
IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 16, NO. 4, FOURTH QUARTER 2014 2181

A Survey on Software-Defined Network and

OpenFlow: From Concept to Implementation
Fei Hu, Qi Hao, and Ke Bao

Abstract—Software-defined network (SDN) has become one of
the most important architectures for the management of large-
scale complex networks, which may require repolicing or recon-
figurations from time to time. SDN achieves easy repolicing by
decoupling the control plane from data plane. Thus, the network
routers/switches just simply forward packets by following the flow
table rules set by the control plane. Currently, OpenFlow is the
most popular SDN protocol/standard and has a set of design
specifications. Although SDN/OpenFlow is a relatively new area,
it has attracted much attention from both academia and industry.
In this paper, we will conduct a comprehensive survey of the
important topics in SDN/OpenFlow implementation, including
the basic concept, applications, language abstraction, controller,
virtualization, quality of service, security, and its integration with
wireless and optical networks. We will compare the pros and cons
of different schemes and discuss the future research trends in this
exciting area. This survey can help both industry and academia
R&D people to understand the latest progress of SDN/OpenFlow
designs.

Index Terms—Software-defined network (SDN), OpenFlow,
network virtualization, QoS, security.

I. INTRODUCTION

A. Motivations

CONVENTIONAL networks utilize special algorithms im-

plemented on dedicated devices (hardware components)

to control and monitor the data flow in the network, manag-

ing routing paths and determining how different devices are

interconnected in the network. In general these routing algo-

rithms and sets of rules are implemented in dedicated hardware

components such as Application Specific Integrated Circuits

(ASICs) [1]. ASICs are designed for performing specific opera-

tions. Packet forwarding is a simple example. In a conventional

network, upon the reception of a packet by a routing device,

it uses a set of rules embedded in its firmware to find the

destination device as well as the routing path for that packet.

Generally data packets that are supposed to be delivered to the

same destination are handled in similar manner. This operation

takes place in inexpensive routing devices. More expensive

routing devices can treat different packet types in different

Manuscript received September 29, 2013; revised January 30, 2014 and
April 2, 2014; accepted May 15, 2014. Date of publication May 22, 2014; date
of current version November 18, 2014. (Corresponding author: Q. Hao.)

F. Hu and K. Bao are with the Department of Electrical and Computer
Engineering, The University of Alabama, Tuscaloosa, AL 35487 USA (e-mail:
fei@eng.ua.edu; kbao@crimson.ua.edu).

Q. Hao is with the Department of Electrical Engineering, The South Univer-
sity of Science and Technology of China, Shenzhen, Guandong 518055, China
(e-mail: hao.q@sustc.edu.cn).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/COMST.2014.2326417

manners based on their nature and contents. For example, a

Cisco router allows the users to mark out the priorities of

different flows through customized local router programming.

Thus we can manage the queue sizes in each router directly.

Such a customized local router setup allows more efficient

traffic congestion and prioritization control.

A problem posed by this methodology is the limitation of

the current network devices under high network traffic, which

poses severe limitations on network performance. Issues such

as the increasing demand for scalability, security, reliability

and network speed, can severely hinder the performance of

the current network devices due to the ever increasing network

traffic. Current network devices lack the flexibility to deal

with different packet types with various contents because of

the underlying hardwired implementation of routing rules [2].

Moreover, the networks, which make up the backbone of the In-

ternet, need to be able to adapt to changes without being hugely

labor intensive in terms of hardware or software adjustments.

However, traditional network operations cannot be easily re-

reprogrammed or re-tasked [3].

A possible solution to this problem is the implementation

of the data handling rules as software modules rather than

embedding them in hardware. This method enables the network

administrators to have more control over the network traffic

and therefore has a great potential to greatly improve the

performance of the network in terms of efficient use of network

resources. Such an idea is defined in an innovative technology,

called Software-Defined Networking (SDN) [4]. Its concept

was originally proposed by Nicira Networks based on their ear-

lier development at UCB, Stanford, CMU, Princeton [1]. The

goal of SDN is to provide open, user-controlled management of

the forwarding hardware in a network. SDN exploits the ability

to split the data plane from the control plane in routers and

switches [5]. The control plane can send commands down to

the data planes of the hardware (routers or switches) [6]. This

paradigm provides a view of the entire network, and helps to

make changes globally without a device-centric configuration

on each hardware unit [7]. Note that the control panel could

consist of one or multiple controllers, depending on the scale of

the network. If using multiple controllers, they can form a peer-

to-peer high-speed, reliable distributed network control. In any

case, all switches in the data plane should obtain the consistent

view of the data delivery. The switches in the data plane just

simply deliver data among them by checking the flow tables

that are controlled by the controller(s) in the control panel. This

greatly simplifies the switches’ tasks since they do not need to

perform control functions.

The concept of SDN is not entirely new. As a matter of

fact, a few decades ago people could use special infrastructure

1553-877X © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

http://www.ieee.org/publications_standards/publications/rights/index.html
mailto: fei@eng.ua.edu
mailto: hao.q@sustc.edu.cn

2182 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 16, NO. 4, FOURTH QUARTER 2014

Fig. 1. Comparison of traditional network (left) and SDN (right).

(such as cloud computing hardware) to decouple the network

operating system (similar to the control functions in SDN

control plane) from computing-intensive applications (similar

to the data delivery in data plane). Today cloud computing

enables the networked computation and storage without using

local resources. Such a decoupling of control and data plays a

critical role in large-scale, high-speed computing system.

SDN results in improved network performance in terms of

network management, control and data handling. SDN is a po-

tential solution to the problems faced by conventional network

(Fig. 1 [3]–[5]) and is gaining more acceptance in applications

such as cloud computing. It can be used in data centers and

workload optimized systems [8]. By using SDN, the adminis-

trators have the ability to control the data flow as well as to alter

the characteristics of the switching devices (or routing devices)

in the network from a central location, with control application

implemented as software module without the need of dealing

with each device individually [10]. This gives the network

administrators the ability to arbitrarily change routing tables

(routing paths) in network routing devices. It also allows an ex-

tra layer of control over the network data since the administrator

can assign high/low priorities to certain data packets or allow/

block certain packets flowing through the network [1]–[3].

From cloud computing perspective, SDN provides great

benefits. First, it makes cloud provider more easily deploy

different vendors’ devices. Traditionally the big cloud providers

(such as Google, Amazon, etc.), have to purchase the high-

performance switchers/routers from the same vendor in order

to easily re-configure the routing parameters (such as routing

table update period). Different vendors’ routers have their own

pros and cons. However, it is a headache to customize each

router since each vendor may have its own language syntax.

Now SDN allows a cloud provider to fast re-policy the routing

or resource distribution issues as long as each vendor’s routers

follow the SDN standard. Second, it enables a cloud user to

more efficiently use the cloud resources or conduct scientific

experiments by creating virtual flow slices. The OpenFlow

protocol is compatible to GENI standard, and this enables a user

to arbitrarily create slices/slivers without being aware of the

physical network infrastructure. No matter the infrastructure is

wireless or wired system, and no matter how the cloud provider

deploys different storage units in various locations, the concept

of virtual flow in a SDN makes data flow transparently route

through all cloud devices.

SDN is less expensive due to universal, data-forwarding

switching devices that follow certain standards, and provides

more control over network traffic flow as compared to the

conventional network devices. Major advantages of SDNs in-

clude [11]–[15], [17]–[19].

1) Intelligence and Speed: SDNs have the ability to op-

timize the distribution of the workload via powerful control

panel. This results in high speed transmissions and makes more

efficient use of the resources.

2) Easy Network Management: The administrators have a

remote control over the network and can change the network

characteristics such as services and connectivity based on the

workload patterns. This enables administrators to have more

efficient and instant access to the configuration modifications.

3) Multi-Tenancy: The concept of the SDN can be expanded

across multiple partitions of the networks such as the data

centers and data clouds. For example, in cloud applications,

multiple data center tenants need to deploy their applications in

virtual machines (VMs) across multiple sites. Cloud operators

need to make sure that all tenants have good cross-site perfor-

mance isolation for tenant specific traffic optimization. Exist-

ing cloud architectures do not support joint intra-tenant and

inter-tenant network control ability. SDN can use decoupled

control/data planes and resource visualization to well support

cross-tenant data center optimization [133].

4) Virtual Application Networks: Virtual application net-

works use the virtualization of network resources (such as traf-

fic queues in each router, distributed storage units, etc.) to hide

the low-level physical details from the user’s applications. Thus

a user can seamlessly utilize the global resources in a network

for distributed applications without direct management of the

resource separation and migration issues across multiple data

sites. Virtual application networks can be implemented by the

network administrators by using the distributed overlay virtual

network (DOVE) which helps with transparency, automation

and better mobility of the network loads that have been vir-

tualized [2], [5]. As a matter of fact, a large chunk of SDN is

along the rational of virtualization. Virtualization can hide all

lower level physical network details and allow the users to re-

policy the network tasks easily. Virtualization has been used in

many special networks. Within the context of wireless sensor

networks (WSNs), there was a laudable European initiative

called VITRO, which has worked precisely on this. The concept

of virtual WSN [131] separates the applications from the sensor

deployment details. Thus we can run multiple logic sensing

applications over the same set of physical sensors. This makes

the same WSN serve multiple applications.

B. SDN Implementation: Big Picture

Here, we briefly summarize the SDN design aspects. In

Sections II–VIII, we will provide the details of each design

aspect. Since SDN’s control plane enables software-based

re-policing, its re-programming should also follow general soft-

ware design principle [37]. Here, we first briefly review the soft-

ware design cycle. The design of a software module typically

follows 3 steps: (1) design; (2) coding and compiling; and (3)

unitary tests. SW debuggers are critical tools. (e.g., gdb [38]).

A next usability level is provided by the integrated development

environment (IDEs) such as Eclipse [39]. As a promising soft-

ware design principle, component-based software engineering

(CBSE) [40] has been proposed in the 4WARD project [41].

The Open Services Gateway initiative (OSGi) [42] has also

HU et al.: SURVEY ON SDN AND OPENFLOW: FROM CONCEPT TO IMPLEMENTATION 2183

been used for a full life cycle of software design. The Agile

SW development methodology proposed in [43] has been used

to provide better feedback between different stages than con-

ventional waterfall methodologies [44].

Regarding controllers, examples include Nox [48] (written in

C), POX [49] (in Python), Trema [50], floodlight [51] (in Jave),

etc. NOX [48] was the first OpenFlow controller implementa-

tion. It is written in C++. An extension of NOX is implemented

in POX [49]. NOX can run in Windows, Linux, Mac OS,

and other platforms. A Java-based controller implementation

is called Beacon [52]. Its extension is Floodlight controller

[53]. It can virtualize the SDN control via the OpenStack [54]

architecture. Trema controller is now shipped with OpenFlow

network emulator based on Wireshark [55].

Before practical OpenFlow design, there are some good

simulating tools for initial proof-of-concept, such as NS-2

[56] with OpenFlow Software Implementation Distribution

(OF-SID) [57]. Recently, Mininet [15] has become a powerful

emulation tool.

SDN/OpenFlow programming languages have been studied

in some projects. For example, FML [58] enables easy SDN

network policy definitions. Procera [58] defines controller poli-

cies and behaviors. The Frenetic language [59] allows the

programs written for one platform to work in other platforms.

SDN/OpenFlow debuggers have been used to trace the

controller’s program execution status. ndb [60] mimics GNU

debugger gdb [38] and uses breakpoints and back-traces to

monitor the network behaviors. Tremashark [61] plugs Wire-

shark [55] into Treama [50]. It is now evolving to another

powerful debugging tool called OFRewind [62]. FlowCheck

[63] can check the updating status of flow tables. A more com-

prehensive tool called NICE [64], has generated a preliminary

version [65], and can be used to analyze the codes and packet

flows. Through the above tools, OpenFlow testbeds are able to

be established worldwide such as GENI [66] in the USA, Ofelia

[67] in the European Union and JGN [68] in Japan.

C. OpenFlow: A Popular Protocol/Standard of SDN

A number of protocol standards exist on the use of SDN in

real applications. One of the most popular protocol standards is

called OpenFlow [8]–[10], [16], [20]. OpenFlow is a protocol

that enables the implementation of the SDN concept in both

hardware and software. An important feature of OpenFlow

is that scientists can utilize the existing hardware to design

new protocols and analyze their performance. Now it is be-

coming part of commercially available routers and switches

as well.

As a standard SDN protocol, OpenFlow was proposed by

Stanford. Regarding testbeds of OpenFlow, many designs have

been proposed for OpenFlow protocols. They use open source

codes to control universal SDN controllers and switches. Re-

garding switches, OpenVSwitch (OVS) [45] is one of the most

popular, software-driven OpenFlow switch. Its kernel is written

in Linux 3.3 and its firmware including Pica8 [46] and Indigo

[47] is also available.

OpenFlow is flow-oriented protocol and has switches and

ports abstraction to control the flow [21]–[27]. In SDN, there

is a software named controller which manages the collection

Fig. 2. OpenFlow model.

of switches for traffic control. The controller communicates

with the OpenFlow switch and manages the switch through the

OpenFlow protocol. An OpenFlow switch can have multiple

flow tables, a group table, and an OpenFlow channel (Fig. 2

[22]–[26]). Each flow table contains flow entries and communi-

cates with the controller, and the group table can configure the

flow entries. OpenFlow switches connect to each other via the

OpenFlow ports.

Initially the data path of the OpenFlow routing devices has an

empty routing table with some fields (such as source IP address,

QoS type, etc.). This table contains several packet fields such

as the destination of different ports (receiving or transmission),

as well as an action field which contains the code for different

actions, such as packet forwarding or reception, etc. This table

can be populated based on the incoming data packets. When

a new packet is received which has no matching entry in the

data flow table, it is forwarded to the controller to be processed.

The controller is responsible for packet handling decisions, for

example, a packet is either dropped, or a new entry is added into

the data flow table on how to deal with this and similar packets

received in the future [27], [28].

SDN has the capability of programming multiple switches

simultaneously; but it is still a distributed system and, there-

fore, suffers from conventional complexities such as dropping

packets, delaying of the control packets etc. Current platforms

for SDN, such as NOX and Beacon, enable programming; but it

is still hard to program them in a low level. With new protocols

(such as OpenFlow) becoming more standard in industry, SDN

is becoming easier to implement. The control plane generates

the routing table while the data plane, utilizing the table to

determine where the packets should be sent to [3]. Many com-

panies utilize OpenFlow protocols within their data center net-

works to simplify operations. OpenFlow and SDN allow data

centers and researchers to easily abstract and manage the large

network.

The OpenFlow architecture typically includes the following

3 important components [8]–[10], [29].

1) Switches: OpenFlow defines an open source protocol

to monitor/change the flow tables in different switches and

routers. An OpenFlow switch has at least three components:

a) flow table(s), each with an action field associated with

each flow entry, b) a communication channel, which provides

link for the transmission of commands and packets between

2184 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 16, NO. 4, FOURTH QUARTER 2014

a controller and the switch, c) the OpenFlow protocol, which

enables an OpenFlow controller able to communicate with any

router/switch.

2) Controllers: A controller can update (revise, add, or

delete) flow-entries from the flow table on behalf of the user’s

experiments. A static (versus dynamic) controller can be a

simple software unit running on a computer to statically (versus

dynamically) establish packet path between a group of test

computers during a scientific experiment.

3) Flow-entries: Each flow-entry includes at least a simple

action (network operation) for that flow item. Most OpenFlow

switches support the following three actions: (a) sending this

flow’s packets to a port, (b) encapsulating this flow’s packets

and sending to a controller, and (c) dropping this flow’s packets.

OpenFlow has gone through many standard iterations, and it

is currently on version 1.3; however only version 1.0 is avail-

able for practical software and hardware design. The second

and subsequent versions of OpenFlow changed the match struc-

tures so that the number and bit count of each header field could

be specified. Thus new protocols would be easier to implement.

In [21] a special controller is used to separate control bits from

data bits, which allows for the network infrastructure to be

shared more easily. A server is often utilized for the controller

portion of OpenFlow architecture.

Currently, several projects are ongoing that utilize OpenFlow

in both Europe and Japan [27], [28]. In Europe, eight islands are

currently interconnected using OpenFlow. In Japan, there are

plans to create a network compatible with the one in Europe, as

well as a testbed that is much more widespread.

The existing OpenFlow standard assumes centralized con-

trol, that is, a single-point controller can manage all flow tables

in different switches. This concept works very well in a small-

scale, cable-based local area network. When OpenFlow was

proposed, it was tested in a wired campus network. However,

if many switches are deployed in a large area, it is difficult to

use a single-point control. Especially when wireless media have

to be used to connect long-distance devices, a central control

becomes difficult since wireless signals fade away quickly for a

long distance. Single control also has single-point failure issue.

To solve the above issue, we can use distributed controllers

in different locations. Each controller only manages the local

switches. However, all controllers keep highly reliable commu-

nications for consistent view of the global status. As an exam-

ple, HyperFlow [132] uses a logically centralized but physically

distributed control panel to achieve a synchronized view of the

entire SDN.

D. Beyond OpenFlow: Other SDN Standards

Besides OpenFlow (the most popular SDN protocol/

standard), there exist other SDN implementations. For instance,

IEEE P1520 standards have defined Programmable Network

Interfaces [143]. It can be seen as an initial model of SDN, since

it also has network programming abstractions.

ForCES (Forwarding and Control Element Separation) [144]

is another standard defined by IETF. It consists of a series of

RFCs for the coverage of different aspects on how to manage

control and data forwarding elements. It proposes the models

to separate IP control and data forwarding, Transport Mapping

layer for the forwarding and control elements, logical function

block library for such a separation, etc. However, ForCES does

not have widespread adoption due to its lack of clear language

abstraction definition and controller-switcher communication

rules.

Note that ForCES has a key difference from OpenFlow:

ForCES defines networking and data forwarding elements

and their communication specifications. However, it does not

change the essential network architecture. OpenFlow changes

the architecture since it requires the routers/switches have

very simply data forwarding function and the routing control

functions should be removed to the upper level controllers.

Therefore, OpenFlow cannot run in traditional routers that do

not support OpenFlow standards, while ForCES can run in

traditional devices since it just adds networking/forwarding

elements.

SoftRouter [145] defines clearly the dynamic binding pro-

cedure between the network elements located in control plane

(software-based) and data plane. In this standard, the network

can be described in two different views, i.e., physical view and

routing view. In the physical view, the network is made up of

nodes Internetworked by media links. The nodes could be a

forwarding element (FE) or a control element (CE). The FE is

a common router without local sophisticated control logic. The

CE is used to control FE. A CE is a general server. The routing

view of a network reflects the network topology based on the

concept of network element (NE). An NE is a logical grouping

of network interfaces/ports and the corresponding CEs that con-

trol those ports. SoftRouter includes a few protocols: Discovery

protocol (to establish a binding between FE and CE), FE/CE

control protocol, and CE/CE protocol.

E. 1.5 SDN Applications

In this section we will provide some application examples on

using SDN and OpenFlow.

1) Internet Research: Updating the Internet brings many

challenges as it is constantly being used; it is difficult to test new

ideas and strategies to solve the problems found in an existing

network. SDN technologies provide a means for testing ideas

for a future Internet without changing the current network [30].

Since SDN allows the control and data traffic to be separated

with an OpenFlow switch, it is easier to separate hardware from

software. This separation allows for experimenting with new

addressing schemes so that new Internet architecture schemes

can be tested.

Usually, it is difficult to experiment with new types of

networks. Since new types of networks often utilize different

addressing schemes and include other non-standard protocols,

these changes are difficult to incorporate into existing networks.

OpenFlow allows for routers, switches, and access points from

many different companies to utilize the separation of the control

and data planes. The devices simply forward data packets based

on defined rules from the controller. If a data packet arrives and

the device does not have a rule for it, the device forwards the

packet to the controller that determines what to do with the

packet, and if necessary, it sends a new rule to the device so

that it can handle future data packets in the same manner [21].

HU et al.: SURVEY ON SDN AND OPENFLOW: FROM CONCEPT TO IMPLEMENTATION 2185

2) Rural Connections: SDN simplifies complex data center

and enterprise networks; it can further be utilized to simplify

rural Wi-Fi networks. The main issues with rural environments

include sparse populations, small profit margins and resource

constraints, and others. SDN is beneficial because it separates

the construction of the network and the configuration of the

network by placing the control/management functionality into

the central controller. This separation enables the rural infras-

tructure deployment business (which must be done locally in

rural areas) and the Internet Service Provider (ISP) business

(which is typically done remotely in cities) to be completely

separated, i.e., those two businesses are operated by different

entities [31], [32]. Therefore, SDN makes the management of

rural networks much more convenient than traditional network

architecture where the local network devices need customized

control (which means the control of rural devices must be done

in rural areas).

3) Date Centers Upgrading: Data centers are an integral

part of many companies [33]. For example, Google has a

large number of data centers so they can quickly provide

data when requested. Similarly, many other companies utilize

data centers to provide data to clients in a quick and efficient

manner, but data centers are expensive to maintain. OpenFlow

allows companies to save money in setting up and configuring

networks since it allows switches to be managed from a central

location [34].

Oftentimes, data center networks utilize proprietary archi-

tectures and topologies, which creates issues when merging

different networks together; however there is often a need to

merge two divergent networks. SDN brings a solution to this

issue. In [33] the authors propose that a network infrastructure

service based on OpenFlow be utilized to connect data center

networks. They further state that these interconnected data

center networks could solve problems with small latency by

moving workload to underutilized networks. If a network is

busy at a certain time of day, the workload might be able to

be completed sooner in a network of a different time zone or in

a network that is more energy efficient.

In [34] a data center model is created with a large number

of nodes to test performance, throughput and bandwidth. The

model included 192 nodes with 4 regular switches and 2 core

switches with an OpenFlow controller. There was a firewall

between the core switches, OpenFlow controller and the router.

The authors also utilized an application called Mininet to pro-

totype their network and test the performance. Mininet allows

researchers to customize a SDN using OpenFlow protocols.

Further, they utilized several tools to analyze their network

setup including Iperf, Ping, PingAll, PingPair, and CBench.

These tools allow people to check the possible bandwidth, con-

nectivity, and the speed in which flows can be changed, respec-

tively. Wireshark was also used to view traffic in the network.

4) Mobile Device Offloading: Privacy is important for busi-

ness applications because people often work on data that needs

to be kept secure. Some data can be sent among only a few

people while other data does not require the same level of secu-

rity. As an example, in [35] the authors utilized an Enterprise-

Centric Offloading System (ECOS) to address these concerns.

ECOS was designed to offload data to idle computers while

ensuring that applications with additional security requirements

are only offloaded on approved machines. Performance was

also taken into consideration for different users and applica-

tions [35]. SDN is utilized to control the network and select

resources. The resources selected must be able to meet the secu-

rity requirements. The controller will determine if such a device

is available for offloading that meets the security requirements

while maintaining energy savings. If no such device exists,

data is not allowed to be offloaded from the mobile device. If

energy savings is not necessary, then any resource with enough

capacity is utilized if available. OpenFlow switches are utilized

so that the controller can regulate the flows. ECOS was able to

offload while taking into account security requirements without

an overly complex scheme.

5) Wireless Virtual Machines: Applications running on

wireless virtual machines in businesses are becoming increas-

ingly common. These virtual machines allow the companies to

be more flexible and have lower operational costs. In order to

extract the full potential from a virtual machine, there are needs

for making them more portable. The main issue is how to main-

tain the virtual machine’s IP address in the process. The current

methods of handling virtual machines were not efficient. The

solutions proposed in [36] include using a mobile IP or dynamic

DNS. The main issue with both solutions is that someone has

to manually reconfigure the network settings after removing

the virtual machine. This limits businesses and data centers

from easily porting their virtual machines to new locations.

An application named CrossRoads was developed by [36] in

order to solve the mobility issue for virtual machines. Cross-

Roads is designed to allow mobility of both live and offline

virtual machines. CrossRoads has three main purposes. The first

purpose is to be able to take care of traffic from data centers as

well as external users. The second purpose is to make use of

OpenFlow with the assumption that each data center utilizes

an OpenFlow controller. The third purpose is to make use of

pseudo addresses for IP and MAC addresses in order to have

the addresses remain constant when porting while allowing the

real IP to change accordingly.

The basic implementation of their software was to create

rules for finding the virtual machines in different networks. The

CrossRoads controller would keep track of the real IP and MAC

addresses for the controllers in each data center as well as the

virtual machines in its own network. When a request is sent for

an application running on a particular virtual machine, a request

is broadcasted to the controllers. If the controller receives a

request for a virtual machine that is not in its table, then it

broadcasts the request to the other controllers; the controller

who has the virtual machine’s real IP address then sends out the

pseudo MAC address to the original controller, and the original

controller can update its table in case it gets another request in

the near future.

Comparisons: SDN has been shown to be a valuable re-

source in many different types of applications. SDN allows

users to quickly adapt networks to new situations as well as

test new protocols. Table I shows the differences among some

typical SDN applications. As one can see, OpenFlow was uti-

lized in most of the applications for its versatility. Data centers

continue to become an important part of the Internet and many

2186 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 16, NO. 4, FOURTH QUARTER 2014

TABLE I
A COMPARISON OF DIFFERENT SDN APPLICATIONS

Fig. 3. Organization of this survey.

large companies. The column mobile applications refers to

cell phones, tablets, and other non-traditional media formats

rather than laptops and other typical computing platforms. A

few of the applications utilize the cloud. Hardware changes are

difficult to implement in conventional networks. This is mainly

because they require a system to be shut down during upgrade.

But SDN provides conveniences for such upgrades due to its

separation of data and control planes.

F. Road Map

Fig. 3 shows the organization of this paper. After the concept

is explained (Section I), Sections II–VIII will survey the most

important aspects in SDN/OpenFlow design. Since SDN aims

to enable easy re-policing, the network programming is a must

(Section II). SDN simplifies all switches as data forwarders

only and leave complex control in controllers (Section III).

Due to the dynamic network resources deployment, it is critical

to provide the users an accurate network resource manage-

ment via the virtualization tools (Section IV). Then we move

to the important SDN performance issue—QoS (Section V).

We will explain different schemes that can support the QoS

requirements. Any network has threats and attacks. SDN is

not an exception. Section VI will explain the security and

fault tolerance aspects in SDN designs. Then we introduce the

ideas of implementing SDN/OpenFlow in two most important

network types—wireless and optical networks (Section VII).

Section VIII introduces a SDN design example. To help the

readers understand unsolved challenging research issues, we

will point out the next-step research directions in this exciting

field (Section IX). Finally, Section X concludes the entire paper.

The reason of covering the three aspects (QoS, security, and

wireless/optical) besides the basic SDN issues (Sections II–IV)

Fig. 4. Programming of the SDN and language abstraction.

is due to the following factors: First, for any new network

architecture, the first concern is its performance, which mainly

includes the end-to-end delay, throughput, jitter, etc. Therefore,

it is critical to evaluate its QoS support capabilities. This is the

reason that we use an individual section (Section V) to cover

SDN’s QoS support issues; Second, security is always a top

concern for a user before he or she uses a new network model.

There are many new attacks raised for any new network ar-

chitecture. Therefore, we will use another section (Section VI)

to cover SDN security considerations; Finally, today two most

typical network media are wireless transmissions and optical

fiber. SDN eventually needs to face the design challenges when

used for those cases. Therefore, in Section VII we discuss SDN

extensions in wireless and optical links.

II. LANGUAGE ABSTRACTIONS FOR SDN

A. Language Abstractions

In SDN the control function consists of two parts, i.e., the

controller with the program and the set of rules implemented

on the routing/switching devices (Fig. 4). This has an impli-

cation of making the programmer not worry about the low-

level details in the switch hardware. The SDN programmers

can just write the specification that captures the intended for-

warding behavior of the network instead of writing programs

dealing with the low-level details such as the events and the

HU et al.: SURVEY ON SDN AND OPENFLOW: FROM CONCEPT TO IMPLEMENTATION 2187

forwarding rules of the network. This enables the interactions

between the controllers and switches. A compiler transforms

these specifications into code segments for both controllers

and switches. As an example, a SDN programming tool called

NetCore [69] allows descriptions of the network rules and

policies which cannot be implemented directly on the switches.

Another important fact about NetCore is that it has a clear

formal set of rules that provide a basis for reasoning about

program execution status.

Here, we introduce two important language abstractions in

SDN programming.

1) Network Query Abstractions: In SDNs each switch

stores counters for different forwarding rules. They are for

the counts of the total number of packets and data segments

processed using those rules. For traffic monitoring the con-

troller has the ability to check different counters associated with

different forwarding rules. This enables the programmers to

monitor the fine details of implementation on the switches. This

is a tedious job and makes the program complicated. Therefore,

an added level of abstraction will help the programmers. To sup-

port applications whose correct operation involves a monitoring

component, Frenetic [70] includes an embedded query lan-

guage that provides effective abstractions for reading network

state. This language is similar to SQL and includes segments

for selecting, filtering, splitting, merging and aggregating the

streams of packets. Another special feature of this language

is that it enables the queries to be composed with forwarding

policies. A compiler produces the control messages needed to

query and tabulate the counters on switches.

2) Consistent Update Abstractions: Since SDNs are event-

driven networks, the programs in SDNs need to update the data

forwarding policy from time to time because of the changes

in the network topology, failures in the communication links,

etc. An ideal solution is the automatic update of all the SDN

switches in one time; but in reality it is not easy to implement.

One good solution is to allow certain level of abstraction, and

then send these changes from one node to another. An example

is the per-packet consistency which ensures that each packet

just uses the same, latest policy (instead of a combination of

both the old and new policy). This preserves all features that

can be represented by individual packets and the paths they

take through the SDN. Those properties subsume important

structural invariants such as basic connectivity and free-of-loop,

and link access control policies. Per-flow consistency ensures

that a group of related packets are processed with the same flow

policy. Frenetic provides an ideal platform for exploring such

abstractions, as the compiler can be used to perform the tedious

bookkeeping for implementing network policy updates [70].

B. Language Abstraction Tools: Frenetic Project

SDN requires efficient language abstraction tools to achieve

network re-programming. As an example, the Frenetic project

aims to provide simple and higher level of abstraction with

three purposes, i.e., (i) Monitoring of data traffic, (ii) Managing

(creating and composition) packet forwarding policies, (iii) En-

suring the consistency when updating those policies [71]. By

providing these abstractions the network programming be-

comes easy and efficient without a need of worrying about the

low-level programming details.

Frenetic project utilizes a language that supports an

application-level query scheme for subscribing to a data stream.

It collects information about the state of the SDN, including

traffic statistics and topology changes. The run-time system is

responsible for managing the polling switch counters, gathering

statistics, and reacting to the events. In the Frenetic project the

specification of the packet forwarding rules in the network is

defined by the use of a high-level policy language which can

easily define the rules and is convenient to programmers. Differ-

ent modules can be responsible for different operations such as

the routing, discovery of the topology of the network, workload

balancing, and access control, etc. This modular design is used

to register each module’s task with the run time system which

is responsible for composing, automatic compilation and opti-

mization of the programmer’s requested tasks. To update the

global configuration of the network, Frenetic project provides

a higher level of abstraction. This feature enables the program-

mers to configure the network without going physically to each

routing device for installing or changing packet forwarding

rules. Usually, such a process is very tedious and is prone to

errors. The run-time system makes sure that during the updating

process only one set of rules is applied to them, i.e., either the

old policy or the new one but not both of the rules. This makes

sure that there is no violations for the important invariants such

as connectivity, control parameters of the loops and the access

control when the Open-Flow switches from one policy to

another [71].

To illustrate Frenetic language syntax, here we use an exam-

ple. In MAC learning applications, an Ethernet switch performs

interface query to find a suitable output port to deliver the

frames. Frenetic SQL (Structure Query Language) is as follows:

Select (packets) ∗
GroupBy ([srcmac]) ∗
SplitWhen ([inport]) ∗
Limit (1)

Here Select(packets) is used to receive actual packets (instead

of traffic statistics). The GroupBy([srcmac]) divides the packets

into groups based on a header field called sercmac. Such a field

makes sure that we receive all packets with the same MAC

address. SplitWhen([inport]) means that we only receive the

packets that appear in a new ingress port on the switch. Limit(1)

means that the program just wants to receive the first packet in

order to update the flow table in data plane.

In a nut shell, Frenetic language project is an aggregation

of simple yet powerful modules that provide an added level of

abstraction to the programmer for controlling the routing de-

vices. This added layer of abstraction runs on the compiler and

the run time system, and is vital for the efficient code execution.

C. Language Abstraction Tool: FlowVisor

The virtualization layer helps in the development and op-

eration of the SDN slice on the top of shared network

infrastructures. A potential solution is the concept of Auto-

Slice [73]. It provides the manufacturer with the ability to

redesign the SDN for different applications while the operator

2188 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 16, NO. 4, FOURTH QUARTER 2014

intervention is minimized. Simultaneously the programmers

have the ability to build the programmable network pieces

which enable the development of different services based on

the SDN working principles.

Flow Visor is considered to be a fundamental building block

for SDN virtualization and is used to partition the data flow

tables in switches using the OpenFlow protocol by dividing it

into the so-called flow spaces. Thus switches can be manip-

ulated concurrently by several software controllers. Neverthe-

less, the instantiation of an entire SDN topology is non-trivial,

as it involves numerous operations, such as mapping virtual

SDN (vSDN) topologies, installing auxiliary flow entries for

tunneling and enforcing flow table isolation. Such operations

need a lot of management recourses.

The goal is to develop a virtualization layer which is called

SDN hypervisor. It enables the automation of the deployment

process and the operation of the vSDN topologies with the min-

imum interaction of the administrator. vSDNs focuses on the

scalability aspects of the hypervisor design of the network. In

[74] an example is presented in which a network infrastructure

is assumed to provide vSDN topologies to several tenants. The

vSDN of each tenant takes care of a number of things such

as the bandwidth of the link, its location and the switching

speed (capacity), etc. The assumption is that every tenant uses

switches that follow OpenFlow protocol standards with a flow

table partitioned into a number of segments. The proposed dis-

tributed hypervisor architecture has the capability of handling a

large amount of data flow tables for several clients. There are

two very important modules in the hypervisor: Management

Module (MM) and Multiple Controller Proxies (CPX). These

modules are designed in such a manner that it distributes the

load control over all the tenants.

The goal of the MM portion is to optimize global parameters.

The transport control message translation is used to enable

the tenants to have the access to the packet processing set of

rules within a specific SDN layer without having to disturb

the simultaneous users. Upon the reception of a request, MM

inquires the vSDN about the resources available in the network

with every SDN domain and then accordingly assigns a set of

logical resources to each CPX.

As a next step each CPX initializes the allocated segment

of the topology by installing flow entries in its domain, which

unambiguously bind traffic to a specific logical context using

tagging. As the clients are required to be isolated from each

other, every CPX is responsible to do a policy control on the

data flow table access and make sure that all the entries in

these tables are mapped into segments that are not overlapping.

CPX is responsible for controlling the routing switches. Also

the CPX takes care of all the data communication between the

client controller and the forwarding plane.

A new entry into the switch has to follow certain steps (Idid-

notseemanysteps). First, the proxy creates a control message

for addition of new entry into the switch flow table in such a

manner that all references (addresses) to memories are replaced

by the corresponding physical entries, and corresponding traffic

controlling actions are added into the packet. The Proxy is

responsible for maintaining the status of each virtual node in a

given SDN. As a result the CPX has the ability to independently

transfer virtual resources within its domain to optimize inter-

domain resource allocation.

If there are a number of clients in the network, a large number

of flow tables are needed in the memory of a routing switch. The

task of CPX is to make sure that all the flow tables are virtually

isolated, all packet processing takes place in a correct order,

and all the actions are carried out in case a connected group of

virtual nodes is being mapped to the same routing device.

In the OpenFlow routing devices, there is a problem on the

scalability of the platform due to the large flow table size. There

could be a large number of entries in the flow table. To deal with

such situation, an auxiliary software data paths (ASD) is used in

the substrate network [74]. For every SDN domain, an ASD is

assigned. The server has enough memory to store all the logical

flow tables which are needed by the corresponding ASD com-

pared to the limited space on the OpenFlow routing devices.

Although the software-based data path has some advantages,

there is still a huge gap between the OpenFlow protocol and the

actual hardware components. To overcome these limitations,

the Zipf property of the aggregate traffic [75], i.e., the small

fraction of flows, is responsible for the traffic forwarding. In

this technique ASDs are used for handling heavy data traffic

while only a very small amount of high volume traffic is cached

in the dedicated routing devices.

Language example of FlowVisor: Here, we provide an exam-

ple on how FlowVisor creates a slice.

Topology

Example_topo = nxtopo.NXTopo ()

Example_topo.add_switch (name = “A”, ports [1,2,3,4])

Example_topo.add_switch (name = “B”, ports [1,2,3,4])

Example_topo.add_link ((“A”, 4), (“B”, 4))

Mappings

P_map = “A”: “S2”, “B”: “S3”

Q_map = identity_port_map (Example_topo, P_map)

Maps = (P_map, Q_map)

predicates

Preds = \
([(p, header (“srcport”, 80))

For p in Example_topo.edge_ports (“A”) +
[(p, header (“dstport”, 80))

For p in Exam_topo.edge_ports (“B”)])

slice constructor

Slice = Slice (Example_topo, phys_topo, maps, preds)

In the above example, we first define a network topology

called Example_topo, which has two switches: A and B. The

switches have 3 edge ports each. Then we define the switch→
port mappings. Switch A maps to S2, and B maps to S3. Then

we associate a predicate with each edge port. The predicates

can map traffic (web only) to the slice. The last line officially

creates a slice [138].

III. CONTROLLER

The control plane can be managed by a central controller

or multiple ones. It gives a global view of the SDN status

to upper application layer. In this section, we look into the

HU et al.: SURVEY ON SDN AND OPENFLOW: FROM CONCEPT TO IMPLEMENTATION 2189

architecture and performance of controller in software defined

networks.

A. Types of Controllers

While SDN is suitable for some deployment environments

(such as homes [76], [77], data centers [78], and the enterprise

[79]), delegating control to a remote system has raised a number

of questions on control-plane scaling implications of such an

approach. Two of the most often voiced concerns are: (a) how

fast the controller can respond to data path requests; and (b)

how many data path requests it can handle per second. For

software controller, there are four publicly-available OpenFlow

controllers: NOX, NOX-MT, Beacon, and Maestro [80].

A typical OpenFlow controller is NOX-MT [80]. NOX [48]

whose measured performance motivated several recent propos-

als on improving control plane efficiency has a very low flow

setup throughput and large flow setup latency. Fortunately, this

is not an intrinsic limitation of the SDN control plane: NOX is

not optimized for performance and is single-threaded.

NOX-MT is a slightly modified multi-threaded successor

of NOX. With simple tweaks we are able to significantly

improve NOX’s throughput and response time. The techniques

used to optimize NOX are quite well-known: I/O batching to

minimize the overhead of I/O, porting the I/O handling harness

to Boost Asynchronous I/O (ASIO) library (which simplifies

multi-threaded operation), and using a fast multiprocessor-

aware malloc implementation that scales well in a multi-core

machine.

Despite these modifications, NOX-MT is far from perfect.

It does not address many of NOX’s performance deficiencies,

including but not limited to: heavy use of dynamic memory

allocation and redundant memory copies on a per-request basis,

and using locking while robust wait-free alternatives exist.

Addressing these issues would significantly improve NOX’s

performance. However, they require fundamental changes to

the NOX code base. NOX-MT was the first effort in enhancing

controller performance. The SDN controllers can be optimized

to be very fast.

B. Methods to Enhance Controller’s Performance

We can make OpenFlow network more scalable by designing

a multi-level controller architecture. With carefully deployed

controllers, we can avoid throughput bottleneck in real net-

works. For example, in [81] authors have measured the flow

rate in a HP ProCurve (model # 5406zl) switch, which is

over 250 flows per second. In the meantime, in [82] authors

reported that for a data center with over 1000 servers, it could

face a flow arrival rate of 100 k flows/second, and in [83]

they reported a peak rate of 10 M flows per second for an

100-switch network. The above example shows that current

switches cannot handle the application flow rate demands.

Therefore, we need to invent an efficient protocol which can

minimize the switch-to-controller communications.

The data plane should be made simple. Currently OpenFlow

assigns routing tasks to the central controller for flow setup.

And the low-level switches have to communicate with the

controller very frequently in order to obtain the instructions on

how to handle incoming packets. This strategy can consume

the controller’s processing power and also congest switch-

controller links. Eventually they cause a serious bottleneck in

terms of the scalability of OpenFlow.

However, recent measurements of some deployment environ-

ments suggest that these numbers are far from sufficient. This

causes relatively poor controller performance and high network

demands to address perceived architectural inefficiencies. But

there has been no in-depth study on the performance of a

traditional SDN controller. Most results were gathered from

systems that were not optimized for throughput performance.

To underscore this point, researchers were able to improve the

performance of NOX, an open source controller for OpenFlow

networks, by more than 30 times in throughput [84].

In most SDN designs the central controller(s) can perform

all the programming tasks. This model certainly brings the

scalability issue to the control plane. A better control plane

should be able to make the packet handling rate scalable with

the number of CPUs. It is better to always have the network

status in packet level available to the controllers. Study from

Tootoonchian et al. [84] implements a Glasgow Haskell Com-

piler (GHC) based runtime system. It can allocate/deallocate

memory units, schedule different event handlers, and reduce

the interrupts or system calls in order to decrease the runtime

system load. They have showed the possibility of using a single

controller to communicate with 5000 switches, and achieving

the flow rate of up to 14 M per second! The switch-controller

communication delay is less than 10 ms in the worst case.

In [79] a partition/aggregate scheme is used to handle TCP

congestion issue.

C. Advanced Controller Design

Here, we introduce an advanced method for high-speed

control functions in control plane. In [140], a mechanism called

Control-Message Quenching (CMQ) is proposed to reduce the

flow setup delay and improve the SDN throughput among

switches/routers. There are huge number of flows that need to

be handled by the controllers. The inability of OpenFlow to pro-

cess so many flows’ policy management is due to the inefficient

design of control-data plane interfaces. Especially, there exist

frequent switch-controller communications: the switches have

to consult the controller frequently for instructions on how to

handle new incoming packets.

The basic idea of CMQ is to ask any switch to send only

one packet-in message during each RTT (round-trip-time), for

each source-destination pair, upon multiple flow table misses.

Thus we do not need to bother the controllers each time we

receive the packets with the same source/destination. Each

switch should maintain a dynamically updated table with all

learned, unique source-destination pairs. For each incoming

packet that cannot find its source-destination pair, i.e., table-

miss occurs, the switch will insert such a new pair into the table,

and query the controller. Such a pair table will be maintained

periodically in case the network topology changes, which can

detected by the control plane.

2190 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 16, NO. 4, FOURTH QUARTER 2014

A problem with existing SDN controller is that the SDN

flow tables typically cannot scale well when there are more

than 1000 entries [141]. This is mainly because the tables often

include wildcards, and thus need ternary content-addressable

memory (TCAM), as well as complex, slow data structures. In

[141] a scheme called Palette, can decompose a large SDN table

into small ones and distribute them to the whole SDN without

damaging the policy semantics. It can also reduce the table size

by sharing resources among different flows. The graph-theory

based on model is used to distribute the small tables to proper

switches.

There could exist multiple controllers in the SDN. In [142]

a load balancing strategy called BalanceFlow, is proposed to

achieve controller load balancing. Through cross-controller

communications, a controller is selected as super-controller,

which can tune the flow requests received by each controller

without introducing much delay. Note that each controller

should publish its load information periodically to allow super-

controller to partition the loads properly.

IV. NETWORK VIRTUALIZATION

A. Virtualization Strategies

As technology develops, the modern network becomes larger

and more capable of providing all kinds of new services. The

cloud computing, and some frameworks such as GENI, FIRE,

G-Lab, F-Lab and AKARI, utilize the large-scale experimental

facilities from networks. However, resources are always limited

and users’ demands keep increasing as well. The sharing of

network hardware resources among users becomes necessary

because it could utilize the existing infrastructure more effi-

ciently and satisfy users’ demands. Network virtualization in

SDN is a good way to provide different users with infrastructure

sharing capabilities [85]. The term OpenFlow often comes with

network virtualization these years. The FlowVisor, the con-

troller software, is a middleware between OpenFlow controllers

and switches. FlowVisor decomposes the given network into

virtual slices, and delegates the control of each slice to a specific

controller [86].

Both OpenFlow and FlowVisor have their limitations in

terms of network management, flexibility, isolation and QoS.

OpenFlow offers common instructions, but lacks standard man-

agement tools. FlowVisor only has access to the data plane, so

the control plane and network controllers have to be managed

by the users of the infrastructure. On the other hand, it can

ensure a logical traffic isolation but with a constant level, which

means that it lacks flexibility. Facing these challenges, re-

searchers try to establish their own architecture based on Open-

Flow or FlowVisor for an improved network virtualization.

FlowVisor can be pre-installed on the commercial hardware,

and can provide the network administrator with comprehensive

rules to manage the network, rather than adjusting the physi-

cal routers and switches. FlowVisor creates slices of network

resources and acts as the controlling proxy of each slice to

different controllers as shown in Fig. 5. The slices may be

switch ports, Ethernet addresses, IP addresses, etc, and they

are isolated and cannot control other traffic. It can dynamically

Fig. 5. The FlowVisor acts as proxy and provides slices.

Fig. 6. Various translating functions (C1,C2,C3: different Controllers;
OFI—OpenFlow Instance).

manage these slices and distribute them to different OpenFlow

controllers, and enables different virtual networks to share the

same physical network resources.

B. Virtualization Models

In the context of OpenFlow there are different virtualiza-

tion models in the view of translation model [87] (Fig. 6).

Translation aims to find 1 : 1 mapping relationship between

the physical SDN facilities and the virtual resources. The

translation unit is located between the application layer and

the physical hardware. According to their placements we could

classify them into five models.

1) FlowVisor: FlowVisor is the translation unit that dele-

gates a protocol and controls various physical switches or

controllers. It has full control of the virtualization tasks.

2) Translation unit: it is in the OpenFlow instance of the

switch, and it performs translation among different con-

trollers at the protocol level.

3) Multiple OpenFlow instances running on one switch are

connected to one controller. Translation is executed be-

tween the data forwarding unit (such as a switch) and an

OpenFlow instance.

4) Multiple OpenFlow instances still running on a single

switch, but the switch’s datapath is partitioned into a few

parallel ones, one per instance. It translates by adjusting

the ports connected to the different parallel data paths.

5) Multiple translation units are used, and at least one is

for virtualization on the switch level, and another one for

interconnecting some virtual switches.

HU et al.: SURVEY ON SDN AND OPENFLOW: FROM CONCEPT TO IMPLEMENTATION 2191

Fig. 7. System design of FlowN.

C. Virtualization Architectures

Some systems have been proposed to address the OpenFlow-

based network virtualization limitations. These methods can be

classified as three types: (1) Improve the OpenFlow controller.

OpenFlow controller is a software, and it can be modified

by users to satisfy their special demands. (2) Improve the

FlowVisor. The FlowVisor itself already has basic management

function, and it can be improved to overcome some limita-

tions. (3) To add new abstraction layer upon OpenFlow switch.

Researchers add new layers or new components to manage

the virtual network. In the following we will focus on some

performance requirements for a SDN virtualizer.

1) Flexibility: The flexibility in the network virtualization

denotes the scalability and the control level to the network. It

usually conflicts with the isolation demand.

In [85] it present a system called FlowN that extends the

NOX version 1.0 OpenFlow controller, and embeds a MySQL

version 14.14 based database with the virtual-to-physical map-

pings as shown in Fig. 7. This FlowN is a scalable virtual net-

work and provides tenants a full control of the virtual network

tenants can write their own controller application and define ar-

bitrary network topology. With the container based architecture,

the controller software that interacts with the physical switches

is shared among tenant applications, and so that the resources

could be saved when the controller becomes more and more

complex these days.

This system is evaluated in two experiments by increasing the

number of the nodes: one measures the latency of the packets

arriving at the controller, and the other measures the fault time

of the link used by multiple tenants. When the number of nodes

is large, the system has the similar latency as FlowVisor does

but is more flexible; and its fault time could be small even the

number of network nodes is large.

In [88] an efficient network virtualization framework is pro-

posed. Its major features include: (1) monitor multiple instances

of OpenFlow switches, (2) set up controllers and SDN applica-

tions, and (3) achieve QoS performance. It can easily configure

the parameters of different switches, and monitor the network

topology to see any node changes. It uses OpenNMS as the

management tool since it is open source. It has virtual controller

management as shown in Fig. 8. The prototype is successfully

Fig. 8. Integrated OpenFlow management framework.

Fig. 9. OpenFlow network virtualization for Cloud computing.

tested on the testbed consisting of six PCs, one switch and one

OpenFlow switch.

A MAC layer network virtualization scheme with new MAC

addressing mode is proposed in [89]. Since it uses a central-

ized MAC addressing, it could overcome the SDN scalability

problems. This system efficiently supports Cloud computing

and sharing of the infrastructures as shown in Fig. 9.

The virtualization of the LANs could be used to virtualize

the network, but it has more complexity and overhead, and is

not good at scalability. Thus the virtualization of MAC layer

functions could be used, and is realized in [89] by reserving

part of the remaining MAC address for the virtual nodes. This

system reduces IP and control overhead, but the security issues

need to be solved. Details of the system are provided, but the

prototype is not tested in experiment.

2) Isolation: In order to ensure all the tenants of the vir-

tual network can share the infrastructure without collision, the

isolation problem must be addressed. The isolation may be in

different levels or places, just like address space. A research

network named EHU-OEF is proposed in [86] (Fig. 10). This

network uses L2PNV, which means Layer-2 Prefix-based Net-

work Virtualization, to separate various resource slices and

allows users to have multiple virtual networks based on the

MAC address settings. L2PNV has made some specific flow

rules as well as some customized controller modules. It can also

change FlowVisor.

EHU-OEF can well isolate different slices in the flow table,

and the flow traffic can be distinguished based on the MAC

addresses. Moreover, the NOX controllers use their module

ecosystem to easily manage different slices. This solution has

the benefit since it can deal with longer MAC header such as

in virtual LAN (VLAN) cases. It can also be used to test other

non-IP protocols by simply changing the addressing schemes.

The EHU-OEF prototype is tested on the platform composed of

seven NEC switches (IP8800/S3640), four Linksys WRT54GL,

2192 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 16, NO. 4, FOURTH QUARTER 2014

Fig. 10. EHU-OEF: an integrated OpenFlow management framework.

Fig. 11. A Full virtualization system. (MC: master controller; C1, C2, C3:
regular controllers; OS: operating system; OFI: OpenFlow instance) [87].

and two NetFPGAs. It is the first OpenFlow-based SDN in-

frastructure in Europe and allows experimental and application-

oriented data traffic in the same network without conflict.

In [87] a SDN virtualization system is proposed with fair re-

source allocation in the data/control planes as shown in Fig. 11.

All SDN tenants obtain the network resource by enforcing the

resource allocations in the central controller, the datapath of

the forwarding elements, and the control channel between the

switch and the controller. The QoS tools are applied to make

fair resource allocation. It provides strict isolation between

different sub-domains in a large SDN. It also allows future

protocol extensions. However, there is no prototype tested in

the system.

In [90] the isolation issue is solved among slices in different

virtual switches. It makes all slices share the network resources

in a fair way while allowing the isolation adaptation according

to the expected QoS performance. It also allows multi-level

isolation (see Fig. 12). A Slice Isolator is located above the

switches and OpenFlow abstraction layer, and is designed as

a model focusing on (a) Interface isolation; (b) Processing

isolation; and (c) Memory isolation.

Evaluations of the system show that the isolation levels have

significant impact on the performance and flexibility. The time

for reconfiguring the hardware traffic manager increases fast

when the isolation level goes up. High isolation level also leads

to latency. So the best isolation level can be determined based

on the update time and latency to achieve required performance.

Fig. 12. Network virtualization using Slice Isolator [90].

Fig. 13. LibNetVirt architecture.

3) Efficient Management: Network virtualization manage-

ment is involved with the mapping, layer abstraction or system

design to make sure the virtualized network can satisfy different

demands. It is the integration of the flexibility, isolation, and

convenience. A network virtualization architecture allowing

management tools to be independent of the underlying tech-

nologies is presented in [91]. The paper proposes an abstrac-

tion deployed as a library, with a unified interface toward the

underlying network specific drivers. The prototype is built on

top of an OpenFlow-enabled network as shown in Fig. 13. It

uses the single router abstraction to describe a network, and has

feasibility for creating isolated virtual networks in a program-

matic and on-demand fashion. In this system the management

tools can be independent of the working cloud platform so

that different technologies can be integrated, and the system

focuses on reduce the time of creating the virtual network.

The prototype named LibNetVirt is separated in two different

parts: generic interface and drivers. The generic interface is a

set of functions that allow interacting with the virtual network

and executing the operations in the specific driver. A driver

is an element that communicates to manipulate the VN in the

physical equipment.

A scheme [92] as shown in Fig. 14, enables the creation

of different isolated, virtual experimental sub-systems based

on the same physical infrastructure. This system implements

a novel optical FlowVisor, and has cross-layer for management

and high isolation for multiple users.

HU et al.: SURVEY ON SDN AND OPENFLOW: FROM CONCEPT TO IMPLEMENTATION 2193

Fig. 14. Cross-layer experimental infrastructure virtualization.

TABLE II
THE COMPARISON OF THE REPORTED NETWORK VIRTUALIZATION SYSTEMS

This architecture provides several abstraction layers for the

management: (a) The Flexible Infrastructure Virtualization

Layer (FVL) is composed of virtualized slicing and partitioning

of the infrastructure. (b) The Slice Control and Management

Layer (SCML) can monitor the status of slices. (c) The Slice

Federation Layer (SFL) can aggregates multiple slices into one

integrated experimental system. (d) The Experiment Control

and Management Layer (ECML) aims to set up experiment-

specific slice parameters. It uses extended OpenFlow controller

to achieve various actions.

The architecture is tested on the platform composed of eight

NEC IP8800 OpenFlow-based switches and four Calient Dia-

mondWave optical switch. The result shows that the setup time

of establishing the flow path increases even for a large number

of hops.

There are other aspects of the network virtualization designs.

We compare the above discussed systems with respect to their

focus points in Table II.

FlowVisor becomes the standard scheme of the network

virtualization, so we compare these presented systems with

FlowVisor (the last column). Most of the presented systems, no

matter whether it is based on FlowVisor or it is built totally in a

new scheme, not only have equivalent abilities to FlowVisor,

but have one or more advantages over FlowVisor such as

flexibility, adjustable isolation levels, etc.

D. Discussions

Network virtualization not only enables infrastructure shar-

ing, but also provides better ways to utilize the infrastructure or

Fig. 15. Abstraction layers of the virtual network [94].

to reduce the cost. Virtualization can greatly reduce the network

upgrading cost for large-scale wireless or wired infrastructures.

For example, a mobile network virtualization scheme is de-

signed in [93]. It has lower cost than classical network and SDN

network. A case study with a German network is given there.

The considered capital expenditures can be reduced by 58.04%

when using the SDN-based network instead of the classical one.

A qualitative cost evaluation shows that the continuous cost of

infrastructure, maintenance cost, costs for repair, cost of service

provisioning are lower.

It is reported in [94] that the OpenFlow-based micro-sensor

networks (its network components are shown in Fig. 15) can be

seamlessly interfaced to the Internet of Things or cloud comput-

ing applications. In traditional sensor networks, some sensors

away from the access point may not be reached. However, by

using the virtualization we form a new concept called flow-

sensors, which enables smooth data transfer between all sen-

sors. A flow-sensor is a sensor with local flow table and wireless

communications to controllers. Fig. 16 shows an example of the

advantages of a flow sensor network over a conventional sensor

2194 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 16, NO. 4, FOURTH QUARTER 2014

Fig. 16. Typical sensor network and flow sensor network [94].

network. In a conventional sensor network, the sensors 1 and 2

cannot communicate with each other without the access point,

so node 4 is too far and is lost; within the flow sensor network,

node 4 can talk to node 8, so that node 4 can be accessed. In [94]

it shows that the flow sensor can have 39% higher reachability

than a common sensor. This is extremely useful in large-scale

sensor network (>100 sensors).

V. QUALITY OF SERVICE (QoS)

In past decades, the Internet Engineering Task Force (IETF)

has defined two types of Quality of Service (QoS) architectures,

IntServ (integrated services) and Diffserv (differentiated ser-

vices). The IntServ is difficult to implement in today’s large net-

works due to too much operation overhead in different routers.

OpenFlow can provide fine-granularity QoS support (delay,

jitter, throughput, etc.) [101]. This is because OpenFlow can

well control packet-level or flow-level data delivery via its con-

trollers. Such a fine-granularity means that OpenFlow allows

the users to specify how to handle individual flows, which cor-

responds to IntServ in IETF definitions. Of course the user can

also aggregate individual flows into classes (i.e., Diffserc). As

a matter of fact, OpenFlow provides a series of programming

tools to create/recycle slices (a slice is a virtual flow). The user

can define how to allocate network resources (queues, routers,

switches, etc.) to different slices with different priorities.

There are very few works targeting SDN QoS supporting

issues. Among the few QoS models in SDN/OpenFlow, Open-

QoS [95], [96] is one of the most typical solutions. It has a

comprehensive controller architecture to support scalable video

streaming in SDNs. We therefore summarize its principle first.

Later on we will survey other QoS supporting schemes such

as special operating system support for SDN QoS, QoSFlow,

and so on.

A. OpenFlow QoS Model

Streaming multimedia applications such as Internet confer-

encing, IPTV, etc., all require a strict QoS (delay/jitter) con-

trol. As an example, the Scalable Video Coding (SVC) [100]

encodes a video segment into two parts: a base layer and one

or more enhancement layers. It is important to guarantee the

QoS of the base layer since it has the detailed pixel information.

However, current Internet structure cannot achieve high QoS for

base layers due to hard-to-control TCP connections. Moreover,

Internet tends to search the shortest path. Once that shortest

Fig. 17. Controller subsystems to support QoS [95].

path is congested, a large percentage of packets are dropped.

However, OpenFlow does not stick to the shortest path. By

programming the controllers, we can easily adjust the flow

delivery rules. In [95] they proposed an OpenFlow-based video

delivery scheme which uses dynamic QoS model to guarantee

the best QoS for SVC base layer data.

QoS Optimization Model: In [95] an interesting OpenFlow

QoS model is proposed. The basic principle is as follows: it

formulates the dynamic QoS routing as a Constrained Shortest

path (CSP) problem. For video applications, it employs delay

variation as the constraint in the optimization function. It first

represent the entire SDN as a simple graph. It then defines a cost

function based on the delay variation constraint. The CSP prob-

lem aims to find the best path to minimize the cost function. To

meet the packet loss constraint, it also defines a combined con-

straint with the weighted sum of packet loss measure and delay

variation. The solution supports both level-1 and level-2 QoS

routes. Its results show that the average quality of video streams

is improved by 14% if only the base layer is rerouted. By

rerouting the video data in the enhancement layer together with

the base layer, the quality is further improved by another 6.5%.

B. Controller Architecture for QoS Optimization

The controller proposed in [96] has the functions of route

calculation and route management. Fig. 17 illustrates the con-

troller architecture with various sub-functions. The controller

has powerful capabilities to specify QoS requirements. It can

also directly control the flow table in order to differentiate

between different priorities of traffic. The communications be-

tween the controller and the switches may be secured by some

standards such as SSL.

Note that the forward layer has to implement the policing

functions in order to ensure that the clients obey the Service

Level Agreements (SLAs) specified in their QoS contracts.

The following three extra features should exist in the above

HU et al.: SURVEY ON SDN AND OPENFLOW: FROM CONCEPT TO IMPLEMENTATION 2195

Fig. 18. QoSFlow modules [134].

architecture: (1) Resource monitoring: The forwarders should

comprehensively monitor their available network resources and

report periodically to the controller. The controller may poll the

forwarder for such profile. (2) Resource signaling: Each for-

warder should use signaling messages to communicate with the

controller on the current resource consumption so that certain

actions can be taken by the controller, such as updating the flow

table, changing QoS parameters, etc. (3) Resource reservation:

From time to time the controller may command a forwarder

to reserve certain resources for future QoS needs [99]. This

includes the reservation of buffer size, memory space, CPU

calculation time, and other resource requirements.

C. QoSFlow Architecture

In its current version, OpenFlow is not able to configure QoS

parameters in a dynamic and on-demand manner (i.e., it does

this manually). In order to deal with QoS problems in dynamic

approach, a framework called QoSFlow (Fig. 18) that enables

QoS management in OpenFlow environment is proposed in

[134]. QoSFlow allows the management of traffic class and

queues through rules or policy. It manages QoS resources (e.g.,

bandwidth, queue size) without changing the SDN architecture.

All actions are invoked by an OpenFlow controller and in a

dynamic and on-demand manner (not manually).

QoSFlow is an extension of the standard OpenFlow con-

troller which provides multimedia delivery with QoS. The

QoSFlow controller is based on NOX, which is responsible for

managing/monitoring actions and controlling signaling mes-

sages. The new controller, besides NOX API, contains the

following new components: QoSFlow agent, QoSFlow man-

ager, QoSFlow monitor, and DB-QoSFlow client. These four

modules have been designed to extend the NOX API with QoS

features called QoSFlow API. QoS Agent is responsible for

creating a communication module between an administrator

management tool and the other two QoSFlow components: the

manager and monitor QoSFlow. By using JSON interface, the

agent is able to receive policies, manage or monitor commands

from a third-part administrator application. The QoSFlow

monitor and manager components, respectively, monitor and

Fig. 19. QoSFlow controller architecture [134].

manage the QoS of OpenFlow domains. Fig. 19 shows its

controller architecture.

The QoSFlow data-path component is responsible for creat-

ing all low-level actions on the switch ports. This component

allows OpenFlow to get all the required information to run

management commands created by either the administrator’s

tool or through header packet information. In QoS management

tool, the actions are processed in the QoSFlow Agent. When

receiving those actions, it checks the type of the received

requests in order to select the next procedure. This new message

is automatically sent to controllers through NOX. The QoS

actions can be applied automatically through the packet header

information. In order to support fine-granularity QoS, the in-

coming traffic is grouped as data flows and multimedia flows,

where the multimedia flows are dynamically placed on QoS

guaranteed routes and the data flows remain on their traditional

shortest-path routing approach.

D. Operating System for QoS Optimization

NOX, the standard network operating system, can be used

for packet-level or flow-level control. However, it does not

have the necessary APIs for QoS support. For instance, it does

not support QoS-oriented virtual network management, or end-

to-end QoS performance monitoring. In [98] an QoS-aware

Network Operating System (QNOX) is proposed to support

general OpenFlow QoS functions.

The QNOX system includes the following modules: WDM/

ASON, IP, MPLS-TP. Here, WDM/ASON can monitor large

network traffic status. QoS-aware Open Virtual Network Pro-

gramming interface (QOVNPI) allows a client to request any

type of QoS performance. The service element (SE) can be used

for QoS demand definitions, such as the required network band-

width, memory overhead, preferred server locations, packet loss

rates, delay bounds, and security levels. The SLA (service level

agreement) and SLS (service level specification) modules can

be used to assess the OpenFlow resource availability, that is, to

check whether the network can meet the client’s QoS demands.

Obviously QNOX can define fine-granularity of QoS, such

as packet-level delay or loss rate. Based on the experimental

results in [98], QNOX can quickly calculate the routing path in

less than 100 ms even with over 100 nodes in the SDN. The

SLA/SLS can find all network resources in less than 1 s.

2196 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 16, NO. 4, FOURTH QUARTER 2014

TABLE III
A COMPARISON OF DIFFERENT SDN SECURITY SCHEMES

E. Other QoS Supporting Strategies in SDN/OpenFlow

In [135] a SDN QoS scheme called PolicyCop is proposed to

implement an open, vendor agnostic QoS policy management

architecture. It has a special software interface for specifying

QoS-based Service Level Agreements (SLAs). PolicyCop uses

the control plane of SDNs to monitor the compliances of the

QoS policies and can automatically adjusts the control plane

rules as well as flow table in the data plane based on the

dynamic network traffic statistics.

In [136] an OpenFlow QoS enhancement scheme is proposed

to allow the creation or change of the behavior of the existing

routing queues. It suggests that an OpenFlow capable switch re-

port the queue status to the control plane. It has a module called

Queue Manager plug-in which allows the uniform configuration

of QoS capabilities in each OpenFlow switch. Such an idea is

implemented in Ofelia testbed. Its implementation is based on

OpenNMS, an open-source network management system.

In [137], an Iterative Parallel Grouping Algorithm (IPGA)

is proposed to manage the prioritized flow scheduling issue, It

has an inherent nature of parallelism for efficient execution in

OpenFlow systems. Its algorithm is based on a M-ary multi-

rooted tree, a Fat-tree used in most data center networks. It

assumes that the SDN switches have two layers: lower pod

switches (edge switches) and upper pod switches (aggregation

switches). It formulates the flow scheduling issue as a linear

binary optimization problem.

VI. SDN SECURITY

A. Intrusion Detection

SDN creates some new targets for potential security attacks,

such as the SDN controller and the virtual infrastructure [103].

Besides all the traditional networks’ attacking places (such as

routers, servers, etc.), SDN has some new target points such as:

(1) SDN controller: Here, traditional attacks listed above also

exist; (2) Virtual infrastructure: it could have traditional attacks

on the hypervisor, virtual switch and VM (virtual machine);

(3) OpenFlow Network: attacks could occur in OpenFlow pro-

tocol for OpenFlow enabled devices.

In the following paragraphs, we will describe some typical

OpenFlow/SDN safety (such as failure recovery) issues and

security schemes (see Table III). Here, safety refers to the

schemes that overcome natural faults, and security means to

overcome intentional attacks.

A network intrusion detection and countermeasure selection

(NICE) scheme is investigated in [106]. It aims to achieve

the security in a virtual networks such as SDN and cloud

computing. Cloud Security Alliance (CSA) survey shows cloud

computing security is the top concern among different types

of networks. The conventional patch-based security schemes

do not work well in cloud data centers since the users could

have full access to those centers. In [106] the attack graph

based analytical models are used for intrusion detection. NICE

includes two important phases:

1) It uses an intrusion detection agent called NICE-A to

capture the traffic in each cloud server. A Scenario Attack

Graph (SAG) can be established and updated each time

the NICE-A scans the network. Based on the pattern anal-

ysis of the SAG, the NICE-A knows whether it should act.

2) Deep Packet Inspection (DPI) is activated if the virtual

machine (VM) enters inspection state. It can use SAG to

find security threats and VM vulnerabilities.

NICE runs low-overhead security software in each cloud

server. It includes 3 software modules an attack analyzer, a net-

work controller, and a VM profiling server. The VM profiling

server can monitor the network state in real-time, and construct

the operation profile for all services and ports. It also takes care

of the connectivity issues between VMs. The attack analyzer

can deduce the event correlations among different SAG nodes.

It then finds potential security holes and detect an occurring

threat. The network controller can control all configurations in

each hardware device and software unit based on OpenFlow

protocols. As we can see, NICE fits SDN very well.

B. Modular Security

Although OpenFlow (OF) decouples the data plane and con-

trol plane and thus greatly simplifies the hardware operations,

it also brings single-point security issues: once the controller is

attacked, all low-level switches are misled and cannot correctly

deliver the packets.

FRESCO-DB [107], a database module, can simplify the

SDN security key management. It defines unified session key

format and IP reputation model. Inspired by Click router de-

sign, it uses a modular and composable security protocols. It

consists of two important parts: (1) Application layer: it uses

APIs and interpreter to support modular applications; (2) SEK

(security enforcement kernel), can be used to perform all

policy-related actions. Diverse security policies, such as DROP,

REDIRECT, QUARANTINE, can be enforced by Security

applications developed in FRESCO scripts, to react to network

threats by simply setting an action variable. The above two parts

are built into NOX. A network user can use FRESCO script

language to define various security modules. Regarding the

implementation of FRESCO, Python is used to implement the

Application Layer prototype (total around 3000 lines of codes),

and runs as an OpenFlow application on NOX.

HU et al.: SURVEY ON SDN AND OPENFLOW: FROM CONCEPT TO IMPLEMENTATION 2197

C. SDN Traffic Anomaly Detection

In [108] it proposes 4 different OpenFlow traffic anomaly

detection algorithms. Each of them is evaluated in real networks

including both home and business networks. In the following

we summarize the ideas of those 4 traffic anomaly detection

algorithms:

1) Threshold Random Walk with Credit Based Rate Limiting

(TRW-CB) algorithm: As we know, a TCP connection can

be established in a much higher success rate if the server

is not attacked. By using sequential hypothesis testing

(i.e., likelihood ratio test), it analyzes each connection

status and attempt to detect the worm infections.

2) Rate-Limiting: A virus infection can cause many connec-

tion request within very short time, while a benign traffic

flow will never have such a high request rate. This is the

principle of rate-limiting, that is, we check the request

rate and detect a malicious event.

3) Maximum Entropy Detector: Maximum entropy calcula-

tions can be used to find traffic statistical features. By

using a baseline distribution, maximum entropy model

can be used to classify the packets into different cate-

gories, and each category could be detected as benign or

abnormal.

4) NETAD: It acts like a firewall or filter. It simply scans the

packet header and blocks any suspicious packet based on

the packet attributions.

D. Language-Based Security

Analyzing how to program SDN in a secure and reliable

manner is discussed in [109]. The solution involves develop-

ment of a new programming model that supports the concept

of a network slice. The isolation of the traffic of one program

from another is achieved with help of slices. They also isolate

one type of traffic from other. They have developed a semantics

for slices, and illustrate new kinds of formal modular reason-

ing principles that network programmers can now exploit. It

provides definitions of end-to-end security properties that slices

entail and verify the correctness of a compiler for an idealized

core calculus in a slice-based network programming. They have

also described their implementation which is equipped with

a translation validation framework that automatically verifies

compiled programs using the Z3 theorem prover.

It is challenging today to implement isolation in networks.

Most systems still use manual setup to block suspicious traffic.

Such a setup is often labor-intensive and vendor-specific. In

[109], it suggests that using a high-level programming language

to set up the data delivery policies and isolate different domains.

It leaves the error-prone low-level device configurations to the

SDN compilers. Such a scheme overcomes the shortcoming of

NOX, which cannot easily isolate different subnetworks when

security holes are detected.

The language-based security [109] relieves the programmers

from complicated security programming due to the use of slice

isolation concept. A slice is defined as a virtual connection

consisting of routers, switches, communication ports or links.

The slices have been defined with both attributes and actions in

[109]. A slice can be isolated from another if running them side

by side in the same network does not result in slice leaking

packets into the other slice. They defined several intuitive

security properties like isolation and developed an operational

condition called separation that implies the isolation property.

Finally, they formalized a compilation algorithm and proved

that it establishes separation and isolation.

E. Loop Detection Problem

The routing loops make packets never reach the final desti-

nation. In [110] it presents a dynamic algorithm which is built

on header space analysis, and allows the detection of loops

in SDNs. There the network model has been illustrated as a

directed graph. Hence, concepts of header space analysis has

been translated into the language of graph theory. Rule graphs

and the dynamic loop detection problem are studied in [110].

They have shown how to model a network as a directed graph.

By analyzing the reachability and connectivity of the topology

graph, a node-to-node, no-loop path can always be found. A

dynamic strongly connected component algorithm is proposed

in [110] to allow us to keep track of edge insertions and dele-

tions. It can also be used to detect loops in a routing path.

A comparison of all the above SDN security schemes is

presented in the tabular form below:

F. SDN Safety Issue: Failure Recovery

In order to build a trustworthy SDN, we need to make a SDN

resistant to both external failures (security issues) and internal

failures (safety issues) [146]. Here, external failures refer to ex-

ternal, intentional attacks by adversaries. The above discussed

security solutions aim to detect and overcome external attacks.

The internal failures refer to natural faults due to some system-

related shortcomings or unintentional human factors. We regard

those internal failures as safety issues. For example, a SDN

could fail if the communication link between the controller and

the switches has outages due to bandwidth unavailability. Thus

all controllers’ commands cannot be delivered to the switches’

flow tables. If the switch-to-switch path has link failure, many

packets can get lost. Therefore, some type of link quality

monitoring and path recovery schemes are needed to overcome

the link failure.

There could be many of other safety issues in a SDN. For

example, the controller may not be able to synchronously

update all switches’ flow tables due to schedule management

failure. The switch may not be able to timely report traffic

delivery status to the controller (thus the controller may not

update the flow table for quite a while). When using multiple

controllers in a SDN, the controllers may not be able to keep the

consistent control due to communication delay. In the following

discussion, we will illustrate some existing schemes that aim to

address the SDN safety issues.

In [104] a fast failure recovery scheme is proposed for

OpenFlow networks. It investigated the switch-over frequency

and packet loss rate in its evaluation. It uses NOX software to

recover services.

2198 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 16, NO. 4, FOURTH QUARTER 2014

In OpenFlow network we can immediately or proactively

add a flow entry to the table after a failure occurred. The total

recovery time is determined by the lifetime of the flow entries.

In [104] two values of timeouts are defined, one is called idle

timeout, which means the time interval that a flow entry should

be removed if not used for certain time (that is, no packet for

that type of flow entry is passing through a switch); the other

one is hard timeout, which is the maximum time interval that

a flow entry can stay. No matter which timeout occurs, it will

trigger the failure recovery.

Note that the system cannot be recovered if the controller has

no idea on what type of failure occurred. The controller may

just randomly add a flow entry in the table if the failure type

is not recognized. In [104] NOX has been used to implement

L2-learning scheme for failure detection. It is written in C++

(called L2-lerarning switch) or in Python (it is called L2-

learning Pyswitch).

If a failure occurs, the incorrect flow entries should be erased

from all switches, and new entries should be immediately added

to each switch. The controller should have robust schemes to

detect the failure, and find new routing path to deliver the flows.

The controller will check the old routing path associated with

the failed links. If the old path is still usable, it will not establish

a new path. Otherwise, new path needs to be added to the flow

entries and old entries should be removed immediately.

In [104] Ubuntu 9.04 is used to install Open vSwitch 1.1.0

and NOX 0.9.0. Over 10 K ping packets were sent out at

the pace of one packet every 10 ms. The packet loss rate is

calculated by counting the number of received ping packets.

Hard timeout is set to 20 seconds, and idle timeout is 10 s. The

routing loops are avoided by using spanning tree algorithms.

The path reestablishment scheme in [104] is faster than con-

ventional MAC re-convergence or ARP. It only uses 12 ms to

recover from a link failure.

In [105] a scheme is called Operations, Administration, and

maintenance (OAM) tool is used to re-establish a new path. To

minimize the path switching time, it uses a proactive approach,

that is, a backup path is pre-stored in the flow table in case

a path fails. This scheme makes path recovery time less than

50 ms. In addition, some probing packets are periodically sent

in the network. If it is not received by a node, the system knows

that a path failure occurs. If it takes a long time to receive the

probing packet, a failure is also detected. Thus [105] provides

an efficient way to recover from path failure.

VII. OPENFLOW FOR WIRELESS AND OPTICAL NETWORKS

A. Overview

Why OpenFlow for wireless networks? Wireless infras-

tructure is more hybrid and complicated than wired ones. Many

wireless standards, such as Wi-Fi, Wi-Max, cellular networks,

etc., are all co-operating in the same backbone for providing

anywhere Internet access. Managing such a heterogeneous

wireless infrastructure is a big challenge. To make things

worse, different wireless products have their own lower layer

(physical/MAC layers) specifications, and are very difficult to

re-configure for dynamic mobile applications. For example,

Wi-Max forwards data in a point-to-point style in microwave

frequency; while Wi-Fi uses one-to-many star topology in

free frequency (2.45 GHz). OpenFlow can offload the wireless

MAC layer operations to virtual machines, and uses software-

defined network programming to achieve high flexibility and

reconfigurability. OpenFlow decouples lower layer wireless

transmission from higher layer control; thus it makes wireless

data forwarding reach higher rate (Gbits/sec). This can fully

explore 802.11 potential data rate.

The network virtualization in OpenFlow can significantly

improve the scalability of the wireless virtual LAN tagging and

firewall filtering operations. When the networks are moving

to cloud computing, it becomes harder and harder to man-

age the dynamic and distributed cloud servers. OpenFlow can

easily update the cloud policies over a dynamic deployment

environment. However, it needs some innovative designs if

applying SDN/OpenFlow to wireless world since the original

SDN motivation was to use wired, high-speed switches to

perform dump data forwarding, and to use reliable wires (not

wireless) to achieve stable communications among SDN con-

trol plane units. If we shift everything to wireless media, how

do we allocate different wireless channels for switch-to-switch

or controller-to-controller communications? What if those radio

channels are not available from time to time due to signal fading

and shadowing? Some studies are solving those issues [19],

[35], [111]–[114]. Later on we will use two examples (wireless

sensor networks and wireless mesh networks) to explain how

we can integrate OpenFlow with wireless technologies.

Why OpenFlow for optical networks? There is a great deal

of benefits when adopting SDN/OpenFlow for optical network

control: (1) Current optical networks have difficulties to react

independently to requests from client systems distributed at the

network edge. SDN provides programmable, abstracted inter-

face for flexible application re-configurations in optical control

units. (2) Existing optical networks cannot easily upgrade the

software in each optical switch due to the embedded software

nature. OpenFlow could easily upgrade services due to its sep-

aration of control and data planes. (3) SDN/OpenFlow allows

multi-level abstraction via its networked re-programming and

virtualization technologies. This makes optical network stack

suit easily adapt to different network topologies. (4) The cost

of optical hardware is typically high, especially the photonics

and associated electronic components. SDN/OpenFlow could

reduce those costs due to its ‘dump’ hardware operations—just

simply following the flow table.

B. OpenFlow for Wireless Sensor Networks

Wireless sensor networks (WSN) have become important

platforms for environmental monitoring. There are many sensor

hardware designs such as CrossBow, Imotes, etc. However,

all those sensor products cannot be easily programmed due to

vendor-specific SDK (software development kit) and the tight

integration of hardware and software in one sensor node.

Moreover, those sensors are difficult to re-task [115], [116]

if a new environmental monitoring mission is required. For

example, how can we re-program 100 sensors in a lake WSN

to detect a new type of pollution? Obviously today we need

HU et al.: SURVEY ON SDN AND OPENFLOW: FROM CONCEPT TO IMPLEMENTATION 2199

Fig. 20. SDN-based sensor networks.

to take each sensor out of the water and change the programs

embedded into the sensor hardware. This is not realistic in

large-scale WSN with so many nodes.

Although some over-the-air programming techniques are

used for some vendors’ sensor boards, their data sensing and

forwarding schemes are still vendor-specific. For example, they

may use different operating systems, or different programming

languages. The programmer needs to check different manuals

to get familiar with the API functions. It will be better if

the user just simply configure a network controller based on

universal networked operating system. The sensor hardware

and embedded stack protocols could be decoupled such that the

users do not need to worry about the data forwarding details

in each sensor, and just simply configure the controller’s flow

table. The data forwarding rules do not necessarily follow the

specific MAC layer protocols (such as ZigBee, 802.11, or other

protocols).

SDN/OpenFlow can well solve the above issues. It makes

each sensor just simply forward the sensor data based on the

specified flow table and rules. All those rules can be easily

changed through controllers’ programming. Since all nodes fol-

low universal operating system (such as NOX), the re-tasking

can be easily achieved by following standard scripts program-

ming. A Software-Defined WSN architecture, called sensor

openflow [116], can be used to address key technical challenges

mentioned above. We illustrate its main ideas in Fig. 20.

It has three layers: the application layer has all sensor data

query related applications such as local data processing; the

control plane and data plane are totally separate: the former can

remotely re-configure the sensor parameters, and the latter can

check the flow table and perform the corresponding actions. Its

main idea is to make the large-scale sensor network easy-to-

manage via programmable control plane and user-customizable

flow table. Sensors are no longer application-dependent and the

sensor data query policies can be easily reset. Sensor OpenFlow

allows policy changes in an easy style since a programmer can

simply change the controller’s software instead of dealing with

the wireless sensors.

C. OpenFlow for Wireless Mesh Networks

OpenFlow could be very useful for wireless mesh network

(WMN) management. Today WMN is often used in community

networks or military applications for re-tasking from time to

time. For example, an Internet provider may re-program a

community mesh network to set up different IPTV services. A

military center may want to re-configure a wireless network to

Fig. 21. OpenFlow for WMN management.

adapt to different surveillance scenarios. Existing mesh network

nodes are full fledged with all physical to application layer

functionalities. The network manager needs to setup each mesh

node individually since each node may have vendor-specific

programming features or proprietary device management pro-

files. Overall, today it is very difficult to perform rapid re-

tasking or policy changes in the heterogeneous mesh clients

(such as laptops, PDAs, phones, etc.) in a mesh network.

OpenFlow decouples network control and hardware commu-

nications completely, and leave only basic data forwarding

functions in each node, while the entire network can be eas-

ily re-programmed through a standard network OS (such as

NOX) running in a control panel. As long as different vendors’

products support OpenFlow’s flow table managements, a mesh

network can be easily re-tasked through a standard network

control script programming.

To make OpenFlow applicable to WMN, we need to over-

come a few challenges [20], [117]:

• Challenge 1: Fading channel: Unlike Stanford OpenFlow

testbed where fixed wired network is the backbone, WMN

has wireless channels everywhere (issues: radio fading,

hidden terminal problem, wireless broadcast nature, etc.).

• Challenge 2: Dynamic Topology: Due to WMN link

variations and nodes membership dynamics, the network

topology changes at a much higher pace than in wired

network. The OpenFlow needs to build a control plane to

perform autonomous topology discovery and swiftly react

on changes of the WMN topology.

• Challenge 3: In-band or out-band control: OpenFlow often

adopts out-of-band signaling, that is, the channel to NOX

is separate from the actually data forwarding network.

However, in WMN we may not have different RF channels

for separate control. On the other hand, using in-band

control would decrease data network throughout.

Fig. 21 shows the basic principle of using OpenFlow for

WMN control. The WMN has both mesh routers and mesh

clients. A radio channel control strategy is achieved by the

control panel for router-to-router, router-to-client, and client-to-

client communications. The control server in control plane can

perform mobility management, routing strategy, and channel

assignment.

In [20] an OpenFlow-enabled mesh routing scheme is pro-

posed. It has OpenFlow-enabled routers, clients and gateways.

Each node has multiple radio cards for multi-radio commu-

nications. The data path uses local sockets to talk with the

2200 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 16, NO. 4, FOURTH QUARTER 2014

control plane units. The control path communicates with NOX

via secure channel. Connection to Internet is achieved through

mesh gateways.

In [20] the in-band wireless communications are used be-

tween the controller and the switches. The high-quality chan-

nels are used for controller-to-server communications since

the controller’s commands cannot be lost even there is signal

fading.

D. OpenFlow for Optical Networks

Today optical networks have become the fastest Internet data

transmission approaches due to the high-speed light propa-

gation in optical fibers. Typically an optical network consist

of nodes such as Wavelength Cross-Connects (WXC), Re-

configurable Optical Add-Drop Multiplexers (ROADM), and

Photonic Cross-Connects (PXC) [118]. Current optical nodes

can be controlled by Element Management System (EMS) and

the Network Management System (NMS), which uses either

manual or semi-static style for lightpath provisioning [119].

Although this approach is reliable, it is difficult to design a

control plane technique to achieve a control of dynamic wave-

length paths in metro/backbone optical networks. Such a con-

trol plane should be able to reduce operational expense, shorten

the data transmission latency, and should be highly scalable

to the network traffic. An important optical control scheme is

called Generalized Multi-Protocol Label Switching (GMPLS)

[120]. It is a distributed packet forwarding control scheme.

However, It has not been popularly used in optical network

products [121]. One important reason is its complex control

scheme that is not suitable to dynamic control of both IP and

optical layers via a unified control plane (UCP).

SDN architecture, in particular, the OpenFlow protocol,

could become a solution to the above issue. Although the initial

purpose of using OpenFlow is to create a re-programmable

network, it can also serve as a promising candidate for a UCP

solution in hybrid networks [122]. It has been studied in optical

network enhancements [123]–[125]. But it is still in the early

stage for real networking.

In [119] an Openflow based PXC architecture is proposed.

It uses a concept called virtual Ethernet interfaces (veths) to

connect to each OpenFlow switch. Those veths look “virtual”

from the viewpoint of the PXC physical interfaces. Thus the

control plane can easily manage all PXC interfaces. The virtual

OpenFlow switch is also called OpenFlow agent. The integrated

OpenFlow agent and the PXC is called OpenFlow-enabled PXC

(OF-PXC). It can be managed by a NOX controller. When the

packets are received by the NOX, it can either insert a new

record to the flow table (if this is the first packet) or decides

which veth to forward the data.

VIII. EXAMPLE OF COMPLETE SDN SYSTEM

To illustrate a complete SDN system, here we use a good

reference solution called MobileFlow [139] which uses a SDN

architecture to implement a mobile network. A software-

defined mobile network (SDMN) provides maximum flexibil-

ity, openness, and programmability to future carrier. It designs

Fig. 22. Software defined mobile network.

a special SDN data plane called MobileFlow forwarding en-

gine (MFFE). All MFFEs are interconnected by an underly-

ing IP/Ethernet transport network. Its SDN control plane has

MobileFlow controller (MFC). The MFC has mobility manage-

ment entity (MME).

As shown in Fig. 22, it has MobileFlow and OpenFlow levels

for the management convenience. In both of them the control

plane is decoupled from the data plane. The data forwarding

function in MFFE is fully defined in software, while the control

software can steer the user flows to different service enables

(such as video caching and optimization). Those services can

be distributed throughout the mobile network. Note that the

user’s traffic can go through both MobileFlow level and Open-

Flow level, or, it just goes through the OpenFlow level and

reaches the Internet. Fig. 24 also shows the OpenFlow-based

decoupling of the IP/Ethernet transport network in the lower

level. This is because in some cases the user traffic may not go

through the mobile network infrastructure (and just stays in the

wired network, no wireless).

MobileFlow Controller: Such a controller can perform

network-level management including topology auto-discovery,

device monitoring, topological resource view, topology virtu-

alization, etc. More importantly, it can handle all mobility-

related activities, such as mobility anchoring, service migration,

channel handoff, etc. A network operator can freely use MFFEs

from different vendors. The operator can also use MFFEs to

adopt novel mobile network architectures. The system supports

m:1 mapping between MobileFlow applications and NFFEs

since each mobile application belongs to a different control

plane, and therefore enabling multitenancy.

Mobile Management: Supporting mobility based on 3GPP

or other systems can be easily realized by introducing the mo-

bile applications above the northbound interface of the MFC.

The MFC cab send out flow control rules to each MFFEs

involved in handling the particular flow. The channel handoff

(i.e., communication frequency switching) can be easily imple-

mented in each MFC when the QoS requirements are not met

in the multimedia applications.

Testbed Implementation: It uses COTS x86 based general-

purpose servers and OpenFlow-supported routers/switches

from different vendors. It enables the software-based definition

of different mobile networks (3G, 4G, etc.) with different

characteristics (radio coverage, bandwidth, radio frequency,

etc.). It supports virtualization for both control- and data-plane

resources. The same MFFE can be reused by different types

of virtual networks. Each virtual mobile network can evolve

HU et al.: SURVEY ON SDN AND OPENFLOW: FROM CONCEPT TO IMPLEMENTATION 2201

and be upgraded solely by replacing the corresponding virtual

machine software units in the control plane servers. The MFFEs

remain intact. The entire testbed is interconnected via COTS

LAN switches.

Note that the above system adds MobileFlow level above

regular OpenFlow level. Thus it can directly use OpenFlow

language syntax for network definition. For example, it can use

the following language abstraction to monitor a port 80 traffic:

Defswitch_join(switch)) :

P = inport : 2, tp_src : 80

Install(switch, p,DEFAULT, [])

Query_stats(switch, p)

Such a high-level language can run in NOX and interpreted

by all OpenFlow-compatible routers. Overall, the MobileFlow

system is a complete SDN/OpenFlow implementation in mo-

bile applications. It allows flexible re-configuration of mobile

channel allocation, QoS parameters, mobile access, and service

roaming between wireless networks.

IX. RESEARCH TRENDS

There are still many questions on how to make the SDN more

efficient, how to optimize it across all the network sets, and how

to achieve tradeoffs between different implementations. There

is a need to have quantitative metrics/approach for evaluating

the performance and efficiency of the SDN such as its scalabil-

ity, availability and latency. In the following we point out some

important future research topics.

A. Intelligent Flow Table/Rules Management

It is true that the motivation of designing SDN/OpenFlow

is to simplify the network switches’ operations: instead of

using vendor-dependent, embedded software in each switch,

SDN only assumes ‘dump’ data forwarding functionalities in

each switch. The switch just simply checks the flow table to

determine how to forward each received data packet.

The tricky part is: although the switches do not analyze

the traffic, they can always report forwarding results to the

higher layer—OpenFlow controller. The results could be simple

success or failure for a data forwarding operation, or some error

messages (such as switch failure), or other forwarding status

data. In the current OpenFlow specifications, they do not spec-

ify how to handle those feedback data. They just point out that

the flow table should be set up based on a set of rules defined

by the controller. But the issue is: since the switches could have

high traffic burden, it will slow down their data forwarding

operations if (1) network traffic is heavy, and/or (2) the flow

table is large and has complex rules. It is important to perform

self-learning in the controllers based on the pattern analysis of

the traffic flowing through each switch.

We believe that the future trend of SDN/OpenFlow will in-

clude high intelligence in flow table/rules control. We illustrate

our idea in Fig. 23. The network controller can learn what’s

going on based on the feedback from the switches. For example,

if the switches report a long delay for a source-destination IP

Fig. 23. Intelligent flow table/rules management.

pair, it indicates a possible routing loop or switch congestion

somewhere. When the controller analyzes the statistical pat-

terns from the switches’ feedback data, it can use any of the

recent learning tools (such as Bayesian learning, reinforced

learning, etc.) to deduce the optimal ‘actions’ in the future in

order to obtain a higher accumulative reward. The reward could

be defined based on the QoS performance metrics. The ‘actions’

could be any packet handling operations or any policy changes.

Statistical analysis could be based on any traffic pattern data

mining schemes. Through dimension reduction, we could ex-

tract the intrinsic features from complex, multi-attribute traffic

data. Since some dimensions are not useful in pattern recog-

nition, they could be removed by using Principle Component

Analysis (PCA), Non-negative Matrix Factorization (NMF), or

other dimension reduction schemes.

B. Scalable Controller Management

With the application of SDN/OpenFlow in larger networks,

the network controllers could become a performance bottle-

neck due to large amount of incoming signaling messages

and forwarding requests. Those controllers do not necessarily

be deployed in the same sub-net since a company network

may cross multiple places (even in different countries, such

as IBM, Intel, etc.). The controllers located in a distributed

network may compete for common computing resources (such

as communication channels).

To manage the coordination issue of large-scale controller-

to-controller communication system, a carefully designed

scheduling strategy with collision avoidance should be used. On

one hand, SDN administrators want to see a virtually consistent

controller system. On the other hand, they need to design a

virtual-to-physical mapping model to manage the physically

distributed controllers. Perhaps a tree-based hierarchical man-

agement scheme could be used to coordinate those controllers.

The higher level controllers should be able to handle more

heavy requests. The root controller then communicates with

NOX on the global requests. Fault tolerance techniques could

be used for controllers system. Even one controller is down,

others should be able to compensate for the missing operations.

By using fault tolerance model, we could figure out the optimal

controller deployment strategy, such as which controller should

be deployed in which sub-net.

2202 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 16, NO. 4, FOURTH QUARTER 2014

Resource sharing strategies should also be made among

controllers. By using a queuing model with shared resource

pool, we could calculate the controller serving time and wait-

ing time.

Note that the flow table could handle the packets in differ-

ent granularity levels. It could define the packet forwarding

in individual packet level; or, it could define the flow-level

forwarding actions. The controllers must be able to manage

different granularity levels in order to accurately adjust the flow

table status (such as adding or deleting the forwarding rules).

C. Highly Flexible Language Abstractions

The SDN programming language should be able to adapt

to frequent flow rules changes. It should also be suitable

to policy changes due to network topology change, regular

SDN maintenance, emergent failures, etc. An SDN programmer

would like to use a good language to perform policy changes

atomically to each switch. However, atomic change is difficult

to implement since it needs the disruption of the entire network

during policy change [29]. The future SDN language should

at least achieve two levels of abstractions if the atomic level

cannot be achieved.

1) In packet level, the language should be able to specify

the policy changes for all packets that meet similar at-

tributes. It needs to make sure that all packets belonging

to the same context are delivered with the same structural

invariants such as loop-freedom.

2) In flow-level, the language should allow the definitions of

flow-oriented rules/policies, such as queuing models, de-

livery order, load balancing, etc. The compliers and run-

time system should be able to respond to the aggregated

flow-level rule changes.

Another language abstraction trend is to support modular

programming, that is, it should allow the handling of isolation

issues between multiple programs that control different portions

of the traffic. Each piece of program has different tasks, some

target host monitoring, some for failure recovery, some for vir-

tualization, and so on. How do we make all pieces of program

interface to each other in a transparent way? This needs a high

level of abstraction for SDN programming.

D. Low-Cost Fine-Granularity QoS Implementation

As we know, QoS strategies include class-based differen-

tiated service (DS) and fine-grained integrated service (IS).

SDN/OpenFlow could define packet-level or flow-level pri-

orities and performance metric. Therefore, it can be used to

support IS. Although some IS-oriented OpenFlow QoS models

are defined [96], [97], not many practical implementations are

conducted. The main challenges include.

1) The integration of multimedia coding with OpenFlow

QoS management: There are many video encoding stan-

dards. Especially some standards such as H.264+/SVC

can support priority-based coding, that is, different video

data layers could be assigned different priorities, and

the enhancement layer has the most important video

data. OpenFlow could support such video streaming by

Fig. 24. Load Balancing: Integrate server balancer selection with path
selection [96].

controlling different flows in different policies. However,

the detailed flow rules need to be integrated with different

video encoding standards, which needs further research;

2) Load balancing: Content Distribution Networks (CDNs)

need load balancing capability in order to distribute the

heavy workload across the network elements. While most

of conventional load balancing strategies for multimedia

streaming (live or on-demand) over CDNs rely on server-

based load balancing, OpenFlow allows the load balanc-

ing actions in each possible flow path (Fig. 24). The future

research needs to define the detailed procedure in Open-

Flow controller in order to achieve such an integrated

server balancer selection and path selection.

3) Use Cross-layer design style to optimize QoS: Many QoS

optimization schemes are based on cross-layer designs

[126]–[128]. However, OpenFlow removes the bound-

aries of traditional Internet, and uses open, programmable

model. Then the issue is: how do we implement cross-

layer design style in OpenFlow in order to share all

available network parameters in different places for QoS

optimization?

E. Resilient Security in SDN

SDN/OpenFlow uses network virtualization technology to

simplify the resource management of the large network. It

enables the definition of virtual slices/slivers for different phys-

ical utilities (such as hard disk, memory, etc.). A slice could

include several slivers. Each slice/sliver pair could be assigned

a unique ID. Due to resource limitations, some malicious

OpenFlow terminals may use attacks to try to overuse the

resource slice/slivers. Therefore, we need to create a scale

security scheme that can overcome the resource access attacks

in slice/sliver establishment.

Some SDN security challenges include: (1) Scalability is-

sues: If many slivers are needed in a slice, it has high overhead

to generate/distribute different session keys for different slivers.

(2) Sliver deactivation: When a sliver deactivates a sliver, we

need to make sure none of the stored data can be decoded

independently by that user (this is called forward secrecy).

Here, we suggest a possible security solution based on

ID-based cryptography [130]. While conventional public key

schemes use random string to generate public key, ID-based

HU et al.: SURVEY ON SDN AND OPENFLOW: FROM CONCEPT TO IMPLEMENTATION 2203

crypto generates public keys from user IDs. Thus, it makes

key management in SDN much easier since we do not

need to distribute public keys to SDN users. Moreover, the

encryption/decryption can be done offline (thus a key genera-

tion center is not needed). To implement the above ID-based

security, some issues need to be addressed such as mutual

authentication between experimenters and slices, key escrow

issue, etc.

F. Robust Wireless Integration

Although OpenFlow has been well developed in wired, local

network, there are very few studies on its performance in

wireless networks. All the existing wireless network OpenFlow

designs [19], [35], [111]–[114] have not overcome the follow-

ing two challenging issues.

1) Integrated Management of Channel Access and Data For-

warding: Many wireless networks support multi-channel com-

munications among routers and clients, especially in cognitive

radios. Therefore, each wireless node needs to detect available

channels, and select the high-quality ones. Moreover, the nodes

can change physical characteristics for optimal link radio com-

munications. Thus in a wireless networks the OpenFlow data

panel must perform efficient channel sensing/access. However,

the existing OpenFlow standards only define data forwarding

functions in the hardware. We will need to significantly improve

the existing OpenFlow model (including its control/data panels’

task division, FlowVisor control, network visualization, etc.) by

designing a brand-new flow-table management scheme. Such

a scheme may use reinforcement learning to simultaneously

manage two flow tables one for real-time data forwarding and

another for multi-channel sensing/selection.

2) Conflict-Free Scheduling of Control Traffic and Data

Traffic: Unlike wired OpenFlow model that can use cables

to easily achieve control/data packet communications among

nodes, wireless network uses unreliable wireless links for both

control panel communications and data panel packet forward-

ing. The control panel demands a high-quality channel for loss-

free delivery, while the data panel should use other available

channels for routing. Therefore, a carefully designed chan-

nel allocation and packet scheduling scheme is required for

conflict-free control/data traffic delivery in routers and nodes.

X. CONCLUSION

In this paper, we have comprehensively surveyed the design

issues for SDN/OpenFlow. Especially we have covered all

important issues in concrete network implementation including

language abstraction, controller design, virtualization scheme,

QoS support, security issues, and wireless/optical network

integration.

Below we briefly summarize some important aspects for

highlight: SDNs have many applications including developing

new protocols prior to implementing them in real networks,

increasing connectivity in rural environments, making both

cloud based and regular data centers better, and supporting

mobile device offloading. As the Internet continues to grow

and becomes available to increasing more people, networks will

need to be able to adapt to ever changing circumstances. SDNs

allow the data and control planes to be separated, and hence to

be easier for improvements.

Network virtualization based on OpenFlow is a successful

implementation of Software Defined Networking, and its de-

velopment offers users a great deal of convenient services. We

have reviewed different virtualization architectures that focus

on the improvement of the network flexibility, isolation and

management. It can be seen that embedding additional module

or abstraction layer on the top of OpenFlow or FlowVisor

provides solutions to these challenges. Utilizing the database

can also help to simplify the creation of the abstraction layer.

QoS is an import issue in many applications especially in

streaming media, VoIP, Videoconferencing, and so on. Many

experiments have been conducted to make OpenFlow support

QoS control. However, these designs are still under testing

phase, and need to be further examined. Many designs are

related to optimization problems, such as dynamic rerouting

for SVC, dynamic QoS re-negotiation for multimedia flows,

etc. And the solution needs heavy calculations in reality as the

dimension increases. It also needs a comprehensive test before

being applied to real world applications. Many experiments are

actually under a small scale of tests to verify the proposed de-

sign, and no large-scale experiments have been performed yet.

Security and privacy are always important in any network.

OpenFlow brings many new security challenges due to the

virtual network management. It is important to design new

low-overhead security/privacy schemes to protect the virtual-

to-physical mapping protocols in SDN/OpenFlow.

We have also pointed out some important unsolved research

issues in this exciting field. Those issues may serve as the

thesis/dissertation topics for graduate students. SDN/OpenFlow

is a relatively new field, and many practical design issues

are waiting for in-depth investigations. We believe that this

comprehensive survey could help R&D people to understand

the state-of-the-art in SDN/OpenFlow.

ACKNOWLEDGMENT

We sincerely thank the following people for their help

with this survey: A. Gerrity, M. Farooq, T. Zhang, R. Ma,

C. Dickerson, X. Fu, N. Hegde, (they are all with ECE de-

partment at the University of Alabama), and A. V. Vasilakos

(University of Western Macedonia in Greece). They have pro-

vided valuable comments and inputs on some of the above

discussed topics. We also appreciate the editor and reviewers’

time and effort for reviewing this paper.

REFERENCES

[1] S. Ortiz, “Software-defined networking: On the verge of a break-
through?” Computer, vol. 46, no. 7, pp. 10–12, Jul. 2013.

[2] H. Kim and N. Feamster, “Improving network management with
software defined networking,” IEEE Commun. Mag., vol. 51, no. 2,
pp. 114–119, Feb. 2013.

[3] K. Bakshi, “Considerations for software defined networking (SDN):
Approaches and use cases,” in Proc. IEEE Aerosp. Conf., Mar. 2013,
pp. 1–9.

[4] S. Agarwal, M. Kodialam, and T. V. Lakshman, “Traffic engineering
in software defined networks,” in Proc. IEEE INFOCOM, Apr. 2013,
pp. 2211–2219.

2204 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 16, NO. 4, FOURTH QUARTER 2014

[5] S. Fang, Y. Yu, C. H. Foh, and K. M. M. Aung, “A loss-free multipathing
solution for data center network using software-defined networking ap-
proach,” IEEE Trans. Magn., vol. 49, no. 6, pp. 2723–2730, Jun. 2013.

[6] S. H. Yeganeh, A. Tootoonchian, and Y. Ganjali, “On scalability of
software-defined networking,” IEEE Commun. Mag., vol. 51, no. 2,
pp. 136–141, Feb. 2013.

[7] S. Das et al., “Packet and circuit network convergence with OpenFlow,”
in Proc. Opt. Fiber Commun. Conf. Expo., Mar. 2010, pp. 1–3.

[8] R. Sherwood, M. Chan, and A. Covington, “Carving research slices
out of your production networks with OpenFlow,” ACM SIGCOMM

Comput. Commun. Rev., vol. 40, no. 1, pp. 129–130, Jan. 2010.
[9] OpenFlow. [Online]. Available: http://www.openflow.org/

[10] Open Networking Foundation. [Online]. Available: https://www.
opennetworking.org/

[11] C. S. Li and W. Liao, “Software defined networks,” IEEE Comm. Mag.,
vol. 51, no. 2, p. 113, Feb. 2013.

[12] M. Casado, T. Koponen, S. Shenker, and A. Tootoonchian, “Fabric: A
retrospective on evolving SDN,” in Proc. Workshop Hot Topics Softw.

Defined Netw., Aug. 2012, pp. 85–90.
[13] Y. Kanaumi, S. Saito, and E. Kawai, “Toward large-scale programmable

networks: Lessons learned through the operation and management of
a wide-area OpenFlow-based network,” in Proc. Int. Conf. Netw. Serv.

Manage., Oct. 2010, pp. 330–333.
[14] H. Fei, Network Innovation Through OpenFlow and SDN: Principles

and Design. New York, NY, USA: Taylor & Francis, 2014.
[15] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: Rapid

prototyping for software-defined networks,” in Proc. ACM SIGCOMM

Workshop Hot Topics Netw., New York, NY, USA, 2010, pp. 19:1–19:6.
[16] N. McKeown et al., “OpenFlow: Enabling innovation in campus net-

works,” ACM SIGCOMM Comput. Commun. Review, vol. 38, no. 2,
pp. 69–74, Apr. 2008.

[17] T. D. Nadeau and P. Pan, “Software driven networks problem statement,”
IETF Internet-Draft (Work-in-Progress), Oct. 2011, draft-nadeau-sdn-
problem-statement-01.

[18] M. Yu, J. Rexford, M. Freedman, and J. Wang, “Scalable flow-based
networking with DIFANE,” Proc. ACM SIGCOMM Comput. Commun.

Review, vol. 40, no. 4, pp. 351–362, Oct. 2010.
[19] K. Yap et al., “OpenRoads: Empowering research in mobile networks,”

ACM SIGCOMM Comput. Commun. Review, vol. 40, no. 1, pp. 125–126,
Jan. 2010.

[20] P. Dely, A. Kassler, and N. Bayer, “OpenFlow for wireless mesh net-
works,” in Proc. Int. Conf. Comput. Commun. Netw., Jul./Aug. 2011,
pp. 1–6.

[21] Y. Hu, W. Wang, X. Gong, X. Que, and S. Cheng, “Reliability-aware
controller placement for software-defined networks,” in Proc. IFIP/IEEE

Int. Symp. Integr. Netw. Manage., May 2013, pp. 672–675.
[22] P. T. Congdon, P. Mohapatra, M. Farrens, and V. Akella, “Simultane-

ously reducing latency and power consumption in OpenFlow switches,”
IEEE/ACM Trans. Netw., vol. 22, no. 3, pp. 1007–1020, Jun. 2014.

[23] A. Khan and N. Dave, “Enabling hardware exploration in software-
defined networking: A flexible, portable OpenFlow switch,” in Proc.

Annu. Int. Symp. Field-Programmable Custom Comput. Machines,
Apr. 2013, pp. 145–148.

[24] The OpenFlow Switch Consortium. [Online]. Available: http://www.
openflow.org/

[25] Y. Kanaumi et al., “Deployment and operation of wide-area hy-
brid OpenFlow networks,” in Proc. IEEE NOMS, Apr. 16–20, 2012,
pp. 1135–1142.

[26] OpenFlow Switch Specification, Version 1.0.0. [Online]. Available:
http://www.openflow.org/documents/openflow-spec-v1.0.0.pdf

[27] OpenFlow in Europe—Linking Infrastructure and Applications. [On-
line]. Available: http://www.fp7-ofelia.eu/

[28] Y. Kanaumi, “Large-scale OpenFlow testbed in Japan,” in The 31st

APAN Meet., Feb. 2011, pp. 1–22.
[29] N. Foster, M. J. Freedman, A. Guha, and R. Horrison, “Languages for

software-defined networks,” IEEE Commun. Mag. Feature Topic Softw.

Defined Netw., vol. 51, no. 2, pp. 128–134, Feb. 2013.
[30] F. de O. Silva, J. H. de S. Pereira, P. F. Rosa, and S. T. Kofuji, “Enabling

future Internet architecture research and experimentation by using soft-
ware defined networking,” in Proc. Eur. Workshop Softw. Defined Netw.,
Oct. 2012, pp. 73–78.

[31] S. Hasan, Y. Ben-David, C. Scott, E. Brewer, and S. Shenker, “Enhancing
rural connectivity with software defined networks,” in Proc. ACM Symp.

Comp. Develop., 2013, no. 49, pp. 1–2.
[32] R. Narayanan et al., “Macroflows and microflows: Enabling rapid net-

work innovation through a split SDN data plane,” in Proc. Eur. Workshop

Softw. Defined Netw., Oct. 2012, pp. 79–84.

[33] B. Boughzala, R. Ben Ali, M. Lemay, Y. Lemieux, and O. Cherkaoui,
“OpenFlow supporting inter-domain virtual machine migration,” in
Proc. Int. Conf. Wireless Opt. Commun. Netw. (WOCN), May 2011,
pp. 1–7.

[34] C. Baker, A. Anjum, R. Hill, N. Bessis, and S. L. Kiani, “Improving
cloud datacenter scalability, agility and performance using OpenFlow,”
in Proc. Int. Conf. Int. Netw. Collaborative Syst., Sep. 2012, pp. 20–27.

[35] A. Gember, C. Dragga, and A. Akella, “ECOS: Leveraging software-
defined networks to support mobile application offloading,” in Proc.

Eighth ACM/IEEE Symp. Architectures Netw. Commun. Syst., 2012,
pp. 199–210.

[36] V. Mann, A. Vishnoi, K. Kannan, and S. Kalyanaraman, “CrossRoads:
Seamless VM mobility across data centers through software defined
networking,” in Proc. IEEE Netw. Operations Manage. Symp., 2012,
pp. 88–96.

[37] P. A. A. Gutiérrez and D. R. Lopez, “An OpenFlow network design
cycle,” in Netw. Innovation through OpenFlow SDN: Principles Design.
New York, NY, USA: Taylor & Francis LLC, CRC Press, 2014.

[38] R. Stallman, R. Pesch, and S. Shebs, Debugging With GDB: The Source

Level Debugger. Boston, USA: GNU Press, 2002.
[39] The Eclipse Foundation. [Online]. Available: http://www.eclipse.org
[40] G. T. Heineman and W. T. Councill, Eds., Component-Based Soft-

ware Engineering: Putting the Pieces Together. Reading, MA, USA:
Addison-Wesley, 2001.

[41] L. M. Correia, Ed., Architecture and Design for the Future Internet.
New York, NY, USA: Springer-Verlag, 2011.

[42] A. de C. Alves, OSGi Application Frameworks. Shelter Island, NY,
USA: Manning Publications, 2009.

[43] J. Highsmith and A. Cockburn, “Agile software development: The Busi-
ness of Innovation,” Computer, vol. 34, no. 9, pp. 120–122, Sep. 2001.

[44] K. Petersen, C. Wohlin, and D. Baca, “The waterfall model in large-
scale development,” in Proc. Int. Conf. Prod.-Focused Softw. Process

Improvement, 2009, pp. 386–400.
[45] OpenVSwitch. [Online]. Available: http://openvswitch.org/

development/openflow-1-x-plan
[46] Pica8 Open Network Fabric. [Online]. Available: http://www.pica8.org/

solutions/openflow.php
[47] Indigo—Open Source OpenFlow Switches. [Online]. Available: http://

www.openflowhub.org/display/Indigo/
[48] NOX. [Online]. Available: http://www.noxrepo.org/nox/about-nox/
[49] POX. [Online]. Available: http://www.noxrepo.org/pox/about-pox/
[50] Trema: Full-Stack OpenFlow Framework in Ruby and C. [Online].

Available: https://github.com/trema/
[51] Floodlight: A Java-Based OpenFlow Controller. [Online]. Available:

http://floodlight.openflowhub.org/
[52] D. Erickson. [Online]. Available: https://openflow.stanford.edu/display/

Beacon/Home
[53] Floodlight is an Open SDN Controller. [Online]. Available: http://

floodlight.openflowhub.org/
[54] OpenStack: Open Source Software for Building Private and Public

Clouds, 2012. [Online]. Available: http://www.openstack.org/
[55] A. Orebaugh, G. Ramirez, J. Burke, and L. Pesce, Wireshark & Ethereal

Network Protocol Analyzer Toolkit (Jay Beale’s Open Source Security).
Sebastopol, CA, USA: Syngress Publishing, 2006.

[56] ns3. [Online]. Available: http://www.nsnam.org
[57] J. Pelkey, OpenFlow Software Implementation Distribution. [Online].

Available: http://code.nsnam.org/jpelkey3/openflow
[58] T. L. Hinrichs, N. S. Gude, M. Casado, J. C. Mitchell, and S. Shenker,

“Practical declarative network management,” in Proc. ACM Workshop

Res. Enterprise Netw., 2009, pp. 1–10.
[59] N. Foster et al., “Frenetic: A network programming language,” in Proc.

ACM SIGPLAN Int. Conf. Functional Program., 2011, pp. 279–291.
[60] N. Handigol, B. Heller, V. Jeyakumar, D. Maziéres, and N. McKeown,

“Where is the debugger for my software-defined network?” in Proc.

Workshop Hot Topics Softw. Defined Netw., 2012, pp. 55–60.
[61] Y. Chiba and Y. Nakazawa, Tremashark: A Bridge for Printing Vari-

ous Events on Wireshark. [Online]. Available: http://github.com/trema/
trema.gitmaster/tremashark

[62] A. Wundsam, D. Levin, S. Seetharaman, and A. Feldmann, “OFRewind:
Enabling record and replay troubleshooting for networks,” in Proc.

USENIX Conf. USENIX Annu. Tech. Conf., 2011, p. 29.
[63] E. Al-Shaer and S. Al-Haj, “FlowChecker: Configuration analysis and

verification of federated OpenFlow infrastructures,” in Proc. ACM Work-

shop Assurable Usable Security Configuration, 2010, pp. 37–44.
[64] M. Canini, D. Venzano, P. Pereni, D. Kostic, and J. Rexford, “A NICE

way to test OpenFlow applications,” in Proc. USENIX Conf. Netw. Syst.

Design Implementation, 2012, pp. 10–10.

http://www.openflow.org/
https://www.opennetworking.org/
https://www.opennetworking.org/
http://www.openflow.org/
http://www.openflow.org/
http://www.openflow.org/documents/openflow-spec-v1.0.0.pdf
http://www.fp7-ofelia.eu/
http://www.eclipse.org
http://openvswitch.org/development/openflow-1-x-plan
http://openvswitch.org/development/openflow-1-x-plan
http://www.pica8.org/solutions/openflow.php
http://www.pica8.org/solutions/openflow.php
http://www.openflowhub.org/display/Indigo/
http://www.openflowhub.org/display/Indigo/
http://www.noxrepo.org/nox/about-nox/
http://www.noxrepo.org/pox/about-pox/
https://github.com/trema/
http://floodlight.openflowhub.org/
https://openflow.stanford.edu/display/Beacon/Home
https://openflow.stanford.edu/display/Beacon/Home
http://floodlight.openflowhub.org/
http://floodlight.openflowhub.org/
http://www.openstack.org/
http://www.nsnam.org
http://code.nsnam.org/jpelkey3/openflow
http://github.com/trema/trema.gitmaster/tremashark
http://github.com/trema/trema.gitmaster/tremashark

HU et al.: SURVEY ON SDN AND OPENFLOW: FROM CONCEPT TO IMPLEMENTATION 2205

[65] M. Canini, D. Venzano, P. Pereni, D. Kostic, and J. Rexford, A NICE
Way to Test OpenFlow Controller Applications. [Online]. Available:
http://code.google.com/p/nice-of/

[66] GENI: Exploring Networks of the Future. [Online]. Available: http://
www.geni.net

[67] Ofelia: OpenFlow Test Facility in Europe. [Online]. Available: http://
www.fp7-ofelia.eu

[68] JGN-x Utilization Procedure. [Online]. Available: http://www.jgn.nict.
go.jp/english/info/technologies/openflow.html

[69] M. Christopher and A. Story, “Language abstractions for software-
defined networks,” IEEE Comm. Mag., vol. 51, no. 2, pp. 128–134,
Feb. 2013.

[70] K. Daisuke, K. Suzuki, and H. Shimonishi, “A design and imple-
mentation of OpenFlow controller handling IP multicast with fast tree
switching,” in Proc. IEEE/IPSJ Int. Symp. Appl. Internet, Jul. 2012,
pp. 60–67.

[71] N. Foster et al., “Languages for software-defined networks,” IEEE Com-

munications Mag., vol. 51, no. 2, pp. 128–134, Feb. 2013.
[72] H. Kudou, M. Shimamura, T. Ikenaga, and M. Tsuru, “Effects of routing

granularity on communication performance in OpenFlow networks,”
in Proc. IEEE Pacific Rim Conf. Commun., Comput. Signal Process.

(PacRim), Aug. 2011, pp. 590–595.
[73] Z. Bozakov and P. Papadimitriou, “AutoSlice: Automated and scalable

slicing for software-defined networks,” in Proc. ACM CoNEXT Student

Proc., 2012, pp. 3–4.
[74] G. Schaffrath et al., “Network virtualization architecture: Proposal and

initial prototype,” in Proc. ACM SIGCOMM VISA, 2009, pp. 63–72.
[75] N. Sarrar et al., “Leveraging Zipf’s law for traffic offloading,” in Proc.

ACM SIGCOMM Comput. Commun. Review, 2012, pp. 16–22.
[76] Y. Yiakoumis, K.-K. Yap, S. Katti, G. Parulkar, and N. Mckeown,

“Slicing home networks,” in Proc. ACM SIGCOMM Workshop Home

Netw., 2011, pp. 1–6.
[77] S. Sundaresan et al., “Broadband Internet performance: A view from the

gateway,” in Proc. ACM SIGCOMM, Aug. 2011, pp. 134–145.
[78] M. Al-fares, A. Loukissas, and A. Vahdat, “A scalable, commodity

data center network architecture,” in Proc. ACM SIGCOMM Conf. Data

Commun., 2008, pp. 63–74.
[79] M. Casdo et al., “Ethane: Taking control of the enterprise,” in Proc. ACM

SIGCOMM Comput. Commun. Review, 2007, pp. 1–12.
[80] Z. Cai, A. L. Cox, and T. S. E. NG, “Maestro: A System for Scalable

OpenFlow Control,” Rice University-Department of Computer Science,
Houston, TX, USA, Tech. Rep. TR10-11, Dec. 2010.

[81] A. R. Curtis et al., “DevoFlow: Scaling flow management for
high-performance networks,” in Proc. ACM SIGCOMM Conf., 2011,
pp. 254–265.

[82] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken, “The
nature of data center traffic: Measurements and analysis,” in Proc. ACM

Internet Meas. Conf., 2009, pp. 202–208.
[83] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics

of data centers in the wild,” in Proc. ACM Int. Meas. Conf., 2010,
pp. 267–280.

[84] A. Tootoonchian, S. Gorbunov, Y. Ganjali, and M. Casado, “On con-
troller performance in software-defined networks,” in Proc. USENIX

Workshop Hot Topics Manag. Internet, Cloud, Enterprise Netw. Serv.,
2012, p. 10.

[85] D. Drutskoy, “Software-Defined Network Virtualization,” M.S. thesis,
Princeton University, Princeton, NJ, USA, 2012.

[86] J. Matias, B. Tornero, A. Mendiola, E. Jacob, and N. Toledo, “Imple-
menting layer 2 network virtualization using OpenFlow: Challenges and
solutions,” in Proc. Eur. Workshop Softw. Defined Netw., Oct. 2012,
pp. 30–35.

[87] P. Skoldstrom and K. Yedavalli, “Network virtualization and resource
allocation in OpenFlow-based wide area networks,” in Proc. IEEE Int.

Conf. Commun., Jun. 2012, pp. 6622–6626.
[88] B. Sonkoly et al., “OpenFlow virtualization framework with advanced

capabilities,” in Proc. Eur. Workshop Softw. Defined Netw., Oct. 2012,
pp. 18–23.

[89] J. Matias, E. Jacob, D. Sanchez, and Y. Demchenko, “An Open-
Flow based network virtualization framework for the cloud,” in Proc.

IEEE 3rd Int. Conf. Cloud Comput. Technol. Sci., Nov./Dec. 2011,
pp. 672–678.

[90] M. El-azzab, I. L. Bedhiaf, Y. Lemieux, and O. Cherkaoui, “Slices iso-
lator for a virtualized OpenFlow node,” in Proc. Int. Symp. Netw. Cloud

Comput. Appl., Nov. 21–23, 2011, pp. 121–126.
[91] D. Turull, M. Hidell, and P. Sjodin, “libNetVirt: The network

virtualization library,” in Proc. IEEE Int. Conf. Commun., Jun. 2012,
pp. 5543–5547.

[92] R. Nejbati, S. Azodolmolky, and D. Simeonidou, “Role of network
virtualization in future Internet innovation,” in Proc. Eur. Conf. Netw.

Opt. Commun., Jun. 2012, pp. 1–4.
[93] B. Naudts et al., “Techno-economic analysis of software defined net-

working as architecture for the virtualization of a mobile network,” in
Proc. Eur. Workshop Softw. Defined Netw., Oct. 2012, pp. 67–72.

[94] A. Mahmud, R. Rahmani, and T. Kanter, “Deployment of flow-sensors
in Internet of things’ virtualization via OpenFlow,” in Proc. FTRA Int.

Conf. Mobile, Ubiquitous, Intell. Comput., Jun. 2012, pp. 195–200.
[95] H. E. Egilmez, B. Gorkemli, A. M. Tekalp, and S. Civanlar, “Scalable

video streaming over OpenFlow networks: An optimization framework
for QoS routing,” in Proc. IEEE Int. Conf. Image Process., Sep. 2011,
pp. 2241–2244.

[96] H. E. Egilmez, S. T. Dane, K. T. Bagci, and A. M. Tekalp, “OpenQoS:
An OpenFlow controller design for multimedia delivery with end-to-end
quality of service over software-defined networks,” in Proc. Asia-Pac.

Signal & Inf. Process. Assoc. Annu. Summit Conf., Dec. 2012, pp. 1–8.
[97] H. E. Egilmez, S. Civanlar, and A. M. Tekalp, “An optimization

framework for QoS-enabled adaptive video streaming over OpenFlow
networks,” IEEE Trans. Multimedia, vol. 15, no. 3, pp. 710–715,
Apr. 2013.

[98] K. Jeong, J. Kim, and Y.-T. Kim, “QoS-aware network operating
system for software defined networking with generalized Open-
Flows,” in IEEE/IFIP Workshop Manag. Future Internet, Apr. 2012,
pp. 1167–1174.

[99] A. Kassler, L. Skorin-Kapov, O. Dobrijevic, M. Matijasevic, and
P. Dely, “Towards QoE-driven multimedia service negotiation and path
optimization with software defined networking,” in Proc. Int. Conf.

Softw., Telecommun. Comput. Netw., Sep. 2012, pp. 1–5.
[100] H. Sun, A. Vetro, and J. Xin, “An overview of scalable video stream-

ing,” Wireless Commun. Mobile Comput., vol. 7, no. 2, pp. 159–172,
Feb. 2007.

[101] S. Jivorasetkul and M. Shimamura, “End-to-end header compres-
sion over software-defined networks: A low latency network architec-
ture,” in Proc. Int. Conf. Intell. Netw. Collaborative Syst., Sep. 2012,
pp. 493–494.

[102] E.-S. M. El-Alfy, “A review of network security,” IEEE Distrib. Syst.

Online, vol. 8, no. 7, Jul. 2007.
[103] ACM SIGCOMM Workshop on Hot Topics in Software Defined Net-

working, Aug. 2013.
[104] S. Sharma, D. Staessens, D. Colle, M. Pickavet, and P. Demeester,

“Enabling fast failure recovery in OpenFlow networks,” in Proc. Int.

Workshop Des. Reliable Commun. Netw., Oct. 2011, pp. 164–171.
[105] J. Kempf, E. Bellagamba, A. Kern, and D. Jocha, “Scalable fault man-

agement for OpenFlow,” in Proc. IEEE Int. Conf. Commun., Jun. 2012,
pp. 6606–6610.

[106] C.-J. Chung, P. Khatkar, T. Xing, J. Lee, and D. Huang, “NICE: Net-
work intrusion detection and countermeasure selection in virtual network
systems,” IEEE Trans. Dependable Secure Comput., vol. 10, no. 4,
Jun. 2013.

[107] S. Shin, P. Porras, V. Yegneswaran, M. Fong, G. Gu, and M. Tyson,
“FRESCO: Modular composable security services for software-defined
networks,” in Proc. Netw. Distrib. Syst. Security Symp., Apr. 2013.

[108] S. A. Mehdi, J. Khalid, and S. A. Khayam, “Revisiting traffic anomaly
detection using software defined networking,” in Proc. Int. Conf. Recent

Advances Intrusion Detection, 2011, pp. 161–180.
[109] C. Schlesinger, Language-Based Security for Software-Defined

Networks. [Online]. Available: http://www.cs.princeton.edu/cschlesi/
isolation.pdf

[110] D. Kordalewski and R. Robere, A Dynamic Algorithm for Loop De-
tection in Software Defined Networks 2012. [Online]. Available: http://
www.cs.toronto.edu/robere/paper/networkgraph-1214.pdf

[111] S. Costanzo, L. Galluccio, G. Morabito, and S. Palazzo, “Software
defined wireless networks: Unbridling SDNs,” in Proc. Eur. Workshop

Softw. Defined Netw., Oct. 2012, pp. 1–6.
[112] M. Mendonca, K. Obraczka, and T. Turletti, “The case for software-

defined networking in heterogeneous networked environments,” in Proc.

ACM Conf. CoNEXT Student Workshop, 2012, pp. 59–60.
[113] K. Yap et al., “Blueprint for introducing innovation into wireless mobile

networks,” in Proc. ACM SIGCOMM workshop Virtualized Infrastruc-

ture Syst. Architectures, 2010, pp. 25–32.
[114] L. E. Li, Z. M. Mao, and J. Rexford, “Toward software-defined cellular

networks,” in Proc. Eur. Workshop Softw. Defined Netw., Oct. 2012,
pp. 7–12.

[115] A. Mahmud and R. Rahmani, “Exploitation of OpenFlow in wireless
sensor networks,” in Proc. Int. Conf. Comput. Sci. Netw. Technol.,
Dec. 2011, pp. 594–600.

http://code.google.com/p/nice-of/
http://www.geni.net
http://www.geni.net
http://www.fp7-ofelia.eu
http://www.fp7-ofelia.eu
http://www.jgn.nict.go.jp/english/info/technologies/openflow.html
http://www.jgn.nict.go.jp/english/info/technologies/openflow.html
http://www.cs.princeton.edu/cschlesi/isolation.pdf
http://www.cs.princeton.edu/cschlesi/isolation.pdf
http://www.cs.toronto.edu/robere/paper/networkgraph-1214.pdf
http://www.cs.toronto.edu/robere/paper/networkgraph-1214.pdf

2206 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 16, NO. 4, FOURTH QUARTER 2014

[116] T. Luo, H.-P. Tan, and T. Q. S. Quek, “Sensor OpenFlow: En-
abling software-defined wireless sensor networks,” IEEE Commun. Lett.,
vol. 16, no. 11, pp. 1896–1899, Nov. 2012.

[117] J. Chung et al., “Experiences and challenges in deploying OpenFlow
over real wireless mesh networks,” IEEE Latin Am. Trans. (Revista IEEE

Am. Latina), vol. 11, no. 3, pp. 955–961, May 2013.
[118] L. Y. Ong, “OpenFlow/SDN and optical networks,” in Network Innova-

tion Through OpenFlow and SDN: Principles and Design. New York,
NY, USA: Taylor & Francis, 2014.

[119] L. Liu, H. Guo, and T. Tsuritani, “OpenFlow/SDN for metro/backbone
optical networks,” in Network Innovation Through OpenFlow SDN:

Principles Design. New York, NY, USA: Taylor & Francis, 2014.
[120] E. Mannie, “Generalized multi-protocol label switching (GMPLS) archi-

tecture,” IETF RFC, 2004.
[121] S. Das, G. Parulka, and N. Mckeown, “Why OpenFlow/SDN can succeed

where GMPLS failed,” presented at the Eur. Conf. Exhib. Opt. Com-
mun., Sep., 2012, Tu.1.D.1.

[122] L. Liu, T. Tsuritani, I. Morita, H. Guo, and J. Wu, “Experimental vali-
dation and performance evaluation of OpenFlow-based wavelength path
control in transparent optical networks,” Opt. Express, vol. 19, no. 27,
pp. 26578–26593, Dec. 2011.

[123] L. Liu et al., “Field trial of an OpenFlow-based unified control plane for
multi-layer multi-granularity optical switching networks,” IEEE/OSA J.

Lightw. Technol., vol. 31, no. 4, pp. 506–514, Feb. 2013.
[124] S. Azodolmolky et al., “Integrated OpenFlow-GMPLS control plane: An

overlay model for software defined packet over optical networks,” Opt.

Express, vol. 19, no. 26, pp. B421–B428, Dec. 2011.
[125] M. Channegowda et al., “Experimental demonstration of an OpenFlow

based software-defined optical network employing packet, fixed and
flexible DWDM grid technologies on an international multi-domain
testbed,” Opt. Express, vol. 21, no. 5, pp. 5487–5498, Mar. 2013.

[126] C. H. Liu, A. Gkelias, Y. Hou, and K. K. Leung, “Cross-layer design for
QoS in wireless mesh networks,” Wireless Pers. Commun., vol. 51, no. 3,
pp. 593–613, Nov. 2009.

[127] L. Qiu and M. Song, “QoS oriented cross-layer design for supporting
multimedia services in cooperative networks,” in Proc. Int. Conf. Service

Sci., May 2010, pp. 314–318.
[128] J. Chen, T. Lv, and H. Zheng, “Cross-layer design for QoS wireless

communications,” in Proc. Int. Symp. Circuits Syst., May 2004, vol. 2,
pp. 217–220.

[129] D. Li, X. Hong, and D. Witt, “ProtoGENI, a prototype GENI under
security vulnerabilities: An experiment-based security study,” IEEE Syst.

J., vol. 7, no. 3, pp. 478–488, Sep. 2013.
[130] M. Smith, C. Schridde, B. Agel, and B. Freisleben, “Identity-based

cryptography for securing mobile phone calls,” in Proc. Int. Conf. Adv.

Inf. Netw. Appl. Workshops, 2009, pp. 365–370.
[131] L. Sarakis, T. Zahariadis, H.-C. Leligou, and M. Dohler, “A framework

for service provisioning in virtual sensor networks,” in EURASIP J.

Wireless Commun. Netw., Special Issue Recent Advances Mobile Lightw.

Wireless Syst., Apr. 2012, 135.
[132] A. Tootoonchian and Y. Ganjali, “HyperFlow: A distributed control

plane for OpenFlow,” in Proc. 2010 Internet Netw. Manage. Conf. Res.

Enterprise Netw. (INM/WREN’10) USENIX Assoc., Berkeley, CA, USA,
2010, pp. 3–3.

[133] Z. Liu, Y. Li, L. Su, D. Jin, and L. Zeng, “M2cloud: Software de-
fined multi-site data center network control framework for multi-tenant,”
SIGCOMM Comput. Commun. Rev., vol. 43, no. 4, pp. 517–518,
Oct. 2013.

[134] A. Ishimori, F. Farias, I. Furtado, E. Cerqueira, and A. Abelém,
Automatic QoS Management on OpenFlow Software-Defined Net-
works, 2012. [Online]. Available: http://siti.ulusofona.pt/aigaion/index.
php/attachments/single/362

[135] M. F. Bari, S. R. Chowdhury, R. Ahmed, and R. Boutaba, “Policy-
Cop: An autonomic QoS policy enforcement framework for software
defined networks,” in Proc. IEEE SDN Future Netw. Serv. (SDN4FNS),
Nov. 2013, pp. 1–7.

[136] B. Sonkoly et al., “On QoS support to Ofelia and OpenFlow,” in
2012 Eur. Workshop Softw. Defined Netw. (EWSDN), Publ., 2012,
pp. 109–133.

[137] B.-Y. Ke, P.-L. Tien, and Y.-L. Hsiao, “Identity-based cryptography for
securing mobile phone calls,” in Proc. Int. Conf. Adv. Inf. Netw. Appl.

Workshops, 2013, pp. 217–218.
[138] S. Gutz, A. Story, C. Schlesinger, and N. Foster, “Splendid isolation: A

slice abstraction for software-defined networks,” in Proc. 1st Workshop

Hot Topics Softw. Defined Netw. (HotSDN’12). ACM, New York, NY,
USA, 2012, pp. 79–84.

[139] K. Pentikousis, Y. Wang, and W. Hu, “MobileFlow: Toward software-
defined mobile networks,” Commun. Mag., IEEE, vol. 51, no. 7, pp. 44–
53, Jul. 2013.

[140] T. Luo, H.-P. Tan, P. C. Quan, Y. W. Law, and J. Jin, “Enhancing respon-
siveness and scalability for OpenFlow networks via control-message
quenching,” in Proc. Int. Conf. CT Convergence (ICTC), Oct. 15–17,
2012, pp. 348–353.

[141] Y. Kanizo, D. Hay, and I. Keslassy, “Palette: Distributing tables in
software-defined networks,” in Proc. IEEE INFOCOM, Apr. 14–19,
2013, pp. 545–549.

[142] Y. Hu, W. Wang, X. Gong, X. Que, and S. Cheng, “BalanceFlow:
Controller load balancing for OpenFlow networks,” in Proc. IEEE 2nd

Int. Conf. Cloud Comput. Intell. Syst. (CCIS), Oct./Nov. 2012, vol. 2,
pp. 780–785.

[143] J. Biswas et al., “The IEEE P1520 standards initiative for programmable
network interfaces,” IEEE Commun. Mag., vol. 36, no. 10, pp. 64–70,
Oct. 1998.

[144] A. Doria et al., Forwarding and Control Element Separation (ForCES)
Protocol Specification. [Online]. Available: http://tools.ietf.org/html/
rfc5810

[145] T. V. Lakshman, T. Nandagopal, R. Ramjee, K. Sabnani, and T. Woo,
“The SoftRouter Architecture,” in Proc. ACM SIGCOMM Workshop Hot

Topics Netw., 2004, pp. 1–6.
[146] On the Difference Between Security and Safety: A Reference Answer

is Provided in WiKi. [Online]. Available: http://wiki.answers.com/Q/
1_Explain_the_difference_between_safety_and_security?#slide=1

Fei Hu received the Ph.D. degree in signal pro-
cessing from Tongji University, Shanghai, China, in
1999 and the Ph.D. degree in electrical and computer
engineering from Clarkson University, New York,
NY, USA, in 2002. He is currently an Associate
Professor with the Department of Electrical and
Computer Engineering, The University of Alabama,
Tuscaloosa, AL, USA. He has published over 150
journal/conference papers and book (chapters). His
research has been supported by the U.S. NSF, Cisco,
Sprint, and other sources. His research interests in-

clude cyber-physical system security and medical security issues; intelligent
signal processing, such as using machine learning algorithms to process sensing
signals; and issues on wireless sensor network design.

Qi Hao received the B.E. and M.E. degrees from
Shanghai Jiao Tong University, Shanghai, China, in
1994 and 1997, respectively, and the Ph.D. degree
from Duke University, Durham, NC, USA, in 2006,
all in electrical engineering. His postdoctoral training
in the Center for Visualization and Virtual Environ-
ment, The University of Kentucky, Lexington, KY,
USA was focused on 3-D computer vision for human
tracking and identification. From 2007 to 2014, he
was an Assistant Professor with the Department of
Electrical and Computer Engineering, The Univer-

sity of Alabama, Tuscaloosa, AL, USA. He is currently an Associate Professor
with South University of Science and Technology of China, Shenzhen, China.
His research has been supported by the U.S. NSF and other sources. His current
research interests include smart sensors, intelligent wireless sensor networks,
and distributed information processing.

Ke Bao is currently working toward the Ph.D. degree
in the Department of Electrical and Computer En-
gineering, The University of Alabama, Tuscaloosa,
AL, USA. His research interests include wireless
networks, multimedia QoS, and wireless test beds.

http://siti.ulusofona.pt/aigaion/index.php/attachments/single/362
http://siti.ulusofona.pt/aigaion/index.php/attachments/single/362
http://tools.ietf.org/html/rfc5810
http://tools.ietf.org/html/rfc5810
http://wiki.answers.com/Q/1_Explain_the_difference_between_safety_and_security?#slide=1
http://wiki.answers.com/Q/1_Explain_the_difference_between_safety_and_security?#slide=1

