
International Journal of Data Warehousing & Mining, 5(1), 1-17, January-March 2009 �

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Abstract

Data warehouses are information repositories specialized in supporting decision making. Since the de-
cisional process typically requires an analysis of historical trends, time and its management acquire a
huge importance. In this paper we consider the variety of issues, often grouped under term temporal data
warehousing, implied by the need for accurately describing how information changes over time in data
warehousing systems. We recognize that, with reference to a three-levels architecture, these issues can
be classified into some topics, namely: handling data/schema changes in the data warehouse, handling
data/schema changes in the data mart, querying temporal data, and designing temporal data warehouses.
After introducing the main concepts and terminology of temporal databases, we separately survey these
topics. Finally, we discuss the open research issues also in connection with their implementation on com-
mercial tools.

Keywords:	 data warehouse; data mart; design; evolution; temporal databases; versioning

Introduction

At the core of most business intelligence applica-
tions, data warehousing systems are specialized
in supporting decision making. They have been
rapidly spreading within the industrial world
over the last decade, due to their undeniable
contribution to increasing the effectiveness
and efficiency of the decisional processes
within business and scientific domains. This
wide diffusion was supported by remarkable
research results aimed at improving querying
performance, at refining the quality of data, and

at outlining the design process, as well as by the
quick advancement of commercial tools.

In the remainder of the paper, for the sake
of terminological consistency, we will refer
to a classic architecture for data warehousing
systems, illustrated in Figure 1, that relies on
three levels:

1.	 The data sources, that store the data used
for feeding the data warehousing systems.
They are mainly corporate operational
databases, hosted by either relational or
legacy platforms, but in some cases they

Survey Article

A Survey on Temporal Data
Warehousing

Matteo Golfarelli, DEIS - University of Bologna, Italy

Stefano Rizzi, DEIS - University of Bologna, Italy

� International Journal of Data Warehousing & Mining, 5(1), 1-17, January-March 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

may also include external web data, flat
files, spreadsheet files, etc.

2.	 The data warehouse (also called recon-
ciled data level, operational data store or
enterprise data warehouse), a normalized
operational database that stores detailed,
integrated, clean and consistent data ex-
tracted from data sources and properly
processed by means of ETL tools.

3.	 The data marts, where data taken from
the data warehouse are summarized into
relevant information for decision making,
in the form of multidimensional cubes, to
be typically queried by OLAP and reporting
front-ends.

Cubes are structured according to the mul-
tidimensional model, whose key concepts are
fact, measure and dimension. A fact is a focus
of interest for the decisional process; its occur-
rences correspond to events that dynamically
occur within the business world. Each event

is quantitatively described by a set of numeri-
cal measures. In the multidimensional model,
events are arranged within an n-dimensional
space whose axes, called dimensions of analysis,
define different perspectives for their identi-
fication. Dimensions commonly are discrete,
alphanumerical attributes that determine the
minimum granularity for analyzing facts. Each
dimension is the root of a (roll-up) hierarchy
that includes a set of levels, each providing a
way of selecting and aggregating events. Each
level can be described by a set of properties.

As a consequence of the fact that the de-
cisional process typically relies on computing
historical trends and on comparing snapshots of
the enterprise taken at different moments, one of
the main characterizations of data warehousing
systems is that of storing historical, non volatile
data. Thus, time and its management acquire a
huge importance. In this paper we discuss the
variety of issues, often grouped under term tem-
poral data warehousing, implied by the need for

Figure 1: Three-levels architecture for a data warehousing system

International Journal of Data Warehousing & Mining, 5(1), 1-17, January-March 2009 �

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

accurately describing how information changes
over time. These issues, arising by the never
ending evolution of the application domains,
are even more pressing today, as several mature
implementations of data warehousing systems
are fully operational within medium to large
business contexts. Note that, in comparison
with operational databases, temporal issues are
more critical in data warehousing systems since
queries frequently span long periods of time;
thus, it is very common that they are required
to cross the boundaries of different versions of
data and/or schema. Besides, the criticality of
the problem is obviously higher for systems
that have been established for a long time, since
unhandled evolutions will determine a stronger
gap between the reality and its representation
within the database, which will soon become
obsolete and useless (Golfarelli et al, 2006).

So, not surprisingly, there has been a lot
of research so far regarding temporal issues
in data warehousing systems. Basically, the
approaches devised in the literature can be
accommodated in the following (sometimes
overlapping) categories:

•	 Handling changes in the data warehouse
(discussed in the third section). This
mainly has to do with maintaining the data
warehouse in sync with the data sources
when changes on either of these two levels
occur.

•	 Handling data changes in the data mart
(fourth section). Events are continuously
added to data marts; while recorded events
are typically not subject to further changes,
in some cases they can be modified to ac-
commodate errors or late notifications of
up-to-date values for measures. Besides,
the instances of dimensions and hierarchies
are not entirely static.

•	 Handling schema changes in the data mart
(fifth section). The data mart structure may
change in response to the evolving business
requirements. New levels and measures
may become necessary, while others may
become obsolete. Even the set of dimen-

sions characterizing a fact may be required
to change.

•	 Querying temporal data (sixth section).
Querying in presence of data and schema
changes require specific attention, espe-
cially if the user is interested in formulat-
ing queries whose temporal range covers
different versions of data and/or schema.

•	 Designing temporal data warehouses (sev-
enth section). The specific characteristics of
temporal data warehouses may require ad
hoc approaches for their design, especially
from the conceptual point of view.

The paper outline is completed by the sec-
ond section, that introduces the main concepts
and terminology of temporal databases, and by
the eighth section, that summarizes some open
issues and draws the conclusions.

TEMPORAL DATABASES

Databases where time is not represented are
often called transient databases. Within a tran-
sient database, only the current representation
of real-world objects is stored and no track of
changes is kept, so it is impossible to reconstruct
how the object was in the past. Conversely,
temporal databases focus on representing the
inherent temporal nature of objects through
the time-dependent recording of their structure
and state. Two different time dimensions are
normally considered in temporal databases,
namely valid time and transaction time (Jensen
et al., 1994). Valid time is the “real-world time”,
i.e., it expresses the time when a fact is true in
the business domain. Transaction time is the
“database system time”, i.e., it expresses the
time when facts are registered in the database.
Temporal database systems are called valid-
time databases, transaction-time databases
or bi-temporal databases depending on their
capacity to handle either or both of these two
time dimensions (Tansel et al., 1993). The
main benefit of using a bi-temporal database
is that not only the history of the changes an
object is subject to is recorded, but it is also

� International Journal of Data Warehousing & Mining, 5(1), 1-17, January-March 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

possible to obtain the same result from a query
independently of the time when it is formulated
(which might not happen if transaction time is
not properly represented).

In the real world, objects change in both
their state and their structure. This means that,
within a database, both the values of data and
their schema may change. Obviously, values
of data are constantly modified by databases
applications. On the other hand, modifying the
database schema is a less frequent, though still
common, occurrence in database administra-
tion. With reference to changes in the database
schema, the literature commonly distinguishes
three possibilities (Roddick, 1995):

•	 Schema modification is supported when
a database system allows changes to the
schema definition of a populated database,
which may lead to loss of data.

•	 Schema evolution is supported when a
database system enables the modification
of the database schema without loss of
existing data.

•	 Schema versioning is supported when a
database system allows the accessing of
all data, both retrospectively and pro-
spectively, through user-definable version
interfaces.

The significant difference between evolu-
tion and versioning is that the former does not
require the maintenance of a schema history,
while in the latter all past schema versions are
retained. Note that, in the context of schema
evolution and versioning, most authors agree
that there is no need to distinguish valid time
from transaction time (McKenzie & Snodgrass,
1990).

On the language side, TSQL2 (Snodgrass,
1995) is the most noticeable attempt to de-
vise a query language for relational temporal
databases. TSQL2 is a temporal extension to
the SQL-92 language standard, augmented to
enable users to specify valid-time and transac-
tion-time expressions for data retrieval. As to
querying in presence of schema versioning,
while TSQL2 only allows users to punctually

specify the schema version according to which
data are queried, other approaches also support
queries spanning multiple schema versions
(Grandi, 2002).

The concepts introduced in this section
were originally devised for operational data-
bases, and in particular for relational databases.
While in principle they can also be applied to
data warehousing systems, that in a ROLAP im-
plementations are based on relational databases,
the peculiarities of the multidimensional model
and the strong relevance of time in the OLAP
world call for more specific approaches.

HANDLING CHANGES IN the
DATA warehouse

When considering temporal data, it is first of all
necessary to understand how time is reflected
in the database, and how a new piece of infor-
mation affects existing data. From this point
of view, �������� ����������������������������� Devlin (1997) ����������������������� proposes the following
classification�:

•	 Transient data: alterations and deletions
of existing records physically destroy the
previous data content.

•	 Periodic data: once a record is added to
a database, it is never physically deleted,
nor is its content ever modified. Rather,
new records are added to reflect updates
or deletions. Periodic data thus represent
a complete record of the changes that have
occurred in the data.

•	 Semi-periodic data: in some situations, due
to performance and/or storage constraints,
only the more recent history of data changes
is kept.

•	 Snapshot data: a data snapshot is a stable
view of data as it exists at some point in
time, not containing any record of the
changes that determined it. A series of
snapshots can provide an overall view of
the history of an organization.

Data sources normally adopt either a tran-
sient or a (semi-)periodic approach, depending

International Journal of Data Warehousing & Mining, 5(1), 1-17, January-March 2009 �

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

on whether the application domains requires
keeping history of past data or not. The histori-
cal depth of a data warehouse is typically not
less than the one of its data sources, thus data
warehouses more often contain periodic data.
Conversely, data marts normally conform to
the snapshot model.

In order to model historical data in the data
warehouse, Abello and ���������������������� Martín���������������� (2003) propose
a bi-temporal storage structure where each
attribute is associated to two couples of times-
tamps, so as to track the history of its values
according to both valid and transaction time.
Each attribute, or each set of attributes having
the same behaviour with reference to changes
(i.e., such that whenever an attribute in the set
changes its value, all the others change too),
is stored in a separate table so that a change
occurred to one concept does not affect the
other concepts. Obviously, such normalized
and time-oriented structure is not suited for
querying, that will take place on denormalized
data marts fed from the data warehouse.

Since the data warehouse can be thought of
as a set of derived, materialized views defined
over a set of source schemata, the problem of
evolving the content and the schema of derived
views in connection to the source changes is
highly relevant in the context of temporal data
warehouses. Bellahsene (2002) distinguishes
two subproblems: view maintenance and view
adaptation.

View maintenance consists in maintaining
a materialized view in response to data modi-
fications of the source relations. Considering
the width of the problem, we refer the reader
to Gupta & Mumick (1995) for a taxonomy of
view maintenance problems and a description of
the main techniques proposed in the literature.
A specific issue in view maintenance is how
to provide temporal views over the history of
source data, that may be non-temporal. We
mention two approaches in this direction. Yang
& Widom (1998) describe an architecture that
uses incremental techniques to automatically
maintain temporal views over non-temporal
source relations, allowing users to ask tempo-

ral queries on these views. De Amo & Halfeld
Ferrari Alves (2000) present a self-maintainable
temporal data warehouse that, besides a set
of temporal views, includes a set of auxiliary
relations containing only temporal information.
Such auxiliary relations are used to maintain the
data warehouse without consulting the source
databases and to avoid storing the entire history
of source databases in the warehouse.

View adaptation consists in recomputing a
materialized view in response to changes either
in the schema of the source relations or in the
definition of the view itself. Changes in the
source schemata may be due to an evolution
of the application domain they represent, or
to a new physical location for them. Changes
in the definition of the view (i.e., in the data
warehouse schema) may also be due to new
requirements of the business users who query
the data marts fed by the data warehouse. Among
the approaches in this direction we mention
the one by Bellahsene (1998), who proposes
an extended relational view model to support
view adaptation, aimed at maintaining data
coherence and preserving the validity of the
existing application programs. Performing a
schema change leads to creating a new view, by
means of an extended view definition language
that incorporates two clauses: hide, which speci-
fies a set of attributes to be hidden, and add,
that allows a view to own additional attributes
that do not belong to source relations. In the
EVE framework (���������������������������� Lee, Nica, & Rundensteiner,
2002), in order to automate the redefinition
of a view in response to schema changes in
the data sources, the �������������������������� database administrator is
allowed to embed her preferences about view
evolution into the view definition itself. The
preference-based view rewriting process, called
view synchronization, identifies and extracts
appropriate information from other data sources
as replacements of the affected components of
the original view definition, in order to produce
an alternative view that somehow preserves
the original one. Finally, the DyDa framework
(Chen, Zhang, & Rundensteiner, 2006) supports
compensating queries, that cope with erroneous

� International Journal of Data Warehousing & Mining, 5(1), 1-17, January-March 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

results in view maintenance due to concurrent
updates in data source, in presence of data and
schema changes.

The key idea of adaptation techniques is to
avoid recomputing the materialized view from
scratch by relying on the previous materializa-
tion and on the source relations. For instance,
Bellahsene (2002) focuses on the adaptation
of the data warehouse in response to schema
changes arising on source relations located on
multiple sites. To adapt the extent of the data
warehouse in response to these changes, she
adopts rewriting algorithms that make use of
containment checking, so that only the part of
the new view that is not contained in the old
view will be recomputed. In the same context,
a distinctive feature of the AutoMed system
(Fan & Poulovassilis, 2004) is the capability
of handling not only schema evolutions in
materialized data integration scenarios, but also
changes in the data model in which the schema
is expressed (e.g., XML vs. relational). This is
achieved by applying sequences of primitive
transformations to a low-level hypergraph-
based data model, in whose terms higher-level
modeling languages are defined.

With reference to the problem of keeping
the data warehouse in sync with the sources,
Wrembel and Bebel (2007) propose a metamod-
el for handling changes in the operational data
sources, which supports the automatic detec-
tion of structural and content changes in the
sources and their automatic propagation to the
data warehouse.

Finally, Combi & Oliboni (2007) focus on
the management of time-variant semi-structured
XML data within the data warehouse. In par-
ticular, they propose a representation based on
graphs whose nodes denote objects or values
and are labeled with their validity interval; the
constraints related to correct management of
time are then discussed.

Handling DATA Changes in the
Data Mart

Content changes result from user activities that
perform their day-to-day work on data sources

by means of different applications (Wrembel
& Bebel, 2007). These changes are reflected in
the data warehouse and then in the data marts
fed from it.

The multidimensional model provides
direct support for representing the sequence of
events that constitute the history of a fact: by
including a temporal dimension (say, with date
granularity) in the fact, each event is associ-
ated to its date. For instance, if we consider an
ORDER fact representing the quantities in the
lines of orders received by a company selling
PC consumables, the dimensions would prob-
ably be product, orderNumber, and orderDate.
Thus, each event (i.e., each line of order)
would be associated to the ordered product, to
the number of the order it belongs to, and to
the order date.

On the other hand, the multidimensional
model implicitly assumes that the dimensions
and the related levels are entirely static. This
assumption is clearly unrealistic in most cases;
for instance, considering again the order domain,
a company may add new categories of products
to its catalog while others can be dropped, or the
category of a product may change in response
to the marketing policy.

Another common assumption is that, once
an event has been registered in a data mart, it is
never modified so that the only possible writing
operation consists in appending new events as
they occur. While this is acceptable for a wide
variety of domains, some applications call for
a different behavior; for example the quantity
of a product ordered in a given day could be
wrongly registered or could be communicated
after the ETL process has run.

These few examples emphasize the need
for a correct handling of changes in the data
mart content. Differently from the problem of
handling schema changes, the issues related to
data changes have been widely addressed by
researchers and practitioners, even because in
several cases they can be directly managed in
commercial DBMSs. In the following subsec-
tions we separately discuss the issues related to
changes in dimensional data and factual data,
i.e., events��.

International Journal of Data Warehousing & Mining, 5(1), 1-17, January-March 2009 �

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Changes in Dimensional Data

By this term we mean any content change that
may occur within an instance of a hierarchy,
involving either the dimension itself, or a level,
or a property. For instance, considering a product
hierarchy featuring levels type and category,
the name of a product may change, or a new
category may be introduced so that the existing
types have to be reassigned to categories.

The study of changes in dimensional data
has been pioneered by Kimball (1996), who
coined the term slowly-changing dimension to
point out that, differently from data in fact tables,
changes within the dimension tables occur less
frequently. He proposed three basic modeling
solutions for a ROLAP implementation of
the multidimensional model, each inducing a
different capability of tracking the history of
data. In the Type I solution he simply proposes
to overwrite old tuples in dimension tables
with new data: in this case, tracking history is
not possible but changes in the hierarchy data
keep the data mart up-to-date. Conversely, in
the Type II solution, each change produces a
new record in the dimension table: old events
stay related to the old versions of hierarchies,
while new events are related to the current
version. In order to allow two or more tuples
representing the same hierarchy instance to be
included in the dimension table, surrogate keys
must necessarily be adopted. Finally, the Type
III solution is based on augmenting the schema
of the dimension table by representing both the
current and the previous value for each level or
attribute subject to change.

Other solutions, based on these basic ones,
have been proposed over time. In particular, a
complete historicization of the dimension tables
determines higher expressivity. This can be ob-
tained for instance as an extension of Type II, by
adding to the dimension table schema a couple
of timestamps storing the validity interval for
each tuple, plus an attribute storing the surro-
gate key of the first version of the tuple. This
solution is sometimes called Type VI (I+II+III)
since it covers all the previous ones.

The solutions discussed so far have dif-
ferent querying capabilities; with reference
to the terminology proposed by SAP (2000),
three main querying scenarios can be distin-
guished:

•	 Today is yesterday: all events are related
to the current value of the hierarchy. This
scenario is supported by all the discussed
solutions.

•	 Today or Yesterday: each event is related
to the hierarchy value that was valid when
the event occurred. This scenario, that re-
constructs the historical truth, is supported
by Type II and VI solutions.

•	 Yesterday is Today: each event is related
to the hierarchy value that was valid at a
given time in the past. This scenario is
supported by Type VI solution only.

Other solutions for handling changes in
dimensional data have been devised thereafter.
Two relevant proposals, that study the problem
from a more conceptual point of view, are by
Bliujute et al. (1998) and Pedersen and Jensen
(1999). The first one proposes a temporal star
schema that, differently from the traditional one,
omits the time dimension table and timestamps
each row in every table instead, treating the fact
table and the dimension tables equally with
respect to time. Similarly, the second one pro-
poses to handle changes by adding timestamps
to all the components of a multidimensional
schema: the values of both dimensions and
facts, the inter-level partial order that shapes
hierarchy instances and the fact-dimension
relationships. Another model that supports
changes in data by timestamping dimensional
data is COMET (Eder, Koncilia, & Morzy,
2002), that also supports schema versioning
using a fully historicized meta-model. Finally,
Chamoni and Stock (1999) suggest to couple
the multidimensional cube with meta-cubes
that store dimension structures together with
their timestamps.

A model supporting data changes should
be coupled with meaningful operators to
carry them out. An interesting proposal in this

� International Journal of Data Warehousing & Mining, 5(1), 1-17, January-March 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

direction comes from Hurtado,������������ Mendelzon,
& Vaisman���������������������������������� ��������������������������������� (1999b), who introduces a set of
high-level operators based on sequences of
elemental operators (�������������������� Hurtado,������������ Mendelzon,
& Vaisman,��������������������������������� �������������������������������� 1999a) for both schema and data
changes. The operators for data changes are
reclassify, that changes the roll-up partial
order between levels, split, that reorganizes a
hierarchy after one instance has been replaced
by two or more ones, merge, that merges two
instances of a hierarchy into a single one, and
update, that simply changes the value of an
instance without affecting the roll-up partial
order. Since changes to hierarchy instances
could affect summarizability, the definition of
models and operators is usually coupled with
a set of constraints aimed at enforcing data
consistency (���������������������� ���������Hurtado,�������������� ��������� Mendelzon, & Vaisman,
1999b; ������������������������������������� Eder, ������������������������������� Koncilia, & Morzy,������������� 2002; ������Letz,
Henn, & Vossen, 2002).

Changes in Factual Data

We start this section by preliminarily mention-
ing the two basic paradigms introduced by
Kimball (1996) for representing inventory-like
information in a data mart: the transactional
model, where each increase and decrease in the
inventory level is recorded as an event, and the
snapshot model, where the current inventory level
is periodically recorded. A similar characteriza-
tion is proposed by Bliujute et al. (1998), who
distinguish between event-oriented data, like
sales, inventory transfers, and financial transac-
tions, and state-oriented data, like unit prices,
account balances, and inventory levels. This has
been later generalized to define a classification
of facts based on the conceptual role given to
events (Golfarelli & Rizzi, 2007b):

•	 Flow facts (flow measures in Lenz &
Shoshani, 1997) record a single transaction
or summarize a set of transactions that oc-
cur during the same time interval; they are
monitored by collecting their occurrences
during a time interval and are cumulatively
measured at the end of that period. Examples
of flow facts are orders and enrollments.

•	 Stock facts (stock measures in Lenz &
Shoshani, 1997) refer to an instant in time
and are evaluated at that instant; they are
monitored by periodically sampling and
measuring their state. Examples are the
price of a share and the level of a river.

By the term changes in factual data we mean
any content change an event may be subject to,
involving either the values of its measures or the
dimensional elements it is connected to. Changes
in factual data are a relevant issue in all those
cases where the values measured for a given
event may change over a period of time, to be
consolidated only after the event has been for
the first time registered in the data mart. These
late measurements typically happens when the
early measurements made for events are subject
to errors (e.g., the amount of an order may be
corrected after the order has been registered) or
when events inherently evolve over time (e.g.,
notifications of university enrollments may be
received and registered several days after they
were issued). This problem becomes even more
evident as the timeliness requirement takes more
importance (Jarke, Jeusfeld, Quix, & Vassiliadis,
1999). This is the case for zero-latency data ware-
housing systems (Bruckner & Tjoa, 2002), whose
goal is to allow organizations to deliver relevant
information as fast as possible to knowledge
workers or decision systems that need to react
in near real-time to new information.

In these contexts, if the up-to-date state is to
be made timely visible to the decision makers,
past events must be continuously updated to
reflect the incoming late measurements. Unfor-
tunately, if updates are carried out by physically
overwriting past registrations of events, some
problems may arise. In fact, accountability and
traceability require the capability of preserving
the exact information the analyst based her de-
cision upon. If the old registration for an event
is replaced by its latest version, past decisions
can no longer be justified. Besides, in some ap-
plications, accessing only up-to-date versions
of information is not sufficient to ensure the
correctness of analysis. A typical case is that of
queries requiring to compare the progress of an

International Journal of Data Warehousing & Mining, 5(1), 1-17, January-March 2009 �

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

ongoing phenomenon with past occurrences of
the same phenomenon: since the data recorded
for the ongoing phenomenon are not consolidated
yet, comparing them with past consolidated data
may not be meaningful (Golfarelli & Rizzi,
2007b).

Supporting accountability and traceability
in presence of late measurements requires the
adoption of a bi-temporal solution where both
valid and transaction time are represented by
means of timestamps. Only few approaches in
the literature are specifically focused on studying
this specific topic. Kimball (2000) states that a
bi-temporal solution may be useful to cope with
late measurements. Bruckner & Tjoa (2002)
discuss the problem of temporal consistency in
consequence of delayed discovery of real-world
changes and propose a solution based on valid
time, revelation time and loading time. Loading
time is the point in time when a new piece of
information is loaded in the data mart, while
revelation time is the point in time when that
piece of information was realized by at least one
data source. Finally, Golfarelli & Rizzi (2007b)
propose to couple valid time and transaction
time and distinguish two different solutions for
managing late measurements: delta solution,
where each new measurement for an event is
represented as a delta with respect to the previous
measurement, and transaction time is modeled by
adding to the schema a new temporal dimension
to represent when each registration was made in
the data mart; and consolidated solution, where
late measurements are represented by recording
the consolidated value for the event, and transac-
tion time is modeled by two temporal dimensions
that delimit the time interval during which each
registration is current.

Handling SCHEMA Changes in the
Data Mart

According to (Wrembel & Bebel, 2007), schema
changes in the data mart may be caused by
different factors:

•	 Subsequent design iterations in the context
of an incremental approach to data mart
design.

•	 Changes in the user requirements, triggered
for instance by the need for producing more
sophisticated reports, or by new categories
of users that subscribe to the data mart.

•	 Changes in the application domain, i.e.,
arising from modifications in the busi-
ness world, such as a change in the way
a business is done, or a changing in the
organizational structure of the company.

•	 New versions of software components
being installed.

•	 System tuning activities.

For instance, it may be necessary to add a
subcategory level to the product hierarchy to
allow more detailed analysis, or to add a mea-
sure revenueInEuro due to the introduction of
a new currency.

As stated in the second section, depending
on how previous schema versions are man-
aged, two main classes of approaches may be
distinguished: schema evolution, that allows
modifications of the schema without loss of data
but does not maintain the schema history, and
schema versioning, where past schema defini-
tions are retained so that all data may be accessed
through a version specified by the user. In the
two following subsection these two classes of
approaches will be separately surveyed.

Evolution

The main problem here is to support a set of
operators for changing the data mart schema,
while enabling lossless migration of existing
data from the past schema version to the new
one.

In this context, FIESTA is a methodology
where the evolution of multidimensional sche-
mata is supported on a conceptual level, thus
for both ROLAP and MOLAP implementations
(Blaschka, Sapia, & Höfling, 1999; Blaschka,
2000). Core of the approach is a schema evolu-
tion algebra which includes a formal multidi-
mensional data model together with a wide set

10 International Journal of Data Warehousing & Mining, 5(1), 1-17, January-March 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

of schema evolution operations, whose effects
on both schema and instances are described.
Essentially, the operations allow dimensions,
hierarchy levels, properties and measures to
be added and deleted from the multidimen-
sional schema. Since OLAP systems are often
implemented on top of relational DBMSs, the
approach also shows how a multidimensional
schema can be mapped to a relational schema by
means of a meta-schema that extends the cata-
logue of the underlying DBMS. Each sequence
of evolution operations is then transformed into a
sequence of relational evolution commands that
adapt the relational database schema together
with its instances, and update the contents of
the meta-schema accordingly.

Conversely, in (Kaas, Pedersen, & Rasmus-
sen, 2004) the evolution problem is investigated
with particular reference to its impact on the
logical level for ROLAP implementations,
namely, on star and snowflake schemata. Eight
basic evolution operators are defined (insert/de-
lete dimension, level, property, and measure).
For each of them, the changes implied on star
and snowflake schemata are described and their
impact on existing SQL queries in reporting
tools is discussed. Remarkably, an in-depth
comparison reveals that the star schema is gen-
erally more robust than the snowflake schema
against schema changes.

A comprehensive approach to evolution
is the one jointly devised at the Universities of
Toronto and Buenos Aires. The fundamentals
are laid by Hurtado, Mendelzon, & Vaisman
(1999a), who propose a formal model for updat-
ing dimensions at both the schema and instance
level, based on a set of modification operators
(generalize, specialize, relate/unrelated/delete
level are those defined at the schema level). An
incremental algorithm for efficiently maintain-
ing a set of materialized views in the presence
of dimension updates is also presented. This
work is then extended by Vaisman, Mendelzon,
Ruaro, & Cymerman (2004) by introducing
TSOLAP, an OLAP server supporting dimension
updates and view maintenance, built following
the OLE DB for OLAP proposal. The approach
is completed by MDDLX, an extension of MDX

(Microsoft’s language for OLAP) with a set of
statements supporting dimension update opera-
tors at both schema and instance levels.

A relevant aspect related to evolution is
how changes in schema affect the data mart
quality, which is discussed in (Quix, 1999). A
set of schema evolution operators is adapted
from those for object-oriented databases; for
each operator, its impact on the quality fac-
tors (such as completeness, correctness, and
consistency between the conceptual and logi-
cal schema) as emerged in the context of the
DWQ Project - Foundations of Data Warehouse
Quality (Jarke, Jeusfeld, Quix, & Vassiliadis,
1999) is discussed. The tracking of the history
of changes and the consistency rules to enforce
when a quality factor has to be re-evaluated
due to evolution is supported by an ad hoc
meta-model.

Versioning

According to the frequently cited definition
by Inmon (1996), one of the characteristic
features of a data warehouse is its non-volatil-
ity, which means that data is integrated into
the data warehousing system once and remains
unchanged afterwards. Importantly, this feature
implies that the re-execution of a single query
will always produce the same result. In other
words, past analysis results can be verified
and then inspected by means of more detailed
OLAP sessions at any point in time. While
non-volatility in the presence of changes at
the data level can be achieved by adopting one
of the solutions discussed in the third section,
non-volatility in the presence of changes at the
schema level requires some versioning approach
to be undertaken. In fact, it is easy to see that
the ability to re-execute previous queries in the
presence of schema changes requires access to
past schema versions, which cannot be achieved
with an evolution approach.

The first work in this direction is COMET
(Eder, Koncilia, & Morzy, 2002), a metamodel
that supports schema and instance versioning.
All classes in the metamodel are timestamped
with a validity interval, so multiple, subsequent

International Journal of Data Warehousing & Mining, 5(1), 1-17, January-March 2009 11

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

versions of cubes can be stored and queried.
Transformation of data from one version into
the (immediate) succeeding or preceding one
is supported; though the paper reports no
details on how a new version can be obtained
from the previous one, a comprehensive set of
constraints that the versions have to fulfill in
order to ensure the integrity of the temporal
model is proposed.

The peculiarity of the timestamp-based
versioning model proposed by Body, Miquel,
Bédard, and Tchounikine (2003) is that hi-
erarchies are deduced from the dimensions
instances, so that explicitly defining the mul-
tidimensional schema is not necessary. In this
way, schema changes are implicitly managed
as a result of handling changes in instances.
On the other hand, the versioning approach
proposed by Ravat, Teste, & Zurfluh (2006)
uses a constellation of star schemata to model
different versions of the same fact, and populates
versions by means of mapping functions.

A comprehensive approach to versioning
is presented by Wrembel and Bebel (2007).
Essentially, they propose two metamodels: one
for managing a multi-version data mart and one
for detecting changes in the operational sources.
A multi-version data mart is a sequence of
versions, each composed of a schema version
and an instance version. Remarkably, besides
“real” versions determined by changes in the
application domain or in users’ requirements,
also “alternative” versions are introduced, to be
used for simulating and managing hypotheti-
cal business scenarios within what-if analysis
settings.

Another approach to versioning specifically
oriented to supporting cross-version queries is
the one by Golfarelli, Lechtenbörger, Rizzi and
Vossen (2006). Here, multidimensional sche-
mata are represented as graphs of simple func-
tional dependencies, and an algebra of graph
operations to define new versions is defined.
Data migration from the old to the new version
is semi-automated, i.e., based on the differences
between the two versions the system suggests
a set of migration actions and gives support for
their execution. The key idea of this approach

is to support flexible cross-version querying by
allowing the designer to enrich previous ver-
sions using the knowledge of current schema
modifications. For this purpose, when creating a
new schema version the designer may choose to
create augmented schemata that extend previous
schema versions to reflect the current schema
extension, both at the schema and the instance
level. In a nutshell, the augmented schema
associated with a version is the most general
schema describing the data that are actually
recorded for that version and thus are available
for querying purposes. Like for migration, a set
of possible augmentation actions is proposed
to the designer (e.g., the designer may choose
to manually insert values of a newly added at-
tribute for hierarchy instances whose validity
was limited to previous versions).

To the best of our knowledge, only two
approaches use both valid and transaction time
in the context of versioning. Koncilia (2003)
presents a bi-temporal extension of the COMET
metamodel, aimed at representing not only the
valid time of schema modifications, but also the
transaction time. Rechy-Ramírez and Benítez-
Guerrero (2006) introduce a conceptual model
for bi-temporal versioning of multidimensional
schemata, aimed at enabling modifications in the
data mart schema without affecting the exist-
ing applications. Each version has a temporal
pertinence composed by a valid time and a
transaction time, thus enabling the existence of
two or more versions with the same valid time,
but different transaction times. Associated to
this model, there are 16 operators for schema
changing and a SQL-like language to create
and modify versions.

querying temporal data

The development of a model for temporal data
warehousing is of little use without an appro-
priate query language capable of effectively
handling time. In principle, a temporal query
could be directly formulated on a relational
schema using standard SQL, but this would
be exceedingly long and complex even for a
skilled user.

12 International Journal of Data Warehousing & Mining, 5(1), 1-17, January-March 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

In this direction, Bliujute, Saltenis, Slivin-
skas, & Jensen�������������������������������� (1998) discuss the performance
of their temporal star schema considering five
types of temporal queries. Golfarelli & Rizzi
(2007b) distinguish three querying scenarios
in presence of late measurements:

•	 Up-to-date queries, that require the most
recent measurement for each event;

•	 Rollback queries, that require a past version
measurement for each event;

•	 Historical queries, that require multiple
measurements for events, i.e., are aimed
at reconstructing the history of event
changes.

To cope with schema changes, Mendelzon
and Vaisman (2000) proposed the Temporal
OLAP (TOLAP) query language. TOLAP, based
on the temporal multidimensional model pro-
posed by Hurtado et al. (1999b), fully ���������supports
schema evolution and versioning, differently
from best-known temporal query languages
such as TSQL2 (Snodgrass, 1995), that sup-
ports versioning in a limited way only. TOLAP
combines the temporal features of TSQL2 with
some high-order features of SchemaLog in order
to support querying multidimensional data with
reference to different instants in time in a concise
and elegant way. All three querying scenarios
(today is yesterday, yesterday is today, and today
or yesterday) are supported. Also meta-queries,
e.g. concerning the instant changes to data took
place, can be expressed.

Several approaches face the problem of
formulating cross-version querying, i.e., for-
mulating queries that span different schema
versions. For instance, Morzy and Wrembel
(2004) propose a SQL extension aimed at
expressing queries on multiple (either real or
alternative) schema versions. Each query is
decomposed into a set of partial queries, one
for each schema version involved. The results
of partial queries are separately presented, an-
notated with version and metadata information;
in some cases, partial queries results can be
merged into a common set of data. In (Wrembel
& Bebel, 2007), the problem of cross-version

queries is addressed by allowing users to specify
either implicitly (by specifying a time interval
for the query) or explicitly (by specifying a
set of version identifiers) the set of versions
for querying. Similarly, in (Golfarelli & Rizzi,
2007a) the relevant versions for answering a
query are either chosen explicitly by the user
or implicitly by the system based on the time
interval spanned by the query, as shown in the
prototype implementation X-Time.

In the context of querying, a number of
works are related to the so-called temporal ag-
gregation problem, that was studied mainly in
the context of MOLAP systems and consists in
efficiently computing and maintaining temporal
aggregates. In fact, time dimensions typically
lead to a high degree of sparseness in traditional
array-based MOLAP cubes because of their
large cardinality, and to significant overhead to
answer time-parameterized range queries. For
instance, the work by Tao, Papadias, & Falout-
sos (2004) focuses on approximate temporal
aggregate processing. Specifically, for count
queries, its goal is to provide answers guaranteed
to deviate from the exact ones within a given
threshold. Riedewald, Agrawal, & El Abbadi
(2002) proposed efficient range aggregation
in temporal data warehouses by exploiting the
append-only property of the time-related dimen-
sion. Their framework allows large amounts of
new data to be integrated into the warehouse and
historical summaries to be efficiently generated,
independently of the extent of the data set in
the time dimension. Feng, Li, Agrawal, & El
Abbadi (2005) proposed a general approach
to improve the efficiency of range aggregate
queries on MOLAP data cubes in a temporal
data warehouse by separately handling time-
related dimensions to take advantage of their
monotonic trend over time. Finally, Yang &
Widom (2001) introduce a new index structure
called the SB-tree, which supports fast lookup
of aggregate results based on time, and can be
maintained efficiently when the data changes
along the time line.

International Journal of Data Warehousing & Mining, 5(1), 1-17, January-March 2009 13

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Designing Temporal Data
Warehouses

It is widely recognized that designing a data
warehousing system requires techniques that
are radically different from those normally
adopted for designing operational databases
(Golfarelli & Rizzi, 1999). On the other hand,
though the literature reports several attempts
to devise design methodologies for data ware-
houses, very few attention has been posed on
the specific design issues related to time. Indeed,
as stated by Rizzi et al. (2006), devising design
techniques capable of taking time and changes
into account is one of the open issues in data
warehouse research.

Pedersen and Jensen (1999) recognize
that properly handling time and changes is a
must-have for multidimensional models. Sarda
(1999) summarizes the distinguishing charac-
teristics of time dimensions: they are continu-
ously valued and constantly increasing, they
can be associated with multiple user-defined
calendars, they express the validity of both
facts and other dimensions (either in the form
of time instants or validity intervals). Sarda also
proposes a design methodology for temporal
data warehouses featuring two phases: logical
design, that produces relations characterized by
a temporal validity, and physical design, that
addresses efficient storage and access.

Considering the leading role played by
temporal hierarchies within data marts and
OLAP queries, it is worth adopting ad hoc
approaches for their modeling not only from
the logical, but also from the conceptual point
of view. While all conceptual models for data
marts allow for temporal hierarchies to be
represented like any other hierarchies, to the
best of our knowledge the only approach that
provides ad hoc concepts for modeling time
is the one by Malinowski & Zimányi (2008),
based on a temporal extensions of the MultiDim
conceptual model. Different temporality types
are allowed (namely, valid time, transaction
time, lifespan, and loading time), and temporal
support for levels, properties, hierarchies, and
measures is granted.

Finally, Golfarelli & Rizzi (2007b) discuss
the different design solutions that can be adopted
in presence of late measurements, depending
on the flow or stock nature of the events and on
the types of queries to be executed.

OPEN ISSUES AND
CONCLUSIONS

In this survey we classified and discussed the
issues related to temporal data warehousing. An
in-depth analysis of the literature revealed that
the research community not always devoted a
comprehensive attention to all these aspects.
As a matter of fact, a wide agreement on the
possible design solutions has been reached only
with reference to changes in dimensional data.
As to changes in factual data and changes in
schema, though some interesting solutions have
been proposed, no broad and shared framework
has been devised yet.

Similarly, on the commercial side, changes
in data have been supported since almost a de-
cade ago. Already in year 2000, systems such
as Business Warehouse by SAP (2000) were
allowing to track changes in data and to effec-
tively query cubes based on different temporal
scenarios by letting users choose which version
of the hierarchies to adopt for querying. On the
other hand, today there still is very marginal
support to changes in schema by commercial
tools. For instance, SQL Compare compares and
synchronizes SQL Server database schemata,
and can be used when changes made to the
schema of a local database need to be pushed to
a central database on a remote server. Also, the
Oracle Change Management Pack is aimed to
report and track the evolving state of meta-data,
thus allowing to compare database schemata,
and to generate and execute scripts to carry
out the changes. In both cases, formulating a
single query spanning multiple databases with
different schemata is not possible.

We believe that, considering the maturity
of the field and the wide diffusion of data ware-
housing systems, in the near future decision
makers will be more and more demanding for

14 International Journal of Data Warehousing & Mining, 5(1), 1-17, January-March 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

advanced temporal support. Thus, it is essential
that both vendors and researchers be ready to
deliver effective solutions. In this direction we
envision two main open issues. On the one hand,
some research aspects indeed require further
investigation. For instance, support for cross-
version queries is not satisfactory yet, and its
impact on performance has not been completely
investigated; similarly, the effectiveness of view
adaptation approaches is still limited. On the
other hand, in order to encourage vendors to add
full temporal support to commercial platforms,
the solutions proposed in the literature should be
better harmonized to converge into a complete,
flexible approach that could be effortlessly ac-
cepted by the market.

REFERENCES
Abelló, A., & Martín, C. (2003). A Bi-temporal
Storage Structure for a Corporate Data Warehouse.
Proceedings International Conference on Enterprise
Information Systems, Angers, France, 177-183.

Bellahsene, Z. (1998). View Adaptation in Data
Warehousing Systems. Proceedings International
Conference on Database and Expert Systems Ap-
plications, Vienna, Austria, 300-309.

Bellahsene, Z. (2002). Schema Evolution in Data
Warehouses. Knowledge and Information Systems,
4(3), 283-304.

Blaschka, M. (2000). FIESTA - A Framework for
Schema Evolution in Multidimensional Databases.
PhD Thesis, Technische Universitat Munchen,
Germany.

Blaschka, M., Sapia, C., & Höfling, G. (1999). On
Schema Evolution in Multidimensional Databases.
Proceedings International Conference on Data
Warehousing and Knowledge Discovery, Florence,
Italy, 153-164.

Bliujute, R., Saltenis, S., Slivinskas, G., & Jensen,
C. S. (1998). ����������������������������� Systematic Change Management
in Dimensional Data Warehousing. Proceedings
International Baltic Workshop on Databases and
Information Systems, Riga, Latvia, 27–41.

Body, M., Miquel, M., Bédard, Y., & Tchounikine,
A. (2003). Handling Evolutions in Multidimensional

Structures. Proceedings International Conference on
Data Engineering, Bangalore, India, 581-591.

Bruckner, R., & Tjoa, A. (2002). Capturing Delays
and Valid Times in Data Warehouses - Towards
Timely Consistent Analyses. Journal of Intelligent
Information Systems, 19(2), 169-190.

Chamoni, P. & Stock, S. (1999). Temporal Structures
in Data Warehousing. Proceedings International
Conference on Data Warehousing and Knowledge
Discovery, Florence, Italy, 353-358.

Chen, S., Zhang, X., & Rundensteiner, E. (2006). ��A
Compensation-Based Approach for View Mainte-
nance in Distributed Environments. IEEE Transac-
tions of Knowledge and Data Engineering, 18(8),
1068-1081.

Combi, C. & Oliboni, B. (2007). Temporal semis-
tructured data models and data warehouses. In Data
Warehouses and OLAP: Concepts, Architectures
and Solutions, Wrembel & Koncilia (Eds.), IRM
Press, 277-297.

De Amo, S., Halfeld Ferrari Alves, M. (2000). ���Ef-
ficient Maintenance of Temporal Data Warehouses.
Proceedings International Database Engineering
and Applications Symposium, Yokohoma, Japan
188-196.

Devlin, B. (1997). Managing Time In The Data
Warehouse. InfoDB, 11(1), 7-12.

Eder, J., & Koncilia C. (2001). Changes of Dimension
Data in Temporal Data Warehouses. Proceedings
International Conference on Data Warehousing
and Knowledge Discovery, Munich, Germany,
284-293.

Eder, J., Koncilia, C., & Morzy, T. (2002). ����The
COMET Metamodel For Temporal Data Warehouses.
Proceedings International Conference on Advanced
Information Systems Engineering, Toronto, Canada,
83-99.

Fan, H., & Poulovassilis, A. (2004). Schema Evolu-
tion in Data Warehousing Environments - A Schema
Transformation-Based Approach. Proceedings
International Conference on Conceptual Modeling,
Shanghai, China, 639-653.

Feng, Y., Li, H.-G., Agrawal, D., & El Abbadi, A.
(2005). Exploiting Temporal Correlation in Tem-
poral Data Warehouses. Proceedings International
Conference on Database Systems for Advanced
Applications, Beijing, China, 662-674.

International Journal of Data Warehousing & Mining, 5(1), 1-17, January-March 2009 15

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Golfarelli, M. & Rizzi, S. (1999). Designing the data
warehouse: key steps and crucial issues. Journal of
Computer Science and Information Management,
2(1), 1-14.

Golfarelli, M., Lechtenbörger, J. Rizzi, S., & Vossen,
G. (2006). Schema Versioning in Data Warehouses:
Enabling Cross-Version Querying via Schema
Augmentation. Data and Knowledge Engineering,
59(2), 435-459.

Golfarelli, M. & Rizzi, S. (2007a). X-Time: Schema
Versioning and Cross-Version Querying in Data
Warehouses. Proceedings International Conference
on Data Engineering, Istanbul, Turkey, 1471-147.

Golfarelli, M. & Rizzi, S. (2007b). Managing late
measurements in data warehouses. International
Journal of Data Warehousing and Mining, 3(4),
51-67.

Grandi, F. (2002). A Relational Multi-Schema Data
Model and Query Language for full Support of
Schema Versioning. Proceedings SEBD, Portofer-
raio, Italy, 323-336.

Gupta, A., & Mumick, I. S. (1995). Maintenance of
materialized views: problems, techniques, and ap-
plications. Data Engineering Bulletin, 18(2), 3-18.

Hurtado, C., Mendelzon, A., & Vaisman, A. (1999a).
Maintaining Data Cubes under Dimension Updates.
Proceedings International Conference on Data En-
gineering, Sydney, Austrialia, 346-355.

Hurtado, C., Mendelzon A., & Vaisman A. (1999b).
Updating OLAP Dimensions. Proceedings Interna-
tional Workshop on Data Warehousing and OLAP,
Kansas City, USA, 60-66.

Inmon, W. (1996). Building the data warehouse.
John Wiley & Sons.

Jarke, M., Jeusfeld, M., Quix, C., & Vassiliadis, P.
(1999). Architecture and Quality in Data Warehouses:
An Extended Repository Approach. Information
Systems, 24(3), 229–253.

Jensen, C., Clifford, J., Elmasri, R., Gadia, S. K.,
Hayes, P. J., & Jajodia, S. (1994). A Consensus
Glossary of Temporal Database Concepts. ACM
SIGMOD Record, 23(1), 52-64.

Kaas, C., Pedersen, T. B., & Rasmussen, B. (2004).
Schema Evolution for Stars and Snowflakes. Pro-
ceedings International Conference on Enterprise
Information Systems, Porto, Portugal, 425-433.

Kimball, R. (1996). The Data Warehouse Toolkit.
Wiley Computer Publishing.

Kimball, R. (2000). Backward in Time. Intelligent
Enterprise Magazine, 3(15).

Koncilia, C. (2003). ����������������������������� A Bi-Temporal Data Warehouse
Model. Short Paper Proceedings Conference on
Advanced Information Systems Engineering, Kla-
genfurt/Velden, Austria.

Lee, A., Nica, A., & Rundensteiner, E. (2002). ����The
EVE Approach: View Synchronization in Dynamic
Distributed Environments. IEEE Transactions on
Knowledge and Data Engineering, 14(5), 931-
954.

Lenz, H. J. & Shoshani, A. (1997). Summarizability
in OLAP and Statistical Databases. Proceedings
Statistical and Scientific Database Management
Conference, Olympia, US, 132-143.

Letz, C., Henn, E., & Vossen, G. (2002). �������Consis-
tency in Data Warehouse Dimensions. Proceedings
International Database Engineering and Application
Symposium, Edmonton, Canada, 224-232.

Malinowski, E. & Zimányi, E. (2008). A conceptual
model for temporal data warehouses and its transfor-
mation to the ER and the object-relational models.
Data & Knowledge Engineering, 64, 101-133.

McKenzie, E., & Snodgrass, R. (1990). Schema
Evolution and the Relational Algebra. Information
Systems, 15(2), 207-232.

Mendelzon, A., & Vaisman, A. (2000). Temporal
queries in OLAP. Proceedings Conference on Very
Large Data Bases, Cairo, Egypt, 242-253.

Morzy, T. & Wrembel, R. (2004). On querying ver-
sions of multiversion data warehouse. Proceedings
International Workshop on Data Warehousing and
OLAP, Washington, DC, 92-101.

Pedersen, T. B., & Jensen, C. (1998). ���������������� Research Issues
in Clinical Data Warehousing. Proceedings Statistical
and Scientific Database Management Conference,
Capri, Italy, 43-52.

Pedersen, T. B. & Jensen, C. (1999). Multidimen-
sional Data Modeling for Complex Data. Proceed-
ings International Conference on Data Engineering,
Sydney, Austrialia, 336-345.

Quix, C. (1999). Repository Support for Data
Warehouse Evolution. Proceedings International

16 International Journal of Data Warehousing & Mining, 5(1), 1-17, January-March 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Workshop on Design and Management of Data
Warehouses, Heidelberg, Germany.

Ravat, F., Teste, O., & Zurfluh, G. (2006). �����������A Multiver-
sion-Based Multidimensional Model. Proceedings
International Conference on Data Warehousing and
Knowledge Discovery, 65-74.

Rechy-Ramírez, E.-J. & Benítez-Guerrero, E.
(2006). ������������������������������������� A Model and Language for Bi-temporal
Schema Versioning in DataWarehouses. Proceedings
International Conference on Computing, Mexico
City, Mexico.

Riedewald, M., Agrawal, D. & El Abbadi, A. (2002).
Efficient integration and aggregation of historical
information. Proceedings SIGMOD Conference,
Madison, Wisconsin, 13-24.

Rizzi, S., Abelló, A., Lechtenbörger, J., & Trujillo,
J. (2006). Research in Data Warehouse Modeling
and Design: Dead or Alive? Proceedings Interna-
tional Workshop on Data Warehousing and OLAP,
Arlington, USA, 3-10.

Roddick, J. (1995). A Survey of Schema Version-
ing Issues for Database Systems. Information and
Software Technology, 37(7), 383-393.

SAP Institute (2000). Multi-dimensional Modeling
with SAP BW. SAP America Inc. and SAP AG.

Sarda, N. L. (1999). Temporal Issues in Data Ware-
house Systems. Proceedings International Sympo-
sium on Database Applications in Non-Traditional
Environments, Kyoto, Japan, 27-34.

Tansel, A. U., Clifford, J., Gadia, S. K., Jajodia, S.,
Segev, A., & Snodgrass, R. T. (1993). Temporal
databases: theory, design and implementation.
Benjamin Cummings.

Snodgrass, R. T. (1995). The TSQL2 Temporal Query
Language. Kluwer Academic Publishers.

Tao, Y., Papadias, D., & Faloutsos, C. (2004). Ap-
proximate Temporal Aggregation. Proceedings
International Conference on Data Engineering,
Boston, Massachusetts, 190-201.

Vaisman, A., Mendelzon, A., Ruaro, W., & Cymer-
man, S. (2004). Supporting Dimension Updates in an
OLAP Server. Information Systems, 29, 165-185.

Vaisman, A., & Mendelzon, A. (2001). A Temporal
Query Language for OLAP: Implementation and a
Case Study. Proceedings DBPL.

Wrembel, R. & Bebel, B. (2007). Metadata Manage-
ment in a Multiversion Data Warehouse. Journal of
Data Semantics, 8, 118-157.

Yang, J. & Widom, J. (1998). Maintaining Temporal
Views over Non-Temporal Information Sources
for Data Warehousing. Proceedings International
Conference on Extending Database Technology,
Valencia, Spain, 389-403.

Yang, J. & Widom, J. (2001). Incremental Compu-
tation and Maintenance of Temporal Aggregates.
Proceedings International Conference on Data
Engineering, Heidelberg, Germany, 51-60.

Matteo Golfarelli received his PhD for his work on autonomous agents in 1998. In 2000 he
joined the University of Bologna as a researcher. Since 2005 he is associate professor, teach-
ing information systems and database systems. He has published over 60 papers in refereed
journals and international conferences in the fields of data warehousing, pattern recognition,
mobile robotics, multi-agent systems. He served in the PC of several international conferences
and as a reviewer in journals. His current research interests include all the aspects related to
business intelligence and data warehousing, in particular multidimensional modeling, what-if
analysis and BPM.

Stefano Rizzi received his PhD in 1996 from the University of Bologna, Italy. Since 2005 he is full
professor at the University of Bologna, where he is the head of the Data Warehousing Laboratory.
He has published about 100 papers in refereed journals and international conferences mainly

International Journal of Data Warehousing & Mining, 5(1), 1-17, January-March 2009 17

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

in the fields of data warehousing, pattern recognition, and mobile robotics. He joined several
research projects on the above areas and has been involved in the PANDA thematic network of
the European Union concerning pattern-base management systems. His current research inter-
ests include data warehouse design and business intelligence, in particular multidimensional
modeling, data warehouse evolution, OLAP preferences and what-if analysis.

