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Abstract. The last ten years were prolific in the statistical learning and
data mining field and it is now easy to find learning algorithms which are
fast and automatic. Historically a strong hypothesis was that all examples
were available or can be loaded into memory so that learning algorithms
can use them straight away. But recently new use cases generating lots of
data came up as for example: monitoring of telecommunication network,
user modeling in dynamic social network, web mining, etc. The volume of
data increases rapidly and it is now necessary to use incremental learning
algorithms on data streams. This article presents the main approaches of
incremental supervised classification available in the literature. It aims to
give basic knowledge to a reader novice in this subject.

1 Introduction

Significant improvements have been achieved in the fields of machine learning
and data mining during the last decade. A large range of real problems and
a large amount of data can be processed [1,2]. However, these steps forward
improve the existing approaches while remaining in the same framework: the
learning algorithms are still centralized and process a finite dataset which must
be stored in the central memory. Nowadays, the amount of ’ble data drastically
increases in numerous application areas. The standard machine learning frame-
work becomes limited due to the exponential increase of the available data, which
is much faster than the increase of the processing capabilities.

Processing data as a stream constitutes an alternative way of dealing with
large amounts of data. New application areas are currently emerging which
involve data streams [3,4] such as: (i) the management of the telecommunication
networks; (ii) the detection and the tracking of user communities within social
networks; (iii) the preventive maintenance of industrial facilities based on sensor
measurements, etc. The main challenge is to design new algorithms able to scale
on this amount of data. Two main topics of research can be identified: (i) the
parallel processing consists in dividing an algorithm into independent queues in
order to reduce the computing time; (ii) the incremental processing consists in
implementing one-pass algorithms which update the solution after processing
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each piece of data. This paper focuses on the second point: incremental learning
applied on data streams.

Section 2.1 defines the required concepts and notations for understanding this
article. The incremental learning is formally defined in this section and compared
with other types of learning. Section 3 presents the main incremental learning
algorithms classified by type of classifiers. Algorithms for data streams are then
presented in Sect. 4. Such approaches adapt the incremental learning algorithms
to the processing of data streams. In this case, the processed data is emitted
within a data stream without controlling the frequency and the order of the
emitted data. This paradigm allows to process a huge amount of data which
could not be stored in the central memory, or even on the hard drive. This
Section presents the main on-line learning algorithms classified by type of clas-
sifiers. Section 5 addresses the issue of processing non-stationary data streams,
also called “concept drift”. Finally, Sect. 6 is dedicated to the evaluation of such
approaches: the main criteria and metrics able to compare and evaluate algo-
rithms for data streams are presented.

2 Preamble

2.1 Assumptions and Constraints

In terms of machine learning, several types of assumptions and constraints can
be identified which are related to the data and to the type of concept to be
learned. This section describes some of these assumptions and constraints in the
context of incremental learning in order to understand the approaches that will
be presented in Sects. 3 and 4 of this article.

In the remainder of this article, we focus on binary classification problems.
The term “example” designates an observation x. The space of all possible exam-
ples is denoted by X . Each example is described by a set of attributes. The exam-
ples are assumed to be i.i.d, namely independent and randomly chosen within a
probability distribution denoted by DX . Each example is provided with a label
y ∈ Y . The term “model” designates a classifier (f) which aims to predict the
label that must be assigned to any example x (f : X → Y).

Availability of Learning Examples: In the context of this article, the models
are learned from representative examples coming from a classification problem.
In practice the availability and the access to these examples can vary: all in a
database, all in memory, partially in memory, one by one in a stream, etc. Several
types of algorithms for different types of availability of the examples exist in the
literature.

The simplest case is to learn a model from a quantity of representative exam-
ples which can be loaded into the central memory and which can be immediately
processed. In other cases, the amount of examples is too large to be loaded into
the central memory. Thus, specific algorithms must be designed to learn a model
in such conditions. A first way of avoiding the exhaustive storage of the examples
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into the central memory is to divide the data into small parts (also called chunks)
which are processed one after the others. In this case, parallelization techniques
can be used in order to speed up the learning algorithm [5].

In the worst case, the amount of data is too large to be stored. Data are
continuously emitted within a data stream. According to the “data streams”
paradigm, the examples can be seen only once and in their order of arrival
(without storage). In this case, the learning algorithm must be incremental and
needs to have a very low latency due to the potentially high emission rate of the
data stream.

Availability of the Model: Data mining is a two-step process: (1) learn the
model, (2) deploy the model to predict on new data. In the case of regular batch
learning, these two steps are carried out one after the other. But in the case of an
incremental algorithm, the learning stage is triggered as soon as a new example
arrives. In the cases of time-critical applications, the learning step requires a
low latency algorithm (i.e. with a low time complexity). Others kinds of time
constraints can be considered. For instance, in [6] the authors define the concept
of “anytime” algorithm which is able to be stopped at any time and provide
a prediction. The quality of the outcome model is expected to be better and
better, while the algorithm is not stopped. The on-line classifier can be used to
make predictions while it is learning.

Concept to be Learned: Let us consider a supervised classification problem
where the learning algorithm observes a sequence of examples with labels. The
class value of the examples follows a probability distribution denoted by PY . The
concept to be learned is the joint probability P (xi, yi) = P (xi)P (yi|xi), with xi

a given example and yi a given class value.
The concept to be learned is not always constant over time, sometimes it

changes, this phenomenon is called “concept drift” [7]. Gama [8] identifies two
categories of drift: either it is progressive and it is called “concept drift”, or it
is abrupt and it is called “concept shift”. These two types of drift correspond
to a change in the conditional distribution of the target values P (Y |X) over
time. The algorithms of the literature can be classified by their ability (or not)
to support concept drifts.

The distribution of data P (X) may vary over time without changing P (Y |X),
this phenomenon is called covariate shift [9]. The covariate shift also occurs when
a selection of non-iid examples is carried such as a selection of artificially balanced
training examples (which are not balanced in the test set) or in the case of active
learning [10]. There is a debate on the notion of covariate shift, the underlying
distribution of examples (DX) can be assumed to be constant and that it is only
the distribution of the observed examples which changes over time.

In the remainder of this article, in particular in Sect. 5, we will mainly focus on
the drift on P (Y |X), while the distribution P(X) is supposed to be constant within
a particular context. The interested reader can refer to [9,11] to find elements on
the covariate shift problem. Gama introduced the notion of “context” [8] defined
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as a set of examples on which there is no concept drift. A data stream can be con-
sidered as a sequence of contexts. The processing of a stream consists in detecting
concept drifts and/or simultaneously working with multiple contexts (see Sect. 5).

Questions to Consider: The paragraphs above indicate the main questions
to consider before implementing a classifier:

– Can examples be stored in the central memory?
– What is the availability of the training examples? all available? within a data

stream? visible once?
– Is the concept stationary?
– What are the time constraints for the learning algorithm?

The answers to these questions allow one to select the most appropriate algo-
rithms. We must determine whether an incremental algorithm, or an algorithm
specifically designed for data streams, is required.

2.2 Different Kinds of Learning Algorithms

This section defines several types of learning algorithms regarding the possible
time constraints and the availability of examples.

Batch Mode Learning Algorithms: The batch mode consists in learning a
model from a representative dataset which is fully available at the beginning of
the learning stage. This kind of algorithm can process relatively small amounts of
data (up to several GB). Beyond this limit, multiple access/reading/processing
might be required and become prohibitive. It becomes difficult to achieve learning
within a few hours or days. This type of algorithm shows its limits when (i) the
data cannot be fully loaded into the central memory or continuously arrives as
a stream; (ii) the time complexity of the learning algorithm is higher than a
quasi-linear complexity. The incremental learning is often a viable alternative to
this kind of problem.

Incremental Learning: The incremental learning consists in receiving and
integrating new examples without the need to perform a full learning phase
from scratch. A learning algorithm is incremental if for any examples x1, ..., xn

it is able to generate the hypotheses f1, ..., fn such that fi+1 depends only on fi

and xi the current example. The notion of “current example” can be extended
to a summary of the latest processed examples. This summary is exploited by
the learning algorithm instead of the original training examples. The incremental
algorithms must learn from data much faster than the batch learning algorithms.
Such algorithms must have a very low time complexity. To reach this objective,
most of the incremental algorithms read the examples just once so that they can
efficiently process large amounts of data.
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Online Learning: The main difference between the incremental and the online
learning is that the examples continuously arrive from a data stream. The classi-
fier is expected to learn a new hypothesis by integrating the new examples with
a very low latency. The requirements in terms of time complexity are stronger
than for the incremental learning. Ideally, an online classifier implemented on
a data stream must have a constant time complexity (O(1)). The objective is
to learn and predict at least as fast as the data arrives from the stream. These
algorithms must be implemented by taking into account that the available RAM
is limited and constant over time. Furthermore, concept drift must be managed
by these algorithms.

Anytime Learning: An anytime learning algorithm is able to maximize the
quality of the learned model (with respect to a particular evaluation criterion)
until an interruption (which may be the arrival of a new example). The algo-
rithms by contract are relatively close to the anytime algorithms. In [12], the
authors propose an algorithm which takes into account the available resources
(time/CPU/RAM).

2.3 Discussion

From the previous points above the reader may understand there are 3 cases:

– the simplest case is to learn a model from a quantity of representative examples
which can be loaded into the central memory and which can be immediately
processed;

– when the amount of examples is too important to be loaded into the cen-
tral memory, the first possibility is to parallelize if the data can be split in
independent chunks or to have algorithm able to deal the data in one pass;

– the last case, which is dealt in this paper, concerns the data that are contin-
uously emitted. Two subcases have to take into account if the data stream is
stationary or not.

3 Incremental Learning

3.1 Introduction

This section focuses on incremental learning approaches. This kind of algorithms
must satisfy the following properties:

– read examples just once;
– produce a model similar to the one that would have been generated by a batch

algorithm.

Data stream algorithms satisfy additional constraints which are detailed in
Sect. 4.1. In the literature, many learning algorithms dedicated to the problem
of supervised classification exist such as the support vector machine (SVM), the
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neural networks, the k-nearest neighbors (KNN), the decision trees, the logistic
regression, etc. The choice of the algorithm highly depends on the task and
the need to interpret the model. This article does not describe all the existing
approaches since this would take too much place. The following section focuses
on the most widely used algorithms in incremental learning.

3.2 Decision Trees

A decision tree [13,14] is a classifier constructed as an acyclic graph. The end of
each branch of the tree is a “leaf” which provides the result obtained depending
on the decisions taken from the root of the tree to the leaf. Each intermediate
node in the tree contains a test on a particular attribute that distributes data
in the different sub-trees. During the learning phase of a decision tree, a purity
criterion such as the entropy (used in C4.5) or the Gini criterion (used in CART)
is exploited to transform a leaf into a node by selecting an attribute and a cut
value. The objective is to identify groups of examples as homogeneous as possible
with respect to the target variable [15]. During the test phase, a new example
to be classified “goes down” within the tree from the root to a single leaf. His
path is determined by the values of its attributes. The example is then assigned
to the majority class of the leaf, with a score corresponding to the proportion
of training examples in the leaf that belong to this class. Decision trees have
the following advantages: (i) a good interpretability of the model, (ii) the ability
to find the discriminating variables within a large amount of data. The most
commonly used algorithms are ID3, C4.5, CART but they are not incremental.

Incremental versions of decision trees have emerged in the 80s. ID4 is proposed
in [16] and ID5R in [17]. Both approaches are based on ID3 and propose an incre-
mental learning algorithm. The algorithm ID5R ensures to build a decision tree
similar to ID3, while ID4 may not converge or may have a poor prediction in some
cases. More recently, Utgoff [18] proposes the algorithm ITI which maintains sta-
tistics within each leaf in order to reconstruct the tree with the arrival of new
examples. The good interpretability of the decision trees and their ability to pre-
dict with a low latency make them a suitable choice for processing large amounts
of data. However, decision trees are not adapted to manage concept drift. In this
case, significant parts of the decision tree must be pruned and relearned.

3.3 Support Vector Machines

The Support Vector Machines (SVM) has been proposed by Vapnik in 1963.
The first publications based on this classification method appeared only in the
90s [19,20]. The main idea is to maximize the distance between the separating
hyperplane and the closest training examples.

Incremental versions of the SVM have been proposed, among these, [21] pro-
poses to partition the data and identifies four incremental learning techniques:

– ED - Error Driven: when new examples arrive, misclassified ones are exploited
to update the SVM.
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– FP - Fixed Partition: a learning stage is independently performed on each
partition and the resulting support vectors are aggregated [22].

– EM - Exceeding-Margin: when new examples arrive, those which are located
in the margin of the SVM are retained. The SVM is updated when enough
examples are collected.

– EM+E - Exceeding-margin+errors: use “ED” and “EM”, the examples which
are located in the margin and which are misclassified are exploited to update
the SVM.

Reference [23] proposes a Proximal SVM (PSVM) which considers the deci-
sion boundary as a space (i.e. a collection of hyperplanes). The support vec-
tors and some examples which are located close to the decision boundary are
stored. This set of maintained examples change over time, some old examples are
removed and others new examples are added which makes the SVM incremental.

The algorithm LASVM [24–26] was proposed recently. This online approach
incrementally selects a set of examples from which the SVM is learned. In prac-
tice LASVM gives very satisfactory results. This learning algorithm can be inter-
rupted at any time with a finalization step which removes the obsolete support
vectors. This step is iteratively carried out during the online learning which
allows the algorithm to provide a result close to the optimal solution. The amount
of RAM used can be parameterized in order to set the compromise between the
amount of used memory and the computing time (i.e. the latency). A compara-
tive study of different incremental SVM algorithms is available in [21].

3.4 Rule-Based Systems

The rule-based systems are widely used to store and handle knowledge in order to
provide a decision support. Typically, such a system is based on rules which come
from a particular field of knowledge (ex: medicine, chemistry, biology, etc.) and is
used to make inferences or choices. For instance, such a system can help a doctor to
find the correct diagnosis based on a set of symptoms. The knowledge (i.e. the set
of rules) can be provided by a human expert of the domain, or it can be learned
from a dataset. In the case of automatically extracted knowledge, some criteria
exist which are used to evaluate the quality of the learned rules. The interested
readers can refer to [27] which provides a complete review of these criteria.

Several rule-based algorithms were adapted to the incremental learning:

– STAGGER [28] is the first rule-based system able to manage concept drift.
This approach is based on two processes: the first one adjusts the weights of
the attributes of the rules and the second one is able to add attributes to
existing rules.

– FLORA, FLORA3 [29] are based on a temporal windowing and are able to
manage a collection of contexts which can be disabled or enabled over time.

– AQ-PM [30] keeps only the examples which are located close to the decision
boundaries of the rules. This approach is able to forget the old examples in
order to learn new concepts.
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3.5 Naive Bayes Classifier

This section focuses on the naive Bayes classifier [31] which assumes that the
explanatory variables are independent conditionally to the target variable. This
assumption drastically reduces the training time complexity of this approach
which remains competitive on numerous application areas. The performance of
the naive Bayes classifier depends on the quality of the estimate of the uni-
variate conditional distributions and on an efficient selection of the informative
explicative variables.

The main advantage of the approach is its low training and prediction time
complexity and its low variance. As shown in [32], the naive Bayes classifier is
highly competitive when few learning examples are available. This interesting
property contributes to the fact that the naive Bayes classifier is widely used
and combined with other learning algorithms, as decision trees in [33] (NBTree).
Furthermore, the naive Bayes approach is intrinsically incremental and can be
easily updated online. To do so, it is sufficient to update some counts in order to
estimate the univariate conditional probabilities. These probabilities are based
on an estimate of the densities; this problem can be viewed as the incremental
estimation of the conditional densities [34]. Two density estimation approaches
are proposed in [35].

IFFD is proposed in [36] which is an incremental discretization approach.
This approach allows updating the discretization at the arrival of each new
example without computing the discretization from scratch. The conditional
probabilities are incrementally maintained in memory. The IFFD algorithm is
only based on two possible operations: add a value to an interval, or split an
interval. Others non-naive Bayesian approaches exist which are able to aggregate
variables and/or values.

3.6 KNN - Lazy Learning

The lazy learning approaches [37] such as the k-nearest neighbors (KNN) do not
exploit learning algorithms but only keep a set of useful examples. No global
model is built. The predictions are carried out using a local model (built on
the fly) which exploits only a subset of the available examples. This kind of
approaches can be easily adapted to the incremental learning by updating the
set of the stored examples. Some approaches avoid using the old examples during
this update [38]. For instance, the KNN approach predicts the label of an example
by selecting the closest training examples and by exploiting the class values of
these selected examples.

Two main topics of research exists in literature: (i) the speed up of the search
of the KNN [39,40]; (ii) the learning of metrics [41–43]. A comparative study of
incremental and non-incremental KNN can be found in [44].

4 Incremental Learning on Streams

4.1 Introduction

Since 2000, the volumetry of data to process has increased exponentially due
to the internet and most recently to social networks. A part of these data



96 V. Lemaire et al.

arrives continuously and are visible only once: these kinds of data are called
data streams. Specific algorithms dedicated to data streams are needed to effi-
ciently build classifiers. This section presents the main methods in the literature
for classification on data streams.

First, let us focus on the expected properties for a good algorithm designed
for incremental classification on streams. Domingos wrote a general article [45]
about learning on data streams and identify additional expected properties of
this kind of algorithms:

– process each example in a low and constant time;
– read examples just once and in their order of arrival;
– use of a fixed amount of memory (independently of the number of examples

processed);
– able to predict at any time (can be interrupted);
– able to adapt the model in case of concept drift.

Similar properties were presented in [46] but the study was in the context
of large data set and not of streaming data. More recently, [47] proposed eight
properties to qualify an algorithm for streaming data. However this last article
is more related to database field than to data mining. Table 1 summarizes the
expected properties in these three papers.

Table 1. Expected properties for a learning algorithm on data streams: (1) = [46];
(2) = [48]; (3) = [47].

(1) (2) (3)

Incremental x x

Read data only once x x x

Memory management x x x

Anytime x x x

Deal with concept drift x

Secondly, we focus on the criteria to compare the learning methods. Table 2
presents this comparison with the criteria generally used [49] to evaluate learning
algorithm. The deployment complexity is given in this table for a two classes
problem and represents the upper bound of the complexity to obtain one of the
conditional probability for a test example: P (Ck|X). This upper bound is rarely
reached for many classifiers: for instance if we take a decision tree (and the tree
is not fully unbalanced), the complexity is O(h) where h represents the depth of
the tree.

Finally the differences between incremental learning for batch learning or
for data streams are presented in Table 3. A “post-optimization” step can be
performed at the end of the learning process. This step aims to improve the
model without necessarily reading again the examples.
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Table 2. Comparison of the main algorithms: n number of examples; j number of
attributes; a number of rules; b average number of predicates per rule, s number of
support vectors.

Criterion Decision SVM Nearest Rules base Naive

tree neighbour system Bayes

Characteristics of the learning algorithm

Learning speed + − − + + − +

Deployment complexity O(a) O(sj) O(nj) O(ab) O(j)

Speed and ability to − − − + + + + +

update the model

CPU - memory + + − − + +

Relevance of the classifier

Accuracy + + + + + + + +

Number of parameters − − + + + + +

Speed to predict + + − − + + +

Model visualization + + − + + + + + +

Noise sensibility − − + + − − + +

Table 3. Properties of incremental learning vs incremental learning on streams
(yes = required, no =not required).

Incremental Incremental

on streams

Tuning of the learner settings No No

using cross-validation

Data read just once Yes Yes

Post-optimization after learning Yes No

Complexity for learning and prediction Low Very low

Memory management Yes Yes

Handling of the trade-off between No Yes

accuracy and time to learn

Concept drift handling No Yes

Anytime No Recommended

The next parts in this section present algorithms which are incremental and
also seem to be adapted to process data streams: able to learn without slowing
down the stream (lower complexity than the algorithms in the previous section),
able to reach a good trade-off between processing/memory/precision, able to
deal with concept drifts. They fulfill all or a part of the criteria presented in
Table 3.
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4.2 Decision Tree

Introduction

Limits of the existing algorithms: SLIQ [50], SPRINT [51], RAINFOREST [52]
are algorithms specifically designed to deal with very large data sets. However
they require reading many times the data and therefore they do not fulfill the
stream constraint of reading only once the data. Few algorithms are able to see
data just once as for instance ID5R [17] or ITI [18]. Nevertheless sometimes it is
more expensive to update the model than to learn it from scratch, hence these
algorithms cannot be considered as “online” or “anytime”.

Tree size: Decision trees are built in a way that makes them always grow as new
data arrive [53] but a deeper tree usually means over-fitting than better perfor-
mance ([49] - p.203). In the context of stream mining, a tree would never stop
to grow if there are no mechanisms to prune it. Therefore new algorithms were
proposed to build trees on a data stream that will have dedicated mechanisms
to stop them from growing.

Concept drift: Data streams usually have concept drift and in that case the
decision tree must be pruned or restructured to adapt to the new concept [17,18].

Hoeffding bound: Numerous incremental learning algorithms on streams use the
Hoeffding bound [54] to find the minimal number of examples needed to split
a leaf into a node. For a random variable r within the range R and after n
independent observations, the Hoeffding bound states that, with a probability

1− δ, that the true mean of a r is not different from r̄ − ǫ, where ǫ =
√

R2

2n
ln( 1

δ
).

This bound does not depend on the data distribution but only on:

– the range R
– the number of observations n
– the desired confidence δ

As a consequence, this bound is more conservative since it has no prior on the
data distribution1.

Main Algorithms in the Literature: This section presents the main incre-
mental decision trees for data streams in the literature:

VFDT [56] is considered as a reference article for learning on data streams
with millions/billions of examples. This article is widely referenced and compared
to new approaches on the same problems since 2000. In VFDT, the tree is built
incrementally and no examples are kept. The error rate is higher in the early
stage of the learning than an algorithm as C4.5. However after processing millions

1 This bound is not well used in many algorithms of incremental trees as explain in
[55] but with not a very big influence on the results.
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of examples, the error rate become lower than C4.5 which is not able to deal
with millions of examples but has to use just a subset of them. Figure 1, taken
from VFDT article, shows this behavior and why it is better to use VFDT in the
case of massive data streams. Moreover Domingos and Hulten proved that the
“Hoeffding Tree” is similar to the tree that would have been learned with an off-
line algorithm. In order to suit better the use case of stream mining VFDT can
be tuned. The two main parameters are: (i) the maximum amount of memory to
use, (ii) the minimal number of examples seen before calculating the criterion.

Fig. 1. Comparison of C4.5 with VFDT (taken from [56])

CVFDT [48] is an extension of VFDT to deal with concept drift. CFVDT
grows an alternative subtree whenever an old one seems to be out-of-date, and
replaces the old subtree when the new one becomes more accurate. This allows
one to make adjustments when concept drift occurs. To limit the memory usage
only the promising sub-trees are kept. On the dataset “rotating hyperplane” (see
Sect. 6.3), the experiments show that the tree contains four times less nodes but
the time spent to build it is five times longer comparatively to VFDT.

VFDTc [57] is an extension of VFDT able to deal with numerical attributes
and not only categorical. In each leaf and for each attribute counters for numer-
ical values are kept. These counters are stored using a binary tree so that it is
efficient to find the best split value for each attribute to transform this leaf into
a node. The authors of VFDTc observe that it needs 100 to 1,000 examples to
transform a leaf into a node. In order to improve the performance of the tree,
they propose to add a local model in the leaves. The naive Bayes classifier is
known to have good performance with few data (Sect. 3.5) and therefore this
classifier is used in the leaves of VFDTc. Local models improve the performance
of the tree without using extra amount of memory since all the needed statistics
are already available.
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In IADEM [58] and IADEMc [59] the tree construction is also based on
the Hoeffding bound. The tree growth is stopped using the error rate given as a
parameter to the algorithm. IADEMc is an extension able to handle numerical
attributes and which have a naive Bayes classifier in its leaves (as VFDTc). Their
experiments on the WaveFrom and LED datasets show the following differences:
a slightly lower accuracy but less deep trees.

Finally Kirkby in [60] makes a study on “Hoeffding Tree” and proposes
improvements. His first improvement concerns leaves that could have either a
naive Bayes or a majority class classifier. His experiments show that having a
local classifier is not always the best option. He proposes to use the classifier
which has the lowest error rate in its leaf. His second improvement is “Hoeffding
Option Trees” (related to [61]) which have few sub-trees in their nodes. The
same learning examples can update many trees at the same time. The predic-
tion is a majority vote to predict the class value. Bagging [62] and boosting [63]
techniques are also studied: bagging surely improves the accuracy but boosting
does not always give a positive result.

Discussion

Limits of decision trees: Because of the tree structure its first node is very impor-
tant. If a change occurs on the attribute on top nodes then it is more complicated
to update the tree. In that case, it might be needed to rebuild the whole tree
from scratch as stated in [64]. In that case, using decision trees for classification
on non-stationary streams can be costly. The ability for an incremental tree to
get restructured is for sure a key point to have good performance.

About the “anytime” aspect, [65] proposed to use a tree containing a Bayesian
model in all the nodes. If there is not enough time to reach a leaf, the model in
the last visited node is used.

About the Hoeffding bound: one could mention that other bounds like the
McDiarmid bound exist and could be used as well. In [66] Rutkowski et al. show
that the Hoeffding’s inequality is not totally appropriate to solve the underly-
ing problem. They prove two theorems presenting the McDiarmid’s bound for
both the information gain, used in ID3 algorithm, and for Gini index, used in
Classification and Regression Trees (CART) algorithm.

4.3 Support Vector Machine (SVM)

In [67], a SVM version to learn on large datasets is presented. This version is
based on an approximation of the optimal solution using “MEB - Minimum
Enclosing Balls” resolution. Its spatial complexity is independent of the learning
dataset size. A parameter tunes the trade-off between speed and precision of the
classifier.

Reference [68] presents an optimization of the existing methods in order
to increase their throughput. This optimization use the “divide and conquer”
technique to parallelize the problem into sub problems. The goal is to rapidly
find and exclude examples which are not support vectors.
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We could also use LASVM [24–26] on each example of the stream: either the
example is close to the actual support vector and the current solution is updated;
or it is far and then the example is ignored. If the example is used, the complex-
ity is in the best case O(s2) with s the number of support vectors. In both cases
(example ignored or not), the elements from the kernel need to be computed. This
pretty high complexity can explain the very few use cases of “LASVM” in data
stream mining (compared to Hoeffding trees). Reference [69] presents guarantees
for “LASVM” in the context of online learning. To improve the training time to
build the SVM, [70] proposed to use linear SVM and parallelize computation using
GPUs to reduce the computation of a factor 100.

4.4 Rule-Based System

Few articles proposed rule-based systems on data streams. Incremental rule-based
algorithms exists (Sect. 3.4) but they are unable to deal with data streams. Nev-
ertheless three articles of Ferrer et al. [71,72] proposed the FACIL algorithm able
to deal with data streams. FACIL is based on the rule-based system AQ-PM [30].

The FACIL algorithm works in the following way:

– when a new example arrives, it looks for all the rules covering and having its
label, then it increments the rule positive support.

– if the example is not covered then it looks for the rule which needs the minimal
increase of its coverage space. Moreover this increase has to be limited to a
given value κ to be accepted.

– if no rule with the same label as the example are found, then it looks into the
whole set of rules with a different label. If a rule is found then it adds this
example as a negative one and increments the rule negative support.

– if no rule covers this example, then a new rule can be created.
– each rule has its own forgetting window. This window has a variable size.

More recently Gama and Kosina [73] proposed a new algorithm based on
the Hoeffding bound to build rules. A rule is expanded if, for an attribute, the
gain to split on an attribute is better than not to split (the notion of gain is
the same as in VFDT). Moreover another condition is added: the value of the
chosen attribute has to be seen in more than 10 % of the examples. Similarly to
VFDTc, they add a naive Bayes classifier in each rule to improve their accuracy.

4.5 Naive Bayes

The naive Bayes classifier uses conditional probabilities estimates (Sect. 3.5).
These estimates are usually done after a discretization of the explicative vari-
ables. In the stream mining context this first step needs dedicated methods as
most off-line methods usually need to load all the data in memory. In the litera-
ture, two kinds of publication related to incremental discretization can be found.
The articles related to data-mining are not numerous but the literature related
to database provides much more articles because the database systems (DBMS)
need to have good estimates of the data distribution.
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Discretization for Data Mining: Gama and Pinto in [74], propose PiD:
“Partition Incremental Discretization” which performs an incremental discretiza-
tion in order to build a naive Bayes classifier for streams. This discretization is
based on two layers:

– first layer: it aims to lower the spatial and processor complexity of the streams.
It stores per interval the number of examples per class. These intervals evolve
with the stream using the following algorithms: if new values arrive and are
outside the range of data already arrived then a new interval is inserted
(∼EqualWidth); if an interval contains too many examples then this interval
is split into two intervals (∼EqualFreq). The update is incrementally done.
This first layer needs to contain much more intervals than the second layer.
The number of intervals in the first layer is one of the parameters of the
algorithm.

– second layer: it aims to have a more qualitative discretization to build a good
model. It takes as an input the discretization of the first layer and builds the
final discretization which can be: EqualWidth, EqualFreq, K-means, Propor-
tional discretization, Recursive entropy discretization, MDL.

One issue that could arise with this method is due to the first layer that can
use more memory than expected. This could happen if the data distribution is
much skewed or in the presence of numerous outliers. In that case lots of new
intervals will be created.

Discretization for DBMS: Database systems (DBMS) also used discretiza-
tion for estimating data distribution. These estimations are used to have sta-
tistics on the data in order to build accurate execution plans and know which
optimization/join to use. For DBMS it is necessary that these algorithms are
able to deal with insertion and deletion but for data-mining on data streams
this is not always mandatory.

Gibbons et al. [75] propose new incremental algorithms to update the his-
tograms for database systems. Their approach is based on two structures:

– a reservoir to store representative examples (based on “Reservoir sampling”
[76]);

– “Equal Frequency” histograms to summarize the data.

Weighted Naive Bayes: After the computation of the conditional densities
(log(P (X|C))) a weight on each explanatory variable could be computed online
as in [77]. These kinds of method allow the naive bayes to reach better results.

4.6 KNN - Lazy Learning

Nearest neighbors algorithms are easily incremental (Sect. 3.6). In the context
of stream meaning, most of approaches focus on keeping the most represen-
tative examples so that the memory consumption does not increase. This can
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be achieved by (i) forgetting the oldest examples, (ii) aggregating the nearest
neighbors.

Different methods based on the nearest neighbors are proposed in the liter-
ature for stream mining:

– [78] used a discretization technique to lower the input space and therefore
limit the memory needed to store the examples.

– [79] keeps the most recent examples and used a forgetting window to update
them.

– [80] considers that the key problem for learning on data stream is to maintain
an implicit concept description in the form of a case base (memory).

4.7 Other Methods

The main approaches in the literature for incremental classification presented
above do not cover all the literature of online learning. A general scheme for
others classifiers could be found in [81]. We give below a list of other online
classifiers (which do not necessarily have all the properties given in Table 1):

Examples inspired on The Immortal Perceptron [82,83]: Second-Order Percep-
tron [84], Ultraconservative Algorithms [85], Passive-Aggressive Learning [86].

Examples based on Stochastic Optimization: Pegasos [87], Stochastic Gradient
Descent [88].

Examples based on Recursive Least Squares/Optimal Control: Online Kernel
Recursive Least Squares [89], Sparse Online Gaussian Processes [90].

Example based on Bandits2: Thompson Sampling [91], UCB, UCT and variants
[92], Exp3, and variants [93].

Examples (Online Learning with Kernels) dedicated to deal with concept drift
(see Section 5): Kernel Perceptron [94], Passive-Aggressive Learning [86] (imple-
mented in Mahout), Pegasos [87], Budget online learning (Budget Perceptron
[95], Forgetron [96], Projectron [97]).

2 Multi-armed bandits explore and exploit online set of decisions, while minimizing the
cumulated regret between the chosen decisions and the optimal decision. Originally,
multi-armed bandits have been used in pharmacology to choose the best drug while
minimizing the number of tests. Today, they tend to replace A/B testing for web
site optimization (Google analytics), they are used for ad-serving optimization. They
are well designed when the true class to predict is not known: for instance, in some
domains the learning algorithm receives only partial feedback upon its prediction,
i.e. a single bit of right-or-wrong, rather than the true label.
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5 Concept Drift Management

Concept drift consists of changes in statistical properties of incoming examples.
It causes a decrease in classifiers accuracy as time passes (non stationary data
stream).

In supervised classification, the concept to learn P (C|X) is the conditional
probability of the class of C knowing the data observations X. A data stream
could be non-stationary if the process which generates the data evolves over the
time. In this case the classifier has to adapt gradually as the concept changes.

The literature on concept drift detection or concept drift management is
abundant [98,99]. The methods on drift management can be split into several
groups: drift detection, ensemble of classifiers, samples weighting, etc.

In this section we consider that the concept to learn may change over time
but it is persistent and consistent (see [100]) between two changes. The period
which exists between two changes is named context (see Sect. 2.1 [8]). Concept
drift appears through the examples: the old observations are obsolete when con-
sidering the actual process which generates the actual observations. The old
observations do not belong to the actual context.

We assume that between two context changes there exists a concept suffi-
ciently persistent and consistent to be able to collect training examples. In that
case concept drift management is mainly based on concept drift detection.

If a concept drift detection method is available, then we could:

– either retrain the decision model from scratch;
– or adapt the current decision model;
– or adapt a summary of the data stream on which the model is based;
– or work on a sequence of decision models which are learned over the time.

Fig. 2. Adaptive learning strategies [101].

In [101] another taxonomy is given by considering two types of method: (i)
Triggering/Evolving and (ii) Single classifier/Ensemble of classifiers (see Fig. 2).
In this figure, in case of:

– Single classifier + Triggering: detect a change and cut;
– Single classifier + Evolving: forget old data and retrain;
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– Ensemble of classifiers + Triggering: build many models, switch models accord-
ing to the observed incoming data;

– Ensemble of classifiers + Evolving: build many models, dynamically combine
them.

The literature indicates that concept drift may have different faces. Assum-
ing that the concept of a sequence of instances changes from Si to Sj , we call
a drift a sudden drift, if at time t, Si is suddenly replaced by Sj . Instead of
a sudden change which means that the source is switched during a very short
period of time after the change point t, gradual drift refers to a change with a
period both sources Si and Sj are active. As time passes, the probability of sam-
pling from source Si decreases, probability of sampling from source Sj increases
until Si is completely replaced by Sj . There is another type of gradual drift
called incremental or stepwise drift. With more than two sources, the difference
between the sources is very small, thus the drift is noticed only when looking at
a longer time period. Reoccurring context means that previously active concept
reappears after some time. It is not certainly periodic. So there is not any pre-
dictive information on when the source will reappear. In Fig. 3, we can see how
these changes happen in a data stream.

Fig. 3. Types of concept drift [99]

The goal of the supervised classification on data streams is to keep the per-
formance of the classifier over the time, while the concept to learn is changing.
In this case, the literature contains three families:

– methods without a classifier: authors mainly use the distributions of the
explanatory variables of the data stream: P (X), P (C), P (X|C).

– methods using a classifier: authors mainly use the performance of the classifier
related to the estimation of P (C|X).

– adaptive methods with or without using a classifier.
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From a Bayesian viewpoint, all these methods try to detect the variation of
a part of:

P (C|X) = P (C)P (X|C)/P (X) (1)

with

1. P (C) the priors of the classes in the data stream
2. P (X) the probability (distribution) of the data
3. P (X|C) the conditional distribution of the data X knowing the class C.

The following section is organized in two parts: the first part describes meth-
ods to perform concept drift detection; the second part describes methods to
adapt the model (single classifier or ensemble of classifiers). In this section we
do not consider the novelty detection problem [102]. Novelty detection is a useful
ability for learning systems, especially in data stream scenarios, where new con-
cepts can appear, known concepts can disappear and concepts can evolve over
time. There are several studies in the literature investigating the use of machine
learning classification techniques for novelty detection in data streams. However,
there is no consensus regarding how to evaluate the performance of these tech-
niques, particular for multiclass problems. The reader may be interested by a
new evaluation approach for multiclass data streams novelty detection problems
described in [103].

5.1 Concept Drift Detection

An extensive literature on concept drift exists. The interested reader may find in
[99] an overview of the existing methods. In the following subsections we present
only a part of the literature related to drift detection methods applied on one of
these three terms: P (C), P (X) and P (X|C).

Concept drift detection is mainly realized by (i) monitoring the distributions
of the explanatory variables of the data stream: P (X), P (C), P (X|C); (ii) mon-
itoring the performance of the classifier related to the estimation of P (C|X).

Methods Using a Classifier: Methods using a classifier monitor the perfor-
mance of the classifier and detect a concept drift when the performance varies
significantly. These methods assume that the classifier is a stationary process and
data are independent and identically distributed (iid). Though, these hypothesis
are not valid in case of a data stream [55], these methods proved their interest
on diverse application [98,104,105]. The three most popular methods using a
classifier of the literature are described below.

– Widmer and Kubat [29] proposed to detect the change in the concept by
analyzing the misclassification rates and the changes that occur in the struc-
tures of the learning algorithm (adding new definitions in the rules in his
case). From some variation of these indicators, the size of the training win-
dow is reduced otherwise this window grows in order to have more exam-
ples to achieve better learning. This article was one of the first works on
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this subject. Many other authors, like Gama in the paragraph below, based
their methods on it.

– DDM This method of Gama et al. [104], detects a concept drift by monitor-
ing the classifier accuracy. Their algorithm assumes that the binary variable
which indicates that the classifier has correctly classified the last example fol-
lows a binomial distribution law. This law can be approximated as a normal
law when the number of examples is higher than 30. The method estimates
after the observation of each sample of the data stream the probability of mis-
classification pi (pi corresponds also to the error rate) and the corresponding
standard deviation si =

√

pi(1 − pi)/i. A significant increase of the error rate
is considered by the method as the presence of a concept drift.
The method uses two decision levels: a “warning” level when pi + si �

pmin + 2 · smin and a “detection level” when pi + si � pmin + 3 · smin (after
the last detection, every time a new example i is processed pmin and smin

are updated simultaneously according to (pmin + smin) = min
i

(pi + si)). The

time spent between the warning level and the detection level is used to train
a new classifier which will replace the current classifier if the detection level is
reached. This mechanism allows not starting from scratch when the decision
level is reached (if the concept drift is not too sudden).

– EDDM This method [105] uses the same algorithm but with another crite-
rion to set the warning and detection levels. This method uses the distance
between the classification errors rather the error rate. This distance corre-
sponds to the number of right predictions between two wrong predictions.
EDDM computes the mean distance between the errors p′

i and the corre-
sponding standard deviation s′

i As for DDM a warning level and a detec-
tion level are defined, respectively of (p′

i + 2 · s′
i)/(p′

max + 2 · s′
max) < α and

(p′
i + 2 · s′

i)/(p′
max + 2 · s′

max) < β. In the experimental part the authors of
EDDM use α = 90% and β = 95%. On synthetic datasets EDDM detects
faster than DDM the gradual concept drift.

Methods Without a Classifier: The methods without a classifier are mainly
methods based on statistical tests applied to detect a change between two obser-
vation windows. These methods are often parametric and need to know the kind
of change to detect: change in the variance, change in the quantiles, change in
the mean, etc. A parametric method is a priori the best when the change type
exactly corresponds to its setting but might not perform well when the problem
does not fit its parameters. In general, it is a compromise between the partic-
ular bias and the effectiveness of the method. If one seeks to detect any type
of change it seems difficult to find a parametric method. The list below is not
exhaustive but gives different ideas on how to perform the detection.

– Welch’s t test: this test applies on two samples of data of size N1 and N2

and is an adaptation of the Student’s t test. This test is used to statistically
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test the null hypothesis that the means of two population X1 and X2, with
unequal variances (s2

1 and s2
2), are equals. The formula of this test is:

p-value = (X1 − X2)/

(

√

(s2
1/N1) + (s2

2/N2)

)

(2)

The null hypothesis can be rejected depending on the p-value.
– Kolmogorov-Smirnov’s test: this test is often used to determine if a sample

follow (or not) a given law or if two samples follow the same law. This test
is based on the properties of their empirical cumulative distribution function.
We will use this test to check if two samples follow the same law. Given
two samples of size N1 and N2 having respectively cumulative distribution
function F1(x) and F2(x), the Kolmogorov-Smirnov distance is defined as: D =

max
x

|F1(x) − F2(x)|. The null hypothesis, assuming that the two samples follow

the same law, is rejected with a confidence of α if:
(

√

(N1N2)/(N1 + N2)
)

D >

Kα. Kα can be found in the Kolmogorov-Smirnov table.
– Page-Hinkley test: Gama in [106] suggests to use the Page-Hinkley test

[107]. Gama modifies this test using fading factor. The Page-Hinkley test
(PHT) is a sequential analysis technique typically used for monitoring change
detection. It allows efficient detection of changes in the normal behavior of a
process which is established by a model. The PHT was designed to detect a
change in the average of a Gaussian signal [108]. This test considers a cumula-
tive variable defined as the cumulated difference between the observed values
and their mean till the current moment.

– MODL P (W |Xi) this method has been proposed by [109] to detect the
change while observing a numerical variable Xi in an unsupervised setting.
This method addresses this problem as a binary classification problem. The
method uses two windows to detect the change: a reference window Wref

which contains the distribution of Xi at the beginning and a current (sliding
or jumping) window Wcur which contains the current distribution. The exam-
ples belonging to Wref are labeled with the class “ref” and the ones belonging
to Wcur are labeled with the class “cur”. This two labels constitute the target
variable W ∈ {Wref ,Wcur} of the classification problem. All these examples
are merged into a training set and the supervised MODL discretization [110]
is applied to see if the variable Xi could be split in more than a single inter-
val. If the discretization gives at least two intervals then there are at least two
significantly different distributions for Xi conditionally to the window W . In
this case the method detects that there is a change between Wref and Wcur.

5.2 Adaptive Methods

The online methods can be divided into two categories [111] depending on
whether or not they use an explicit concept drift detector in the process of
adaptation to evolving environments.

In case of explicit detection, after a concept drift was detected we have to:
(i) either retrain the model from scratch; (ii) or adapt the current decision model;
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(iii) or adapt a summary of the data stream on which the model is based; (iv) or
work on a sequence of models which are learned over the time.

If we decide to retrain the classifier from scratch the learning algorithm uses:

– either a partial memory of the examples: (i) a finite number of examples;
(ii) an adaptive number of examples; (iii) a summary of the examples. The
size of the window of the last used examples cannot exceed the last detected
concept drift [112].

– or statistics on all the examples under the constraint of memory and/or the
precision on the statistics computed [113]. In this case, the idea is to keep
only in memory the “statistics” is useful to train the classifier.

In case of implicit adaptation, the learning system adapts implicitly to a
concept change by holding an ensemble of decision models. Two cases exist:

– either the predictions are based on all the classifiers of the ensemble using
simple voting, weighted voting, etc. [114]:

• SEA (Streaming Ensemble Algorithm) [115]: the data stream fills a buffer
of a predefined size. When the buffer is full a decision tree is built by the
C4.5 algorithm on all the examples in the buffer. Then new buffers are
created to repeat the process and these classifiers are put in a pool. When
the pool is full: if the new inserted classifier improves the prediction of the
pool then it is kept, otherwise it is rejected. In [64] the same technique is
used, but different types of classifiers are used in the pool to incorporate
more diversity: Bayesian naive, C4.5, RIPPER, etc.

• In [116], a weight is given to each classifier. The weights are updated only
when a wrong prediction of the ensemble occurs. In this case a new classifier
is added to the ensemble and the weights of the others are decreased. The
classifiers with too small weights are pruned.

• ADWIN (ADaptative WINdowing) proposed by [98,117] detects a concept
change using an adaptive sliding window model. This method uses a reser-
voir (a sliding window) of size W which grows up when there is no con-
cept drift and decrease when there is a concept drift. The memory used is
log(W ). ADWIN looks at all possible sub-windows partitions in the win-
dow of training data. Whenever two large enough sub-windows have distinct
enough averages, a concept change is detected and the oldest partition of the
window is dropped. Then the worst classifier is dropped and a new classifier
is added to the ensemble. ADWINs only parameter is a confidence bound,
indicating how confident we want to be on the detection.

• ADACC (Anticipative Dynamic Adaptation to Concept Changes) [118] is a
method suggested to deal with both the challenge of optimizing the stability/
plasticity dilemma and with the anticipation and recognition of incoming con-
cepts. This is accomplished through an ensemble method that controls an
ensemble of incremental classifiers. The management of the ensemble of clas-
sifiers naturally adapts to the dynamics of the concept changes with very few
parameters to set, while a learning mechanism managing the changes in the
ensemble provides means for anticipation and quick adaptation to the under-
lying modification of the concept.
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– or the predictions is based on a single classifier of the ensemble: they are
used one by one and other classifiers are considered as a pool of potential
candidates [119,120].

Another way is to weight along the time the examples used to train the
decision model. Since the 80’s several methods have been proposed as the fading
factors [28,29,112,121]. This subject remains relevant for online algorithms. We
can cite for example [121]:

– TWF (Time-Weighted Forgetting): the older the example is, the lower is its
weight;

– LWF (Locally-Weighted Forgetting): at the arrival of a new example the
weights of its closest examples are increased and the weights of the other
examples are decreased. The region having recent examples are then kept or
created if they did not exist. Regions with no or few examples are deleted.
This kind of method is used also for unsupervised learning as in [122];

– PECS (Prediction Error Context Switching): the idea is the same as LWF
but all examples are stored in memory and a checkup of the labels of the
new examples over the old ones is done. A probability is calculated using the
number of examples having or not the same labels. Only the best examples
are used to achieve learning.

A recent survey on adaptive methods may be found in [118] and the reader
may also be interested in the book [123], the tutorial given during the PAKDD
conference [101] or the tutorial given at ECML 2012 [124].

6 Evaluation

In the last years, many algorithms have been published on the topic of supervised
classification for data streams. Although Gama in [106] and then in [8] (Chap. 3)
suggests an experimental method to evaluate and to compare algorithms for data
streams. The comparison between algorithms is not easy since authors do not
always use the same evaluation method and/or the same datasets. Therefore the
aim of this section is to give, in a first part, references about the criteria used in
the literature and in a second part references on the datasets used to perform com-
parisons. Finally, in a third part we discuss other possible points of comparison.

6.1 Evaluation Criteria

The evaluation criteria are the same as those used in the context of off-line
learning, we can cite the main ones:

– Accuracy (ACC): the accuracy is the proportion of true results (both true
positives and true negatives) in the population. An accuracy of 100 % means
that the measured values are exactly the same as the given values.

– Balanced Accuracy (BER): the balanced accuracy avoids inflated performance
estimates on imbalanced datasets. It is defined as the arithmetic mean of
sensitivity and specificity, or the average accuracy obtained on either class.
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– Area Under the ROC curve (AUC): Accuracy is measured by the area under
the ROC curve [125]. An area of 1 represents a perfect test; an area of 0.5
results from a classifier which provides random prediction.

– Kappa Statistic (K) where K = (p0−pc)
(1−pc)

with p0: the prequential accuracy of

the classifier and pc: the probability that a random classifier makes a correct
prediction. K = 1 if the classifier is always correct and K = 0 if the predictions
coincide with the correct ones as often as those of the random classifier.

– Kappa Plus Statistic (K+): a modification a of the Kappa Statistic has recently
been presented in [126,127] where the random classifier is replaced by the
“persistent classifier” (which predict always the label of the latest example
received).

6.2 Evaluation Methods

In the context of off-line learning the most used evaluation method is the cross val-
idation named k-fold cross validation. This technique is a model validation tech-
nique for assessing how the results of a statistical analysis will generalize to an
independent data set. The goal of a cross validation is to define a dataset to “test”
the model in the training phase (i.e., the validation dataset), in order to limit over-
fitting, give an insight on how the model will generalize to an independent data
set (i.e., an unknown dataset, for instance from a real problem), etc.

One round of cross-validation involves partitioning a sample of data into dis-
joint subsets, learning the classifier on one subset (called the training set), and
validating the classifier on the other subset (called the validation set or testing
set). To reduce variability, multiple rounds of cross-validation (k) are performed
using different partitions, and the validation results are averaged over the rounds.

But the context is different in the case of online learning on data streams.
Depending on whether the stream is stationary or not (presence of concept drift
or not) two main techniques exist:

– “Holdout Evaluation” requires the use of two sets of data: the train dataset
and the holdout dataset. The train dataset is used to find the right parameters
of the classifier trained online. The holdout dataset is then used to evaluate
the current decision model, at regular time intervals (or set of examples). The
loss estimated in the holdout is an unbiased estimator. The constitution of the
independent test set is realized a the beginning of the data stream or regularly
(see Fig. 4).

– “Prequential Evaluation” [106]: the error of the current model is computed
from the sequence of examples [128]. For each example in the stream, the
actual model makes a prediction based only on the example attribute-values.
The prequential-error is the sum of a loss function between the prediction
and observed values (see Fig. 5). This method is also called: “Interleave Test-
Then-Train”. One advantage of this method is that the model is always being
tested on unseen examples and no holdout set is needed so that available data
are fully used. It also produces smooth plot accuracy over time. One may find
prequential evaluation of the AUC in [129].
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Fig. 4. Holdout Evaluation

Fig. 5. Prequential Evaluation

Figure 6 compares the errors rates (1−Accuracy) for the algorithm VFDT on
the WaveForm dataset (for which the error rate is bounded by an optimal Bayes
error of 0.14) using (i) the holdout evaluation and the prequential evaluation [106].

The use of fading factors allows a less pessimistic evaluation as Gama sug-
gested in [106] and as illustrated in Fig. 7. The use of a fading factor decreases
the weights of predictions from the past.

In case of:

– stationary data streams: the Holdout or Prequential evaluation can be used,
though the Holdout Evaluation is the most used in the literature;

– presence of concept drifts: the Holdout Evaluation cannot be used since the
test and train dataset could incorporate examples from distinct concepts.
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Fig. 6. Comparison between the Holdout Evaluation and the Prequential Evaluation

Fig. 7. Comparison between the Holdout Evaluation and the Prequential Evaluation
using fading factor

Unlike the Holdout Evaluation, the Prequential Evaluation can be used and
is adapted since its test dataset will evolve with the data stream.

6.3 Datasets

In many articles, the UCI Machine Learning Repository is cited as a source
of real world datasets. This allows having a first idea of the performance of a
new algorithm. To simulate a data stream several approaches can be considered
depending on whether the data stream should contain a drift or not. We present
below several data streams used in scientific publications. The reader can find
other data streams in [8] p. 209.
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Synthetic Data Generators without Drift: The best way to have enough
data to test online algorithm on data streams, synthetic data generators exist
to generate billions of examples. A list and description of these generators is
presented in [60]. The main generators are:

– Random RBF [130] creates numerical dataset whose classes are represented
in hyper sphere of examples with random centers. Each center has a random
position, a single, standard deviation, class label and weight. To create a new
example, a direction and a distance are chosen to move the example from the
central point. The distance is randomly drawn from a Gaussian distribution
with the given centroid standard deviation. The population in a hyper sphere
depends on the weight of the centroid.

– Random Tree Generator: produces a decision tree using user parameters and
then generates examples according to the decision tree. This generator is
biased in favor of decision trees.

– LED Generator [14]: (LED Display Domain Data Set) is composed of 7 Boolean
attributes which are predicted LED displays (the light is on or not) and 10 con-
cepts. Each attribute value has the 10 % of its value inverted. It has an optimal
Bayes classification rate of 74 %.

– Waveform (Waveform Database Generator Dataset) [14] produces 40 attributes
and contains noise. The last 19 attributes are all noise attributes with mean 0
and variance 1. It differentiates between 3 different classes of waves, each of
which is generated from a combination of two or three base waves. It has an
optimal Bayes classification rate of 86 %.

– Function generator [131] produces a stream containing 9 attributes (6 numeric
and 3 categorical) describing hypothetical loan applications. The classes
(whether the loan should be approved) are presented in a Boolean label defined
by 10 functions.

Synthetic Data Generators with Drift: to test the performance of their
online algorithms when there is a concept drift, authors suggested synthetic
data generators where the user may include a drift where the position, the size,
the level, etc. can be parameterized (see also [8] p. 209). The previous generators
may also be changed to contain changes in their data stream.

– SEA Concept generator [115] contains abrupt drift and generates examples
with 3 attributes between 0 and 10 where only the first 2 attributes are rel-
evant. These examples are divided into 4 blocks with different concepts by
giving each block a threshold value which is bound by the sum of the first two
attributes. This data stream has been used in [132].

– STAGGER [28] is a collection of elements, where each individual element
is a Boolean function of attribute-valued pairs represented by a disjunct of
conjuncts. This data stream has been used in [79,98,116,133].

– Rotating hyperplane [48] uses a hyperplane in d-dimension as the one in SVM
and determines the sign of labels. It is useful for simulating time-changing
concepts, because we can change the orientation and position of the hyper-
plane in a smooth manner by changing the relative size of weights. This data
stream has been used in [64,71,79,98].
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– Minku’s artificial problems: a total of 54 datasets were generated by Minku et al.
in 2010, simulating different types of concept changes [134]. A concept change
event is simulated by changing one or more of the problems parameters, creating
a change in the conditional probability function.

Real Data: in these datasets a change in the distribution (concept drift or
covariate shift or both) could exist but the position is not known. Because of
their relatively large size they are used to simulate a real data stream:

– Proxy web of the University of Washington [48,56].
– Electricity dataset (Harries, 1999) [132]: This data was collected from the

Australian New South Wales Electricity Market. It contains 45,312 exam-
ples drawn from 7 May 1996 to 5 December 1998 with one example for each
half hour. The class label (DOWN or UP) identifies the change of the price
related to a moving average of the last 24 h. The attributes are time, elec-
tricity demands and scheduled power transfer between states, all of which are
numeric values.

– Forest Cover type dataset (Covertype) contains 581012 instances of 54 cat-
egorical and integer attributes describing wildness areas condition collected
from US Forest Service (USFS) Region 2 Resource Information System (RIS)
and US Geological Survey (USGS) and USFS data. The class set consists of
7 forest cover types.

– Poker-Hand dataset (Poker Hand): each record is an example of a hand con-
sisting of five playing cards drawn from a standard deck of 52. Each card is
described using two attributes (suit and rank), for a total of 10 predictive
attributes. There is one Class attribute that describes the “Poker Hand”. The
order of cards is important, which is why there are 480 possible Royal Flush
hands as compared to 4. This database has been used in [98].

– The KDD 99 cup dataset is a network intrusion detection dataset [135]. The
task consists of learning a network intrusion detector able to distinguish
between bad connections or attacks and good or normal connections. The
training data consists of 494,021 examples. Each example represents a con-
nection described by a vector of 41 features which contain both categorical
(ex: the type of protocol, the network service) and continuous values (ex: the
length of the connection, its duration). The class label is either 0 or 1 for
normal and bad connection, respectively.

– The Airlines task3 is to predict whether a given flight will be delayed, given the
information of the scheduled departure. The dataset contains 539,383 exam-
ples. Each example is represented by 7 feature values describing the flight (air-
line, flight number, source, destination, day of week, time of departure and
length of flight) and a target value which is either 1 or 0, depending on whether
the flight is delayed or not. This dataset is an example of time-correlated stream
of data. It is expected that when a flight is delayed (due to weather condition
for instance), other timely close flights will be delayed as well.

3 http://moa.cms.waikato.ac.nz/datasets/.

http://moa.cms.waikato.ac.nz/datasets/
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– The SPAM dataset [136] consists of 9,324 examples and was built from the
email messages of the Spam Assassin Collection using the Boolean bag-of-
words representation with 500 attributes. As mentioned in [51], the charac-
teristics of SPAM messages in this dataset gradually change as time passes
(gradual concept drift). This database is small but the presence of a known
concept drift is interesting.

6.4 Comparison Between Online Classifiers

The same methodology is mainly used in the literature. At first, the authors of
a new algorithm perform a comparison with known algorithms but not designed
to operate on data streams as: C4.5, ID3, Naive Bayes, Random Forest, etc. The
idea is to see the performance on small amounts of data against known algorithms.
Then in a second time they confront against other algorithms already present in
the literature on data streams. The reader can find in [60] and in [106] a com-
parison of evaluation methods between some of the algorithms discussed in this
paper.

Platform for evaluation: one of the problems when we want to make a comparison
between different algorithms is to easily perform experiments. Indeed, it is often
difficult to obtain the source code of the algorithm then to successfully build an
executable. Furthermore the input formats and output formats are sometimes dif-
ferent between the various algorithms. For off-line learning the Weka toolkit [137]
proposed by the University of Waikato allows to quickly perform experiments. The
same University proposed a toolkit to perform experiment on data streams for
online learning: MOA [133]. MOA contains most of the data generators previously
described and many online classifiers as the Hoeffding Trees.

Other points of comparison: the criteria presented in Sect. 6.1 are the mainly
used in the context of supervised classification and off-line learning. But in the
case of data streams other evaluation criteria could be used as:

– the size of the model: number of nodes for a decision tree, number of rules for
rule-based system, etc.

– the learning speed: number of examples that could be learned per second,
– the return on investment (ROI): the idea is to asses and interprets the gains

in performance due to model adaptation for a given learning algorithm on a
given prediction task [138],

– the RAM-Hours used which is an evaluation measure of the resources
used [139].

Comparing the learning speed of two algorithms can be problematic because
it assumes that the code/software are publicly available. In addition, this com-
parison do not evaluates only the learning speed but also the platform on which
runs the algorithm and the quality of its implementation. These measures are
useful to give an idea but must be taken with caution and not as absolute ele-
ments of comparison.
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Kirkby [60] realizes his experiments under different memory constraints sim-
ulating various environments: sensor network, PDA, server. The idea is therefore
to compare different algorithms with respect to the environment in which they
are executed.

We can also mention the fact that the precision measurement has no meaning
in absolute terms in case of a drift in the data stream. The reader can then turn
to learning protocols such as mistake-bound [140]. In this context, learning takes
place in cycles where examples are seen one by one; which is consistent with learn-
ing on data streams. At the beginning the learning algorithm (A) learns a hypoth-
esis (ft) and the prediction for the current instance is ft(xt). Then the real label
of the example (yt) is revealed to the learning algorithm which may have made a
mistake (yt �= ft(xt)). Then the cycle is repeated until a given horizon time (T ).
The error bound is related to the error maximum done on the time period T .

Limits of the evaluation techniques: new evaluation techniques have recently
been proposed by the community and a consensus is looked for [106,141]. Indeed,
criteria such as the number of examples learned per second or the speed predic-
tion depends on the machine, the memory used and the implementation quality.
We must find the criteria and/or common platforms in order to achieve a com-
parison as impartial as possible.

7 Conclusion

This synthetic introductory article presented the main approaches in the lit-
erature for incremental classification. At first (Sect. 2.1) the various problems
of learning were presented with the new challenges due to the constraints of
data streams: quantity, speed and availability of the data. These characteristics
require specific algorithms: incremental (Sect. 3) or specialized for data streams
(Sect. 4). The main algorithms have been described in relation to their families:
decision tree, naive Bayes, SVM, etc. The Sect. 5 focuses on processing non-
stationary data streams that have many concepts. Learning on these streams can
be handled by detecting changes in the concept or by having adaptive models.
Finally, the last section addresses the evaluation in the context of data streams.
New data generators based on drifting concept are needed. At the same time the
standard evaluation metrics need to be adapted to the properly evaluate models
built on drifting concepts.

Adapting models to changing concept is one of the most important and diffi-
cult challenge. Just few methods manage to find a compromise between accuracy,
speed and memory. Writing this compromise as a criterion to optimize during the
training of the classifier could be a path to explore. We can also note that data
streams can be considered as a changing environment over which a classification
model is applied. Misclassifications are then available in a limited time horizon.
Therefore we can assume that the algorithms related to game theory or reinforce-
ment learning could also be formalized for incremental learning on data streams.

This survey is obviously not exhaustive of all existing methods but we hope
that it gives enough information and links on supervised classification for data
streams to start on this subject.
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d’Apprentissage (CAP), pp. 239–251 (2004)

5. Provost, F., Kolluri, V.: A survey of methods for scaling up inductive algorithms.
Data Min. Knowl. Discov. 3(2), 131–169 (1999)

6. Dean, T., Boddy, M.: An analysis of time-dependent planning. In: Proceedings of
the Seventh National Conference on Artificial Intelligence, pp. 49–54 (1988)

7. Michalski, R.S., Mozetic, I., Hong, J., Lavrac, N.: The multi-purpose incremental
learning system AQ15 and its testing application to three medical domains. In:
Proceedings of the Fifth National Conference on Artificial Intelligence, pp. 1041–
1045 (1986)

8. Gama, J.: Knowledge Discovery from Data Streams. Chapman and Hall/CRC
Press, Atlanta (2010)

9. Joaquin Quinonero-Candela, J., Sugiyama, M., Schwaighofer, A., Lawrence, N.D.:
Dataset Shift in Machine Learning. MIT Press, Cambridge (2009)

10. Bondu, A., Lemaire, V.: Etat de l’art sur les methodes statistiques d’apprentissage
actif. RNTI A2 Apprentissage artificiel et fouille de données, 189 (2008)
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K., Nijssen, S., Železný, F. (eds.) ECML PKDD 2013, Part I. LNCS (LNAI), vol.
8188, pp. 465–479. Springer, Heidelberg (2013)
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