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This work presents a review and discussion of the challenges that must be solved in order

to successfully develop swarms of Micro Air Vehicles (MAVs) for real world operations.

From the discussion, we extract constraints and links that relate the local level MAV

capabilities to the global operations of the swarm. These should be taken into account

when designing swarm behaviors in order to maximize the utility of the group. At the

lowest level, each MAV should operate safely. Robustness is often hailed as a pillar of

swarm robotics, and a minimum level of local reliability is needed for it to propagate to the

global level. An MAV must be capable of autonomous navigation within an environment

with sufficient trustworthiness before the system can be scaled up. Once the operations

of the single MAV are sufficiently secured for a task, the subsequent challenge is to allow

the MAVs to sense one another within a neighborhood of interest. Relative localization of

neighbors is a fundamental part of self-organizing robotic systems, enabling behaviors

ranging from basic relative collision avoidance to higher level coordination. This ability,

at times taken for granted, also must be sufficiently reliable. Moreover, herein lies a

constraint: the design choice of the relative localization sensor has a direct link to the

behaviors that the swarm can (and should) perform. Vision-based systems, for instance,

force MAVs to fly within the field of view of their camera. Range or communication-based

solutions, alternatively, provide omni-directional relative localization, yet can be victim to

unobservable conditions under certain flight behaviors, such as parallel flight, and require

constant relative excitation. At the swarm level, the final outcome is thus intrinsically

influenced by the on-board abilities and sensors of the individual. The real-world behavior

and operations of an MAV swarm intrinsically follow in a bottom-up fashion as a result

of the local level limitations in cognition, relative knowledge, communication, power,

and safety. Taking these local limitations into account when designing a global swarm

behavior is key in order to take full advantage of the system, enabling local limitations to

become true strengths of the swarm.
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1. INTRODUCTION

Micro Air Vehicles (MAVs), or “small drones,” are becoming
commonplace in the modern world. The term refers to
small, light-weight, flying robots. Several MAV designs exist,
including multirotors (Kumar and Michael, 2012), flapping wing
(Michelson and Reece, 1998; Wood et al., 2013; de Croon et al.,
2016), fixed wing (Green and Oh, 2006), morphing designs
(Falanga et al., 2019b), or “hybrid” vehicles (Itasse et al., 2011).
Of these, quadrotors have enjoyed the spotlight due to their high
maneuverability, their ability to take-off vertically (as opposed to
most fixed wingMAVs, for instance), and their relative simplicity
in design (Gupte et al., 2012; Kumar and Michael, 2012). MAVs
can be used for surveillance and mapping (Mohr and Fitzpatrick,
2008; Scaramuzza et al., 2014; Saska et al., 2016b), infrastructure
inspection (Sa and Corke, 2014), load transport and delivery
(Palunko et al., 2012), or construction (Lindsey et al., 2012;
Augugliaro et al., 2014). Such applications are particularly useful
in areas that are not easily accessible by humans, like forests or
disaster sites (Alexis et al., 2009; Achtelik et al., 2012). Smaller and
lighter designs push the boundaries of their applications further.
Aside from the asset of increased portability, smaller MAVs
can also navigate through tighter spaces, such as narrow indoor
environments with higher agility (Mohr and Fitzpatrick, 2008).
They also cause less damage to their surroundings (including
people) in the event of a collision, making them intrinsically safer
tools (Kushleyev et al., 2013).

Unfortunately, smaller size comes at the expense of more
limited capabilities. The interplay between limited flight time,
limited sensing, and limited power hinder an MAV from
performing grander tasks on its own. This has created a strong
interest in developing MAV swarms (Yang et al., 2018). The
paradigm of swarm robotics aims to transcend the limitations
of a single robot by enabling cooperation in larger teams.
This is inspired by the animal kingdom, where animals and
insects have been observed to unite forces toward a common
goal that is otherwise too complex or challenging for the lone
individual (Garnier et al., 2007). Using several robots at once can
bring several advantages and possibilities, such as: redundancy,
faster task completion due to parallelization, or the execution
of collaborative tasks (Martinoli and Easton, 2003; Trianni and
Campo, 2015; Nedjah and Junior, 2019). The control of robotic
swarms is envisioned to be fully distributed. The individual
robots perceive and process their environment locally and then
act accordingly without global awareness or direct awareness
of the final goal of the swarm. Nevertheless, by means of
collaboration, the robots can achieve an objective that they would
not have been able to achieve by themselves. As they say: there is
strength in numbers.

It is easy to imagine swarms of MAVs jointly carrying a load
that is too heavy for a single one to lift, or persistently exploring
an area without interruption. As is often the case, however,
putting such visions into practice is another story altogether.
Developing self-organizing swarms of MAVs in the real world
is a multi-disciplinary challenge coarsely divided in two main
aspects. One aspect is that of the individual MAV design, where
the local abilities of a single MAV are defined. The second aspect
is the swarm design, whereby we need to develop controllers with

which the global goal can be efficiently achieved, autonomously,
by the swarm. To make matters more complicated, the two are
not decoupled. As we shall explore in this paper, there exist
fundamental links between the local limitations of an MAV and
the behaviors that a swarm of MAVs could, or should, execute as
a result. Vice versa, in order to realize certain swarm behaviors,
there are local requirements that the individualMAVsmust meet.
This bond between the local and the global cannot be ignored if
MAV swarms are to be brought to the real world. In this paper,
we aim to reconcile these two aspects and present a discussion
of the fundamental challenges and constraints linking local MAV
properties and global swarm behaviors.

2. CO-DEPENDENCE OF SWARM DESIGN
AND INDIVIDUAL MAV DESIGN

Let us begin from the primary challenge of swarm robotics: to
design local controllers that successfully lead to global swarm
behaviors (Şahin et al., 2008). Concerning MAVs, these global
behaviors include, but are not limited to: collaborative transport,
collaborative construction, distributed sensing, collaborative
object manipulation, and parallelized exploration and mapping
of environments. Albeit the individual MAV may be limited
in its ability to successfully perform these tasks (for instance,
as areas get larger or loads get heavier), they can be tackled
by collaborating in a swarm. Generally, swarms of robots are
expected to feature the following inherent advantages (Şahin
et al., 2008; Brambilla et al., 2013):

• Robustness: The swarm is robust to the loss or failure of
individual robots.

• Flexibility: The swarm can reconfigure to tackle different
tasks.

• Scalability: The swarm can grow and shrink in size depending
on the needs of the global task.

When designing a swarm of MAVs, we must then ask ourselves:
how can we design a swarm that is robust, flexible, and scalable?
It is true that these properties pertain to the swarm rather than
the individual, but if the swarm is composed of individual units,
then it follows that they must also be present (although perhaps
not always apparent) at the local level. We cannot use individual
robots that are not robust and merely expect the swarm as a
whole to be immune or tolerant to individual failures (Bjerknes
and Winfield, 2013). If there is a high probability of errors at
the local level, such as erroneous observations, poorly executed
commands, or failure of a unit, then this may have a repercussion
on the swarm’s performance; an effect that Bjerknes andWinfield
(2013) have shown can worsen with the number of robots in a
swarm. There is a point after which the individual robots are too
unreliable and the swarm can fail to achieve its goal, or it can be
shown to be outperformed by smaller teams with more reliable
units (Stancliff et al., 2006) or even by a single reliable system
(Engelen et al., 2014). The further complication with MAVs is
that local failures do not remain local, but are likely to cause
collisions and damages to other nearby MAVs and/or objects.
For some tasks, such as collective transport, the impact may be
even more severe as the MAVs are mechanically attached to the
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load (Tagliabue et al., 2019). It thus follows that, to develop a
robust swarm for real world deployment, we must also ensure
robustness at the local level.

Of equal importance is to make sure that the robots have
the satisfactory tools and sensors to carry out their individual
components of a global task. The more capable the sensors
are, the more likely it is that the swarm can be flexible
and adjust to different tasks or unexpected changes. When
performing pure swarm intelligence research, we can afford to
abstract away from lower level issues (Brutschy et al., 2015).
For instance, in a study on making a decision about selecting
a new location for a swarm’s nest, one can abstract away from
actually evaluating the quality of a nest location, and instead
focus the analysis on a particular aspect of the system, such
as the decision making process. However, when dealing with
real-world applications, this is not an option. If we want to
develop nest selection capabilities for a swarm in the real world,
each robot should be capable of: flying and operating safely,
recognizing the existence of a site, evaluating the quality of a
site with a certain reliability, exchanging this information with its
neighbors, and more. All these lower level requirements need to
be appropriately realized for the global level outcome to emerge,
or otherwise need to be accepted as limitations of the system.
The way in which they are implemented shape the final behavior
of the swarm.

Last but not least, unless properly accounted for, there
are scalability problems that may also occur as the swarm
grows in size. Examples of issues are: a congested airspace
whereby the MAVs are unable to adhere to safety distances,
a cluttered visual environment as a result of several MAVs
(thus obstructing the task), or poor connectivity as a result of
low-range communication capabilities. To achieve scalability,
the MAV design must be such that these properties are
appropriately accommodated, from the appropriate hardware
design all the way to the higher level controllers which make up
the swarm behavior.

2.1. The Challenge of Local Sensing and
Control
When flying several MAVs at once, the control architecture can
be of two types: (1) centralized, or (2) decentralized. In the
centralized case, all MAVs in a swarm are controlled by a single
computer. This “omniscient” entity knows the relevant states
of all MAVs and can (pre-)plan their actions accordingly. The
planning can be done a-priori and/or online. In the decentralized
case, the MAVs make their decisions locally.

A second dichotomy can also be defined for how the MAVs
sense their environment: (1) using external position sensing,
or (2) locally. External positioning is typically achieved with a
Global Navigation Satellite System (GNSS) or with a Motion
Capture System (MCS), depending on whether the MAVs are
flying outdoors or indoors, respectively. Alternatively, the latter
only relies on the sensors that are on-board of the MAV.

Currently, the combination of centralized architecture and
external positioning have achieved the highest stage of maturity,
allowing for flights with several MAVs. Kushleyev et al. (2013)

showed a swarm of 20micro quadrotors that could re-organize in
several formations. Lindsey et al. (2012), Augugliaro et al. (2014),
and Mirjan et al. (2016) developed impressive collaborative
construction schemes using a team of MAVs. Preiss et al.
(2017) showcased “Crazyswarm,” an indoor display of 49 small
quadrotors flying together. The strategy of centralized planning
and external positioning has also attracted large industry
investments, leading to shows with record-breaking number of
MAVs flying simultaneously. In 2015, Intel and Ars Electronica
Futurelab first flew 100MAVs, making a Guinness World Record
(Swatman, 2016a). In 2016, Intel beat its own record by flying
500 MAVs simultaneously (Swatman, 2016b). In 2018, EHang
claimed the record with 1,374 MAVs flying above the city
of Xi’an, China (Cadell, 2018). In 2019, Intel reclaimed the
title by flying 2,066 MAVs (Guinness World Records, 2018)
outdoors. Meanwhile, the record for the most MAVs flying
indoors (from a single computer) was recently broken by BT with
160 MAVs (Guinness World Records, 2019).

Without external positioning systems or centralized
planning/control, the problem of flying several MAVs at
once becomes more challenging. This is because: (1) the MAVs
have to rely only on on-board perception, or (2) they have to
make local decisions without the benefit of global planning, or
(3) both. It is then not surprising that, as shown in Figure 1,
the swarms that have been flown without external positioning
and/or centralized control are significantly smaller. When the
control is decentralized, but the MAVs benefit from an external
positioning system, or vice versa, the largest swarms are in the
dozens (Hauert et al., 2011; Vásárhelyi et al., 2018; Weinstein
et al., 2018). For swarms featuring both local perception and
distributed control, the highest numbers are currently in the
single digits (Nägeli et al., 2014; Guo et al., 2017; Saska et al.,
2017; McGuire et al., 2019). Despite the fact that these numbers
have been increasing in the last few years, they are still lower, as
the operations are shifted away from external system and toward
on-board perception and control. If the past is any indication
for the future, we expect that: (1) the numbers of drones will
keep increasing for all cases, and (2) businesses will take over the
records as the technologies for on-board decision making and
perception become more mature.

Although we can fly a high number of MAVs when using
centralized planning and external positioning, swarming is
not just a numbers game. Flying with many MAVs does
not automatically imply that we are achieving the benefits of
swarm robotics (Hamann, 2018). A centralized system relies
on a main computer to take all decisions. This means that
a prompt online re-planning is needed in order to achieve
robustness and flexibility. This re-planning grows in complexity
with the size of the swarm, making the system unscalable.
Moreover, the central computer represents a single point
of failure. Instead, a swarm adopts a distributed strategy
whereby each robot takes a decision independently. The
fact that each MAV needs to take its own decisions, and
additionally, if the MAVs do not rely on external infrastructure,
introduces a new layer of difficulty. However, this is also
what brings new advantages: redundancy, scalability, and
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FIGURE 1 | Scatter plot of the number of MAVs that have been flown in sampled state of the art studies discussed in this paper. The combination of centralized

planning/control with external positioning has allowed to fly significantly larger swarms. The numbers are lower for the works featuring decentralized control with

external positioning, or centralized control with local sensing. The works that use both decentralized control and do not rely on external positioning can be seen to

feature the fewest MAVs due to the increased complexity of the control and perception task.

adaptability to changes (Şahin, 2005; Bonabeau and Théraulaz,
2008)1.

When we analyze swarms of MAVs with local on-board
sensing and control, we can observe two trends: (1) As the size
of the swarm increases, the relative knowledge that each MAV
will have of its global environment, which includes the remainder
of the swarm, decreases (Bouffanais, 2016); (2) as the individual
MAV’s size and/or mass decreases, its capability to sense its own
local environment decreases (Kumar and Michael, 2012). This
creates an interesting challenge. On the one hand, we aim to
design smaller, lighter, cheaper, and more efficient MAVs. On the
other hand, as we make these MAVs smaller, the gap between
the microscopic and macroscopic widens further. Designing the
swarm becomes a more challenging task because each MAV has
less information about its environment and is also less capable
to act on it. This can be generalized to other robotic platforms
as well, but MAVs feature the increased difficulty of having a
tightly bound relationship between their on-board capabilities,
their dynamics, their processing power, and their sensing (Chung
et al., 2018). This is sometimes referred to as the SWaP (Size,
Weight, and Power) trade-off (Mahony et al., 2012; Liu et al.,
2018). The relationship is often non-linear. For instance, if we
add a sensor that results in 5%more power usage, it does not only
spend more energy per second, but it also affects the total energy
that can be extracted from the battery as it will be operating in a
different regime (de Croon et al., 2016). For many MAVs, grams
and milliwatts matter. This makes the design of autonomous
decentralized swarms of MAVs a more unique challenge.

2.2. Overview of Design Challenges
Throughout the Design Chain
Throughout this paper, we shall review the state of the art inMAV
technology from the swarm robotics perspective. To facilitate

1Of course, flying several MAVs with a centralized controller has its own
challenges, which we do not mean to undermine. We only mean that it appears
that these methods are at a more mature stage with respect to self-organized
approaches, which is the focus of this article.

our discussion, we will break down the challenges for the design
and control of an MAV swarm in the following four levels, from
“local” to “global.”

1. MAV design. This defines the processing power, flight
time, dynamics, and capabilities of the single MAV. Most
importantly from a swarm engineering perspective, it defines
the sensory information available on each unit, from which
it can establish its view of the world. This is discussed
in section 3.

2. Local ego-state estimation and control. At the lowest level, an
MAVmust be capable of controlling its motion with sufficient
accuracy. This lower level layer handles basic flight operations
of the MAV. This includes attitude control, height control,
and velocity estimation and control. Moreover, the MAV
should be capable of safely navigating in its environment.
Minimally, it should detect and avoid potential obstacles. The
challenges and state of the art for these methods are discussed
in section 4.

3. Intra-swarm relative sensing and avoidance. There are two
key enabling technologies for swarming. The first is the
knowledge on (the location of) nearby neighbors. This is
particularly important for MAV swarms as it not only enables
several higher level swarming behaviors, but it also ensures
that MAVs do not collide with one another in mid-air.
The second enabling technology is communication between
MAVs, such that they can share information and thus expand
their knowledge of the environment via their neighborhood.
These are is discussed in section 5.

4. Swarm behavior. This is the higher level control policy that the
robots follow to generate the global swarm behavior. Examples
of higher level controllers in swarms range from attraction
and repulsion forces for flocking (Gazi and Passino, 2002;
Vásárhelyi et al., 2018) to neural networks for aggregation,
dispersion, or homing (Duarte et al., 2016). We discuss how
MAV swarm behaviors can be designed in section 6.

Other similar taxonomies have been defined. Floreano and
Wood (2015) describe three levels of robotic cognition:
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sensory-motor autonomy, reactive autonomy, and cognitive
autonomy. Meanwhile, de Croon et al. (2016) divide the control
process for autonomous flight into four levels: attitude control,
height control, collision avoidance, and navigation. Although the
taxonomies above are conceptually similar (generally going from
low level sensing and control to a higher level of cognition), the
re-definition that we provide here is designed to better organize
our discussion within the context of swarm robotics. Moreover,
we also include the design of the MAV within the chain. As we
will explain in this manuscript, this has a fundamental impact on
the higher level layers.

The four stages that have been defined have an increasing level
of abstraction. The lower levels enable the robustness, flexibility,
and scalability properties expected at the higher level, while the
higher levels dictate, accommodate, and make the most out of
the capabilities set at the lower level. From a more systems
perspective, the MAV design poses constraints on what the
higher level controllers can expect to achieve, while the higher
level controllers create requirements that the MAV must be able
to fulfill. A simplified view of the flow of requirements and
constraints is shown in Figure 2.

Throughout the remainder of this paper, as we discuss the
state of the art at each level, we will highlight the major
constraints that flow upwards and the requirements that flow
downwards. Naturally, each sub-topic that we will treat features
a plethora of solutions, challenges, and methods, each deserving
of a review paper of its own. It is beyond the scope (and
probably far beyond any acceptable word limit, too) to present an
exhaustive review about each topic. Instead, we keep our focus to
highlighting themainmethodologies and how they can be used to
design swarms of MAVs. Where possible, we will refer the reader
to more in-depth reviews on a specific topic.

3. MAV DESIGN

The differentiating challenge faced by a flying robot, namely
(and somewhat trivially) the fact that it has to carry its own
mass around, creates a strong design driver toward minimalism.
Despite battery mass consisting of up to 20–30% of the total
system mass, the flight time of quadrotor MAVs still remains
limited to the order of magnitude of minutes (Kumar and
Michael, 2012; Mulgaonkar et al., 2014; Oleynikova et al., 2015).
To increase the carrying capabilities of an MAV, enabling it to
carry more/better sensors, processors, or actuators, while keeping
flight time constant, means that the size of the battery should also
increase. In turn, this leads to a new increase in mass, and so
on. This type of spiral, often referred to as the “snowball effect,”
is a well-known issue for the design of any flying vehicle, from
MAVs to trans-Atlantic airliners (Obert, 2009; Lammering et al.,
2012; Voskuijl et al., 2018). It then becomes paramount for an
MAV design to be as minimalist as possible relative to its task,
such that it may fulfill the mission requirements with a minimum
mass (or, at the very least, there is a trade-off to be considered).
This design driver has been taken to the extreme and has lead to
the development of miniature MAV systems, popular examples
of which include the Ladybird drone and the Crazyflie (Lehnert

and Corke, 2013; Remes et al., 2014; Giernacki et al., 2017). These
MAVs have a mass of <50 g, making them attractive due to their
low cost and the fact that they are safer to operate around people.
This makes them appealing for swarming, especially in indoor
environments (Preiss et al., 2017).

A substantial body of literature already exists on single MAV
design, the specifics of which largely vary depending on the
type of MAV in question. We refer the reader to the works of
Mulgaonkar et al. (2014) and Floreano andWood (2015) and the
sources therein for more details. From the swarming perspective,
it is important to understand that, independently of the type
of MAV in question, the following constraints are intertwined
during the design phase: (1) flight time, (2) on-board sensing,
(3) on-board processing power, and (4) dynamics. This means
that the choice of MAV directly constrains the application as well
as the swarming behavior that can be achieved (or, vice versa, a
desired swarming behavior requires a specific type of MAV). For
example, fixed wing MAVs benefit from longer autonomy. This
makes them ideal candidates for long term operations, and also
give the operators more time to launch an entire fleet and replace
members with low batteries (Chung et al., 2016). However, fixed
wingMAVs also have limited agility in comparison to quadrotors
or flapping wing MAVs. The latter, for instance, can have a very
high agility (Karásek et al., 2018), but also comes with more
limited endurance and payload constraints (Olejnik et al., 2019).
The MAV design impacts the number and type of sensors that
can be taken on-board. It can also impact how these sensors are
positioned and their eventual disturbances and noise. In turn,
this affects the local sensing and control properties of the MAV
and can also impact its ability to sense neighbors and operate in
a team more effectively. We will return to this where relevant in
the next chapters, whereby we discuss how an MAV can estimate
and control its motion, sense its neighbors, and navigate in an
environment together with the rest of the swarm.

A special note is made to designs that are intended for
collaboration. Oung and D’Andrea (2011) introduced the
Distributed Flight Array, a design whereby multiple single rotors
can attach and detach from each other to form larger multi-
rotors. More recently, Saldaña et al. (2018) introduced the
ModQuad: a quadrotor with a magnetic frame designed for self-
assembly with its neighbors. This design provides a solution
for collaborative transport by creating a more powerful rigid
structure with several drones. Gabrich et al. (2018) have shown
how the ModQuad design can be used to form an aerial gripper.
Because of the frame design, one of the difficulties of the
ModQuad was in the disassembly back to individual quadrotors.
This was tackled with a new frame design which enabled the
quadrotors to disassemble by moving away from each other with
a sufficiently high roll/pitch angle (Saldaña et al., 2019).

4. LOCAL EGO-STATE ESTIMATION AND
CONTROL

The primary objective for a single MAV operating in a swarm
is to remain in flight and perform higher level tasks with a
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FIGURE 2 | Generalized depiction of the flow of requirements and constraints for the design of MAV swarms. The lower level design choices create constraints on the

higher level properties of the swarm. Higher level design choices create requirements for the lower levels, down to the physical design of the MAV. Note that, for the

specific case, the flow of requirements and constraints is likely to be more intricate than this picture makes it out to be. However, the general idea remains.

given accuracy. This requires a robust estimation of the on-
board state as well as robust lower level control, preferably while
minimizing the size, power, and processing required. The design
choices made here dictate the accuracy (i.e., noise, bias, and
disturbances) with which each MAV will know its own state, as
well as which variables the state is actually comprised of. In turn,
this affects the type of maneuvers and actions that an MAV can
execute. For instance, aggressive flight maneuvers likely require
relatively accurate real-time state estimation (Bry et al., 2015). Of
equal importance are the considerations for the processing power
that remains for higher level tasks. While it can be attractive to
implement increasingly advanced algorithms to achieve a more
reliable ego-state estimate, these can be too computationally
expensive to run on-board even by modern standards (Ghadiok
et al., 2012; Schauwecker and Zell, 2014). This limits the MAV,
as processing power is diverted from tasks at a higher level of
cognition. If not properly handled, it can lead to sub-optimal final
performances by the MAVs and by the swarm2.

4.1. Low-Level State Estimation and
Control
This section outlines the main sensors and methods that can
be used by MAVs to measure their on-board states, laying
the foundations for our swarm-focused discussion in later
sections.We organize the discussion by focusing on the following
parameters: attitude (section 4.1.1), velocity and odometry
(section 4.1.2), and height and altitude (section 4.1.3). Moreover,
we restrict our overview to on-board sensing, as this is in line with
the swarming philosophy and the relevant applications.

4.1.1. Attitude
It is essential for an MAV to estimate and control its own
attitude in order to control its flight (Beard, 2007; Bouabdallah
and Siegwart, 2007). Accelerations and angular rotation rates are
typically measured through the on-board Inertial Measurement
Unit (IMU) sensor (Bouabdallah et al., 2004; Gupte et al.,
2012). The IMU measurements can be fused together to both

2When we relate this to nature, then low-level control and state-estimation seldom
requires large “computational” efforts by the individual animal. Rather, they
eventually become second nature (Rasmussen, 1983). The real focus is directed
to higher level tasks.

estimate and control the attitude of an MAV (Shen et al., 2011;
Schauwecker et al., 2012; Macdonald et al., 2014; Mulgaonkar
et al., 2015). Additionally to the IMU, MAVs equipped with
cameras can also use it to infer the attitude with respect to
certain reference features or planar surfaces, as in Schauwecker
and Zell (2014). Thurrowgood et al. (2009), Dusha et al. (2011),
de Croon et al. (2012), and Carrio et al. (2018) estimate the
roll and pitch angles of an MAV based on the horizon line
(outdoors). Themeasurements from the IMU and vision can then
be filtered together to improve the estimate as well as filter out the
accumulating bias from the IMU (Martinelli, 2011). Once known,
attitude control can be achieved with a variety of controllers. For
a recent survey that treats the topic of attitude control in more
detail, we refer the reader to the review by Nascimento and Saska
(2019). Of particular interest to swarming are controllers that can
provide robustness to disturbances or mishaps. One interesting
example is the scheme devised by Faessler et al. (2015), which can
automatically re-initialize the leveled flight of anMAV inmid-air.

Measuring and controlling the heading (for instance, with
respect to North) is not strictly needed for basic flight. However,
it can be an enabler for collective motion by providing a
common reference that can be measured locally by all MAVs
(Flocchini et al., 2008). Heading with respect to North can be
measured with a magnetometer, which is a common component
for MAVs (Beard, 2007). A main limitation of this sensor is
that it is highly sensitive to disturbances in the environment
(Afzal et al., 2011). The disturbances can be corrected for with
the use of other attitude sensors. For example, Pascoal et al.
(2000) fused gyroscope measurements with the magnetometer
in order to filter out disturbances from the magnetometer while
also reducing the noise from the gyroscope. Another sensor that
has been explored is the celestial compass, which extracts the
orientation based on the Sun (Jung et al., 2013; Dupeyroux et al.,
2019). Although this sensor is not subject to electro-magnetic
disturbances, it is limited to outdoor scenarios and performs best
under a clear sky, which may also not always be the case.

4.1.2. Velocity and Odometry
A tuned sensor fusion filter with an accurate prediction model
can estimate velocity just based on the IMU readings (Leishman
et al., 2014). However, the use of additional and dedicated velocity
sensors is commonly used to achieve a more robust system
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without bias. Fixed wing MAVs can be equipped with a pitot
tube in order to measure airspeed (Chung et al., 2016). For other
designs, such as quadrotors, a popular solution is to measure
the optic flow, i.e., the motion of features in the environment,
from which an MAV can extract its own velocity (Santamaria-
Navarro et al., 2015). To observe velocity, the flow needs to
be scaled with the help of a distance measurement, such as
height (albeit this assumes that the ground is flat, which may
be untrue in cluttered/outdoor environments). Optic flow can
be measured with a camera or with dedicated sensors, such as
PX4FLOW (Honegger et al., 2013) or the PixArt sensor3. Using
optical mouse sensors, Briod et al. (2013) were able to make
a 46 g quadrotor fly based on only inertial and optical-flow
sensors, even without the need to scale the flow by a distance
measurement. This was achieved by only using the direction of
the optic flow and disregarding its magnitude. In nature, optic
flow has also been shown to be directly correlated with how
insects control their velocity in an environment (Portelli et al.,
2011; Lecoeur et al., 2019). Similar ideas have also been ported
to the drone world, whereby the optic flow detection is directly
correlated to a control input, without even necessarily extracting
states from it (Zufferey et al., 2010). This can be an attractive
property in order to create a natural correlation between a sensor
and its control properties. State estimates improve when optic
flow is fused with other sensors, such as IMU readings or pressure
sensors (Kendoul et al., 2009a,b; Santamaria-Navarro et al., 2015),
or with the control input of the drone (Ho et al., 2017). As
opposed to optic flow sensors, a camera has the advantage that
it can observe both optic flow as well as other features in the
environment, thus enabling an MAV to get more out of a single
sensor. Although this is more computationally expensive, it also
provides versatility.

The use of vision also enables the tracking of features in the
environment, which a robot can use to estimate its odometry.
Using Visual Odometry (VO), a robot integrates vision-based
measurements during flight in order to estimate its motion. The
inertial variant of VO, known as Visual Inertial Odometry (VIO),
further fuses visual tracking together with IMU measurements.
This makes it possible for an MAV to move accurately relative
to an initial position (Scaramuzza and Zhang, 2019). VIO has
been exploited for swarm-like behaviors, such as in the work
by Weinstein et al. (2018), whereby twelve MAVs form patterns
by flying pre-planned trajectories and use VIO to track their
motion. A step beyond VO and its variants is to use Simultaneous
Localization And Mapping (SLAM). The advantage of SLAM is
that it can mitigate the integration drift of VO-based methods.
When solving the full SLAM problem, a robot estimates its
odometry in the environment and then corrects it by recognizing
previously visited places and optimizing the result accordingly, so
as to make a consistent map (Cadena et al., 2016; Cieslewski and
Scaramuzza, 2017). Yousif et al. (2015) and Cadena et al. (2016)
provide more in-depth reviews of VO and SLAM algorithms.
Within the swarming context, a map can also be shared so
as to make use of places and features that have been seen by
other members of the swarm. One common drawback of VO

3 “PMW3901MB Product Datasheet” by PixArt Imaging Inc., June 2017.

and SLAM methods is that they are computationally intensive
and thus reserved for larger MAVs (Ghadiok et al., 2012;
Schauwecker and Zell, 2014). However, recent developments
have also seen the introduction of more light-weight solutions,
such as Navion (Suleiman et al., 2018).

Odometry and SLAM are not limited to the use of vision.
A viable alternative sensor is the LIDAR (Light Detection and
Ranging) scanner, more commonly referred to as “laser scanner.”
LIDAR-based SLAM feature the same philosophy as the vision
counterparts, but instead of a camera it uses LIDAR to measure
depth information and build a map (Bachrach et al., 2011;
Opromolla et al., 2016; Doer et al., 2017; Tripicchio et al., 2018).
A LIDAR is generally less dependent on lighting conditions and
needs less computations, but it is also heavier, more expensive,
and consumes more on-board power (Opromolla et al., 2016).
Vision and LIDAR can also be used together to further enhance
the final estimates (López et al., 2016; Shi et al., 2016).

4.1.3. Height and Altitude
In an abstract sense, the ground represents an obstacle that the
MAVmust avoid, much like walls, objects, or otherMAVs. It does
not need to be explicitly known in order to control an MAV, as
shown in the work of Beyeler et al. (2009). Unlike other obstacles,
however, gravity continuously pulls the MAV toward the ground,
meaning thatmeasuring and controlling height and altitude often
requires special attention.

Note that we differentiate here between height and altitude.
Height is the distance to the ground surface, which can vary
when there is a high building, a canyon, or a table. The height
of an MAV can be measured with an ultrasonic range finder
(or “sonar”). Sonar can provide more accurate data at the cost
of power, mass, size, and a limited range. Its accuracy, however,
made it a part of several designs (Krajník et al., 2011; Ghadiok
et al., 2012; Abeywardena et al., 2013). Infra-red or laser range
finders have also been used as an alternative (Grzonka et al.,
2009; Gupte et al., 2012). The advantage of an infra-red sensor
is that it can be very power efficient, albeit it is only reliable
up to a limited range of a few meters, and on favorable light
conditions (Laković et al., 2019)4. Altitude is the distance to a
fixed reference point, such as sea level or a take-off position. A
pressure sensor is a common sensor to obtain this measurement
(Beard, 2007), but it can be subject to large noise and disturbances
in the short term, which can be reduced via low pass filters
(Sabatini and Genovese, 2013; Shilov, 2014). If flying outdoors,
a Global Navigation Satellite System (GNSS) can also be used to
obtain altitude.

The choice of height/altitude sensor has an impact on the
swarm behaviors that can be programmed. GNSS and pressure
sensors provide a measurement of the altitude of the MAV
with respect to a certain position. This is an attractive property,
although, as previously discussed, GNSS is limited to outdoor
environments, while pressure sensors can be noisy. Moreover,
all pressure sensors of all MAVs in the swarm should be equally
calibrated. Unlike pressure sensors, ultrasonic sensors or laser
range finders do not require this calibration step, since the

4See www.st.com/en/imaging-and-photonics-solutions/vl53l0x.html
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measurement is made from the MAV to the nearest surface.
However, one must then assume that the MAVs all fly on a
flat plane with no objects (or other MAVs below them), which
may turn out to not be a valid assumption. SLAM and VIO
methods, previously discussed in section 4.1.2, can also estimate
altitude/height as part of the odometry/mapping procedure
provided that a downwards facing camera is available.

Just as for the use of a common heading like North, the
measurements of height and/or altitude can provide a common
reference plane for a swarm of MAVs. If the vertical distance
between the MAVs is sufficient, it can provide a relatively
simple solution for intra-swarm collision avoidance (albeit with
constraints—we return to this in section 5.2). It can also enable
self-organized behaviors, such as in the work of Chung et al.
(2016), where the MAVs are made to follow the one with the
highest altitude within their sub-swarm. In this way, the leader
is automatically elected in a self-organized manner by the swarm.
For example, should a current leaderMAVneed to land as a result
of a malfunction, a new leader can be automatically re-elected so
that the rest of the swarm can keep operating.

4.2. Achieving Safe Navigation
It is important that each MAV remains safe and that it does not
collide with its surroundings, or that damages remain limited
in case this happens. This safety requirement can be satisfied
in two ways. The first, which is more “passive” and brings us
back to MAV design, is to develop MAVs that are mechanically
collision resilient. This allows the MAV to hit obstacles without
risking significant damage to itself or its environment. With
this rationale, Briod et al. (2012), Mulgaonkar et al. (2015,
2018), and Kornatowski et al. (2017) placed protective cages
around an MAV. However, the additional mass of a cage can
negatively impact flight time and the cage can also introduce
drag and controllability issues (Floreano et al., 2017). Instead,
Mintchev et al. (2017) developed a flexible design for miniature
quadrotors in order to be more collision resilient upon impact
with walls. The use of airships has also been proposed as a
more collision resilient solution (Melhuish and Welsby, 2002;
Troub et al., 2017). The limitations of airships, however, are in
their lower agility and restricted payload capacity. More recently,
Chen et al. (2019) demonstrated insect scale designs that use
soft artificial muscles for flapping flight. The soft actuators,
combined with the small scale of the MAV, are such that the
MAVs can be physically robust to collisions with obstacles and
with each other. Collision resistant designs can even be exploited
to improve on-board state estimation, such as in the recent work
by Lew et al. (2019), whereby collisions are used as pseudo
velocity measurement under the assumption that the velocity
perpendicular to an obstacle, at the time of impact, is null.
The alternative, or complementary, solution to passive collision
resistance is “active” obstacle sensing and avoidance, whereby an
MAV uses its on-board sensors to identify and avoid obstacles in
the environment.

Collision-free flight can be achieved via two main navigation
philosophies: (1) map-based navigation, and (2) reactive
navigation. With the former, a map of the environment can be
used to create a collision-free trajectory (Shen et al., 2011; Weiss

et al., 2011; Ghadiok et al., 2012). The map can be generated
during flight (using SLAM) and/or, for known environments, it
can be provided a-priori. The advantage of amap-based approach
is that obstacle avoidance can be directly integrated with higher
level swarming behaviors (Saska et al., 2016b). Instead, a reactive
control strategy uses a different philosophy whereby the MAV
only reacts to obstacles in real-time as they are measured,
regardless of its absolute position within the environment. In this
case, if an MAV detects an obstacle, it reacts with an avoidance
maneuver without taking its higher level goal into account.
The trajectories pursued with a reactive controller may be less
optimal, but the advantage of a reactive control strategy is that it
naturally accounts for dynamic obstacles and it is not limited to a
static map. The two can also operate in a hierarchical manner,
such that the reactive controller takes over if there is a need
to avoid an obstacle, and the MAV is otherwise controlled at
a higher level by a path planning behavior. Regardless of the
navigation philosophy in use, if the MAV needs to sense and
avoid obstacles during flight, it will require sensors that can
provide it with the right information in a timely manner.

Of all sensors, vision provides a vast amount of information
from which an MAV can interpret its direct environment. By
using a stereo-camera, the disparity between two images gives
depth information (Heng et al., 2011; Matthies et al., 2014;
Oleynikova et al., 2015; McGuire et al., 2017). Alternatively, a
single camera can also be used. For example, the work of de
Croon et al. (2012) exploited the decrease in the variance of
features when approaching obstacles. Ross et al. (2013) used a
learning routine to map monocular camera images to a pilot
command in order to teach obstacle avoidance by imitating a
human pilot. Kong et al. (2014) proposed edge detection to detect
the boundary of potential obstacles in an image. Saha et al.
(2014) and Aguilar et al. (2017) used feature detection techniques
in order to extract potential obstacles from images. Alvarez
et al. (2016) used consecutive images to extract a depth map
(a technique known as “motion parallax”), albeit the accuracy
of this method is dependent on the ego-motion estimation of
the quadrotor. Learning approaches have also been investigated
in order to overcome the limitations of monocular vision. By
exploiting the collision resistant design of a Parrot AR Drone,
Gandhi et al. (2017) collected data from 11,500 crashes and
used a self-supervised learning approach to teach the drone
how to avoid obstacles from only a monocular camera. Self-
supervised learning of distance from monocular images can also
be accomplished without the need to crash, but with the aid of
an additional sensor. Lamers et al. (2016) did this by exploiting
an infrared range sensor, and van Hecke et al. (2018) applied this
to see distances with one single camera by learning a behavior
that used a stereo-camera. This is useful if the stereo-camera were
to malfunction and suddenly become monocular. Alternative
camera technologies have also been developed, providing new
possibilities. RGB-D sensors are cameras that also provide a
per-pixel depth map, a mainstream example of which is the
Microsoft Kinect camera (Newcombe et al., 2011). This particular
sensor augments one RGB camera with an IR camera and an
IR projector, which together are capable of measuring depth
(Smisek et al., 2013). RGB-D sensors have been used on MAVs
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to navigate in an environment and avoid obstacles (Shen et al.,
2014; Stegagno et al., 2014; Odelga et al., 2016; Huang et al.,
2017). One of the disadvantages of these RGB-D sensors over
a stereo-camera set-up (whereby depth is inferred from the
disparity) is that RGB-D sensors can be more sensitive to natural
light, and may thus perform less well in outdoor environments
(Stegagno et al., 2014). Finally, in recent years, the introduction
of Dynamic Vision Sensor (DVS) cameras has also enabled new
possibilities for reactive obstacle sensing. A DVS camera only
measures changes in the brightness, and can thus provide a
higher data throughput. This enables a robot to quickly react to
sudden changes in the environment, such as the appearance of a
fast moving obstacle (Mueggler et al., 2015; Falanga et al., 2019a).

The capabilities of a vision algorithm will depend on the
resolution of the on-board cameras, the number of the on-board
cameras, as well as the processing power on-board. On very
lightweight MAVs, such as flapping wings, even carrying a small
stereo-camera can be challenging (Olejnik et al., 2019). A further
known disadvantage of vision is the limited Field of View (FOV)
of cameras. Omni-directional sensing can only be achieved with
multiple sets of cameras (Floreano et al., 2013; Moore et al., 2014)
at the cost of additional mass, the impact of which is dependent
on the design of the MAV.

Although vision is a rich sensor, in that it can provide
different types of information, other sensors also can be used
for reactive collision avoidance. LIDAR, for instance, has the
advantage that it is less dependent on lighting conditions and
can provide more accurate data for localization and navigation
(Bachrach et al., 2011; Tripicchio et al., 2018). Alternatively,
time-of-flight laser ranging sensors have also been proposed for
reactive obstacle avoidance algorithms on small drones (Laković
et al., 2019). These uni-directional sensors can sense whether an
object appears along their line of sight (typically up to a few
meters). Due to their small size and low power requirements, they
can be used on tiny MAVs (Bitcraze, 2019)5.

5. INTRA-SWARM RELATIVE SENSING
AND COLLISION AVOIDANCE

Once we have an MAV design that can perform basic safe flight,
we begin to expand its capabilities toward collaboration in a
swarm. Two fundamental challenges need to be considered in
this domain. The first is relative localization. This is not only
required to ensure intra-swarm collision avoidance, which is
a basic safety requirement, but also to enable several swarm
behaviors (Bouffanais, 2016). The design choice used for intra-
swarm relative localization defines and constrains the motion of
the MAVs relative to one another, which affects the swarming
behavior that can be implemented. The second challenge is
intra-swarm communication. Much like knowing the position
of neighbors, the exchange of information between MAVs can
help the swarm to coordinate (Valentini, 2017; Hamann, 2018).
In this section, we explore the state of the art for relative
localization (section 5.1), reactive collision avoidance maneuvers

5See www.bitcraze.io/multi-ranger-deck/

(section 5.2), and we discuss intra-swarm communication
technologies (section 5.3).

5.1. Relative Localization
In outdoor environments, relative position can be obtained
via a combination of GNSS and intra-swarm communication.
Global position information obtained via GNSS is communicated
between MAVs and then used to extract relative position
information. This has enabled connected swarms that can operate
in formations or flocks (Chung et al., 2016; Yuan et al., 2017). An
impressive recent display of this in the real world was put into
practice by Vásárhelyi et al. (2018), who programmed a swarm of
30 MAVs to flock. The same concept can be applied to indoor
environments if pre-fitted with, for example: external markers
(Pestana et al., 2014), motion-tracking cameras (Kushleyev et al.,
2013), antenna beacons (Ledergerber et al., 2015; Guo et al.,
2016), or ultra sound beacons (Vedder et al., 2015). However,
this dependency on external infrastructure limits the swarm to
being operable only in areas that have been properly fitted to the
task. Several tasks, especially the ones that involve exploration,
cannot rely on thesemethods. In order to remove the dependency
on external infrastructure, there is a need for technologies that
allows the MAVs themselves to obtain a direct MAV-to-MAV
relative location estimate. This is still an open challenge, with
several technologies and sensors currently being developed.

One of the earlier solutions for direct relative localization on
flying robots proposed the use of infrared sensors (Roberts et al.,
2012). However, since infrared sensors are uni-directional, this
used an array of sensors (both emitting and receiving) placed
around the MAV in order to approach omni-directionality,
making for a relatively heavy system. Alternatively, vision-
based algorithms have once again been extensively explored.
However, the robust visual detection of neighboring MAVs is
not a simple task. The object needs to be recognized at different
angles, positions, speeds, and sizes. Moreover, the image can
be subject to blur or poor lighting conditions. One way to
address this challenge is with the use of visual aids mounted
on the MAVs, such as visual markers (Faigl et al., 2013; Krajník
et al., 2014; Nägeli et al., 2014), colored balls (Roelofsen et al.,
2015; Epstein and Feldman, 2018), or active markers, such as
infrared markers (Faessler et al., 2014; Teixeira et al., 2018)6 or
Ultra Violet (UV) markers (Walter et al., 2018, 2019). Visual
aids simplify the task and improve the detection accuracy and
reliability. However, they are not as easily feasible on all designs,
such as flapping wing MAVs or smaller quadrotors. Marker-
less detection of other MAVs is very challenging, since other
MAVs have to be detected against cluttered, possibly dynamic
backgrounds while the detecting MAV is moving by itself as
well. A successful current approach is to rely on stereo vision,
where other drones can be detected because they “float” in the air
unlike other objects like trees or buildings. Carrio et al. (2018)
explored a deep learning algorithm for the detection of other
MAVs in stereo-based disparity images. An alternative is to detect
other MAVs in monocular still images. Like the detection in

6The solution by Teixeira et al. (2018) additionally uses communication between
the MAVs.
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stereo disparity images, this removes the difficulty of interpreting
complex motion fields between frames, but it introduces the
difficulty of detecting other, potentially (seemingly) small MAVs
against background clutter. To solve the challenge, Opromolla
et al. (2019) used a machine learning framework that exploited
the knowledge that the MAVs were supposed to fly in formation.
Their scheme used the knowledge of the formation in order
to predict the expected position of a neighboring MAV and
focus the vision-based detection on the expected region, thus
simplifying the task. Employing a more end-to-end learning
technique, Schilling et al. (2019) used imitation learning to
autonomously learn a flocking behavior from camera images.
Following the attribution method by Selvaraju et al. (2017),
Schilling et al. studied the influence that each pixel of an
input image had on the predicted velocity. It was shown that
the parts of the image whereby neighboring MAVs could be
seen were more influential, demonstrating that the network had
implicitly learned to localize its neighbors. Despite the promising
preliminary results, it is yet to be seen how it can handle
other MAVs sizes or more cluttered backgrounds. Finally, it is
possible to use the optic flow field for detecting other MAVs.
This approach could have the benefit of generality, but it would
require the calculation and interpretation of a complex, dense
optic flow field. To our knowledge, this method has not yet
been investigated.

From a swarming perspective, it may also be desirable to know
the ID of a neighbor. However, IDs may be difficult to detect
using vision without the aid of markers. This issue was explored
by Stegagno et al. (2011), Cognetti et al. (2012), and Franchi
et al. (2013) with fusion filters that infer IDs over time with the
aid of communication. Moreover, cameras have a limited FOV.
This limits the behaviors that can be achieved by the swarm.
For instance, it may be limiting for surveillance tasks where
quadrotors may need to look away from each other but can’t or
else they may collide or disperse. It can be addressed by placing
several cameras around the MAVs (Schilling et al., 2019), but at
the cost of additional mass, size, and power, which in turn creates
new repercussions.

The use of vision is not only limited to directly
recognizing other drones in the environment. With the aid
of communication, two or more MAVs can also estimate their
relative location indirectly by matching mutually observed
features in the environment. The MAVs can compare their
respective views and infer their relative location. In the most
complete case, each MAV uses a SLAM algorithm to construct
a map of its environment, which is then compared in full (as
discussed in section 4, this can also be accomplished using other
sensors, such as LIDAR, so this approach is not only reserved
for vision). Although SLAM is a computationally expensive task,
more easily handled centrally (Achtelik et al., 2012; Forster et al.,
2013), it can also be run in a distributed manner, making for an
infrastructure free system (Cunningham et al., 2013; Cieslewski
et al., 2018; Lajoie et al., 2019). For a survey of collaborative
visual SLAM, we refer the reader to the paper by Zou et al. (2019)
and the sources therein. An additional benefit of collective map
generation is that the MAVs benefit from the observations of
their team-mates and can thus achieve a better collective map.

However, if the desired objective is only to achieve relative
localization, the computations can be simplified. Instead of
computing and matching an entire map, the MAVs need only to
concern themselves with the comparison of mutually observed
features in order to extract their relative geometric pose (Achtelik
et al., 2011; Montijano et al., 2016). This requires that the images
compared by the MAVs have sufficient overlap and can be
uniquely identified.

An alternative stream of research leverages only
communication between MAVs to achieve relative localization,
while also using the antennas as relative range sensors. Here,
we will refer to these methods as communication-based ranging.
The advantage of this method is that it offers omni-directional
information at a relatively low mass, power, and processing
penalty, leveraging a technology that is likely available on
even the smallest of MAVs. Szabo (2015) first proposed the
use of signal strength to detect the presence of nearby MAVs
and engage in avoidance maneuvers. Also for the purposes
of collision avoidance, Coppola et al. (2018) implemented a
beacon-less relative localization approach based on the signal
strength between antennas, using the Bluetooth Low Energy
connectivity already available on even the smaller drones. Guo
et al. (2017) proposed a similar solution using UltraWide Band
(UWB) antennas for relative ranging, which offer a higher
resolution even at larger distances. However, this work used
one of the drones as a reference beacon for the others. One
commonality between the solutions by Guo et al. (2017) and
Coppola et al. (2018) was that the MAVs were required to have
a knowledge of North, which enabled them to compare each
other’s velocities along the same global axis. However, in practice
this is a significant limitation due to the difficulties of reliably
measuring North, especially if indoors, as already discussed in
section 4.1.1. To tackle this, van der Helm et al. (2019) showed
that, if using a high accuracy ranging antenna, such as UWB,
then it is not necessary for the MAVs to measure a common
North. However, selecting this option creates fundamental
constraints on the high-level behaviors of the swarm. This issue
is there for the case where North is known and when it is not,
albeit the requirement when North is not known are more
stringent. If North is known, at least one of the MAVs must
be moving relative to the other for the relative localization to
remain theoretically observable. If North is not known, all MAVs
must be moving. The MAVs remain bound to trajectories that
excite the filter (van der Helm et al., 2019). For the case where
North is known, Nguyen et al. (2019) proposed that a portion
of MAVs in the swarm should act as “observers” and perform
trajectories that persistently excite the system.

Another solution is to use sound. Early research in this
domain was performed by Tijs et al. (2010), who used a
microphone to hear nearby MAVs. This was explored in more
depth by Basiri (2015) using full microphone arrays for relative
localization. A primary issue encountered was that the sound
emitted by the listening quadrotor would mask the sound of the
neighboring MAVs, which were also similar. This was addressed
with the use of a “chirp” sound, which can then be easily heard
by neighbors, in order to overcome this issue (Basiri et al., 2014,
2016). In recent work, Cabrera-Ponce et al. (2019) proposed the
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use of a Convolutional Neural Network to detect the presence of
nearby MAVs. This is done using a large scale microphone array
(Ruiz-Espitia et al., 2018) featuring eight microphones based on
theManyEars framework (Grondin et al., 2013). Specific to sound
sensors, the accuracy of the detection depends on how similar the
sounds of other MAVs are. Moreover, the localization accuracy
depends on the microphone setup. Most works use a microphone
array, where the localization accuracy depends on the length of
the baseline between microphones, which is inherently limited
on small MAVs.

As it can be seen, several different techniques exist. Minimally,
these technologies should enable neighboring MAVs to avoid
collisions with one another. However, the particular choice of
relative localization technology creates a fundamental constraint
on the swarm behavior that can be achieved. For example,
communication-based ranging methods have unobservable
conditions depending on the MAVs’ motion, and sound-based
localization with microphone arrays will be less accurate when
used on smaller MAVs. Similarly, certain swarm behaviors (e.g.,
one that requires known IDs, or long range distances) may place
certain requirements on which technology is best to be used.
In Table 1, we outline the major relative localization approaches
with their advantages and disadvantages.

5.2. Intra-Swarm Collision Avoidance
Collision detection and avoidance of objects in the environment
has already been discussed in section 4.2. As MAVs operate
in teams, relative intra-swarm collision avoidance also becomes
a safety-critical behavior that should be implemented. The
complexity of this task is that it requires a collaborative maneuver
between two or more MAVs.

MAVs operate in 3D space, and thus relative collision
avoidance could be tackled by vertical separation. However,
particularly in indoor environments where vertical space is
limited, vertical avoidance maneuvers may cause undesirable
aerodynamic interactions with other MAVs as well as other parts
of the environment. For quadrotors, while aerodynamic influence
is negligible when flying side-by-side, flying above another will
create a disturbance for the lower one (Michael et al., 2010;
Powers et al., 2013). Furthermore, emergency vertical maneuvers
could also cause a quadrotor to fly too close to the ground, which
creates a ground effect and pushes it upwards, or, if indoors, to fly
too close to the ceiling, which creates a pulling effect toward the
ceiling (Powers et al., 2013). Vertical avoidance may also corrupt
the sensor readings of the MAV. For instance, height may be
compromised if another MAV obstructs a sonar sensors. Overall,
horizontal avoidance maneuvers are desired.

A popular algorithm for obstacle avoidance, provided that the
robots know their relative position and velocity, is the Velocity
Obstacle (VO) method (Fiorini and Shiller, 1998). The core
idea is for a robot to determine a set of all velocities that will
lead to collisions with the obstacle (a collision cone), and then
choose a velocity outside of that set, usually the one that requires
minimum change from the current velocity. VO has stemmed
a number of variants specifically designed to deal with multi-
agent avoidance, such as Reciprocal Velocity Obstacle (RVO)
(van den Berg et al., 2008; van den Berg et al., 2011), Hybrid

Reciprocal Velocity Obstacle (HRVO) (Snape et al., 2009), and
Optimal Reciprocal Collision Avoidance (ORCA) (Snape et al.,
2011). These variants alter the set of forbidden velocities in order
to address reciprocity, which may otherwise lead to oscillations
in the behavior. These methods have been successfully applied
on MAVs, both in a decentralized way as well as via centralized
re-planners. They accounted for uncertainties by artificially
increasing the perceived radii of the robots. Alonso-Mora et al.
(2015) showed the successful use of RVO on a team ofMAVs such
that they may adjust their trajectory with respect to a reference.
This was done using an external MCS for (relative) positioning.
Coppola et al. (2018) showed a collision cone scheme with on-
board relative localization, introducing a method to adjust the
cone angle in order to better account for uncertainties in the
relative localization estimates. A disadvantage of VO methods
and its derivatives is scalability. If the flying area is limited and the
airspace becomes too crowded, then it may become difficult for
MAVs to find safe directions to fly toward (Coppola et al., 2018).
Another avoidance algorithm, called Human-Like (HL), presents
the advantage that the heading selection is decoupled from speed
selection (Guzzi et al., 2013a; Guzzi et al., 2014), such that the
MAVs only engage in a change in heading. HL has been found to
be successful even when operating at relatively lower rates (Guzzi
et al., 2013b). Although it has not been tested onMAVs, their tests
also demonstrated generally better scalability properties.

Alternatively, attraction and repulsion forces between
obstacles are also a valid algorithm for collision avoidance. This
is a common technique which has been extensively studied in
swarm research (Reynolds, 1987; Gazi and Passino, 2002; Gazi
and Passino, 2004). If one wishes for the MAVs to flock, these
attraction and repulsion forces can also be directly merged with
the swarm controller (Vásárhelyi et al., 2018). One potential
short-coming of this approach is that it can lead to equilibrium
states whereby the swarm remains in a fixed final formation,
although this can also be seen as a positive property that can be
exploited (Gazi and Passino, 2011).

In summary, multiple methods exist for intra-swarm collision
avoidance. Given sufficiently accurate relative locations, these
methods are very successful. The main challenges here are: (1)
how to deal with uncertainties and unobservable conditions
deriving from the localization mechanism used by the drones,
and (2) how to keep guaranteeing successful collision avoidance
when the swarm scales up to very large numbers.

5.3. Intra-Swarm Communication
Direct sharing of information between neighboring robots is an
enabler for swarm behaviors as well as relative sensing (Valentini,
2017; Hamann, 2018; Pitonakova et al., 2018). To achieve the
desired effect, it needs to be implemented with scalability,
robustness, and flexibility in mind. Common problems that can
otherwise arise are: (1) the messaging rate between robots is too
low (low scalability); (2) high packet loss (low robustness); (3)
communication range is too low (low scalability and flexibility);
(4) inability to adapt to a switching network topology (low
flexibility) (Chamanbaz et al., 2017).

Solutions to the above depend on the application. With
respect to hardware, the three main technologies in the state
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TABLE 1 | Current technologies in the state of the art for relative localization between MAVs, with their main advantages and disadvantages.

Technology Sample references Advantages Disadvantages

Vision (direct, passive) Faigl et al. (2013)

Krajník et al. (2014)

Nägeli et al. (2014)

Roelofsen et al. (2015)

Carrio et al. (2018)

• Rich information

• Passive sensor

• Possible to extract ID (if using

markers or having otherwise visually

distinct MAVs)

• Lightweight (depending on model)

• Scalable (provided environment is

not cluttered)

• Computationally expensive

• Limited FOV

• Dependent on lighting conditions

• Dependent on visual clutter in

environment

• No IDs (if marker-less)

• Needs visual line of sight

Observation matching Achtelik et al. (2011)

Montijano et al. (2016)

• No direct line of sight is needed

• Thrives in visually cluttered

environments

• Includes IDs (via communication)

• Active sensor, requires

communication

• Requires sufficient visual overlap

• Computationally expensive

• Dependent on lighting conditions

Communication-based ranging Szabo (2015)

Guo et al. (2017)

Coppola et al. (2018)

van der Helm et al. (2019)

Nguyen et al. (2019)

• Low mass

• Omni-directional

• Possible to extract IDs

• Can work in visually cluttered

environments

• Enables communication of

additional data

• Active sensor, requires

communication

• Needs relative excitation

maneuvers

• Noisy (depending on sensor)

• Difficult to scale due to

communication interference

Sound Basiri et al. (2014, 2016)

Cabrera-Ponce et al. (2019)

• Scalable (provided that the sound

environment is, or does not become,

not cluttered)

• Passive sensor

• Omni-directional

• Can work in visually cluttered

environments

• Self-propeller noise

• Limited range

• Noise pollution (if using “chirps”)

• No IDs (if chirp-less)

• Limited angular accuracy due to

limited baseline between

microphones in the array

Infra-red (sensor array) Roberts et al. (2012) • Accurate

• Computationally simple

• Lower dependence on lighting

conditionsa

• Can work in visually cluttered

environments

• Heavy

• Needs visual line of sight

• Many active sensors result in high

energy expense

Vision (direct, with active markers) Faessler et al. (2014)

Teixeira et al. (2018)

Walter et al. (2018, 2019)

• Accurate

• Possible to extract IDs

• Lower dependence on lighting

conditions

• Can work in visually cluttered

environments

• Needs visual line of sight

• Many active sensors result in high

energy expense

aRoberts et al. (2012) tested the sensor for 0, 500, and 10,000 lux and found <1% relative error between these lighting conditions. However, the sensor was not tested outdoors.

of the art are: Bluetooth, WiFi, and ZigBee (Bensky, 2019).
All three operate in the 2.4 GHz band7. Bluetooth is energy
efficient, but features a low maximum communication distances
of ≈10–20 m (indoors, depending on the environment and
version). This makes it more important to establish a network
that can adapt to a switching topology, as it is very likely to
change during operations. The latest version of the Bluetooth
standard, Bluetooth 5, features a higher range and a higher
data-rate despite keeping a low power consumption. It also
has longer advertising messages, such that, without pairing,
asynchronous network nodes can exchange messages of 255
bytes instead of 31 (Collotta et al., 2018). Bluetooth antennas
were used in the previously discussed work of (Coppola et al.,

7 WiFi also operates at other frequency bands. The 5 GHz band, for instance, is
typically known to feature a lower interference (Verma et al., 2013). ZigBee can
also operate at the 868 and 915 MHz frequency bands (Collotta et al., 2018).

2018) on a swarm of 3 MAVs to exchange data indoors and
to measure their relative range. In comparison to Bluetooth,
WiFi is known to be less energy efficient, but works more
reliably at longer ranges and has a higher data throughput.
Chung et al. (2016) used WiFi to enable a swarm of 50 MAVs
to form an ad-hoc network. WiFi was also used by Vásárhelyi
et al. (2018) in combination with an XBee module8 using a
proprietary communication protocol. ZigBee’s primary benefits
are scalability (it can keep up to, theoretically, 64,000 nodes)
and low power, although it has a low data communication
rate (Bensky, 2019)9. Depending on the application, this may
or may not be an issue depending on what the intra-swarm
communication requirements are. Allred et al. (2007) used a

8Not to be confused with ZigBee (Faludi, 2010).
9Note that Bluetooth Low Energy, a sub-version of the Bluetooth standard, also
requires very little power. Tests by Collotta et al. (2018) return that Bluetooth 4.2
and 5.0 have a lower power consumption than ZigBee.
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ZigBee module to enable communication on a flock of fixed wing
MAVs due to its combination of low energy consumption and
long range (offering “a range of over 1 mile at 60 mW”). For
comparisons of technical details of these technologies we refer the
reader to the detailed book by Bensky (2019), the MAV-focused
review by Zufferey et al. (2013), as well as the earlier comparisons
by Lee et al. (2007).

In addition to the technologies discussed above, there is also
the possibility of enabling indirect communication via cellular
networks. In the near future, 5G networks are expected to
make it possible to have a reliable and high data throughput
between several MAVs (Campion et al., 2018). Finally, the use
of UWB can also gain more relevance in the future, especially
because its additional capability to accurately measure the range
between MAVs, as discussed in section 5.1, can be very helpful
for swarms. One technological challenge is that communication
needs power, and while this may be near-negligible for the
bigger MAVs, it is not so for the smaller designs (Petricca et al.,
2011). From this perspective, the communication-based relative
localization discussed in section 5.1, which can also double as
a communication device for MAVs, is an interesting solution if
one desires a system that can achieve both goals simultaneously.
However, using any relative localization approach that relies on
communication means that having a stable connection among
MAVs is an important requirement, and possibly a safety critical
one. Moreover, high messaging rates also become important in
order to have a high update rate.

6. SWARM-LEVEL CONTROL

We finally arrive at the “swarm” part of this paper. Once we have
reliable MAVs that can safely fly in an environment, localize one
another, and perhaps even communicate, we can begin to exploit
them as a swarm. The complexity of this task stems from the
fact that, due to the decentralized nature of the swarm, the local
actions that a robot takes can have any number of repercussions
at the global level. These cannot be known unless the system
is fully observed and optimized for, which the individual robot
cannot do.

This section discusses possible approaches to design MAV
swarm behaviors. Prominent examples of behaviors are: flocking,
formation flight, distributed sensing (e.g., mapping/surveillance),
and collaborative transport and object manipulation10. Of
these, formation flight receives significant attention. It can be
useful for several applications, such as surveillance, mapping,
or cinematography so as to collaboratively observe a scene
(Mademlis et al., 2019). Additionally, it can also be used for
collaborative transport (de Marina and Smeur, 2019), and it has
even been shown that certain formations lead to energy efficient
flight for groups (Weimerskirch et al., 2001). Flocking behaviors
bear similar properties to formation flight, but with more
“fluid” inter-agent behaviors that allow the swarm to re-organize
according to their current neighborhood and the environment.

10Note that this list not exhaustive. Additionally, we will see that there may also be
overlaps between these behaviors. For example, as explored in section 6.1, flocking
behaviors may achieve fixed formations under certain equilibria.

Distributed sensing behaviors may require the swarm to travel
in a formation or flock, but may also include behaviors in which
the swarm distributes over pre-specified areas (Bähnemann et al.,
2017) or disperses (McGuire et al., 2019). Collaborative transport
and object manipulations take two forms. The first is that of
MAVs individually foraging for different objects and bringing
them to base (Bähnemann et al., 2017), the second is that of
jointly carrying a load that is too heavy for the individual MAV to
carry (Tagliabue et al., 2019). In order to achieve the behaviors
above, and others, the MAVs can also engage in a number of
more general swarm behaviors, such as distributed task allocation
or collective decision making. For all cases, the challenge is to
endow the MAVs with a controller that achieves the desired
swarm behavior while also avoiding undesired results (Winfield
et al., 2005, 2006).

Similarly to the review by Brambilla et al. (2013) (which the
reader is referred to for a general overview of swarm robotics
and engineering), we divide the designmethods in two categories.
The first, which we call “manual design methods,” refers to hand-
crafted controllers that instigate a particular behavior in the
swarm. These are discussed in section 6.1, where we provide an
overview of the state of the art for different swarm behaviors.
The second, which we refer to as “automatic design methods,”
uses machine learning techniques in order to design and/or
optimize the controller for an arbitrary goal. This is discussed
in section 6.2. We discuss the advantages and disadvantages
between the two, from the perspective of designing swarms of
MAVs, in section 6.3.

6.1. Manual Design Methods
This is the “classical” strategy to control, whereby a swarm
designer develops the controllers so as to achieve a desired
global behavior. For swarm robotics, we differentiate between two
approaches. One approach is to design local behaviors, analyze
them, and then manually iterate until the swarm behaves as
desired. Another approach is to make mathematical models of
the robots and their interactions and then design a suitable
controller that comes with a certain proof of convergence.
The latter approach has some obvious advantages if one
succeeds, but it makes the designer face the full complexity
of swarm systems. Hence, such methods typically have limited
applicability. For example, in the work of Izzo and Pettazzi
(2007), the behavior is limited to only symmetrical formations of
limited numbers of agents. The preferred approach is dependent
on the swarm behavior that the designer wishes to achieve, under
the constraints of the local properties of each MAV.

A large portion of methods focuses on formation control
algorithms, whereby the goal is for the MAVs to form and/or
keep a tight formation during flight. To hold a formation, the
MAVs must hold a relative position or distance between given
neighbors, such that they can move as one unit through space.
See, for instance, the works of Quintero et al. (2013), Schiano
et al. (2016), de Marina et al. (2017), Yuan et al. (2017), and de
Marina and Smeur (2019). One advantage of flying in formation
for MAV swarms is their predictability during operations. Several
methods provide robust controllers with mathematical proofs
that the formation can be achieved and maintained during flight.

Frontiers in Robotics and AI | www.frontiersin.org 13 February 2020 | Volume 7 | Article 18

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Coppola et al. A Survey on Swarming With Micro Air Vehicles

A review dedicated to formation control algorithms for MAVs
is provided by Oh et al. (2015). Chung et al. (2018) also discuss
different methods.

There are applications for which a rigid formation is sub-
optimal, undesired, or unnecessary, and it is better for the
MAVs to move through space in a flock. Flocking behaviors
were originally synthesized from the motion of animals in
nature (Aoki, 1982), and were most famously formalized by
Reynolds (1987) with the intent of simulating swarms in
computer animations. The behavior is typically characterized by
a combination of simple local rules: attraction forces, repulsion
forces, heading alignment with neighbors, speed agreement
with neighbors. This behavior naturally incorporates collision
avoidance via the repulsion rule, and it has also been explored as a
means to collectively navigate in an environment with obstacles,
whereby the obstacles provide additional repulsion fores (Saska
et al., 2014; Saska, 2015). Alternatively, the local rules can also
be exploited to achieve formations by making use of equilibrium
points between attraction and repulsion forces (Gazi, 2005).
Depending on the way in which the rules are used, they can be
incorporated into an iterative approach, or they can be made
part of a mathematical regime combined with the model of the
robot. An early real-world demonstration of distributed flocking
was achieved by Hauert et al. (2011) with a swarm of ten fixed
wing MAVs. The more recent work by Vásárhelyi et al. (2018)
demonstrated outdoor flocking for a swarm of 30 quadrotors.

Concerning behaviors, such as distributed sensing,
exploration, or mapping, there are several different types of
solutions that have been developed specifically for MAVs.
Typically, these are found to vary depending on the nature of
the task, requiring the designer to make careful choices on the
best algorithm to be used. Bähnemann et al. (2017) and Spurný
et al. (2019), aided by GNSS for positioning, divided a search
area into multiple regions so that a team of three MAVs could
efficiently explore it with a pre-planned trajectory. The recent
work of McGuire et al. (2019) demonstrated a swarm of six
Crazyflie MAVs performing an autonomous exploration task
in an unknown indoor environment. Each MAV acted entirely
locally based on a manually designed bug algorithm which
enabled exploration as well as homing to a reference beacon.

6.2. Automatic Methods for Behavior
Design and Optimization
In the last few decades, the increasing power of machine learning
methods cannot be denied, with multiple examples in robotics,
autonomous driving, smart-homes, and more. Machine learning
techniques offer a way to automatically extract the local controller
that can fulfill a task, relieving us from the need to design it
ourselves. However, the problem shifts to devising algorithms
that can efficiently and effectively discover the controllers for us.
In this section, we discuss the possibilities based on two primary
machine learning approaches in swarm intelligence research:
Evolutionary Robotics (ER) and Reinforcement Learning (RL).

6.2.1. Evolutionary Robotics
ER uses the concept of survival of the fittest in order to efficiently
search through the design space for an effective controller (Nolfi,

2002)11. It has been widely adopted in swarm robotics literature
in order to evolve local robot controllers that optimize the
performance of the swarm with respect to a global, swarm-level
objective (Trianni, 2008). ER bypasses the analysis of the relation
between the local controllers and the global behavior of the
swarm. Instead, it optimizes the controllers “blindly” by means of
several evaluations in an evolutionary process, which most often
happens in simulation, but can also be performed in the real
world (Eiben, 2014). Evolved solutions often exploit the robots’
bodies and environment, including the behaviors of other swarm
members. Moreover, thanks to the blind optimization, not only
the controller can be evolved, but also other factors, such as the
communication between robots (Ampatzis et al., 2008). Likewise,
ER offers a generic approach to generate swarm controllers of
different types, including, but not limited to: neural networks
(Trianni et al., 2003; Silva et al., 2015), grammar rules (Ferrante
et al., 2013), behavior trees (Scheper et al., 2016; Jones et al.,
2018, 2019), and statemachines (Francesca et al., 2014). Although
neural network architectures can be very powerful, the advantage
of the latter methods is that they can be better understood by a
designer, which makes it easier to cross the “reality gap” between
simulation and the real world when deploying the controllers on
the real robots (Jones et al., 2019). Crossing the reality gap is a
major challenge in the field of ER and many different approaches
have been investigated, also for neural networks. See Scheper
(2019) for a more extensive discussion on these methods.

A major challenge for the effective use of ER, especially for
swarm robotics, is the design of the fitness functions to be
optimized (Francesca and Birattari, 2016). This is usually left
to the designer’s ability to explicitly define the key elements
that indicate the success of a behavior in a measurable and
quantitative manner. It is not uncommon to see empirically
defined parameters that represent certain desired elements, such
as “safety” in the example of Duarte et al. (2016). As task
complexity increases, so does the challenge of designing a fitness
function. In the worst case, it may become uninformative or
even deceptive, leading the algorithm to not finding the desired
behavior (Silva et al., 2016). Different approaches have been
proposed to tackle this issue, such as behavioral decomposition
or incremental learning (Nelson et al., 2009). The risk with these
strategies, however, is that the designer shapes the learning of the
task too much, which may lead to sub-optimal performances. As
an alternative strategy for learning complex tasks, Lehman and
Stanley (2011) proposed novelty search, whereby the fitness is not
defined by how well the task is performed, but by how “novel” a
behavior is. This can lead to finding more unorthodox solutions,
also for swarm robotics (Gomes et al., 2013). Potential drawbacks
of this approach are that the search becomes less directed, and
that the shaping shifts from defining a fitness function to defining
what constitutes a “behavior.”

11 Looking at the complexity achieved by natural swarming systems, it also seems
intuitive that such complexity could be achieved automatically by mimicking an
evolutionary process (Bouffanais, 2016). It is no surprise that a closely related
discipline to ER is that of Artificial Life (AL), dedicated to artificially representing
life-like processes, albeit with generally more open ended exploratory goals (Bedau,
2003; Trianni, 2014).
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To conclude, the ER approach applied to swarming has
the large advantage that it deals with complexity by actually
bypassing it. However, this currently comes at the cost
of needing many evaluations involving the simulation of
not one but multiple robots, which leads to longer lasting
evolutions. An additional problem of simulating a specific
number of robots to evolve a swarm behavior is that the
evolution may overfit the behaviors not only to the (simulation)
environment, but also to the exact number of robots that were
used during the evolution. A naive solution is to simulate
different swarm sizes over the evolution, but this will take
even more simulation time, and in any case, the number
of robots will be limited, meaning that scalability is not
guaranteed. Recent developments in this domain have seen
the introduction of size-agnostic techniques (Coppola et al.,
2019). Finally, although there are studies on online evolutionary
learning for swarm robotics (Bredeche et al., 2018), online
evolutionary strategies have yet to be explored (in practice)
for MAVs.

6.2.2. Reinforcement Learning
With RL, a robot is made to learn by trial-and-error from
interacting with its environment under a certain reward scheme.
This approach teaches the robot an optimal mapping between
a state and the action that it should take so as to maximize
its final reward (Sutton and Barto, 2018). RL has been widely
used in robotics, and it has thus also found its way to swarm
robotics (Brambilla et al., 2013). The advantage of RL is that the
robots can explore the environment and continuously adapt their
behavior. Several techniques have been proposed over the years
for multi-agent RL (Busoniu et al., 2008). However, within swarm
robotics literature, it has generally received less attention than
ER (Brambilla et al., 2013). A main difficulty with this approach
is that, from the perspective of the individual robot, being in
a swarm is a non-Markovian task, and each robot only has a
partial observation of the full global state. A potential issue, for
instance, is “state aliasing,” which refers to when multiple states
appear to be the same from the perspective of the agent, even
though they are not (McCallum, 1997). It has been demonstrated
that ER can achieve better solutions for non-Markovian tasks
(de Croon et al., 2005).

The solution to use RL with non-Markovian task leads to a
Partially Observable Markov Decision Problem (POMDP). In
this case, a robot keeps a history of its observations and thus
extracts the most likely global state from them. RL can be applied
to POMDPs (Ishii et al., 2005), yet features scalability issues
(the so called “state explosion”), especially when ported to the
swarm domain because the global state of the swarm, which it
tries to estimate, can take exponentially many forms (Parsons
andWooldridge, 2002). In recent work, Hüttenrauch et al. (2019)
proposed to use mean feature embeddings which encode a mean
distribution of the agents. This compression is then invariant to
the number of agents in the swarm. Another known difficulty
of RL with respect to ER is the credit assignment problem. This
refers to the challenge of decomposing the global rewards into
local rewards for each robot, as the individual contribution of a
single robot to a global task may not always be clearly determined
(Brambilla et al., 2013). The credit assignment problem is also

manifested over time, as it is difficult to judge which prior action
was most conducive.

In short, until now ER appears to be amore appropriate choice
for learning control in swarms, as it allows robots to exploit
non-Markovian properties of the problem (e.g., the states and
behaviors of other robots). However, because of the reality gap,
online learning methods may turn out very useful in the future,
including RL methods.

6.3. Manual vs. Automatic Methods for
MAV Swarms
A primary advantage of manual design methods for MAV
swarms is that the solutions are generally better understood,
given that they have to be designed and programmed manually.
The algorithms that are developed can be analyzed, and in
certain cases it can even be assessed whether the system will
converge to the desired properties and even be resilient to faults
(Saldaña et al., 2017; Saulnier et al., 2017). This is a particularly
attractive property for MAV applications, where safety and
predictability are a primary concern. A second advantage is that
they carry a clearer breakdown of the requirements. For these
reasons, it is not surprising that, to the best of our knowledge
and as confirmed by Chung et al. (2018), most real-world
implementations ofMAV swarms to date have relied on primarily
manually designed swarming algorithms. These advantages have
also been acknowledged by the automatic design community,
which has brought a general interest in using automatic approach
to develop explicit controllers, such as state machines (Francesca
et al., 2014, 2015) or behavior trees (Kuckling et al., 2018; Jones
et al., 2019). In future work, the use of thesemethods could lead to
a compromise between extracting an understandable controller
and exploiting the power of automatic methods.

A challenge of designing an algorithm manually is in the
need to ensure that it can work within the limitations of the
system. For instance, if using a communication-based ranging
relative localization system, the relative location estimate is only
observable when both MAVs are moving in such a way that the
system is excited (Nguyen et al., 2019). Alternatively, cameras can
be limited by the FOV and be forced to keep a reference neighbor
in the center (Nägeli et al., 2014). This may be undesirable for
the final application of the swarm (e.g., surveillance), since the
camera is kept pointing to other MAVs as opposed to interesting
features in the environment. Examples, such as these serve to
show how amanually designed algorithm can either fail to regard
certain elements, or may not exploit the environment optimally
so as to best deal with the limitations. An automatic method,
on the other hand, could extract a controller that best deals
with the limitations, possibly finding solutions that cannot be
easily designed manually. For instance, ER studies show that
evolved robot controllers can find behaviors that tightly exploit
the sensory and motor capabilities of the given robot (Nolfi,
2002)—this is called sensory-motor coordination.

Despite their power, the application of automatic design
methods to MAV swarms are relatively few. One of the first steps
was done by Hauert et al. (2009) for the purposes of developing
a flying communication network. In this case, the authors
proposed to reverse engineer the behavior of an evolved neural
network and subsequently program a similar behavior manually.
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This approach provided original and “creative” insights that
enabled them to design a viable and flexible behavior. In
later work, Szabo (2015) applied evolutionary behavior trees
to a team of MAVs for the purposes of collision avoidance,
exploiting the increased readability of behavior trees. The MAVs
only knew each other’s relative distance (not position) as
measured by noisy Bluetooth signal strength, yet the evolved
behavior was capable of reducing the number of collisions in
a cluttered space. The automatically evolved behavior tree was
not only simpler (fewer nodes/branches), but also performed
better when compared to a manually designed one. Scheper and
de Croon (2017) trained a neural network to form a triangle
with a team of three MAVs, inspired by a similar task by
Izzo et al. (2014). Although not aimed at MAVs, Izzo et al.
(2014) had previously shown that an automatic method was
able to extract a behavior with which homogeneous agents could
self-organize into asymmetric patterns, whereas the previously
developed manual approaches for the same system were limited
to symmetric patterns (Izzo and Pettazzi, 2007). Scheper and
de Croon (2017) additionally showed that evolving a controller
at a higher level of abstraction does not necessarily compromise
the ability of automatic methods to exploit an environment and
sensory-motor relationships, yet helps to reduce the reality gap.
The more recent work of Schilling et al. (2019) showed that
it’s possible to learn a flocking behavior directly from camera
images using imitation learning. This was demonstrated in a real
world environment with two MAVs. This automatic approach
was able to find a viable, collision-free behavior that could also
localize neighbors.

The limited amount of works show that this field is still young.
The extra challenge comes from the several constraints that flow
from the lower levels as well as the additional cost and difficulty
of real-world experimentation. Nevertheless, there are arguments
to show that automatic methods may eventually provide a way
to make the most out of the swarms (Francesca and Birattari,
2016). We expect that in the future, once both MAVs as well as
automatic swarming design technologies become more mature,
we will begin to see an increase of (experimental) works in
this domain.

7. FURTHER CHALLENGES AND FUTURE
DEVELOPMENTS TO BE MADE

7.1. Battery Recharging and Scheduling
As already discussed, flight time is a fundamental constraint for
MAVs. Swarming can help to expand the flight time of the whole
system, such that a portion of MAVs can recharge while others
are still in operation. This is subject to two main challenges. The
first is the design of the combinedMAV + re-charging ecosystem,
and the second is the distributed scheduling between drones.
Research has already begun on this front, albeit to the best of
our knowledge an automated and distributed recharging method
for a swarm of MAVs has yet to be demonstrated outside of
a controlled environment. Toksoz et al. (2011) and Lee et al.
(2015) designed a battery swapping station to quickly exchange
batteries on a quadrotor. The advantage of such a system is that
the battery can be changed quickly. However, it also requires

an intricate design as well as highly accurate landing to ensure
that the battery is properly replaced. Instead, a contact-based
re-charging station, such as the one proposed by Leonard et al.
(2014) offers a simpler system, albeit at the cost of a slower turn-
over. The authors investigated its use for a multi-UAV system,
whereby the MAVs queued their use of the charging stations
via a prioritization function. Using a similar charging system,
Mulgaonkar and Kumar (2014) demonstrated a system where
three quadrotors take turns to surveil a target region, such that
one operates while the other two recharge. Vasile and Belta
(2014) and Leahy et al. (2016) proposed formal strategies based
on temporal logic constraints to ensure that the MAVs would
correctly queue for recharging. However, the experimental efforts
focused on the case where only one MAV operates at a given
time. Nowadays, commercial charging station are also available
(Brommer et al., 2018). This will likely accelerate the research
progress. Wireless charging, albeit slower, is also an attractive
choice as it softens the requirement on precision landing (Choi
et al., 2016; Junaid et al., 2017).

Flight time can also be increased at the MAV design level by
designing MAVs with on-board recharging or longer endurance.
The capability for long endurance would allow the swarm to
be more flexible and take on a more diverse set of missions.
One possible method to increase the flight time is to use solar
cells. These have mostly been applied to fixed wing designs, such
as the “Skysailor” MAV (Noth and Siegwart, 2010), benefiting
from efficient flight conditions and large wing areas. It can in
fact be shown that the benefit of solar cells begins to have little
effect on smaller platforms, due to the reduced surface area
available (Bronz et al., 2009). This trend is even more prominent
on quadrotors, which have higher energy requirements. As
a solution, D’Sa et al. (2016) proposed an MAV design that
can alternate between fixed wing and quadrotor mode, such
that “surplus energy collected and stored while in a fixed wing
configuration is utilized while in a quadrotor configuration.”
Recently, Goh et al. (2019) demonstrated a fully solar-powered
quadrotor. To meet the energy requirements, an area of 4 m2 was
required together with a reliance on ground-effects, meaning that
theMAVwas bound to low altitudes. A different solution is to use
combustion engines (Zufferey et al., 2013; Nex and Remondino,
2014; Ross, 2014). They benefit from the high-energy density of
fuel and can help to provide long endurance flight, although they
are typically applied to larger drones in outdoor environments
Alternatively, fuel cells have also been explored as a power source
for long endurance flight, with increasingly promising results in
the recent years (Gong and Verstraete, 2017; De Wagter et al.,
2019; Pan et al., 2019).

7.2. Swarm-Level Active Fault Detection
Active and decentralized fault detection should also play a
fundamental role for the realization of MAV swarms12. If not
catered to, then there is a risk that the erroneous actions of one
MAV hinder the entire swarm (Bjerknes and Winfield, 2013).

12 Wedifferentiate between fault detection and fault tolerance. Fault tolerance refers
to the ability of the system to be robust to faults. Fault detection refers to the ability
of the robots in the swarm to detect issues, and thus possibly also cope with them.
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Winfield and Nembrini (2006) applied the Failure Mode and
Effect Analysis (FMEA) methodology to evaluate the reliability
of an entire swarm based on its possible failure points. From such
studies it can be evaluated whether, and to what extent, local
failures can incapacitate the swarm. The question is how such
faults can be detected and dealt with during operations. Doing
so would create a system that is more robust to failures.

Li and Parker (2007) developed the Sensor Analysis based
Fault Detection (SAFDetection). In this approach, a clustering
algorithm is used to learn a model of the robots’ expected
behavior. This model is then used to determine whether the
behavior of a robot in the swarm can be considered “normal”
(i.e., falls within the learned model), or “abnormal,” in which
case a likely fault has been detected. A distributed version of
the algorithm has also been developed (Li and Parker, 2009),
in which case each robot learns its own behavior model locally
and then shares it. This strategy scales better with the size of
the swarm, as it parallelizes the clustering computations. The
works by Tarapore et al. (2013, 2015a,b) also propose a strategy
for normal/abnormal behavior classification by synthesizing the
behavior of neighbors within a binary feature vector. In more
recent work, Tarapore et al. (2017) proposed the use of a
consensus algorithm so that the robots can collectively reach
a decision on whether the behavior of a team-member can be
considered normal or abnormal. This was also tested on a real
robotic system (Tarapore et al., 2019). Qin et al. (2014) provide
a review on this active area of research. Bringing these solutions
to MAV swarms can largely improve the operational safety of the
full system, which is paramount for deployment in the real world.

7.3. Controlling and Supervising Swarms of
MAVs
A control interface should enable an operator to provide
commands to the swarm, such as take-off and landing, the
commencement of mission objectives, or the engagement of
swarm-wide emergency procedures. All should be done in a
direct and intuitive way to minimize the effort by the operator
(Fuchs et al., 2014; Dousse et al., 2016). To this end, Nagi et al.
(2014) explored the use of a gesture vocabulary which allows a
human operator to instruct a team ofMAVs. The human operator
and the gestures are detected directly by the MAVs using their
on-board camera. Thanks to their multiple viewpoints, they are
able to discern the operator’s commands in a distributed fashion.
Tsykunov et al. (2018) explored how to use a haptic glove to
control a team of drones as if they were all connected via a spring-
damper system. Research has also focused on the development of
gesture languages, as in the works of Soto-Gerrero and Ramrez-
Torres (2016) and Couture et al. (2018). Virtual reality is also
becoming an increasingly popular technology, and is beginning
to be applied to the control of MAVs (Tsykunov and Tsetserukou,
2019; Vempati et al., 2019). Besides the above, a less technical,
yet highly significant, challenge to overcome on this front is
the (understandably) stringent legislation surrounding MAV
flight, particularly in outdoor scenarios, often requiring at least
one pilot per drone (the specifics vary based on the location)
(Vincenzi et al., 2015).We refer the interested reader to Hocraffer

and Nam (2017) and the sources therein for a more thorough
overview of the challenges and the current technologies for
human control of aerial swarms.

8. DISCUSSION: HOW FAR ARE WE FROM
MAV SWARMS?

Following the many topics discussed in this paper comes the
inevitable question: how far are we from large scale aerial swarms
that can cooperatively explore areas, carry heavier objects, and
autonomously complete complex tasks without low level human-
in-the-loop control? Despite the large amount of research and
development that has been done to tackle the topics within this
grander scheme, the field of robotics and the field of swarm
intelligence are both still relatively young, and there remain
advances to be made. In this paper, we discussed how the swarm
behavior depends on the constraints set by lower level properties,
and vice versa. This interdependency and iterative nature of
design means that, if we wish to bring full-fledged MAV swarms
to the real world, there must be a mutual understanding between
the design levels as to what is required and what can be achieved
in reality.

One of the main technologies required to make the leap from
flying a single MAV to flying a decentralized swarm is an accurate
and reliable intra-swarm relative localization technology. Even
for those applications where cooperation is limited and each
member in the swarm acts mostly independently, relative
localization is still needed to ensure relative collision avoidance,
which is a safety-critical requirement. As we have shown
throughout this paper, several technologies are currently under
exploration and it is still unclear which will prove most reliable
and advantageous in the long run. As the choice of these systems
very directly shapes the behavior of the swarm, the challenge of
designing the swarm behavior needs to be tightly coupled to it,
additionally to the way it is coupled to the design of the individual
robots. As such, automatic design algorithms of swarm behaviors
can provide a way to make the most out of the individual MAVs
and their limitations, albeit at the potential cost of relying on less
well-understood controllers.

Additionally, the on-going standardization of tools is expected
to help the field to reach a new level of maturity (Nedjah
and Junior, 2019). Systems, such as ROS (Quigley et al., 2009),
Paparazzi (Mueller and Drouin, 2007; Brisset and Hattenberger,
2008), or PX4 (Meier et al., 2015) have now accelerated the
process of prototyping and testing on real-worldMAVs, and have
also made it easier to share hardware/software advancements.
Low cost programmable MAVs, such as the Crazyflie are also
available, making it more feasible to experiment with large
numbers of MAVs. Additionally, dedicated standards, such as
MAVLink, which provides communication between software
modules, are becoming increasingly popular (Dietrich et al.,
2016), and full-stack frameworks have been developed to
handle the entire pipeline (Sanchez-Lopez et al., 2016; Millan-
Romera et al., 2019). The combination of these systems together
with simulators, such as the well-known Gazebo (Koenig and
Howard, 2004), ARGoS (Pinciroli et al., 2012), or AirSim (Shah
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et al., 2018), further help to quickly prototype software in a
realistic simulation environment. Combined with models and
frameworks, such as hector-quadrotor (Meyer et al., 2012)
or RotorS (Furrer et al., 2016), simulation environments can
significantly accelerate the development time (Johnson and
Mishra, 2002). Mairaj et al. (2019) provides an extensive review of
several simulators for this purpose. Dedicated swarm languages,
such as Buzz (Pinciroli and Beltrame, 2016) also provide a simpler
prototyping framework dedicated to swarm robotics, which can
also be applied to MAVs.

Finally, the prominent rise in popularity of MAVs in the last
decade has brought about several technology accelerators. MAV
focused robotics competitions, such as the Mohamed Bin Z̈ayed
International Robotics Challenge (MBZIRC) or the International
Micro Air Vehicle (IMAV) competition have now also begun
to integrate swarming or multi-robot elements (Pestana et al.,
2014; Saska et al., 2016a; Bähnemann et al., 2017; Nieuwenhuisen
et al., 2017; Spurný et al., 2019). This pushes researchers to take
a technology out of the lab and into unknown environments,
thereby increasing their robustness.

9. CONCLUSION

The challenges to solve before we can expect to see swarms of
autonomous MAVs are many. They begin at the lowest level,
forcing us to think of how the MAV design will impact the
swarm behavior, and they end at the highest level, where we
must design collective behaviors that best exploit our lower level
designs, controllers, and sensors. In the last decade, the field of
swarm robotics and MAV design have started to merge more
and more, leading to increasingly impressive achievements. To
go further, the tight and complex relationship between the low
level and the high level needs to be appreciated in order to
break into a new era of truly autonomous and distributed swarms
of MAVs.
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