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Abstract—Just over a decade has passed since the concept
of morphological profile was defined for the analysis of remote
sensing images. From that time, the morphological profile has
largely proved to be a powerful tool able to model spatial
information (e.g., contextual relations) of the image. However,
due to the shortcomings of using the morphological profiles,
many variants, extensions and refinements of its definition
have appeared stating that the morphological profile is still
under continuous development. In this case, recently-introduced-
theoretically-sound attribute profiles can be considered as a
generalization of the morphological profile, which is a powerful
tool to model spatial information existing in the scene. Although
the concept of the attribute profile has been introduced in remote
sensing only recently, an extensive literature on its use in different
applications and on different types of data has appeared. To
that end, the great amount of contributions in the literature that
address the application of the attribute profile to many tasks (e.g.,
classification, object detection, segmentation, change detection,
etc.) and to different types of images (e.g., panchromatic, mul-
tispectral, hyperspectral) proves how the attribute profile is an
effective and modern tool. The main objective of this survey paper
is to recall the concept of the attribute profiles along with all
its modifications and generalizations with a special emphasize on
remote sensing image classification and summarize the important
aspects of its efficient utilization while also listing potential future
works.

Index Terms—Spectral-spatial classification, attribute profile,
morphological attribute filters, spatial features, hyperspectral
image analysis.

I. INTRODUCTION

S
UPERVISED classification is an important process in

remote sensing image analysis. A wide range of appli-

cations such as crop monitoring, forest applications, urban

development, mapping and tracking and risk management can

be handled by using appropriate data and efficient classifiers.

A large amount of data with different spectral, spatial and

temporal resolutions is currently being made available for

different applications. Hyperspectral imaging sensors are able

to capture hundreds of narrow spectral channels with a very

fine spectral resolution, which is helpful for detailed physical

analysis of structures in the captured image [1]. In addition,

thanks to recent advances in remote sensing technologies,

spatial resolution of sensors is also improving [1], which has

led to a better identification of relatively small structures.
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Conventional spectral classifiers consider the image as an

ensemble of spectral measurements without exploiting their

spatial arrangement. In other words, the spatial organization

of distinct pixels is not considered in spectral classification

[2]. In order to make use of the spatial organization, a joint

spectral and spatial classifier is required to reduce the label-

ing uncertainty that exits when only spectral information is

taken into account. Furthermore, more spatially homogeneous

classification maps are produced. Moreover, spatial informa-

tion provides additional discriminant information related to

the shape and size of different structures, which if properly

exploited, leads to more accurate classification maps.

In order to model the spatial information of a scene, two

common strategies are available: A crisp neighborhood system

and an adaptive neighborhood system [1]. While the first one

mostly relies on considering spatial and contextual dependen-

cies in a predefined neighborhood system, the latter shows

more flexibility and is not confined to a given neighborhood

system.

One well-known way for extracting spatial information by

using a crisp neighborhood system is the use of MRF modeling
1 (Please see the list of abbreviations shown in Fig. I). MRF

is a family of probabilistic models and can be explained as a

2-D stochastic process over discrete pixels lattices [3]. MRF

is considered to be a powerful tool for incorporating spatial

and contextual information into the classification framework

[4]. There is a considerable literature on the use of MRFs

in classification. For example, in [5], the result of the prob-

abilistic SVM was regularized by an MRF. In [6], a fully

automated framework for the spectral and spatial classification

of hyperspectral (multispectral) data was proposed, which

was based on the integration of a modification of MRF

(Hidden MRF) and SVM. However, the main disadvantages

of considering a set of crisp neighbors are that

1) the standard neighborhood system may not contain

enough samples to characterize the object of interest,

and this downgrades the effectiveness of the classifier (in

particular, when the input data set is of high resolution

and the neighboring pixels are highly correlated [1])

2) a larger neighborhood system leads to intractable com-

putational problems [1].

In order to address the above-mentioned issues, an adaptive

neighborhood system can be considered. One possible way for

1Please note that here we are discussing the most well-known MRF model,
which models the spatial information of adjacent pixels by considering a crisp
neighborhood system. However, MRFs based on an adaptive neighborhood
system can be found in literature as well.
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TABLE I
LIST OF ABBREVIATIONS.

  

VHR Very High Resolution 

MRF Markov Random Field 

SE Structuring Element 

MP Morphology Profile 

EMP Extended Morphology Profile 

DMP Differential Morphology Profile 

AF Attribute Filter 

AP Attribute Profile 

MAP Multivariate Attribute Profile 

EAP Extended Attribute Profile 

EMAP Extended Multivariate Attribute Profile 

EEMAP Entire Extended Multivariate Attribute 

Profile 

SDAP Self-Dual Attribute Profile 

SVM Support Vector Machine 

RF Random Forest 

MLR Multinomial Logistic Regression 

SRC Sparse Representation Classification 

RBF Radial Basis Function 

FS Feature Selection 

FE Feature Extraction 

PC Principal Component 

PCA Principal Component Analysis 

KPCA Kernel Principal Component Analysis 

ICA Independent Component Analysis 

DAFE Discriminant Analysis Feature Extraction 

DBFE Decision Boundary Feature Extraction 

NWFE Nonparametric Weighted Feature Extraction 

GA Genetic Algorithm 

PSO Particle Swarm Optimization 

BFODPSO Binary Fractional Order Darwinian Particle 

Swarm Optimization 

GLCM Gray-Level Co-occurrence Matrix 

      

considering the adaptive neighborhood system is to utilize dif-

ferent types of segmentation methods. Segmentation of images

into spatially homogenous regions may improve the accuracy

of classification maps [7]. To make such an approach more

effective, an accurate segmentation of the image is required

[8]. There is an extensive literature on the use of segmentation

techniques in order to extract the spatial information (e.g., [9–

12]).

Another possible set of approaches which are able to extract

spatial information by using an adaptive neighborhood system

relies on the concept of the MP. An MP is constructed based

on the repeated use of openings and closings by reconstruction

with a SE of an increasing size, applied to a scalar image. MPs

simultaneously attenuate some spatial details and preserve the

geometrical characteristics of the other regions. Pesaresi and

Benediktsson [13] used morphological transformations to build

the so-called MP. In [14], the MP generated by morphological

opening and closing operations was used for classifying a

Quickbird panchromatic image captured over Bam, Iran which

was hit by the earthquake in 2003. To do so, the spatial

features extracted by the MP were considered for assessing

the damages caused by the earthquake. The standard opening

and closing along with white and black top hat [15], and

opening and closing by reconstruction were computed and the

resulting features were classified using a SVM classifier for the

classification of a Quickbird panchromatic image in [16]. An

automatic hierarchical segmentation technique based on the

analysis of the DMP (the derivative of the MP) was proposed

in [17]. The DMP was also analyzed in [18], by extracting

a fuzzy measure of the characteristic scale and contrast of

each structure in the image. The computed measures were

compared with the possibility distribution predefined for each

thematic class, generating a value of membership degree for

each class used for classification. In [19], in order to reduce

the dimensionality of data and address the so-called curse of

dimensionality [20], feature extraction techniques were taken

into consideration for the DMP classified by a neural network

classifier. In [21], the concept of MPs was successfully ex-

tended to handle hyperspectral images, resulting in the EMP.

The EMP is obtained by first reducing the dimensionality of

the hyperspectral image with a PCA and by computing an MP

on each of its first few components.

Some studies have been conducted in order to assess the

capability of SEs with different shapes for the extraction

of spatial information. For instance, MPs computed with a

compact SE (e.g., square, disk, etc.) can be considered for

modeling the size of the objects in the image (e.g., in [1]

this information was exploited to discriminate small buildings

from large ones). In [22], the computation of two MPs was

introduced in order to model both the length and the width

of the structures. In more detail, one MP is built using disk-

shaped SEs for extracting the smallest size of the structures,

while the other employs linear SEs (which generate directional

profiles [23]) for characterizing the object’s maximum size

(along with the orientation of the SE). This is appropriate

for defining the minimal and maximal length. However, such

analysis is computationally intensive as all the possible lengths

and orientations cannot be practically investigated. Also in

[22], the authors proposed to use operators based on ”partial

reconstruction” instead of the conventional geodesic recon-

struction in order to reduce the ”leakage effect”. In [24], a new

binary optimization method inspired on the Fractional-Order

Darwinian Particle Swarm Optimization [8] is introduced in

order to select the most informative features extracted by MP.

Based on the above-mentioned literature, it is easy to

infer that multiscale processing based on morphological filters

(e.g., by MPs, DMPs and EMPs) has proven to be effective

in extracting informative spatial features from the images

to be analyzed. Although MP is a powerful technique for

the extraction of spatial information, the concept has a few

limitations: i) the shape of SEs is fixed and ii) SEs are

unable to characterize information related to the gray-level

characteristics of the regions. To overcome this, the mor-

phological AP has been proposed as the generalization of

the MP which provides a multilevel characterization of an

image by using the sequential application of morphological

AF [25]. AFs are connected operators which process an image

by considering only its connected components. For binary

images, the connected components are simply the foreground

and background regions present in the image. In order to

deal with gray-scale images, the set of connected components

can be obtained by considering the image to be composed

by a stack of binary images generated by thresholding the

image at all its grey-level values [26]. Thus, they process

the image without distorting or inserting new edges but only

by merging existing flat regions [15]. AFs were employed

for modeling the structural information of the scene in order
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to increase the effectiveness of a classification and building

extraction in [25, 27], respectively, where they proved to be

efficient for the modeling of structural information in VHR

images. In [28], AFs were used in a scheme for building

height retrieval by considering VHR images acquired on the

same area with different acquisition angles. Namely, the filters

were used for reducing the complexity of the images in

order to isolate regions that corresponds to the rooftops of

buildings. A neural network was used to find correspondences

between the extracted regions in the different images by

considering moment invariants descriptors as features. After

finding correspondences and since the building considered had

a flat roof, the horizontal displacement of matching regions

was converted in height by trigonometry.

AFs include in their definition, the morphological operators

based on geodesic reconstruction [29]. Moreover, AP is a

flexible tool since images can be processed based on many

different types of attributes. In fact, the attributes can be

of any type. For example, they can be purely geometric, or

related to the spectral values of the pixels, or on different

characteristics such as spatial relations to other connected

components. Furthermore, in [27], the problem of tuning

the parameters of the filters was addressed by proposing an

automatic feature selection procedure based on a genetic algo-

rithms. In [30], it was proved that the automatic method with

considering only two attributes (area and standard deviation)

is comparative with manual technique with four attributes in

terms of classification accuracy and CPU processing time. In

[31], a topographic map of the image was used, which is

autodual (it is invariant to contrast inversion) and does not

require any SE in order to extract the profiles. In addition, the

concept of MPs was extended to the profiles of other features

(e.g., perimeters, scales, total variations).

This work presents a survey over the existing papers re-

lated to AP with a special emphasize on multispectral and

hyperspectral image classification, while still providing with a

general framework for other types of data. The rest of this

survey paper is organized as follows: first, a few primary

concepts related to morphological profiles will be disscused in

II. Then, the concept of AP and its extension for hyperspectral

data will be explained in Section III. Then, Section IV is

devoted to spectral and spatial classification of remote sensing

data by considering AP. Section V is on the use of AP for

other types of applications such as change detection and other

types of data such as LiDAR. In Section VI, the main obtained

points, advantages and disadvantages of different techniques

as well as the survey of existing experiments with respect to

classification results will be briefly discussed. Finally, Section

VII outlines the main conclusions and possible future works.

II. MORPHOLOGICAL PROFILE

In this section, first we recall a few primary concepts such

as connected components, basic morphological operators and

morphology profiles and its modifications.

A. Connected components

A connected component is regarded as a group of iso-

level pixels which are connected according to a predefined

connectivity rule. The most well-known connectivity rules are

4- and 8-connected, where a pixel is considered as adjacent

to the four or eight of its neighboring pixels, respectively.

B. Basic morphological operators

Erosion and dilation are considered as the basic building

blocks of mathematical morphology. These operations are

carried out on an image with a set of known shape, called

an SE. Opening and closing are combinations of erosion and

dilation. These operators simplify the input data by removing

structures with size less than the one of SE. However, they

can influence on the shape of the structures and can introduce

fake objects in the image [32]. One way to handle this issue

is to consider opening and closing by reconstruction [15].

Opening and closing by reconstruction filters are a family

of connected operators which satisfy the following criterion:

If SE cannot fit in an object, then it will be totally removed,

otherwise it will be totally preserved. Reconstruction operators

remove objects smaller than SE without altering the shape

of those objects and reconstruct connected components from

the preserved objects. For gray-scale images, opening by

reconstruction removes unconnected light objects and in dual,

closing by reconstruction removes unconnected dark objects.

Fig. 1 illustrates the different results that are obtained when

considering operators with or without geodesic reconstruction.

C. Morphological profile and its modifications

In order to characterize the scale of different structures

present in an image, it is very important to consider a range of

SEs with different sizes. MPs use successive opening/closing

operations with an SE of an increasing size. The successive

application of opening/closing leads to a simplification of the

input image and a better understanding of different available

structures in the image. An MP consists of an opening

profile and a closing profile. In order to fully exploit the

spatial information, filtering techniques should simultaneously

attenuate the unimportant details and preserve the geometrical

characteristics of the other regions. In [13], morphological

transformations were used to build MP. They carried out a

multiscale analysis by computing an anti-granulometry and a

granulometry, (i.e., a sequence of closings and openings with

SE of increasing size), appended in a common data structure

named MP.

Another modification of using MP which was exploited

for the classification of VHR panchromatic images is DMP.

DMP is composed of the residues of two subsequent filtering

operations for two adjacent levels existing in the profile. Since

the DMP is the derivative of the MP, it has a number of levels

which is one less than the number of levels in the MP.

In [21], the concept of MPs was successfully extended to

handle hyperspectral images by using PCA for reducing the

dimensionality of the hyperspectral data. The dimensionality
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(a) (b) (c) (d) (e)

Fig. 1. a) Morphological closing b) Closing by reconstruction c) Original VHR panchromatic image d) Opening by reconstruction e) Morphological opening.
As can be seen, morphological opening and closing have influences on the shape of the structures and can introduce fake objects. However, opening and
closing by reconstruction preserve the shape of different objects bigger than SE (The disk shape SE with a radius size of three pixels is taken into account).
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Fig. 2. An example of a simple EMP consisting of 2 PCs.

is reduced by only considering the few first components of

the transformation which retain most of the information (here

expressed by the variance) of the original data. MPs were

generated for the selected PCs of the data and stacked into a

single profile named as EMP. Fig. 2 shows a stacked vector

consisting of the profiles based on the first and second PCs.

Since the EMP does not fully exploit the spectral information

and PCA does not consider class information, in [32], different

supervised feature extraction techniques are used instead of

PCA, and the EMP stacked along with other extracted features

are classified using a support vector machine.

Although MP is a powerful technique for the extraction of

spatial information, the concept suffers from a few limitations

including:

1) The shape of SEs is fixed which is considered as a main

limitation for the extraction of objects within a scene.

2) SEs are unable to describe information related to the

gray-level characteristics of the regions such as spectral

homogeneity, contrast and so on.

3) A final limitation associated with the concept of MPs is

the computational complexity. The original image needs

to be processed completely for each level of the profile,

which requires two complete evaluations of the image;

one performed by a closing transformation and the other

by an opening transformation. Thus, the complexity

increases linearly with the number of levels included

in the profile [25].

To address the above-mentioned issues, the concept of

attribute profile was proposed in [25].

III. ATTRIBUTE PROFILE

A. Morphological Attribute Filters (AFs)

Morphological AFs are connected filters [33], so they pro-

cess an image by only merging its connected components. We

will now detail how such set of connected components can be

derived from an image.

Let us consider a discrete 2D image f : E → T , with E

the discrete image domain (E ⊆ Z2) and T ⊆ Z the set of

possible scalar values associated to the elements (i.e., pixels)

of E. It is well known that it is possible to decompose a

scalar image into a set of binary images by the so called

threshold decomposition principle (i.e., f =
∑

t ft with

ft : f ≥ t and t ∈ T ) [34, 35]. Using the analogy of an

image with a topographic surface in which the elevation of

the map corresponds to the intensity of the gray-level, the

image can be seen as a superposition of all the isolevel maps

(i.e., slices of the 3D map at all the possible height levels).

Each binary image is composed of connected components and

in this representation, by varying the threshold’s value (i.e.,

the height of the plane), connected components can merge,

enlarge, shrink, split, appear or disappear according to the

spatial organization and the intensity values of the pixels in the

image. Since elements of T are ordered, f can equivalently be

decomposed in an upper or lower level sets, which are defined

as the sets of binary maps obtained by considering the upper

(i.e., ≥ t) or lower (i.e., < t) thresholds for all the possible

values of the pixels [36].

AFs operate through a transformation based on a predicate

P (i.e., P : S → {false, true}, with S a generic set of

values), which is evaluated on each connected component

(obtained by the image decomposition). Different filtering
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effects are obtained by considering either the components

of the upper or lower level sets. The predicates implement

a comparison between the value of a generic attribute A
computed on a component C and a predefined threshold

value λ, e.g., P (C) = A(C) ≥ λ. Any measure that can be

computed for an image region can act as an attribute [33].

Moreover, even multiple attributes can be considered in the

same transformation if they are evaluated in a single joint

predicate. The filtering operates on each connected component

according to the output of the predicate: If P is fulfilled

the component is preserved, if not it is merged to one of

its adjacent ones (i.e., setting its gray-level to the gray-

level of the component to whom it will be merged to). An

important property of P is increasingness. A criterion is

said to be increasing when, if it is verified for a connected

component, then it will be also true for all the components in

which the component is nested. This property leads to have

for example P (Cj) = true when also P (Ci) = true for any

Cj ⊆ Ci. Examples of increasing criteria involve increasing

attributes (e.g., area, volume, size of the bounding box, etc.)

and an inequality relation (e.g., ≥). In contrast, non increasing

attributes, such as scale invariant measures (e.g., gray-level

homogeneity, shape descriptors, region orientation, etc.), lead

to non increasing criteria.

When considering the components of the set, the result of

the filtering is a thinning, denoted by γ, since the transforma-

tion obtained in this case is idempotent and anti-extensive.2

If the predicate is increasing then the filter becomes also

increasing, leading to an opening. Analogous considerations

can be done for the dual transformation by considering the

lower level set. The transformation is a thickening, denoted

by φ, and, if the criterion is increasing, it becomes a closing.

Figure 3 shows an example of attribute filtering on a binary

image. Two attributes, A1 based on the size and A2 on

the shape of the regions, were computed on the connected

components of the image (Fig. 3.a). The results of two thinning

operators, one based on A1 and one on A2 (with an arbitrary

predicate), are shown in Figs. 3.b,c. It is worth noting that it

is not possible to achieve the result in Fig. 3.c (i.e., removing

all the foreground objects with a compact shape) with a single

filtering based on A1. Vice versa, the removal of objects based

on their scale cannot be obtained considering A2. Furthermore,

when considering connected operators based on SEs (such as

opening and closing by reconstruction), the result in Fig. 3.b

can be equivalently obtained with any SE that is not contained

in the foreground objects of smaller scale (but contained in the

three largest objects). However, as in Fig. 3.c, the result cannot

be achieved straightforwardly with a single filtering based on

a SE due to the different scale of the structures meant to be

preserved.

There is an inclusion relations between the connected com-

ponents in the image (obtained from the upper or lower sets)

meaning that any two components are either nested or disjoint.

Due to this, the set of connected components can be repre-

2We recall that for a generic transformation ψ on an image
f (and g), idempotence means ψ(ψ(f)) = ψ(f), increasingness
f ≤ g ⇔ ψ(f) ≤ ψ(g) ∀f, g and anti-extensivity (resp. extensivity)
refers to f ≥ ψ(f) (resp. f ≤ ψ(f)).

A1 = 9

A2 = 15

A1 = 123

A2 = 51

A1 = 25

A2 = 17

A1 = 24

A2 = 24

A1 = 13

A2 = 17

A1 = 23

A2 = 99A1 = 36

A2 = 16

(a)

(b) (c)

Fig. 3. Illustrative example for attribute filtering. (a) Binary image in which
two different attributes were computed for each connected component of the
image upper level set. Only connected components of the foreground are
considered in this example. Attribute A1 is a scale dependent measure (i.e.,
the area in number of pixels for each region) and A2 is a shape index invariant
to scale and rotation (i.e., the moment of inertia multiplied by a factor 102

was considered as measure). (b) Result of a thinning with predicate A1 > 25.
(c) Result of a thinning with predicate A2 > 30.

sented by a tree being its nodes the components and the links

between nodes the inclusion relations between components.

The tree derived by the components in the upper (resp. lower)

level set is called max-tree (resp. min-tree) [37].3 Another

representation of a gray-scale image as a hierarchy of regions

is the inclusion tree. Here the set of connected components is

obtained by progressively “filling” regions internal to others

(i.e., considered as “holes”) and the connections in the tree

are determined by the considered region filling operator [39].

Such hierarchical representations of an image can be ef-

fectively exploited for the computation of morphological

AFs [37, 40]. Thinnings and thickenings will be obtained from

a max- and a min-tree, respectively. The image transformation

done by the filter on the image is equivalent to a pruning of

the tree, i.e., the removal of single nodes or branches.

Different pruning strategies exist depending on whether

the predicate evaluated by the AF is increasing or not [40].

The increasingness of a predicate leads to the removal of

entire branches (i.e., a node with all its descendants till

their leaves) from the tree. Conversely, for non increasing

predicates, intermediate nodes in a branch can either fulfill

3In [38], min- and max-trees are called component trees.



JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 6

the predicate or not. For that case, different filtering rules have

been defined in the literature [37, 41].

An example of max-tree is shown in Fig. 4. As one can

see in Figure 4b, the image is composed by connected

components of iso-intensity pixels. The max-tree maps each

of all the connected components of the image to a node

organized in a hierarchical tree structure (see Figure 4c). The

root node of the tree represents the whole image at his lowest

gray-level. The tree grows by connecting the nodes of the

progressively nested connected components in the image until

the leaves of the tree that correspond to the regional maxima

in the image.
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Fig. 4. Example of Max-tree. (a) Gray-scale image with intensities ranging
from 0 to 3; (b) Image in (a) with its connected components labeled; and (c)
Max-tree of (a). This shows the relations between the nodes associated to the
connected components in (b) [42].

B. Attribute Profile and its extension to vectorial images

Although this subsection should be considered self-

sufficient for understanding the concept of AP, EAP and

EMAP 4, for more information regarding the aforementioned

concepts, please refer to [25, 42]. More useful references can

be found throughout the paper.

APs are obtained by the outputs of a sequence of thinning

and thickening transformations applied on a scalar image [25].

APs can be seen as a generalization of MPs since both opening

and closing by reconstruction can be implemented as attribute

filters [33]. The motivation for using attribute filters is to

overcome the limitation of the conventional operators based

on geodesic reconstruction in defining a decomposition of the

image based on characteristics different from the scale [43].

In fact, MPs naturally perform a multiscale decomposition of

an image, since structuring elements of a fixed shape and an

increasing size are employed. However, trying to compute an

MP based on the shape cannot be easily achieved since scale

invariant characteristics are poorly modeled by SEs (it would

require a very large set of SEs, since the analysis should be

scale invariant and many different shapes of the SE should be

considered). Instead, by using AFs, the image decomposition

can be based on the scale (as for MP), shape, texture, etc.

according to the type of attribute considered.

More formally, an AP is defined as in Eq. (1) [25]: with

Pλ : {Pλi
} (i = 1, . . . , L) a set of L ordered predicates (i.e.,

4The Matlab code for the use of AP, EAP and EMAP is available on request
by sending an email to the authors.

Pλi
⊆ Pλk

, i ≤ k). The sequence of criteria considered for

constructing the profile have to be ordered for guaranteeing

the fulfillment of the absorption property, which might not

be verified for non increasing predicates. Thus, the AP can

be seen as a stack of thickening and thinning profiles. The

thickening profile is considered in reversed order, such as the

coarser image appears as first and the original image as last.

The original image f also appears in the profile since it can

be considered as the level zero of both the thickening and

thinning profile (i.e., φPλ0 (f) = γPλ0 (f) = f , where Pλ0

is a predicate which is fulfilled by all the components in the

image, leading to no filtering). According to the attribute and

criterion considered, different information can be extracted

from the structures in the scene leading to different multilevel

characterizations of the image. [25]. We refer the reader to [25]

for further details. Fig. 8 shows an example for the general

architecture of AP.

As mentioned previously, also in terms of computational

burden, an AP is more advantageous than an equivalent MP,

since the MP always demands two complete image transforma-

tions: one performed by a closing and the other by an opening

for each level of the profile. In contrast, for computing an AP

it is necessary to build up one max-tree for the thinnings and

one min-tree for the thickenings for the entire profile. The set

of filtering is obtained by sequential pruning of the same trees

with different values of λ. This greatly reduces the burden of

the analysis with respect to MPs, since the most demanding

phase of the filtering, which is the construction of a tree [44],

is done only once.

We recall also that in [45], an inclusion tree was used for

computing the AP instead of the min-tree and max-tree data

representation, leading to a self-dual AP (SDAP). In that

work, the application of self-dual connected operators led to

an image simplification characterized by more homogeneous

regions with respect to the results obtained by extensive or

anti-extensive connected operators.

When dealing with vectorial images (f : E → T , with

E ⊆ Z2 and T ⊆ Zn, n > 1 and f = {f1, f2, . . . , fn}) such as

multispectral and hyperspectral images (where n is the number

of spectral bands), the application of morphological filters

(here specifically APs) is not straightforward since there is no

unique approach for extending them to vectorial images [46–

50, Chapter 11]. A possible way for applying the concept of

the profile to vectorial images was proposed in [42, 51] and

recalled in Sec. II.B. The proposed approach is based on the

reduction of the dimensionality of the image values from T to

T ′ ⊆ Zm (m ≤ n) with a generic transformation Ψ : T → T ′

applied to an input image f (i.e., g = Ψ(f)) and then on

the application of the AP to each gi (i = 1, . . . ,m) of the

transformed image. This can be formalized as:

EAP (g) = {AP (g1), AP (g2), . . . , AP (gm)}. (2)

Fig. 5 shows the general architecture of EAP.

It can be convenient to compute multiple EAPs considering

different attributes in order to derive a more complete descrip-

tor of an image. This is the underlyining idea of the Extended

Multi-Attribute Profile (EMAP) [42] which is consequently



JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 7

EAP

AP1

AP2

APn

PC1

AP

PC2

AP

.

.

.

PCn

AP

PCA . . .

Fig. 5. General architecture of EAP.

EMAP

EAP1

EAP2

EAPn

EAP

EAP

.

.

.

EAP

. . .

Fig. 6. General architecture of EMAP.

defined considering k different attributes as:

EMAP (g) =
{
EAPA1

(g), EAP ′
A2

(g), . . . , EAP ′
Ak

(g)
}
,

(3)

where EAPAi
is an EAP built with a set of predicates

evaluating the attribute Ai and EAP ′ = EAP\{gi}i=1,...,m

in order to avoid redundancy since the original components

{gi} are present in each EAP. Fig. 6 shows the general

architecture of EMAP. The following attributes have been

widely used in literature in order to produce EMAP:

1) Area of the region (related the size of the regions)

2) Standard deviation (as an index for showing the homo-

geneity of the regions)

3) Diagonal of the box bounding the regions

4) Moment of inertia (as an index for measuring the

elongation of the regions).

Fig. 7 shows an n example of different attribute profiles

(Area, Moment of Inertia and Standard Deviation) with dif-

ferent threshold values.
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φP3

λ3 = 1849

Area (A)
Pn = A > λn

φP2

λ2 = 625

φP1

λ1 = 49

φP0 = γP0 = f

λ0 = 0

γP1

λ1 = 49

γP2

λ2 = 625

γP3

λ3 = 1849

λ3 = 0.8

Moment of Inertia (I)
Pn = I > λn

λ2 = 0.5 λ1 = 0.2 λ0 = 0 λ1 = 0.2 λ2 = 0.5 λ3 = 0.8

λ3 = 70

Stand. Dev. (S)
Pn = S > λn

λ2 = 40 λ1 = 10 λ0 = 0 λ1 = 10 λ2 = 40 λ3 = 70

Thickening Profile Thinning Profile

Fig. 7. An example of different attribute profiles (Area, Moment of Inertia and Standard Deviation) with different threshold values.

AP (f) =







φPλL (f), φPλL−1 (f), . . . , φPλ1 (f)
︸ ︷︷ ︸

thickening profile

, f, γPλ1 (f), . . . , γPλL−1 (f), γPλL (f)
︸ ︷︷ ︸

thinning profile







, (1)

AP

Thickening Profile

Thinning Profile

φT1

.

.

.

φTL

γT1

.

.

.

γTL

. . . . . .

Fig. 8. Example of the general architecture of AP

IV. SPECTRAL-SPATIAL CLASSIFICATION BASED ON THE

AP

Although this section should be considered self-sufficient

for understanding the concept of spectral-spatial classification

based on the AP, for more information regarding the aforemen-

tioned concepts, please refer to [30, 52, 53]. More references

can be found throughout the paper.

This section aims at reviewing the main steps composing

the techniques based on APs for land cover classification.

We will focus on the classification of hyperspectral images

(thus considering EAPs/EMAPs) since most of those tech-

niques were proposed for this imagery. It is underlined that

this choice is done without loss of generality since all the

classification architectures proposed for other types of data

(e.g., panchromatic images in [54]) can be reconducted to

the general scheme presented in this section. A general work

flow of the spectral-spatial classification with EMAP is shown

in Fig. 9. First, feature extraction/selection is performed on

remote sensing data and the resulting features are used as

bases to build the EMAP. It should be noted that feature

extraction/selection are mostly taken into account for hyper-

spectral images in order to reduce the redundancy of the

data and address the so-called curse of dimensionality. For

other types of data, this step can be discarded. In [55], it



JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 9

Fig. 9. The general work flow of spectral-spatial classification with EMAP. The dotted lines indicate the possibility of switching between supervised and
unsupervised feature reduction. An optional feature reduction step can be used to reduce the dimensionality of EMAP before classification [52].

has been noted that a prior spectral decomposition based on

kernel feature extraction before building the APs can lead

to better classification results. The feature extraction/selection

can either be supervised or unsupervised. A further feature

extraction/selection operation applied to the EMAP can both

reduce the effect of the Hughes phenomenon [20] and the

redundancy in the profiles for classification. The classification

is usually performed using non-linear classifiers due to the fact

that the resulting EMAP is characterized by highly non-linear

class distributions. In the following, the main components

of the flowchart in Fig. 9 (Feature selection/extraction and

classification) will be discussed in detail. Furthermore, at the

end of this section, the automatic generation of EMAP for

the accurate classification of remote sensing data will be

discussed.

A. Feature extraction and feature selection

In the spectral domain, each spectral channel is considered

as one dimension. By increasing the features in the spec-

tral domain, theoretical and practical problems may arise.

For instance, while keeping the number of training samples

constant, the classification accuracy actually decreases when

the number of features becomes large [20]. For the purpose

of classification, these problems are related to the curse of

dimensionality. In [56], it was shown that too many spectral

bands can be undesirable from the standpoint of expected

classification accuracy because the accuracy of the statistics

estimation decreases (Hughes phenomenon). The aforemen-

tioned issue demonstrates that there is an optimal number

of bands for classification accuracy and more features do

not necessarily lead to better results. Therefore, the use of

feature reduction techniques may lead to a better classification

accuracy. The Hughes phenomenon highly influences on para-

metric classifiers where the higher set of statistical estimations

need to be estimated and their classification accuracies are

dramatically downgraded by that effect. However, this issue

has a less influence on non-parametric classifiers such as SVM

[57] and Random Forest (RF) [58].

In order to fully exploit spatial information from different

structures in the scene, different attributes with considerable

range of threshold values should be considered. Nevertheless,

considering many attributes with many threshold values can re-

sult in hyperdimensional profiles and, thus, hyperdimensional

feature vectors that can lead to Hughes phenomenon [20]

(i.e., the curse of dimensionality) and a high redundancy since

filters with slightly different parameters may produce similar

results. The issue of the high dimensionality of the profile

can be addressed by considering feature reduction techniques.

However, the selection of appropriate filter parameters is an

essential step in order to guarantee a good tradeoff between

the descriptive power of the profile and its redundancy [59]. In

this case, FS and FE techniques have been gaining significant

considerations in order to select the most effective features of

the APs.

FS methods choose features from the original data set

based on a criterion that is used to filter out unimportant

or redundant features. FE can be explained as finding a

set of vectors that represents an observation while reducing

the dimensionality by transforming data to another domain.

FE/FS can be split into two categories; unsupervised and

supervised FE/FS where the former is used for the purpose

of data representation and latter is considered for solving
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the Hughes phenomena [20] and reducing the redundancy of

data in order to improve classification accuracies by getting

feedback from a set of available training samples. Although a

reduction in dimensionality is of importance, the error rising

from the reduction in dimension has to be without sacrificing

the discriminative power of classifiers [32].

As can be seen from Fig. 9, FE/FS can be performed on the

input data (in order to reduce the redundancy of the input data

and select informative features as basis for producing APs),

or on the obtained APs (in order to reduce the redundancy

of obtained features by APs and increase the classification

accuracies). It should be noted that FE/FS can as well be used

for both steps in one classification framework.

1) FE: PCA, KPCA and ICA are the most commonly used

unsupervised FE which are used along with the concept of

EMAP (eg., [30, 52, 60]). Moreover, DAFE, DBFE and NWFE

are considered as the best known supervised FE which are

taken into account along with the concept of EMAP (eg.,

[52]). It should be noted that the unsupervised FEs are mostly

applied in order to extract informative features as the basis for

producing APs. However, the supervised FEs can be performed

on either the input data or the features obtained by APs.

The choice of the feature extraction method has also been

found to greatly influence the classification results using

EMAPs. In [52], various supervised and unsupervised feature

extraction methods were compared when EMAPs were built

using corresponding features and classified using RF and SVM

classifiers. It has been concluded that kernel feature extraction

methods (in this case kernel PCA) provides more consistent

performance even if supervised feature extraction (e.g., DBFE,

NWFE, etc) produces more accurate maps when sufficient

number of training samples are available. Furthermore, it

has been noted in [55] that a prior feature extraction from

multispectral data using kernel methods to build the EMAP

produces significantly improved classification maps.

In order to classify informative features produced by su-

pervised FE, the first features with cumulative eigenvalues

above 99% are retained. In the case of DAFE and NWFE, the

criterion is related to the size of the eigenvalues of the scatter

matrices. In the case of decision boundary FE (DBFE), the

criterion is related to the size of the eigenvalues of the decision

boundary feature matrix (DBFM). For PCA, the first PCs with

a cumulative variance of more than 99% are kept, since they

contain almost all the variance in the data. However, different

percentages can be used for different data.

Very recently in [61], it was proposed to compute a

multiple profile composed of APs built on different base

images obtained by linear, non-linear, manifold learning-based

and multil-linear transformations of the original hyperspectral

image. The individual APs computed on the extracted features

(obtained by the different strategies) are either considered

separately or jointly in a stacked vector. In order to deal with

the high dimensionality of the profile, it was proposed to use

a decision fusion approach or a sparse based classifier.

2) FS: In [59], an automatic method was introduced for

the classification of hyperspectral data which is based on

the FS step. In order to reduce the number of features by

only keeping those important, GAs based on a measure of

the relevance of the features were used. The main idea here

is to construct a large profile from input hyperspectral data,

called the EEMAP, that covers all the reasonable range of

values for the filter parameters in order to provide a complete

and detailed characterization of the spatial information of the

scene. then, for reducing the number of features by only

keeping the important ones, GAs based on a measure of the

relevance of the features are taken into account.

In [62], a new FS technique was proposed which is based

on the integration of GA and PSO. Then, the FS technique was

applied on several features produced by EMAP for selecting

the most informative features in order to detect road networks.

In [63], a new feature selection technique is introduced,

which is based on a new binary optimization method named

BFODPSO. In that method, SVM is used as the fitness

function and its corresponding classification overall accuracy

is chosen as the fitness value in order to evaluate the efficiency

of different group of features. In that paper, first, an AP feature

bank is built consisting of different attributes with a wide range

of threshold values. Then, BFODPSO based feature selection

is performed on the feature bank. In this case, SVM is chosen

as fitness function. The fitness of each particle is evaluated by

the overall accuracy of SVM over the validation samples. After

a few iterations, BFODPSO based feature selection approach

finds the most informative features (resulted by EMAP) with

respect to the overall accuracy of SVM over the validation

samples.

In [64], a strategy for the selection of spatial features

(among those APs were considered) relevant for classification

was proposed. The relevance of the features is determined with

respect to their capability in maximizing the SVM margin

in the separation of classes. A research procedure based on

the randomly generation of spatial filter banks and use of an

active set criterion to rank the candidate features according

to their benefits to margin maximization is proposed. In this

way it is possible to explore the virtually infinite feature space

(constituted by all the possible spatial features that could be

computed) in order to retain the relevant ones for guaranteeing

a final classification scheme which is compact (uses as few

features as possible), discriminative (enhance class separation)

and robust (works well in small sample situations).

B. Classification using different methods

As discussed above, APs have been successfully exploited

as efficient tools for spectral-spatial classification of remote

sensing data. APs are inherently characterized by a large

dimensionality and high redundancy. This poses a great

challenge for classification especially to counter the Hughes

phenomenon [20]. Due to high non-linear characteristics of

the class distributions in the APs, the classification should

be performed using non-linear classifiers. A majority of the

studies on classification of attribute profiles employed SVM

[57] and RF [58] classifiers (e.g., [52, 59, 65]).

SVM is a well-known classifier which separates training

samples of different classes by tracing maximum margin

hyperplanes in the space where the samples are mapped [66].

SVMs were originally introduced to solve linear classification
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problems. However, they were generalized for solving non-

linear decision functions by using the so-called kernel trick

[67]. A kernel-based SVM is used to project the pixel vectors

into a higher dimensional space and estimate maximum margin

hyperplanes in the new space, for improving linear separability

of data [67]. The two main critical aspects of SVMs are the

sensitivity to the choice of the kernel and the selection of the

regularization parameters. The second issue can be classically

overcome by considering cross-validation techniques using

training data [68]. However, that can be computationally

expensive [52]. The Gaussian RBF is the most widely used

kernel in remote sensing [67]. The cross-validation explores an

appropriate bandwidth parameter which provides the minimum

error when the kernel-based SVM classifier is applied on

the training data set. The main shortcomings of the cross

validation are that 1) the bandwidth parameter needs to be

discretized between a minimum and a maximum value, and the

SVM classifier has to be trained and tested in a fivefold way

for each of the discrete values of the bandwidth parameter.

By increasing the number of discrete levels, the probability

of finding the best parameter increases which leads to a

higher computational time. On the contrary, by decreasing the

number of levels, a sub-optimal bandwidth parameter might

be selected [69]. 2) In most of data sets, the cross-validation

procedure does not consider a convex error curve over the

selected discrete bandwidth parameter values, which makes

the selection of discrete bandwidth parameter values a difficult

task [69]. In order to tackle the above mentioned problems,

in [70], a gradient-based method was proposed to minimize

the upper bound of the leave-one-out generalization error of

SVM over the set of full-diagonal bandwidth parameters. In

[69, 71], the upper bound was estimated based on the radius

margin bound.

RF is an ensemble method for classification and regression.

Ensemble classifiers get their name from the fact that several

classifiers, i.e., an ensemble of classifiers, are trained and

their individual results are then combined to provide a final

classification. For the purpose of classification of an object

from an input vector, the input vector is run down each tree

in the forest. Each tree provides a single vote for a particular

class and the forest chooses the classification label having the

most votes. Based on studies in [72], RF is not computationally

intensive but demands a considerable amount of memory. RF

can provide a good classification result in terms of accuracies

and does not assume any underlying probability distribution

for input data. Another advantage of RF classifier is that it is

insensitive to noise in the training labels [72]. In addition, RF

provides an unbiased estimate of the test set error as trees are

added to the ensemble and finally it is less prone to overfit.

Apart from using SVM and RF classifiers, a composite

kernel framework for spectral-spatial classification using APs

has been recently investigated. In [73], a linearly weighted

composite kernel framework with SVMs has been used for

spectral-spatial classification using APs. A linearly weighted

composite kernel is a weighted combination of different ker-

nels computed using the available features [74]. For classifica-

tion using APs, probabilistic SVMs were employed to classify

the spectral information to obtain different rule images. The

kernels are computed using the obtained rule images and

are combined using the weighting factor. The choice of the

weighting factor can be given subjectively or estimated us-

ing cross-validation. However, classification using composite

kernels and SVMs require convex combination of kernels

and a time consuming optimization process. To overcome

these limitations, a generalized composite kernel framework

for spectral-spatial classification using attribute profiles has

been proposed in [73]. MLR ([75–77]) has been employed

instead of SVM classifier and a set of generalized composite

kernels which can be linearly combined without any constraint

of convexity, were proposed.

Very recently, SRC techniques have been proposed for the

classification of EMAPs [78]. SRC relies on the concept that

an unknown sample can be represented as a linear combination

of a set of labeled ones (i.e., the training set), called the

dictionary. The representation of the samples is cast as an

optimization problem in which the weights of each sample of

the dictionary should be estimated with a constraint enforcing

sparsity on the weights (i.e., limiting the contribution in the

representation to only few samples). After representation, the

sample is assigned to the class which shows the minimum

reconstruction error when considering only the samples of the

dictionary belonging to that class.

The importance of sparse-based classification methods has

been further confirmed in [75] where a sparse-based MLR

efficiently proved to handle effectively the very high di-

mensionality of the AP-based features used as input to the

classifier.

In [79], a new technique was introduced for the combined

classification of a high spatial resolution color image and a

lower spatial resolution hyperspectral image of the same scene.

To this extent, 1) contextual information is extracted from the

high spatial resolution color image by transforming the image

into CIE-Lab space, In the new space, instead of working on

the ’R’, ’G’, and ’B’ bands separately, APs are carried out

on the ’L’ band, which corresponds to the Luminance, while

the ’a’ and ’b’ bands (which contain the color information),

are kept intact. Finally, the resulting images are transformed

back into RGB space. 2) In parallel, the spectral information

is extracted from the low spatial resolution hyperspectral

data. 3) Finally, a composite decision fusion technique was

investigated for combining the result of spectral and spatial

information.

C. Automatic Scheme for EMAP

Although this subsection should be considered self-

sufficient for understanding the concept of automatic EMAP,

for more information regarding the aforementioned concepts,

please refer to [30, 53, 59]. More references can be found

throughout the paper.

In order to tackle the main difficulties of using the EMAP,

which are 1) which attributes lead to a better discrimination

for different classes, and 2) which threshold values should be

considered in order to initialize each AP, automatic schemes

of using EMAP has been investigated. While the APs can

be constructed by using different attributes, in the automatic
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scheme, generally the area and standard deviation attributes

are only used, since these attributes can be adjusted in an

automatic way and are well-related to the object hierarchy in

the images [30, 53, 59].

The standard deviation is adjusted with respect to the mean

of the individual features, since the standard deviation shows

dispersion from the mean [65]. Therefore, λs is initialized

in a way to cover a reasonable amount of deviation in the

individual feature, and can be mathematically given by

λs(PCi) =
µi

100
{σmin, σmin + δs, σmin + 2δs, ..., σmax},

(4)

where µi is the mean of the i-th feature and σmin, σmax and

δs are inner bound, upper bound and step size for standard

deviation attribute, respectively.

With regard to adjusting λa for the area attribute, the

resolution of the image should be taken into account in order to

construct an EAP [59]. The automatic scheme of the attribute

area is given below:

λa(PCi) =
1000

υ
{amin, amin + δa, amin + 2δa, ..., amax},

(5)

where amin and amax are considered as inner and upper

bounds, respectively, with a step size increase δa and υ shows

the spatial resolution of the input data.

Here, ”automatic” means that the framework only needs to

establish a range of parameter values in order to automatically

obtain a classification result with a high accuracy for different

data sets, instead of adjusting different thresholds with crisp

values. More information regarding appropriate values for

inner bound, upper bound and step sizes can be found in

[30, 53, 59].

In [30], a spectral-spatial classification approach was in-

troduced (please see the general idea of the model in Fig.

10a, which here this method is called MANUAL, since the

threshold values for EMAP are adjusted manually). Then, in

that paper, the automatic scheme of that method is devel-

oped (please see the general idea of the model in Fig. 10b,

which this method here is called AUTOMATIC, since the

threshold values for EMAP are adjusted automatically with

respect to (4) and (5)). Results reported in [30] for the both

schemes (MANUAL and AUTOMATIC) are very close in

terms of classification accuracies. The little difference obtained

in the classification accuracies between the MANUAL and

AUTOMATIC schemes can show that the use of only two

attributes; area and standard deviation can model the spatial

information on the used data sets considerably and other

attributes (diagonal of the box bounding the region and the

moment of inertia) cannot add significant improvement to

classification accuracies although they carry information on

the shape of regions. It is generally accepted that the use

of different attributes will lead to the extraction of comple-

mentary (and redundant) information from the scene leading

to increased accuracies when used in classification (provided

Hughes effect is efficiently solved by only keeping those

features which are most informative). In summary, it can be

inferred that the AUTOMATIC can provide classification maps

comparable with the MANUAL in terms of both classification

accuracies and CPU processing time when only two attributes

(area and standard deviation) are used instead of four (area,

standard deviation, moment of inertia and diagonal of the box).

However, the whole procedure in AUTOMATIC as the name

indicates is automatic and there is no need for any parameters

to be set.

In [65], the automatic generation of standard deviation

attributes was introduced. As it was mentioned there, features

commonly follow different statistics, and also, the individual

classes have different statistics for different features. There-

fore, different thresholds are needed to build the standard

deviation profiles from different features. In this way, the

thresholds for the standard deviation attribute are estimated

based on the statistics of the classes of interest. The general

idea behind that paper was that the standard deviation of the

training samples of different classes of interest is related to

the maximum standard deviation of the pixel values within

individual segments of the corresponding classes of interest.

The obtained results infer that the automatic method with only

one attribute (standard deviation) along with supervised feature

reduction can provide good results in terms of classification

accuracies.

V. USE OF THE AP FOR DIFFERENT TYPES OF DATA AND

APPLICATIONS

Although the concept of AP was introduced in order to

extract spatial information from optical data (e.g., multispec-

tral and hyperspectral data), this concept recently has been

successfully exploited for characterizing spatial information

of different types of data.

In [80, 81], the effectiveness of using EMAP for the

classification of the joint use of optical and LiDAR data

have been investigated. In [80], first the hyperspectral data

were transformed by using PCA and first effective PCs were

used as the base images for building EMAP. In parallel,

different the intensity and the first return of LiDAR data were

considered as inputs for building MAP. Then, all obtained

profiles are concatenated into a stacked vector and classified

by using either SVM or RF. Good classification accuracies

obtained in that paper confirmed that APs can be effectively

applied to LiDAR data, since they provide a simplification of

the image reducing the noise caused by the irregular spatial

sampling of the LiDAR pulse and the interpolation phase. To

show the effectiveness of using AP, a comparison consider-

ing texture features computed on GLCM have been taken

into account. The results obtained by considering features

extraction techniques along with the introduced technique have

outperformed those achieved with GLCM features. Finally, in

all the experiments, the application of EMAP on both optical

and LiDAR data led to the best classification accuracies.

Based on the results obtained in [81], the use of automatic

EMAP can extract valuable information from LiDAR data by

simultaneously filtering the unnecessary details and preserve

the geometrical characteristics of the other regions.

In [54], feature extraction was carried out on polarimetric

synthetic aperture radar images based on the decomposition

of the covariance matrix and the corresponding features are
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Fig. 10. (a) The flowchart of the method introduced in [30] for the MANUAL classification of hyperspectral images using AP and feature extraction techniques;
(b) The general idea of the AUTOMATIC scheme of the method introduced in [30]. The main idea here is that since PCA cannot consider the class specific
information for producing EMAP, supervised FE is carried out on both the input data and features obtained by EMAP. The main difference of this figure with
Fig. 9 is that in this method, features obtained by performing a supervised FE on both the EMAP and the input data are concatenated into a stacked vector
and classified by RF. In this case, first, PCA is performed on the input data and first PCs with a cumulative variance of more than 99% are kept. Then, MAP
including area and standard deviation attributes with respect to (4) and (5) are built for each PC. Furthermore, the MAP of different PCs are concatenated
into a stacked vector. The output of this step provides spectral information. After that, the supervised FE is carried out on the stacked vector and first features
corresponding to the top few eigenvalues which account for 99% of the total sum of the eigenvalues are kept. The output of this part provides the spatial
information of the method. In parallel, the supervised FE is performed on the input data, and first features corresponding to the top few eigenvalues which
account for 99% of the total sum of the eigenvalues are selected. The output of this step is considered as spectral information. As the last stage, the spectral
and spatial information are concatenated in a stacked vector and the stacked vector is classified by RF [30].

used for building the APs. In the paper, the standard deviation

is used as the attribute to build the EAP. The classification

results show that there is an improvement when the EAP is

used and a smoother classification result is obtained for visual

examination of results.

The concept of the AP has been also used for different

applications such as change detection. Although, the main

objective of this paper is to investigate the usefulness of the

AP for remote sensing image classification, other applications

of the AP is briefly discussed below.

In [82], APs were employed for detecting changes occurred

on the ground by analyzing two images acquired over the

same areas before and after the occurred event. APs com-

puted on each of the two images were compared in order

to detect differences in the geometrical and morphological

characteristics of the underlining structures present in the two

images in corresponding zones. The reason motivating the use

of APs for the detection of changes relies in the fact that

if an abrupt change has occurred in the scene (e.g., a man-

made change or a natural disaster) it will be likely that the

spatial characteristics of the affected areas will have changed

too. Thus, by detecting differences in the behaviors of the

APs in corresponding positions in the image can be useful

for spotting a modification in the spatial arrangement of the

pixels values between the two images. The change detection

technique was based on three main steps: 1) Application of

the APs to each image; 2) Region extraction and reliable level

selection by analyzing the DAPs; 3) Comparison of the APs

and generation of the change-detection map.

VI. DISCUSSION

As can be seen from Fig. 9, the use of appropriate FE/FS

techniques and efficient classifiers can significantly influence

on the obtained classification accuracies and the quality of

the classification map. Therefore, in this section, leveraging

the outcomes presented in the literature, the capability of

different FE/FS techniques as well as different classifiers will

be investigated.

A. The influence of different FE/FS along with AP on the

classification accuracies

Although this subsection should be considered self-

sufficient for understanding the influence of different FE/FS

along with AP on the classification accuracies, for more

information regarding the aforementioned concepts, please

refer to [30, 52, 53]. More references can be found throughout

the paper.

1) When only spectral information derived by NWFE,

DAFE and DBFE is used, the result of the classification

is almost the same. However, when the corresponding

EMAP based on DAFE, DBFE, NWFE is made, the

accuracies are quite different which shows that the

classification with EMAPs do not necessarily follow

the trend of classification with spectral information only

[52, 53].

2) When the number of training samples is limited, a super-

vised FE leads to less accurate results in terms of classi-

fication accuracy compared to unsupervised techniques.

In [83], it was mentioned that the combination of KPCA

and EMAPs can be a simple even powerful strategy
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to perform spectral-spatial classification of data sets

with limited spectral resolution (RGB and multispectral

images). With reference to [52], in general, EMAP

based on KPCA can be found more consistent even

though it sometimes produces slightly inferior accuracies

in comparison with the supervised feature extraction

techniques. However, it is difficult to anticipate which

supervised feature extraction technique is appropriate for

a problem at hand and the performance of that is highly

dependent on the number of available training samples.

3) In a case when the number of training samples is

sufficient, according to the experiments shown in [52],

DBFE seems to be able to provide better results in terms

of classification accuracies than DAFE and NWFE in

order to produce EMAP.

4) Based on the results reported in [30], the CPU pro-

cessing time for the both schemes (MANUAL and

AUTOMATIC) is almost the same. For AUTOMATIC,

there is no need to adjust the initial parameters for

the attribute profiles which is considered as the main

shortcoming of the usage of AP.

5) The results obtained in [84] show that the selection

strategy is able to retrieve for each class its optimal

discriminant features. Remarkably, that technique effec-

tively handled different types of spatial features (e.g.,

textural features and APs). In addition, it was shown that

the models trained on the features discovered reached at

worst the same performances as considering predefined

filter banks (i.e., manual selection of the filter parameters

requiring prior knowledge).

6) In [53], a spectral-spatial classification framework was

developed which is specifically related to the use of para-

metric supervised feature extraction techniques (DAFE

and DBFE) and EMAP. Results show that when different

parametric supervised feature extraction techniques is

used for the first and second steps (e.g., DBFE is applied

on the input data and DAFE is carried out on the features

extracted by EMAP or vice versa) and the first features

corresponding to the top few eigenvalues of the both

steps are concatenated into a stacked vector, the result

of the classification is good and RF can classify the

stacked vector of features accurately.

B. A comparison of different classifiers used with EMAP

Although this subsection should be considered self-

sufficient for understanding the influence of different classi-

fiers on the classification accuracies for the features produced

by AP, for more information regarding the aforementioned

concept, please refer to [30, 52, 53]. More references can be

found throughout the paper.

Below, the main points regarding the applicability of SVM

and RF are listed:

1) While both SVM and RF classification methods are

shown to be effective classifiers for non-linear clas-

sification problems, SVM requires a computationally

demanding parameter tuning process (cross-validation)

in order to tune hyperplane parameters and consequently

achieve optimal results, whereas RF does not require

such tuning process. In this sense, RF is much faster

than SVM and for volumetric data using RF instead of

SVM is favorable.

2) The effect of the Hughes phenomenon is more evident

when the number of dimensionality is high and the

data is classified by SVM. Better accuracy values are

achieved with SVM only after a further feature reduction

[52].

3) RF is more stable when limited training samples are

available. Even when a sufficient number of training

samples are available, the SVM classifier required fur-

ther feature reduction of the profile to achieve acceptable

classification accuracy [65].

4) Based on the results reported in [52, 53, 65], RF provides

higher classification accuracies compared to SVM when

it is directly performed on EMAP, but SVM performs

better in terms of classification accuracies when a further

feature extraction is performed on EMAP. This shows

the capability of RF in order to handle a higher dimen-

sional space as an input to the classifier. On the contrary,

the second feature extraction on EMAP downgrades

the classification accuracies of the RF classifier. The

reason of that might be the RF classifier is based on

a collection of a weak classifiers, which can statistically

take advantage from a large set of redundant features. In

contrast, the SVM classifier seems to be more effective

in designing discriminant function when a subset of non-

redundant features defines a highly non-linear problem.

5) The experiments in [75] showed significant improvement

in classification accuracies when the generalized com-

posite kernel framework is used when compared to the

regular composite kernel framework.

6) From the result obtained with SRC coupled with EMAPs

[73], it can be stated that SRC outperforms other clas-

sifiers such as SVM and SVM with composite kernels

especially when the number of training samples is small.

C. A comparison of different classification maps obtained by

EMAP

This subsection is based on the comparison of different

classification maps obtained by EMAP and different FEs. In

order to precisely evaluate different classification maps, two

different scenarios are taken into account. The first scenario

is devoted to a situation when the number of training samples

is not sufficient. For this purpose, a frequently used, Indian

Pines data set is used. For more information related to the

number of training and test samples, please see [52]. The

second scenario is devoted to a situation when the number

of training samples is sufficient. For this purpose, a frequently

used, Pavia University data set is used. For more information

related to the number of training and test samples, please see

[30].

Scenario (1) When the number of training samples is

limited:

By visually comparing the classification maps shown in Figs.

11 and 12, the following points can be obtained:
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Fig. 11. Classification maps for Indian Pines data with RF classifier (with 200 trees) using EMAPs of (a) PCA (OA=92.83%), (b) KPCA (OA=94.76%), (c)
DAFE (OA=84.33%), (d) DBFE (OA=87.23%) and (e) NWFE (OA=95.06%), and feature reduction applied on EMAP using (f) NW-NW (OA=91.03%) and
(g) KP-NW (OA=90.36%) [52]
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(e) (f) (g)  

Fig. 12. Classification maps for Indian Pines data with SVM (with 5-fold cross validation and RBF kernel) classifier using EMAPs of (a) PCA (OA=86.53%),
(b) KPCA (OA=90.20%), (c) DAFE (OA=70.69%), (d) DBFE (OA=78.39%) and (e) NWFE (OA=81.85%), and feature reduction applied on EMAP using
(f) NW-NW (OA=94.17%) and (g) KP-NW (OA=93.75%) [52]
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1) When the number of training samples is limited, features

obtained by NWFE can be considered as good bases

in order to produce EMAP. In this case, NWFE may

outperform other feature extraction techniques such as

PCA, KPCA, DAFE and DBFE in terms of classification

accuracies, when it is considered for building EMAP.

2) In order to produce EMAP, when the number of train-

ing samples is too small, supervised feature extraction

techniques lead to salt and pepper effects and the

object cannot be exploited properly after performing

a classification. In other words, the shape of different

objects may not be properly preserved when a supervised

feature extraction method is taken into account even

while attribute profiles are used. In this case, the use

of unsupervised feature reduction (in particular KPCA),

can extract the shape of the object in a better way.

3) As it was mentioned before, RF shows more stability

when limited training samples are available.

4) RF is able to provide higher classification accuracies

compared to SVM when it is directly performed on

EMAP. However, SVM performs better in terms of clas-

sification accuracies when a further feature extraction is

performed on EMAP.

5) The overall accuracy of Indian Pines when it is classified

by RF (with 200 trees) and SVM (with 5-fold cross-

validation) is 65.6% and 69.70%, respectively. Based on

classification accuracies reported in Figs. 11 and 11, one

can easily obtain that the use of AP can significantly

improve the classification results.

Scenario (2) When an adequate number of training samples

is available:

By visually comparing the classification maps shown in Figs.

13, 14 and 15, the following can be concluded:

1) When an adequate number of training samples is avail-

able, DBFE seems to be able to provide better results in

terms of overall classification accuracy.

2) Based on the experiments reported in [30], when the

number of training samples is adequate, the use of DAFE

may lead to better classification accuracies by using

the frameworks developed in [30]. In this case, the use

of DAFE improves the overall accuracy of NWFE by

almost 2.5%. Fig. 15 shows that not only the number of

training sample is important on the efficiency of DAFE

and NWFE, but also the distribution of training samples

on the whole data set is of importance. As an example,

the black boxes in Fig. 15 shows two parts of the input

data which do not contain training samples. In this case,

although the overall accuracy of DAFE (97.00%) is

significantly higher than the overall accuracy of NWFE

(94.58%), some objects are missing in the classification

map obtained by DAFE because the data do not have

training samples in that regions. On the other hand, for

the region where there is an adequate number of training

samples (the red box), DAFE leads to a comparatively

smoother classification map.

3) The overall accuracy of Indian Pines when it is classified

by RF (with 200 trees) and SVM (with 5-fold cross-

validation) is 71.57% and 81.44%, respectively. Based

on classification accuracies reported in Figs. 11 and 11,

one can easily obtain that the use of AP can significantly

improve the classification results.

VII. CONCLUSION AND FUTURE WORKS

In this paper, a survey of recent works dealing with Attribute

Profiles has been presented. From the various contributions

appeared in the literature dealing with APs, the effectiveness

of using APs for modeling the spatial information of an image

can be assessed.

Indeed, the AP, being based on an attribute that models some

regional characteristics (e.g., the scale, shape and contrast),

provides a multilevel decomposition of an image. As shown by

many works referred to in this paper, the sequence of filtered

images composing the AP can be employed for classification

in a simple yet effective architecture by considering it as set

of features feeding a classifier (in complement of the original

spectral data).

We have focused this survey on the classification of re-

motely sensed images with particular attention to the hy-

perspectral data for which extensions of the AP have been

proposed (i.e., the EAP and EMAP).

From the analysis it emerged that APs can extract spatial

features useful for classification but present some aspects that

might be critical. As clearly seen by the achievements reported

in many works, AP provides features that can greatly improve

the discriminability of the samples in classification. Despite

their usefulness we recall that the AP, being composed of

attribute thinnings and thickenings, relies on a representation

of the image as a min- and max-tree. Thus, these filters can

only process image extrema. This can be a limitation when

the image structures do not correspond to regional extrema

such as for noisy or highly textured images. Further research

should be addressed to a deeper investigation of the extension

of APs for the analysis of images different from the optical

ones (e.g., SAR data).

Many works in the literature address the classification of

hyperspectral images. In this context, since attribute filters

cannot be uniquely extended to multivariate images (e.g.,

multi- or hyper-spectral images) different strategies can be

considered. The mostly used architecture relies on a reduction

of the dimensionality of the data, followed by the application

of an AP to each component (leading to an EAP) after the

reduction. Although this strategy has the great advantage of

dealing with only few components, the resulting profile heavily

relies on the transformation employed. Several supervised and

unsupervised feature extraction techniques have been proposed

in the literature showing the criticality of this step which still

presents margins of improvement.

The selection of attributes and their related thresholds is

also another aspect of utmost importance. Strategies for the

selection of the attribute thresholds have been proposed in

order perform automatically this task proving to achieve results

that are comparable to those obtained by manual tuning. How-

ever, the proposed techniques are specific to some attributes

(i.e., area and standard deviation) and might not be applicable
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Fig. 13. Classification results of Pavia University with RF classifier (with 200 trees) using EMAPS of (a) KPCA (OA=92.37%), (b) DBFE (OA=95.83%),
(c) NWFE (OA=92.19%) and feature reduction applied on EMAP using (d) DB-DB (OA=96.81%) [52]

    
(a) (b) (c) (d) 

Fig. 14. Classification maps of Pavia University with SVM classifier (with 5-fold cross validation and RBF kernel) using EMAPS of (a) KPCA (OA=91.52%),
(b) DBFE (OA=91.64%), (c) NWFE (OA=89.27%) and feature reduction applied on EMAP using (d) DB-DB (OA=97.89%) [52].

to others. Therefore, opening the need for developing more

generic selection strategies for the filters parameters.

Although informative, APs are typically a set of highly

dimensional and redundant features. Consequently, these as-

pects should be properly handled in order to a make full

exploitation of the informative content of the profiles. Thus,

the selection of the classifier is another key aspect to consider.

Non parametric classifiers such as SVMs and Random Forest

have largely proven to deal well with the high dimensionality

of the profiles. More recently, SVM with composite kernels

and Sparse Representation Classification have been proposed

leading to accurate and robust results even in cases of a

reduced number of training samples.

In order to reduce the redundancy of the APs, especially

when considered in their extended architecture (i.e., the

EMAP), it has been proposed to use dimensionality reduction

techniques. Conventional feature extraction techniques (e.g.,

DAFE, DBFE and NWFE) have been considered proving their

usefulness. Alternatively, feature selection techniques (e.g.,

based on evolutionary algorithms such as GAs and PSO)

techniques have also been proposed to address this task.

In conclusion, although the concept of AP and its extensions

EAP and EMAP have proven to be effective in the analysis

of remote sensing images especially for classification, many

lines of research remain open.
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Fig. 15. Comparison between classification maps obtained by (a) DAFE
(OA=97.00%) and (b) NWFE (OA=97.58%) by using RF classifier (with 200
trees) based on Fig. 10a [30].
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