design geometry and topology.

After loading the STEP file, the system starts a “classifica-

tion” that includes a feature recognition process and Opitz

code generation. The final result of this model implies a

predefined group of features, according to GT. Whilst a

rule-based method is considered as a generalisation of a syn-

tactic one, it has advantages over the latter, whereby it has

proved to be more robust and more functional with 3D part

representation. However, the need for predefined rules for

every conceivable feature makes the rules-based techniques

overburdensome and inflexible [59].

3.1.5 Artificial neural network

Artificial neural networks (ANNs) are human-like compu-

tational models inspired by the biological neural networks

(NN) of the brain. An ANN is a network of nodes and links,

which is specified by net topology, the characteristics of

each node, and learning rules. The net topology assigns the

inputs of each node, whereas the node characteristics deter-

mine its output. A node is defined by three factors: inputs,

an arithmetic operation, and a weighting. Each node can

receive several inputs and perform arithmetic operations.

Then, this node sends only one output via link(s) to another

Fig. 8 Architecture of the

FEATURES system [56]
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node(s) which perform operations in turn. Both inputs and

weights of a node are allowed to change over time, whilst

the learning rules train the NN how to react to an unknown

input. An important characteristic of ANN systems is their

ability to adapt and learn by collecting examples. Thus, they

can be trained to solve feature recognition tasks by repeat-

edly presenting input patterns to the net. The use of ANNs

to recognise manufacturing features from 3D solid models

has been demonstrated since 1990 [46, 60].

Prabhakar and Henderson [61] presented a new algorithm

for feature recognition based on an NN technique. The

methodology involves coding of a B-rep solid model into

an adjacency matrix, which is a 2D array of integer vectors,

and contains eight-digit code for all faces in a part. An entry

of the adjacency matrix is a vector of integers. Each vector

gives information about a face and defines its relationship

to another face. Then, the developed algorithm performs

pattern recognition on each row of the matrix. A feature

is recognised if the recogniser detects the presence of a

predefined set of rules belonging to a specific feature. The

developed NN has five layers, each performing one of

the steps in the algorithm. Whilst the approach recognised

simple features such as holes, slots, and pockets, many

limitations were found, which are discussed in [61].

Sunil and Pande [62] used an ANN feature recognition

approach to recognise machining features from a B-Rep

CAD model. The system proposed a 12-node vector scheme

as a classification of machining feature families, which have

variations in topology and geometry. The first stage of the

system includes saving a solid design model as a SAT file

format. Then, the SAT file is used as an input and fed to the

neural network toolbox of MATLAB for classification. In

the second stage, the recognised features are post-processed

to create a feature-based model. Finally, this feature-based

model file is linked to a CAPP system for CNC machining.

An important constraint must be kept in mind, which is

that an ANN performs only simple arithmetic operations

and is not expected to perform any logical operations

explicitly. This limitation goes against the development of

conventional feature recogniser systems, which check to see

whether a potential feature satisfies a predefined set of rules

[61].

3.2 Geometric dimensions and tolerances

The initial design is a critical stage of the product life cycle.

That is, decisions at this stage provide a rich quantity of

essential information for the remainder of the design and

manufacturing cycle. Identifying feature dimensions and

tolerances of a part design is one of these essential decisions

[63]. In an engineering drawing, a dimension is a natural

descriptor or a numerical value of the geometry [63, 64],

whilst a dimensioning scheme is a set of dimensions, which

is chosen by a designer and shows the nominal geometry of

a part [65]. However, the dimensions of a real part cannot be

produced exactly as designed under normal manufacturing

conditions. Thus, tolerances are needed to accommodate

variations in dimensions, which are the permitted range

of deviation in part geometry, according to the nominal

size and shape [65, 66]. Traditionally, the designers

specify dimensions and tolerances just before releasing

the drawings. According to the reviewed literatures, these

tolerances are based on standards that have emerged from

engineering experience, best guess, or through anticipated

manufacturing capability [65, 67].

Computer-aided analysis of dimensions and tolerances

appeared for the first time in the 1980s [64]. Hoffmann

[68] suggested the use of linear programming in order to

solve basic problems of tolerance allocation in mechanical

parts. A method was presented to check inaccuracies of

operations by finding the tolerance between two elements

for an individual part, where an element can be a point or

a line. Later, Weill and Bourdet [66] developed a computer

program that calculates dimensioning and tolerancing,

thereby introducing the aid of computers in process

planning. A two-dimensional drawing of a part, in three

different directions, was used as an input to the system.

The output provides the following: tolerances of positions,

machining tolerances, clear distinctions between dependent

and independent variables, and minimum dimensions of

the raw material. Britton and Thimm [69] presented a

new matrix method based on the datum hierarchy tree

technique, to calculate functional dimensions and offsets for

tolerance charts. The calculations in the matrix method are

performed either manually or are aided by a computer. It has

been implemented in a prototype AI program for process

planning.

From a mechanical engineering point of view, dimension

chains involve dimensions as elements in a closed loop [70],

with the technology being the basis of tolerance analysis

and synthesis. Recently, it has played an important role as

a connection between CAD, CAPP, and CNC machines. By

using dimension chains, it is possible to:

1. Define the functional parameters (dimensions) during

the design stage;

2. Use related design functions to allocate and analyse the

tolerances;

3. Evaluate and analyse the accuracy of parts assembling

[71].

Muholzoeva and Masyagin [72] applied a classical

algorithm Floyd-Warshall to simplify the calculation of

dimension chains. The missing values of tolerances in these

chains are calculated by adding the lengths of two links each

time. The method solves the entire structure of dimensional

chains and does not calculate data for individual ones.
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Gao et al. [71] presented a 3D dimension chain generation

method based on a variational geometric constraints

network (VGCN) approach. According to ISO/TC 213, a

VGC can be classified into three types: self-referenced

(SVGC), cross-referenced (CVGC), and mating-referenced

(MVGC). These three types of VGC are linked to each

other to form VGCN, which is used to build an assembly

database. Then, assembly dimension chain can be generated

automatically from the database. Instead of using a VGCN,

Zhenbo et al. [73] used a feature attributes set (FAS), which

represents the concept of an assembly information model for

automatically generating the 3D assembly dimension chain.

To achieve this goal, a transmit network between features

was also presented. However, in both methods, the closed

loop of a part is still needed to be specified manually by the

user. Li et al. [74] proposed a method to extract the assembly

information directly from a CAD assembly model. The

extracted information is managed as data structures with

an interrelationship, which is then accessed with database

technology. Next, the 3D assembly dimension chains are

generated automatically based on the assembly constraints

from the extracted information. Finally, the ant colony

algorithm is used to increase the dimension chain accuracy.

Nowadays, almost all CAD packages have the ability

to generate and locate dimensions automatically. However,

the way that these packages specify the dimensions does

not reflect the functionality of the part and does not satisfy

the designer and manufacturer’s point of view. At present,

there are no CAD packages that can calculate and assign

tolerances of different dimensions in a satisfactory way,

which means alternative methods (solutions) are required.

Despite much effort having been made to automate the

calculation of geometric dimensioning and tolerancing

(GD&T) in the way of dimension chains, researchers have

not proposed comprehensive solutions so far. Thus, further

development of dimension and tolerance analysis is needed

to complete dimension chains automation by using more

appropriate theoretical models [73, 75].

3.3 Materials

From a designer viewpoint, material selection is a process

that identifies the material for a design that after appro-

priate manufacturing meets its required function [76]. The

decision of material selection is made during the prelimi-

nary stage of design calculations, and it has a great effect

on overall product cost [77, 78]. From a process planner

perspective, knowing the product material is one of the

important aspects that gives early direction regarding the

product manufacturing process [79]. This is because the

product material affects the selection of cutting tool mate-

rial and geometry, cutting conditions (feed, speed, depth of

cut), and the type of coolant [80]. There are recommended

cutting conditions for each material, which are traditionally

found in the tool manufacturing catalogues or cutting data

handbooks [81]. It takes merely a glance at these machin-

ing handbooks to realise they contain complex information

about hundreds of thousands of different materials. This

makes it very difficult and time-consuming for a process

planner to identify the ideal cutting tool, cutting condi-

tions, and coolant fluid for each process. Hence, a type of

upgradable computerised database is needed to overcome

the aforementioned drawbacks.

Al-Shebeeb and Gopalakrishnan [82] used generative

CAPP software tools to analyse the effects in process plans

with respect to changing material properties. Precisely, the

system explored the change that occurs in the cost and

production rate of process plans. The research showed

how a design can be evaluated from the manufacturing

perspective in an attempt to decrease production cost,

increase production rate, and improve the quality.

3.4 Surface finishes

Surface finish is one of the essential factors that affect

the planning of manufacturing, inspection, and assembly

processes of a mechanical component [83]. Its notations

are used to define the surface quality of a designed part,

which is usually specified by maximum allowable surface

roughness in micrometres, as Ra or Rz numbers [84]. As an

important consideration, surface finish must be supplied by

the designers as it reflects intended functions of the part and

must be known by process planers, for this helps to predict

the machining performance of any machining operation

[83, 85]. Some researchers have focused on the control of

cutting conditions to obtain a specific surface finish [86,

87]. However, other groups of researchers have claimed that

in addition to the cutting conditions, other factors such as

the tool geometry, tool material, process capabilities, and

workpiece material properties could affect the surface finish

value [88]. As a result, it is very important to ensure that

from among all the alternative machines and tools in the

shop, the machine, the tool design, and the tool material

assigned to perform an operation are the best choices [4, 89].

(Ben) Wang and Wysk [90] and Chang and Wysk

[91] presented the Turbo-CAPP and TIPPS systems,

respectively, and whilst both of these systems consider the

surface finish value in their processing, the input method

needs human intervention. Furthermore, the surface finish

was isolated from the other inputs. However, systems

like the ones mentioned above have paved the way for

more automated process planning systems. Chang et al.

[92] proposed a variant CAPP system. In this method,

a workpiece is represented by geometry, material, and

precision indexing. The surface finish is categorised into

three groups: fine, intermediate, and rough. If two parts have
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the same geometry and their surface finishes are located in

the same group, it means the cutting processes and machine

tools are the same for both. According to the authors, the

system is able to find out the most relevant case rapidly and

is convenient for manufacturing products that vary little in

their process planning.

Grzesik and Wanat [93] presented experimental work

aimed at finding alternative process planning that produces

the required surface finish. A workpiece of hardened low-

chromium alloy steel was used and instead of deploying

grinding, as the final process in a traditional process plan,

mixed alumina-titanium carbon (TiC) ceramic cutting tools

were utilised in turning machine to get the required value

of surface finish. This alternative process plan reduced the

manufacturing costs, decreased the production time, and

improved overall product quality.

Özel et al. [89] examined the use of neural network (NN)

models to predict the surface finish and tool wear in finish

hard turning processes. The study involved investigating

the finish turning of AISI D2 steels (60 HRC) with the

use of ceramic wiper (multi-radii) tools. Three factors were

utilised in order to train the NN algorithm: measured forces,

power, and specific forces. According to the authors, the NN

models are able to predict the surface finish of a part for a

range of cutting conditions. Furthermore, it can enhance the

creation of intelligent process planning (IPP).

3.5 Machining process and process capabilities
MP&PC

In order to make a decision on which process(es) can be

used and in which sequence to manufacture a part, the

characteristics of available manufacturing processes should

be known. The basic characteristics of a manufacturing

process include features that the process can produce,

limitations of the dimensional and geometrical tolerances

(process tolerances), and the achievable surface finish.

Such characteristics are called process capability, which

must be matched with the required geometrical and

topological specifications of a part to identify the necessary

manufacturing processes [91, 94]. For example, depending

on the required surface finish of a hole, a process planner

should know that a reaming operation can produce a

surface finish within the range 2.5–0.4 µm, whereas a

drilling operation can guarantee accuracy between 80 to

12.5 µm. Also, a drilling operation is required before a

boring operation due to the limitation of the cutting tool

accessibility. Thus, it is possible and necessary to utilise

the knowledge about the process capabilities as a functional

model of process planning [95].

The knowledge about process capability can be divided

into three levels: universal, shop, and machine level. The

universal level ignores the knowledge of a specific machine

shop, and its information is available in handbooks. This

is to be used when the details of a specific machine

shop are not available. In the shop level, a specific set of

machines and/or cutters is considered in order to predict

the required accuracy. The machine level provides the most

accurate information since it takes in consideration only

certain machine capabilities. Šormaz et al. [96] proposed

a rule-based intelligent process planning system, which

includes the process selection based on the universal level

information of process capabilities. The process selection

(IMPlanner) algorithm starts by comparing the feature

requirements with the stored process capabilities. The

process is selected based on inheriting relations from the

feature type. The algorithm also includes an evaluation

process, which has one of three possible results: complete,

partial, and no matching. Depending on the feature

requirements, process capabilities, and the evaluation result,

the system shows one of these outputs:

1. “Complete” means the process is selected as a full

compatible process for that feature;

2. “Partial” means the process is accepted to produce an

intermediate feature with processes in the next stage of

precedence;

3. “No matching” means the process is rejected and the

system searches for an alternative process;

4. If the result is “no matching” and there are no more

processes to consider, then the system reports dead-end

to the user.

3.6 Summary

Whilst CAPP systems have been developed over the years

to consider all the necessary inputs, some have been given

greater emphasis, whereas others have been somewhat

neglected. Older CAPP systems would deal with inputs

individually, which impacted negatively on the time, cost,

and quality of products. Whilst CAPP systems nowadays

attempt to deal with the inputs simultaneously, there is still

a lack of smartness in the way these systems update inputs.

For example, AFR systems are limited to recognising a

set of predefined features. Also, CAPP systems are not

able to determine cutting conditions for new materials.

These fundamental limitations are currently shaping a vital

area of research within smart CAPP that requires further

development.

4 Output activities of CAPP

Whilst the automation of inputs in CAPP has significant

value, process planners are continually looking for what

such a system can give as an output. As was mentioned

previously, the output of a CAPP system should include
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selection of operations, sequence of operations, and

associated processes to convert a raw material into a

product. Also, it has to specify each dimension and

geometry requirement through which the operation is

achieved [97]. Removing human intervention to achieve

these tasks would improve CAPP performance. In order

to create a convenient CAPP, these requests of production

should be considered: reducing cost, quality control, and

shortening time taken [98]. This section studies what has

been achieved in each output parameter of CAPP so far.

4.1 Process selection

To manufacture a product with the required shape, size, and

properties, this depends not only on the design, but also on

the selection of an appropriate manufacturing process(es)

[99]. Process selection in CAPP is making the decision

of which to use to manufacture a part, whilst taking into

consideration the existence of alternative processes that

are able to achieve the same task. Consequently, a part

that is planned to be manufactured on a specific class of

machines could be also manufactured on a different class

of machines. However, using a different class of machines

means significantly different manufacturing procedures

and, therefore, different process planning [17].

Jain and Jain [99] presented a process selection method-

ology for advanced machining processes (AMPs) as well

as basic types of manufacturing process. A combination of

elimination and ranking strategy is used in this method-

ology, whilst the AMPs were reclassified to facilitate the

process selection. Software known as APSPOAMPS is used

to implement this approach. According to the authors, the

users of AMPs are able to save time, effort, and money

by using this system. However, AMPs were only reclassi-

fied based on their material application capabilities, feature

recognition generating capabilities, and operational capabil-

ities, in addition to economic and environmental aspects.

Hence, the authors confessed that this is not an exhaustive

list, due to unavailability of other quantitative informa-

tion about the manufacturing process. In consequence, the

described methodology is considered preliminary and not

comprehensive or complete.

Lau et al. [100] applied a rule-based method to extract

the data of a part from a CAD model saved as a STEP

file. The system is aimed at recognising the features of

a part and creating a process plan to manufacture it.

By applying user-defined rules, the system provides rapid

process selection. Even though the system saves time in

process planning, it is limited to prismatic components

and the common processes that are used to produce them.

Zhang and Merchan [101] proposed an integrated process

planning model (IPPM), with three levels: preplanning,

pairing planning, and final planning. The process selection

is a step in the preplanning level. The machining process

is selected based on characteristics of a part’s features and

the equipment on the shop floor. The main concern of

the process selection with this system is the availability of

machines on the shop floor.

4.2 Sequence of operations

The sequence of operations is a primary objective of most

CAPP systems [17]. Many factors can affect this task such

as types and numbers of available machines, available tools

and fixtures, part features, tolerances, and required heat

treatment [102]. Each of these factors imposes limitations or

constraints on the sequence of operations, which are called

manufacturing constraints [102, 103]. Moreover, some of

the constraints may cause confusion as they conflict with

each other. Hence, some processing steps are executed in

the same setup, whereas others are executed consecutively

[103].

Kruth and Detand [104] presented non-linear process

plans (NLPPs) for a CAPP system. The NLPPs provide

rescheduling and re-planning functions which are missing

in conventional process plans. The objective of NLPPs is

to offer manufacturing alternatives. In this method, feature-

based input is required to generate a sequence of operations.

The data are provided to the system via two ways, namely,

as a neutral file or a graphical editor. Gu and Zhang

[102] used an object-oriented CAPP system in order to

generate a sequence of operations. The method includes

three phases of planning. The first phase is initial planning,

which includes the selection of the operations and the

machine cells. Then, a setup planning identifies machines

and fixtures, clamping surfaces, and feature accessibility.

Based on the information from the previous phases, the

final planning determines all the detailed sequences of

operations.

Pandey et al. [105] developed an operation sequencing

rating index (OSRI) system by associating four factors:

setup changeover, tool changeover, motion continuity, and

loose precedence. The next step includes the use of the

simulated annealing (SA) algorithm to determine the best

sequence of operation by maximising OSRI. According

to the authors, the system is able to reduce both the

computational time and the search space to reach the best

solution. However, it does not take into consideration the

stuck up tolerances.

4.3 Cutting tools

A machining process includes the metal removing from a

workpiece as swarf or chips using single or multi-point

cutting tools with a specified geometry [88]. Despite the

cutting tools selection being just a sub-function of process
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planning, it is a complex task that requires considerable

experience and knowledge [106, 107]. Traditionally, the

best set of cutting tools is selected by individuals based on

their previous experience, but this manual approach is slow

as well as leading to errors and inconsistencies [107]. Thus

simply, it is inconvenient to select the cutting tools based

on the familiarity, experience, and the memory of operators.

To overcome this issue, a system is required to analyse

part geometry and specifications, subsequently identifying

the appropriate tools automatically. Unfortunately, despite

the development of CAPP systems, automatic cutting tool

selection for machining operations is still in its infancy [106].

The tool selection affects many other parameters in

manufacturing such as the selection of fixtures, production

rate, machining accuracy, and the final cost of the product

[108]. The correct selection of cutting tools and its

associated cutting conditions could significantly reduce

the production cost. Hence, any CAPP system that does

not consider these parameters will have severe limitations

[109]. Even though most modules use “minimum cost”

criteria in the tools selection task, this criteria does not

necessarily represent the ideal solution as it does not always

consider other technological constraints. In such situations,

it is difficult to include machinists’ experience of decision

making, as these systems are build up based on “low cost”

criteria. So far, there is no general acceptable solution for

tools selection that could be used in all workshops [106].

Ribeiro and Coppini [109] presented a new algorithm

to improve the computer-aided technical assistance (CATA)

system. Previously, this was used to determine operational

costs of machining processes. By adding the improvement,

the system is able to choose cutting tools and cutting

conditions. This is based on a database to determine

maximum production. Arezoo et al. [106] developed an

Expert Computer-Aided Tool Selection System (EXCATS)

by using the Prolog language. The objective is to select

the tool-holder, insert, and cutting conditions in turning

operations. The system has many features, for example, it

allows the user to modify the result by feeding his or her

own shop floor experience. In addition, it has an interface

that enables tool manufacturers to add their tooling system

to the package. The required inputs to the system are the

part representation and tool file. Later, Zhao et al. also [110]

presented a novel method to integrate a CAD system with

EXCATS in turning operations. The CADEXCATS system

starts with the use of an IGES neutral format to save product

data. Thereafter, a feature recognition approach is applied to

generate a component representation file for EXCATS.

Fernandes and Raja [108] proposed Incorporated Tool

Selection Systems (ITSS) in a CIM environment. There

are five steps carried out in ITSS to select a set of tools

for each feature in the product, as processed on a specific

machine. The first step is to define possible alternative tools

for each feature. Then, the system excludes some of the

tools from step one that are not compatible with the selected

machines. The next step includes further eliminating the

tools that are not compatible with the job, part material, or

feature attributes. In step four, the determination of tooling

parameters for each tool type is achieved by using the

available information about the part. Finally, a tooling match

is determined when the system searches through an object-

oriented database. According to the authors, the system is

fast and helps to keep the user up-to-date with developments

in the tooling industry.

Based on the use of mathematical modules and heuris-

tic data, Edalew et al. [111] developed a dynamic

programming-based system to select cutting tools and cal-

culate total component cost. This is to give users suggestions

and solutions to reduce cost and time of machining. The

system was developed using Kappa-PC software with five

modules: knowledge acquisition, knowledge base, infer-

ence engine, user interface, and database. The system was

designed to cover different machining processes, whereby

it is able to analyse cylindrical and prismatic products. All

the calculations are based on the product material, features

attributes, machining time and cost, tool life, and material

removal rate.

Orala and Cakir [107] presented a tool selection method

used in a generative CAPP system for rotational parts

(GPPS-RotP). In this system, the automatic tool selection

task is based on several factors: part machinability, part

features, machine tool data, part holding device, and setup

number. There are two criteria that have been implemented

to achieve tool sequence that minimise both the number of

tool changes and the tool travel time.

4.4 Cutting conditions

Cutting conditions or cutting parameters include cutting

depth, feed rate, and cutting speed. The selection of

convenient cutting conditions is an essential task for every

machining process and CAPP system. Usually, experiences

and handbooks are used to determine the desired cutting

conditions. However, this does not necessarily mean that

the selected parameters will achieve the desired surface

quality features [112–114]. In order to select proper

cutting conditions, reliable mathematical models, which are

usually based on neural computing or statistical regression

techniques, have been developed to study the relationship

between cutting conditions and cutting performance. The

next step includes the defining of an objective function with

constraints to find the optimal cutting conditions [112, 115].

Based on the design and analysis of machining exper-

iments, Chua et al. [115] developed mathematical models

for Röchling T4 medium carbon steel workpiece material

using TiN-coated carbide as a cutting tool in the turning
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operation. The experiment was planned using three lev-

els (low, medium, high) for each cutting parameter. The

results of 27 experiments were recorded, each of which was

carried out with a combination of different levels of param-

eters. The tool life, cutting forces, and power consumption

were measured and related to the cutting conditions. Vele

[116] presented a mathematical model to select optimal cut-

ting conditions for TiN-coated carbide cutting tools and

a T4 medium carbon steel workpiece, in order to achieve

economic objectives. The system was developed based on

detailed planning and proper analysis of machining exper-

iments for multi-pass turning operations. The research was

also aimed at studying the effects of cutting parameters on

the tool life, cutting forces, and power consumption. Despite

the mathematical models approach helping to determine

desired cutting conditions, it requires considerable knowl-

edge and experience. Furthermore, to build mathematical

models, it is necessary to carry out and analyse a large num-

ber of cutting experiments, which consumes material and

time. Hence, a more cogent approach with less consumption

is needed.

Tsai et al. [117] proposed a methodology to define

the cutting condition and tool path for pocket milling

operations. In this research, the cutting conditions include

axial and radial depth of cut and feed rate, with a procedure

being followed to determine these parameters. Firstly, the

axial depth of cut is selected based on the geometry of the

product. Next, the maximum allowable radial of cut or the

maximum allowable engage angle is calculated. Finally, the

feed rate is selected for both the rough and finish cutting

cycles. In the rough cycle, the cutting torque is considered to

calculate the feed rate, whereas this calculation in the finish

cycle is based on the tool deflection. The main purpose of

determining these cutting conditions is to avoid abnormal

cutting states such as excess cutting torque, excess tool

deflection, and chatter vibration.

Many researchers have used the Taguchi method to

optimise the selection of cutting conditions for a specific

machining operation. This is a powerful tool that greatly

improves productivity, whereby it enhances quality and

attempts to minimise the loss function of the product cost

and development interval [112]. Basically, the method was

introduced for designing products and processes in order to

meet environmental conditions, designing and developing

products and processes in order to increase the flexibility

of the system performance to sources of variation, and

reducing variation around a target value. This is carried

out in a three-step approach: system design, parameter

design, and tolerance design. The system design includes

the production of a basic functional prototype design in

two stages. The first stage is the product design, when

components, materials, basic product parameter values, etc.

are selected. The second stage is the process design, which

involves the following: sequence of operations, machine

and tool selection, temporary process parameter values,

etc. In terms of quality and cost, the system design is far

from optimal since it is an initial functional design. Thus,

the following step, which is parameter design, is required

to optimise the process parameter values. This is so as

to achieve high production quality and reduce the cost.

Finally, the tolerance design step is used to analyse the

recommended values by the parameter design, and then,

tolerances are determined around these values. The need

of tolerance design occurs when the result obtained by

parameter design does not satisfy the required performance,

thereby needing a tightening of the tolerances for the

product or process parameters. This increases cost by

having to purchase better-grade materials, components,

or machinery. However, based on the above, parameter

design is a significant step in the Taguchi method towards

improving quality without increasing the cost [112, 114].

Yang and Tarng [112] used the Taguchi method to

find proper cutting parameters in turning operations of a

S45C steel workpiece and tungsten carbide cutting tools.

In this method, an orthogonal array is implemented to

study the cutting parameters space with only a small

number of experiments. Then, a signal-to-noise (S:N)

ratio used to measure the deviation between the quality

characteristics and the desired value is calculated based

on the experimental results. Usually, the greatest S/N ratio

represents the optimal level of the cutting parameters.

Next, a statistical analysis of variance (ANOVA) is used to

determine the significant cutting parameters. As an indicator

of the method success from the initial cutting parameters

to the optimal ones, the results show 250% improvement

in tool life and surface roughness. Nalbant et al. [114]

utilised the same method for an AISI 1030 steel workpiece

and TiN-coated cutting tools in a turning operation. In this

research, two main purposes were taken in consideration.

Firstly, there is the presentation of a simple, systematic, and

efficient methodology of the Taguchi parameter design in

process control for turning operations. Secondly, it clarifies

the significant impact of using the Taguchi parameter

design to improve surface roughness with a particular

combination of insert radius, feed rate, and depth of

cut. After implementing the Taguchi method, the authors

claimed the improvement in surface roughness is about

335%.

Subramanyam and Rao [118] analysed the values of

three cutting parameters (speed, feed, and depth of cut)

of 14 turning operation samples with their respective

surface roughness. The values obtained by varying the

parameters are used in the design of expect V-8 software

in order to obtain an equation. There are two phases in

this study, which include the use of a genetic algorithm

(GA) and particle swarm optimisation (PSO). In the
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first phase, the experimental values were used instead of

mathematical models to create a neural network. Then,

through MATLAB, a GA is used to optimise the cutting

conditions. In the second phase, the program calculates the

cutting parameters by using the obtained equation from

the design of the Expect software and written PSO in c

language. Finally, the results from the GA and PSO are

compared.

In 2006, Sardinas et al. [113] presented a multi-objective

method to optimise the cutting parameters in turning

processes based on posteriori techniques and using a GA.

In this system, two conflicting objectives were considered

as optimisation criteria and simultaneously optimised: tool

life and operation time. The system starts with the use

of a micro-GA in order to create and preserve an elitist

population of the fittest cutting parameters: speed, feed

rate, and depth of cutting. After applying a series of

evolutionary periods, non-dominated points are plotted to

build the Pareto front in order to make the analysis and

decision-making process easier. Later, Sardinas et al. [119]

applied the same earlier techniques (posteriori and GA) and

procedure to optimise the cutting parameters for drilling

laminate composite materials. In this work, two conflicting

objectives were considered and optimised: material removal

rate and delamination factor. The authors confirmed that the

use of posteriori and GA in different machining processes

increases the flexibility in selecting the optimal cutting

parameters.

Addona and Teti [120] proposed an optimisation system

based on a GA to determine the cutting parameters in

turning operations. The main objective of this system is to

minimise the production time without affecting the cutting

constraints, which in this research include the following:

tool life, surface finish, cutting force, chip-tool interface

temperature, power, roughing and finishing parameter

relations, stable cutting region, and the number of passes.

According to the authors and based on the simulation model,

the system presents a fast and suitable solution for automatic

selection of the machining parameters.

Agrawal and Verma [121] used a new evolutionary GA

approach in CAPP to optimise machining parameters for

multi-tool milling operations. The system was developed

based on the Tolouei-Rad and Bidhendi mathematical

model, whilst the maximum profit rate was utilised as the

objective function. The depth of cut was not included in

the problem of determining the machining parameters, but

instead, the value of the combination between maximum

allowable depth for a given workpiece and cutting tool

was taken. Hence, the calculations for selecting the speed

and the feed rate of cutting were reduced. In this research,

the following were used as constraints: surface finish

requirement, maximum machine power, available feed rate

and spindle speed on the machine tool, and maximum

cutting force permitted by the rigidity of the tool. According

to a comparison of the results, the methodology delivers

an improvement of 419% in profit rate over the handbook

recommendation.

4.5 Selection of jigs and fixtures

Fixtures and jigs are mechanical devices and tools fre-

quently used with different types of machining, assembling,

and inspection operations, to maintain accuracy and facili-

tate production [122, 123]. A fixture is a holding or support

device that securely locates and supports the workpiece with

respect to a cutting tool or measuring device in manufactur-

ing industry [124, 125]. A fixture system is a set of clamps

and locators aimed at removing the degrees of freedom,

thereby restricting the part to that particular position [126,

127]. The position and orientation of a workpiece is usually

determined by locators, whereas clamps exert a clamping

force in order to press the workpiece firmly against the

locators [127, 128]. Whilst jigs are used to locate and hold

components as well as fixtures, they also guide the cut-

ting tools and provide repeatability in the manufacturing of

products [129]. Traditionally, an appropriate designing of

fixtures and jigs scheme is determined by relying on the

experience of a tool designer or by using trial-and-error

methods. These methods are costly, time-consuming, and

not accurate. Thus, many computer-aided fixture designs

(CAFDs) have been developed over the past decades to

overcome the aforementioned drawbacks [130–132].

Artificial intelligence techniques is one of the methods

that has been used in the design and selection of fixtures.

Bhattacharyya et al. [130] presented an expert system

in order to select the appropriate fixture, according to

a particular workpiece specification. In this research, the

fixtures are classified into three main categories of elements,

which represent part’s datums: clamping, positioning and

guiding, supporting and base. The system contains many

typical search routines built based on the experiences of

fixture designers, each routine being linked to a specific

group of elements. Then, the parameters of the chosen

elements are passed to an interface program calling

standard commands from a drafting package to construct

the drawing of these elements parametrically. Finally, the

fixture is formed by assembling all of the elements together.

According to the authors, it is possible to use this procedure

not just with the design of jigs and fixtures, for it could

be extended to include almost any products where a large

number of variations exist.

Wang and Pelinescu [126] proposed an approach

to optimise fixture layout for arbitrary complex 3-D

workpieces, and the fixture elements are restricted to being

in discrete locations. The authors claimed that two major

issues were addressed in this research: the development
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of an efficient algorithm to define fixture synthesis and

the selection of optimal fixture design based on practical

requirements. An interchange algorithm was employed in

the system in order to improve the locator locations, which

were selected randomly, in a subsequent set of interchange

processes. The objective functions include the following:

maximising the accuracy of the workpiece localisation as

well as minimising the norm and dispersion of the locator

contact forces. Also, the interrelationship between locators

and clamps was presented in two different design strategies,

which was to evaluate the trade-offs between different

performance objectives.

Qin et al. [128] developed a new methodology to analyse

and optimise the clamping sequence by taking into account

the varying of both contact and friction forces during

clamping, which affects the degrees of freedom. A non-

linear mathematical programming problem was solved in

order to evaluate the errors of varying contact forces and

workpiece position in each clamping step. To achieve this

task, the total complementary energy of the workpiece-

fixture system was minimised. Furthermore, a study to

reduce the effect of the clamping sequence on low-stiffness

workpiece machining accuracy was presented by means of

the finite element method (FEM). By taking three examples,

the results showed good agreements between the predicted

ones and experimental data.

In mass volume production, a large number of similar

parts are produced once jigs and fixtures are designed. In

this case, these are designed as special-purpose tools for

machining and assembling, and they may or may not be

utilised in another mission. The main two purposes are as

follows: elimination of the need for an additional setup

for every workpiece and ensuring that each workpiece is

manufactured within the allowable tolerances. Bhosale et

al. [123] presented a study and design of jigs and fixtures

in mass volume production. The base frame of a generator

canopy was considered as a case study. The researchers

included many modules: design the base-frame model,

study the manufacturing process of the base frame, design

the fixture, selection of fixture material, and manufacture

of the fixture. Regarding the fixtures, heat-treated steel

was selected to fabricate them due to it being corrosion

and wear resistant. Accuracy and low cost were considered

in the designing and manufacturing of the fixtures and

jigs. By using these to manufacture the base frame, the

results showed the following: an increase in production rate,

increased accuracy and consistent quality of manufactured

products, a decrease in manufacture cost, minimising of the

need for inspection, and the safety was improved. Whilst the

purpose of using fixtures and jigs is similar in both mass and

low volume production, they have different characteristics

and requirements. The concept of a reconfigurable fixture

system has become a considerable objective in low volume

production. This is to reduce the cost of production per

unit as it consists of standard components that can be used

in another job. Jayaweera et al. [124] developed a novel

concept of a reconfigurable fixture system. The system was

validated using available standard parts to build a fully

functional small-scale prototype of a fixture for handling

a large square and round sections of aircraft components.

The system consists of six different modular sizes, screws,

and nuts, and different sizes of tubes. These parts can be

assembled in different shapes and sizes depending on the

application and the strength requirements. The developed

system can be used in many industries due to its flexibility

and reconfigurability.

4.6 Identifying the tool path for both of rough
and finish cycles

The responsibility of preparing the technical machining

information (e.g. numerical control NC program, tool

sets, design of jigs and fixtures) is laid on the process

planner. The NC program consists of tool path (cutter

location) and machine tool operating commands, such as

cutting conditions [81].The tool path is a coded instruction,

which is represented by a specific command and numerical

value, making specific trajectories on the workpiece being

processed [133]. Once the features of a designed part are

recognised and defined with all the geometrical information,

it is possible to determine the cutter tool path. The manual

generation of a tool path is considered a bottleneck in a

production system since it requires extensive calculations,

which makes it time-consuming and error prone. Thus,

automatic tool path generation is an essential task of an

automated manufacturing system [133, 134].

In processes such as turning and milling, the operations

are divided into stages: rough, single pass, multi-passes, and

fine cycle. In the rough cycle, the workpiece is machined

in incremental layers in order to avoid damage of the tool

and/or machine. This is to remove most of the material from

the original stock of a particular workpiece to the desired

shape and size, which greatly affects the total machining

time and, partially, the accuracy of the finished product

[134, 135]. Whereas in the finish cycle, the workpiece

surface is machined smoothly, using line segments to get the

finished product with its required shape and accuracy. The

finish cycle directly affects the product accuracy in terms of

shape, dimensions, and surface roughness [134]. However,

to generate an efficient automatic tool path for rough and

finish cycles, these requirements must be considered:

– It is applicable for general feature types as canned cycles;

– It is applicable for general surfaces;
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– Whilst cutting a specific part of the workpiece, the

cutter does not adversely affect any other part (gauge

avoidance);

– Cutting efficiency, which refers to saving time whilst

the cutter repeats traversals in the rough cycle, and

achieves the required accuracy in the finish cycle [136].

This is accomplished by reducing the number of moves

in which no cutting occurs.

Lin and Gian [137] developed a methodology to generate

automatically an NC cutter path for the rough machining of

complex parts. Firstly, a cubic non-uniform B-spline (NUB)

mathematical surface model is established from a large

number of data points obtained from the sculptured-object

surface. Then, a quadrangular-meshed model is created

based on the NUB model in order to determine the island

loops and boundaries associated with each cutting layer, of

constant depth. A boundary-loop pre-checking algorithm is

proposed to find the main-machining region, whilst another

algorithm, island-loop final-checking, is used to determine

the residual-material region. Finally, four paths are utilised

for tool path generation: linear pocketing, contour roughing,

semi roughing, and new-island processing. This is to ensure

good cutting efficiency and to avoid the breaking of the

cutting tool during the rough cycle.

Bieterman and Sandstrom [138] presented a novel

curvilinear tool-path generation method for three-axis

machining of convex pockets. In the main part of this

work, both geometry input and a partial differential equation

(PDE) were used. The approach is aimed at determining an

ideal curvilinear tool path by spiralling between trajectories

of a well-selected scalar mathematical function on the

pocket. This morphs the tool path from an almost circler

shape in the pocket centre to the final shape of the part

on the pocket boundary. Figure 9a, b shows a conventional

and curvilinear tool path for pocket machining, respectively.

Whilst the main focus of this research is the generation of a

tool path, several other benefits have been gained: saving up

to 30% of machining time, reduction of tool wear through

cutting along with reduced machine spindle wear and tear.

However, the implementation of this method was restricted

to a specific type of convex pockets, ones free of islands or

pad-up regions and formed by removing constant-depth layers.

In 2013, Sadı́lek et al. [139] proposed a new method-

ology for a rough cycle tool path in turning operations.

In contrast to the conventional roughing cycles, when the

tool machines a constant depth, a variable depth of cut

is applied, in order to increase the tool life. Three paths

of roughing cycles are included in this research: gradually

decreasing the depth of cut, creating conical paths of cut,

and using non-linear methods. By implementing the devel-

oped method on a flange using a sintered-carbide cutting

tool, the results showed the following: increasing the dura-

bility of the cutting edge by 44%, reducing the total cost

for the cutting tools, and decreasing the load in the spindle

by 10%. According to the authors, complex programming is

required to generate tool paths for the roughing cycle with

variable depths of cut. Later, in 2015, Sadlek et al. [140]

used the same previous methodology for a rough cycle with

variable depths of cut this time and with the cutting forces as

an object function. In addition to the aforementioned results,

the new experiment showed the following: the cutting forces

are reduced by up to 10.8%, and the tool life can be affected

owing to the relation of cutting force components being

changed.

Francis et al. [141] presented automated tool path

generation for finish machining of freeform surfaces. The

free form surfaces contain scallops, which are the amounts

of material intentionally left behind. Two scallop height

strategies were used in this research in order to compare

the optimal tool path method. The first approach is the

minimum scallop height (MSH), which includes extra

tool passes and results in smoother surfaces with lower

machining efficiency. The second approach is maximum

scallop height (CSH), when the cutter sweeps in fewer

passes compared with the MSH method, hence less

smoothness of the final surface will be gained. However, the

cutter contact (CC) points and the tool orientation at those

points are known; thus, it is possible to determine whether a

collision will occur between the tool and the neighbouring

surface.

4.7 Estimate the time and the cost tomanufacture
the part

A time-cost estimation process is greatly required for any

new product before manufacturing since these factors affect

the success of the product [142]. One of the essential tasks

in process planning is to send feedback information to

assist the designer at an early stage in evaluation of the

design features. This does not just include the functional

aspects, but also the manufacturability, assimilability, and

estimate processing time and cost. Hence, if the designer

realises that the initial design’s features require expensive

tools and/or complex manufacturing processes, it would be

logical to try an alternative one [143, 144]. Underestimating

will certainly cause a financial loss to the company, whilst

overestimating might mean losing the contract or customer

goodwill [142]. Consequently, the estimates should be as

accurate as possible.

The cost estimation of non-linear process planning is

one of the problems under consideration. This includes,

for example, taking into account processing alternatives. In

1998, Xirouchakis et al. [145] presented a PP-net (process
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Fig. 9 a Conventional

pocket-machining tool path, and

b curvilinear pocket-machining

tool path [138]

planning net) model, which is an extension to the Petri net

model, in order to determine four types of cost in process

planning:

– The pure machining cost, which depends on the

machining time for a particular machining operation;

– The cost to transmit a part from one machine to another;

– The cost when the setup is changed in one machine;

– The cost of changing tools in one machine.

In this system, a PP-net construct is created, firstly, by

including the costs of operations, machine changes, setup

changes, and tool changes. Next, Dijkstra’s algorithm is

used to compute the shortest path of the previous PP-net.

This algorithm has an incremental nature and calculates the

optimum process planning cost directly, which means there

is no need to develop all possible solutions first. A year

later, Xirouchakis et al. [146] applied Petri net in non-linear

process planning to estimate the delivery time and cost of

a batch of manufactured mechanical parts. In comparison

with the previous work, the interleaving of transitions is

allowed in the new method. This is to obtain optimal

schedules and realistic delivery time estimations. Also, the

simple structure of the Petri net was extended to include a

two-level hierarchy of nets. The top level of the hierarchy

represents the system net modelling, which is the job shop

layout, including the machines. Each node of the system

net can hold one or more token nets, which is the second

level of the hierarchy and includes the jobs and setups. The

new model construction allows the job shop layout, jobs,

and setups to be considered as separate objects with unique

identity and behaviour.

Gomaa [142] developed a system aimed at minimising

the gap between the estimated cost and the actual cost of

products. Three models are presented in this work: detailed

time-cost estimation (DTCE), machining complexity (MC),

and rough-cut time-cost estimation (RTCE). The DTCE

module is divided into five phases:

– Feature recognition (FR), using a feature-based descrip-

tion system;

– Sequence planning (SP), to determine a sequence of

machining processes and operation;

– Process detailing (PD), which gives details about each

machining process and operations, i.e. tools selection

and cutting parameters;

– Time estimation (TE), determining the total standard

machining time;

– Cost estimation (CE), which determines the total

standard machining cost.

All these phases are essential details for process

planning. Ten experimental factors in the MC model have

been presented and evaluated: workpiece weight, mean

outer diameter, machining yield, number of machining

surfaces, surface finish, tolerances, metal type, machining

features, process type, and quantity required. These factors

are important in the group technology and the rough-cut

estimation system, whereas the RTCE module is needed for

a rapid request-for-quotation (RFQ) process, design stage,

new parts processing, and production schedule. According

to the author, the maximum deviation of the estimated time

is 12%, whereas that of the estimated cost is 15%.

Ben-Arieh and Li [147] developed a web-based system

that links design stations with manufacturing shops in

order to provide accurate and fast machining time and

cost estimation. Furthermore, the system provides process-

planning capabilities and a supplier selection facility. A

cost estimation and supplier selection (CESS) module has

been developed and connected via the web-based system

with the design departments and the manufacturing shops.

The designer client needs to, firstly, register with the CESS

server, and then, a request for quotes (RFQ) form must

be filled. Finally, browsing and the evaluation of cost

estimation information from different manufacturing shops

is received from the CESS module. The CESS module

includes three major activities: account management,
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RFQ management, and process plan/time estimation. The

developed CESS system offers several benefits, including

finding the right manufacturers and getting the quotations

faster. It also means that the suppliers can get the right work

depending on their shop capabilities.

Chi [148] developed an application program “Quotation

Calculator” in order to calculate the material and manufac-

turing costs of a new product. The system was developed

in Microsoft Excel with partial programming in the Visual

Basic editor. In this methodology, product data is extracted

from a CAD model and transformed to Microsoft Excel.

Whilst the sequence of operation and process planning is

done manually, the cost calculation can be automatically

implemented based on standard operations and tables for

machine data and material costs.

Elgh and Sunnersj [149] presented a generative process

planning and cost estimation (GEPPACE) system. In this

method, the information about topology, features, and

parameters is extracted from a CAD model and exported

to generic process plans for a given class of products.

The DBF approach was used to identify features in a

CAD model for CAPP. The core of GEPPACE includes

renaming of assemblies, parts, features, and parameters

using strings with predefined positions and nomenclature

for classification of objects. The nomenclature system

depends on the product nature and company needs. An

application program was developed in order to extract

and transfer CAD model information. The application

program matches the CAD model information with the

generic standard CAPP information and worksheets for cost

estimation. This allows the designer to view cost-effective

solutions in accordance with manufacturing restrictions.

Germani et al. G[150] used a knowledge-based system to

link automatically the design features with manufacturing

operations in order to obtain the estimation of manufac-

turing cost. To achieve a robust combination between the

manufacturing operations and the design features, two clus-

ters of data were defined: simple modelling features and

advanced manufacturing features. A CAD data structure

is analysed using the knowledge-based tool to extract the

design information that the system needs. Finally, the cost

estimation is generated after mapping design and manufac-

turing features.

4.8 Summary

From the literature survey, it has emerged that not

all CAPP systems can provide all seven outputs, thus

delivering incomplete information about production, and

therefore, requiring human input for completion, which

introduces variability and subjectivism. Also, the outputs

are determined with specified fixed inputs and a CAPP

system should be smart enough to update its output

calculations based on new changed inputs. For example, if

a new feature is detected, the CAPP system should be smart

enough to calculate cutter location data, and other cutting

conditions. One way of possibly solving this problem is to

use neural networks, training the CAPP system to simplify

complex features into their initial entities.

5 Discussion and conclusion

Process planning is an essential multi-task concept in the

production industry, which links the design process with the

manufacturing process and is aimed at providing a whole

plan to transfer the idea of a designer into a final physical

product. Process planning functions can be divided into

two main categories: required inputs and expected outputs.

Computers have been used to assist process planning

activities. That is, many CAPP systems and technologies

have been developed in the hope of they can contribute

significantly towards time and cost reduction. However, the

use of computers in process planning does not necessarily

mean that these activities are being achieved automatically.

A new version of CAPP, which is ACAPP, is needed to be

considered in order to obtain a rapid, accurate, and robust

system with minimum human intervention.

Based on a comprehensive survey, the shortcomings and

barriers in current CAPP systems have been detailed, which

prevent the creation of effective smart ACAPP systems.

Here are some of the main facts that have been drawn out

– Process planning is multidisciplinary. This means, each

function of input and output can affect the other

functions and be affected by them. However, most of

the current CAPP systems isolate these functions from

each other. In other words, each input and output move

towards or from CAPP, respectively, in one direction.

Thus, the final decision is far away from being an ideal

one.

– Part features recognition is the first and most important

input to any CAPP system. Each current AFR and

DBF system is limited to recognising a specific set

of predefined features. To overcome this drawback, a

new feature recognition system is needed, which can

automatically recognise new types of features, or at

least be able to learn how to recognise a new feature.

Also, the system should be able to solve intelligently

feature recognition issues, such as features intersection.

– In an assembled product, the dimensions and tolerances

of each part are related to the other parts, in order

to achieve the functional parameters of the product.

Thus, automatic dimension chain calculation must not

be considered for each part individually, as is happening

in current systems.
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– Some CAPP systems include databases that are neces-

sary in the decision-making for some CAPP functions.

This type of database needs to be updated; otherwise, a

lack of information could cause a failure in the CAPP

system. However, this issue can be minimised by replac-

ing the database with an intelligent knowledge base.

All the topics mentioned above could be considered

essential issues in terms of creating an effective smart

ACAPP system. However, many other considerations must

be borne in mind to achieve this task in a satisfactory way.

The above conclusions emphasise the need for the

creation of a smart AFR system. This will be a major

building block for a smart CAPP that is able to recognise

and construct new features using self-learning mechanisms.

Further developments in this area will strongly benefit from

the recent developments in artificial intelligence and smart

manufacturing systems.
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96. Šormaz D, Wakh M, Arafat N (2017) Rule-based process

planning and setup planning with considerations of Gd & T

requirements. Int J “Advanced Quality” 45(1):13–20

97. Rampur VV, Reur S (2017) Computer aided process

planning using STEP neutral file for automotive parts.

International Journal of Engineering Research and V6(04).

https://doi.org/10.17577/IJERTV6IS040497

98. Kostal P, Mudrikova A (2012) Laboratory of flexible manufac-

turing system. Advan Mater Res 429:31–36. https://doi.org/10.

10.4028/www.scientific.net/AMR.429.31

99. Jain NK, Jain VK (2003) Process selection methodology for

advanced machining processes. J Adv Manuf Syst 02(01):5–45.

https://doi.org/10.1142/S0219686703000204

100. Lau HCW, Lee CKM, Jiang B, Hui IK, Pun KF (2005)

Development of a computer-integrated system to support CAD

to CAPP. Int J Adv Manuf Technol 26(9-10):1032–1042.

https://doi.org/10.1007/s00170-004-2094-7

101. Zhang HC, Merchant ME (1993) IPPM—a prototype to integrate

process planning and job shop scheduling functions. CIRP Ann

Manuf Technol 42(1):513–518. https://doi.org/10.1016/S0007-

8506(07)62498-6

https://doi.org/10.1016/0010-4485(91)90045-X
https://doi.org/10.1016/S0010-4485(00)00106-8
https://doi.org/10.1016/S0007-8506(07)61911-8
https://doi.org/10.1016/S0007-8506(07)61911-8
https://doi.org/10.1016/0010-4485(82)90172-5
https://doi.org/10.1016/j.compind.2004.06.008
https://doi.org/10.1016/j.procir.2015.04.060
https://doi.org/10.1016/j.proeng.2016.07.070
https://doi.org/10.1016/j.proeng.2016.07.070
https://doi.org/10.1016/j.procir.2016.02.012
https://doi.org/10.1016/j.procir.2016.02.012
https://doi.org/10.1007/s00170-014-6182-z
https://doi.org/10.1016/S0261-3069(02)00019-5
https://doi.org/10.1016/S0261-3069(02)00019-5
https://doi.org/10.1007/s00170-003-1838-0
https://doi.org/10.1023/A:1008866732609
https://doi.org/10.1016/S0166-3615(99)00051-2
https://doi.org/10.1016/S0166-3615(99)00051-2
https://doi.org/10.4271/2017-01-0227
https://doi.org/10.1109/JRA.1986.1087053
https://doi.org/10.1080/00207548808947915
https://doi.org/10.1007/s11740-008-0132-2
https://doi.org/10.1016/j.jmatprotec.2007.01.021
https://doi.org/10.1016/0166-3615(87)90051-0
https://doi.org/10.1016/0166-3615(87)90051-0
https://doi.org/10.1080/00207548408942506
https://doi.org/10.1016/S0954-1810(99)00027-8
https://doi.org/10.1016/S0954-1810(99)00027-8
https://doi.org/10.1016/j.ijmachtools.2006.01.009
https://doi.org/10.1080/00207540110073082
https://doi.org/10.1016/S0010-4485(02)00182-3
https://doi.org/10.1016/S0010-4485(02)00182-3
https://doi.org/10.17577/IJERTV6IS040497
https://doi.org/10.4028/www.scientific.net/AMR.429.31
https://doi.org/10.4028/www.scientific.net/AMR.429.31
https://doi.org/10.1142/S0219686703000204
https://doi.org/10.1007/s00170-004-2094-7
https://doi.org/10.1016/S0007-8506(07)62498-6
https://doi.org/10.1016/S0007-8506(07)62498-6


Int J Adv Manuf Technol (2018) 97:809–832 831

102. Gu P, Zhang Y (1993) Operation sequencing in an automated

process planning system. J Intell Manuf 4(3):219–232

103. Kruth JP, Detand J, Van Zeir G, Kempenaers J, Pinte J (1996)

Methods to improve the response time of a CAPP system that

generates non-linear process plans. Adv Eng Softw 25(1):9–17.

https://doi.org/10.1016/0965-9978(95)00081-X

104. Kruth JP, Detand J (1992) A CAPP system for nonlinear

process plans. CIRP Ann Manuf Technol 41(1):489–492.

https://doi.org/10.1016/S0007-8506(07)61251-7

105. Pandey V, Tiwari MK, Kumar S (2006) An interactive approach

to solve the operation sequencing problem using simulated

annealing. Int J Adv Manuf Technol 29(11-12):1212–1231.

https://doi.org/10.1007/s00170-005-0007-z

106. Ridgway K (2000) Selection of cutting tools and conditions of

machining operations using an expert system Selection of cutting

tools and conditions of machining operations (January 2016).

https://doi.org/10.1016/S0166-3615(99)00051-2

107. Oral A, Cakir MC (2004) Automated cutting tool selection and

cutting tool sequence optimisation for rotational parts. Robot

Comput Integr Manuf 20(2):127–141. https://doi.org/10.1016/

j.rcim.2003.10.006

108. Fernandes K, Raja V (2000) Incorporated tool selection system

using object technology. Int J Mach Tools Manuf 40(11):1547–

1555. https://doi.org/10.1016/S0890-6955(00)00027-4

109. Ribeiro MV, Coppini NL (1999) Applied database system for

the optimization of cutting conditions and tool selection. J

Mater Process Technol 92-93:371–374. https://doi.org/10.1016/

S0924-0136(99)00233-2

110. Zhao Y, Ridgway K, Al-Ahmari AMA (2002) Integration of

CAD and a cutting tool selection system. Comput Ind Eng

42(1):17–34. https://doi.org/10.1016/S0360-8352(01)00061-4

111. Edalew K, Abdalla H, Nash R (2001) A computer-based

intelligent system for automatic tool selection. Mater Des

22(5):337–351. https://doi.org/10.1016/S0261-3069(00)00106-0

112. Yang W, Tarng Y (1998) Design optimization of cut-

ting parameters for turning operations based on the

Taguchi method. J Mater Process Technol 84(1-3):122–129.

https://doi.org/10.1016/S0924-0136(98)00079-X

113. D’Addona DM, Teti R (2006) Genetic algorithm-based optimiza-

tion of cutting parameters in turning processes. Eng Appl Artif

Intell 19:127–133

114. Nalbant M, Gökkaya H, Sur G (2007) Application of

Taguchi method in the optimization of cutting parameters for

surface roughness in turning. Mater Des 28(4):1379–1385.

https://doi.org/10.1016/j.matdes.2006.01.008

115. Chua MS, Rahman M, Wong YS, Loh HT (1993) Determination

of optimal cutting conditions using design of experiments and

optimization techniques. Int J Mach Tool Manuf 33(2):297–305.

https://doi.org/10.1016/0890-6955(93)90081-5
116. Vele NS, Bawane RK, Chopade JV (2016) Experimental

investigation of optimum cutting conditions for T4 medium

carbon steel using TiN as a cutting tool. IJSRD - International

Journal for Scientific Research & Development 4(07):17–19
117. Tsai MD, Inui M, Sata T (1991) Operation planning based on cut-

ting process models. CIRP Annals - Manuf Technol 40(2):95–98
118. Bala Subramanyam G (2014) Optimization of cutting parameters

using genetic algorithm and particle swarm optimization\n.

Ijmer 4(6):45–51
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