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Abstract

Data warehouses are information repositories specialized in supporting decision making. Since the de-
cisional process typically requires an analysis of historical trends, time and its management acquire a 
huge importance. In this paper we consider the variety of issues, often grouped under term temporal data 
warehousing, implied by the need for accurately describing how information changes over time in data 
warehousing systems. We recognize that, with reference to a three-levels architecture, these issues can 
be classified into some topics, namely: handling data/schema changes in the data warehouse, handling 
data/schema changes in the data mart, querying temporal data, and designing temporal data warehouses. 
After introducing the main concepts and terminology of temporal databases, we separately survey these 
topics. Finally, we discuss the open research issues also in connection with their implementation on com-
mercial tools.
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Introduction

At the core of most business intelligence applica-
tions, data warehousing systems are specialized 
in supporting decision making. They have been 
rapidly spreading within the industrial world 
over the last decade, due to their undeniable 
contribution to increasing the effectiveness 
and efficiency of the decisional processes 
within business and scientific domains. This 
wide diffusion was supported by remarkable 
research results aimed at improving querying 
performance, at refining the quality of data, and 

at outlining the design process, as well as by the 
quick advancement of commercial tools. 

In the remainder of the paper, for the sake 
of terminological consistency, we will refer 
to a classic architecture for data warehousing 
systems, illustrated in Figure 1, that relies on 
three levels:

1.	 The data sources, that store the data used 
for feeding the data warehousing systems. 
They are mainly corporate operational 
databases, hosted by either relational or 
legacy platforms, but in some cases they 
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may also include external web data, flat 
files, spreadsheet files, etc.

2.	 The data warehouse (also called recon-
ciled data level, operational data store or 
enterprise data warehouse), a normalized 
operational database that stores detailed, 
integrated, clean and consistent data ex-
tracted from data sources and properly 
processed by means of ETL tools.

3.	 The data marts, where data taken from 
the data warehouse are summarized into 
relevant information for decision making, 
in the form of multidimensional cubes, to 
be typically queried by OLAP and reporting 
front-ends.

Cubes are structured according to the mul-
tidimensional model, whose key concepts are 
fact, measure and dimension. A fact is a focus 
of interest for the decisional process; its occur-
rences correspond to events that dynamically 
occur within the business world. Each event 

is quantitatively described by a set of numeri-
cal measures. In the multidimensional model, 
events are arranged within an n-dimensional 
space whose axes, called dimensions of analysis, 
define different perspectives for their identi-
fication. Dimensions commonly are discrete, 
alphanumerical attributes that determine the 
minimum granularity for analyzing facts. Each 
dimension is the root of a (roll-up) hierarchy 
that includes a set of levels, each providing a 
way of selecting and aggregating events. Each 
level can be described by a set of properties.

As a consequence of the fact that the de-
cisional process typically relies on computing 
historical trends and on comparing snapshots of 
the enterprise taken at different moments, one of 
the main characterizations of data warehousing 
systems is that of storing historical, non volatile 
data. Thus, time and its management acquire a 
huge importance. In this paper we discuss the 
variety of issues, often grouped under term tem-
poral data warehousing, implied by the need for 

Figure 1: Three-levels architecture for a data warehousing system
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accurately describing how information changes 
over time. These issues, arising by the never 
ending evolution of the application domains, 
are even more pressing today, as several mature 
implementations of data warehousing systems 
are fully operational within medium to large 
business contexts. Note that, in comparison 
with operational databases, temporal issues are 
more critical in data warehousing systems since 
queries frequently span long periods of time; 
thus, it is very common that they are required 
to cross the boundaries of different versions of 
data and/or schema. Besides, the criticality of 
the problem is obviously higher for systems 
that have been established for a long time, since 
unhandled evolutions will determine a stronger 
gap between the reality and its representation 
within the database, which will soon become 
obsolete and useless (Golfarelli et al, 2006).

So, not surprisingly, there has been a lot 
of research so far regarding temporal issues 
in data warehousing systems. Basically, the 
approaches devised in the literature can be 
accommodated in the following (sometimes 
overlapping) categories:

•	 Handling changes in the data warehouse 
(discussed in the third section). This 
mainly has to do with maintaining the data 
warehouse in sync with the data sources 
when changes on either of these two levels 
occur.

•	 Handling data changes in the data mart 
(fourth section). Events are continuously 
added to data marts; while recorded events 
are typically not subject to further changes, 
in some cases they can be modified to ac-
commodate errors or late notifications of 
up-to-date values for measures. Besides, 
the instances of dimensions and hierarchies 
are not entirely static.

•	 Handling schema changes in the data mart 
(fifth section). The data mart structure may 
change in response to the evolving business 
requirements. New levels and measures 
may become necessary, while others may 
become obsolete. Even the set of dimen-

sions characterizing a fact may be required 
to change.

•	 Querying temporal data (sixth section). 
Querying in presence of data and schema 
changes require specific attention, espe-
cially if the user is interested in formulat-
ing queries whose temporal range covers 
different versions of data and/or schema.

•	 Designing temporal data warehouses (sev-
enth section). The specific characteristics of 
temporal data warehouses may require ad 
hoc approaches for their design, especially 
from the conceptual point of view.

The paper outline is completed by the sec-
ond section, that introduces the main concepts 
and terminology of temporal databases, and by 
the eighth section, that summarizes some open 
issues and draws the conclusions.

TEMPORAL DATABASES

Databases where time is not represented are 
often called transient databases. Within a tran-
sient database, only the current representation 
of real-world objects is stored and no track of 
changes is kept, so it is impossible to reconstruct 
how the object was in the past. Conversely, 
temporal databases focus on representing the 
inherent temporal nature of objects through 
the time-dependent recording of their structure 
and state. Two different time dimensions are 
normally considered in temporal databases, 
namely valid time and transaction time (Jensen 
et al., 1994). Valid time is the “real-world time”, 
i.e., it expresses the time when a fact is true in 
the business domain. Transaction time is the 
“database system time”, i.e., it expresses the 
time when facts are registered in the database. 
Temporal database systems are called valid-
time databases, transaction-time databases 
or bi-temporal databases depending on their 
capacity to handle either or both of these two 
time dimensions (Tansel et al., 1993). The 
main benefit of using a bi-temporal database 
is that not only the history of the changes an 
object is subject to is recorded, but it is also 
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possible to obtain the same result from a query 
independently of the time when it is formulated 
(which might not happen if transaction time is 
not properly represented).

In the real world, objects change in both 
their state and their structure. This means that, 
within a database, both the values of data and 
their schema may change. Obviously, values 
of data are constantly modified by databases 
applications. On the other hand, modifying the 
database schema is a less frequent, though still 
common, occurrence in database administra-
tion. With reference to changes in the database 
schema, the literature commonly distinguishes 
three possibilities (Roddick, 1995):

•	 Schema modification is supported when 
a database system allows changes to the 
schema definition of a populated database, 
which may lead to loss of data.

•	 Schema evolution is supported when a 
database system enables the modification 
of the database schema without loss of 
existing data.

•	 Schema versioning is supported when a 
database system allows the accessing of 
all data, both retrospectively and pro-
spectively, through user-definable version 
interfaces.

The significant difference between evolu-
tion and versioning is that the former does not 
require the maintenance of a schema history, 
while in the latter all past schema versions are 
retained. Note that, in the context of schema 
evolution and versioning, most authors agree 
that there is no need to distinguish valid time 
from transaction time (McKenzie & Snodgrass, 
1990).

On the language side, TSQL2 (Snodgrass, 
1995) is the most noticeable attempt to de-
vise a query language for relational temporal 
databases. TSQL2 is a temporal extension to 
the SQL-92 language standard, augmented to 
enable users to specify valid-time and transac-
tion-time expressions for data retrieval. As to 
querying in presence of schema versioning, 
while TSQL2 only allows users to punctually 

specify the schema version according to which 
data are queried, other approaches also support 
queries spanning multiple schema versions 
(Grandi, 2002).

The concepts introduced in this section 
were originally devised for operational data-
bases, and in particular for relational databases. 
While in principle they can also be applied to 
data warehousing systems, that in a ROLAP im-
plementations are based on relational databases, 
the peculiarities of the multidimensional model 
and the strong relevance of time in the OLAP 
world call for more specific approaches.

HANDLING CHANGES IN the 
DATA warehouse

When considering temporal data, it is first of all 
necessary to understand how time is reflected 
in the database, and how a new piece of infor-
mation affects existing data. From this point 
of view, �������� �����������������������������   Devlin (1997) �����������������������  proposes the following 
classification�:

•	 Transient data: alterations and deletions 
of existing records physically destroy the 
previous data content.

•	 Periodic data: once a record is added to 
a database, it is never physically deleted, 
nor is its content ever modified. Rather, 
new records are added to reflect updates 
or deletions. Periodic data thus represent 
a complete record of the changes that have 
occurred in the data.

•	 Semi-periodic data: in some situations, due 
to performance and/or storage constraints, 
only the more recent history of data changes 
is kept.

•	 Snapshot data: a data snapshot is a stable 
view of data as it exists at some point in 
time, not containing any record of the 
changes that determined it. A series of 
snapshots can provide an overall view of 
the history of an organization.

Data sources normally adopt either a tran-
sient or a (semi-)periodic approach, depending 
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on whether the application domains requires 
keeping history of past data or not. The histori-
cal depth of a data warehouse is typically not 
less than the one of its data sources, thus data 
warehouses more often contain periodic data. 
Conversely, data marts normally conform to 
the snapshot model.

In order to model historical data in the data 
warehouse, Abello and ����������������������  Martín����������������   (2003) propose 
a bi-temporal storage structure where each 
attribute is associated to two couples of times-
tamps, so as to track the history of its values 
according to both valid and transaction time. 
Each attribute, or each set of attributes having 
the same behaviour with reference to changes 
(i.e., such that whenever an attribute in the set 
changes its value, all the others change too), 
is stored in a separate table so that a change 
occurred to one concept does not affect the 
other concepts. Obviously, such normalized 
and time-oriented structure is not suited for 
querying, that will take place on denormalized 
data marts fed from the data warehouse.

Since the data warehouse can be thought of 
as a set of derived, materialized views defined 
over a set of source schemata, the problem of 
evolving the content and the schema of derived 
views in connection to the source changes is 
highly relevant in the context of temporal data 
warehouses. Bellahsene (2002) distinguishes 
two subproblems: view maintenance and view 
adaptation.

View maintenance consists in maintaining 
a materialized view in response to data modi-
fications of the source relations. Considering 
the width of the problem, we refer the reader 
to Gupta & Mumick (1995) for a taxonomy of 
view maintenance problems and a description of 
the main techniques proposed in the literature. 
A specific issue in view maintenance is how 
to provide temporal views over the history of 
source data, that may be non-temporal. We 
mention two approaches in this direction. Yang 
& Widom (1998) describe an architecture that 
uses incremental techniques to automatically 
maintain temporal views over non-temporal 
source relations, allowing users to ask tempo-

ral queries on these views. De Amo & Halfeld 
Ferrari Alves (2000) present a self-maintainable 
temporal data warehouse that, besides a set 
of temporal views, includes a set of auxiliary 
relations containing only temporal information. 
Such auxiliary relations are used to maintain the 
data warehouse without consulting the source 
databases and to avoid storing the entire history 
of source databases in the warehouse.

View adaptation consists in recomputing a 
materialized view in response to changes either 
in the schema of the source relations or in the 
definition of the view itself. Changes in the 
source schemata may be due to an evolution 
of the application domain they represent, or 
to a new physical location for them. Changes 
in the definition of the view (i.e., in the data 
warehouse schema) may also be due to new 
requirements of the business users who query 
the data marts fed by the data warehouse. Among 
the approaches in this direction we mention 
the one by Bellahsene (1998), who proposes 
an extended relational view model to support 
view adaptation, aimed at maintaining data 
coherence and preserving the validity of the 
existing application programs. Performing a 
schema change leads to creating a new view, by 
means of an extended view definition language 
that incorporates two clauses: hide, which speci-
fies a set of attributes to be hidden, and add, 
that allows a view to own additional attributes 
that do not belong to source relations. In the 
EVE framework (����������������������������   Lee, Nica, & Rundensteiner, 
2002), in order to automate the redefinition 
of a view in response to schema changes in 
the data sources, the ��������������������������  database administrator is 
allowed to embed her preferences about view 
evolution into the view definition itself. The 
preference-based view rewriting process, called 
view synchronization, identifies and extracts 
appropriate information from other data sources 
as replacements of the affected components of 
the original view definition, in order to produce 
an alternative view that somehow preserves 
the original one. Finally, the DyDa framework 
(Chen, Zhang, & Rundensteiner, 2006) supports 
compensating queries, that cope with erroneous 
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results in view maintenance due to concurrent 
updates in data source, in presence of data and 
schema changes.

The key idea of adaptation techniques is to 
avoid recomputing the materialized view from 
scratch by relying on the previous materializa-
tion and on the source relations. For instance, 
Bellahsene (2002) focuses on the adaptation 
of the data warehouse in response to schema 
changes arising on source relations located on 
multiple sites. To adapt the extent of the data 
warehouse in response to these changes, she 
adopts rewriting algorithms that make use of 
containment checking, so that only the part of 
the new view that is not contained in the old 
view will be recomputed. In the same context, 
a distinctive feature of the AutoMed system 
(Fan & Poulovassilis, 2004) is the capability 
of handling not only schema evolutions in 
materialized data integration scenarios, but also 
changes in the data model in which the schema 
is expressed (e.g., XML vs. relational). This is 
achieved by applying sequences of primitive 
transformations to a low-level hypergraph-
based data model, in whose terms higher-level 
modeling languages are defined.

With reference to the problem of keeping 
the data warehouse in sync with the sources, 
Wrembel and Bebel (2007) propose a metamod-
el for handling changes in the operational data 
sources, which supports the automatic detec-
tion of structural and content changes in the 
sources and their automatic propagation to the 
data warehouse.

Finally, Combi & Oliboni (2007) focus on 
the management of time-variant semi-structured 
XML data within the data warehouse. In par-
ticular, they propose a representation based on 
graphs whose nodes denote objects or values 
and are labeled with their validity interval; the 
constraints related to correct management of 
time are then discussed.

Handling DATA Changes in the 
Data Mart

Content changes result from user activities that 
perform their day-to-day work on data sources 

by means of different applications (Wrembel 
& Bebel, 2007). These changes are reflected in 
the data warehouse and then in the data marts 
fed from it.

The multidimensional model provides 
direct support for representing the sequence of 
events that constitute the history of a fact: by 
including a temporal dimension (say, with date 
granularity) in the fact, each event is associ-
ated to its date. For instance, if we consider an 
ORDER fact representing the quantities in the 
lines of orders received by a company selling 
PC consumables, the dimensions would prob-
ably be product, orderNumber, and orderDate. 
Thus, each event (i.e., each line of order) 
would be associated to the ordered product, to 
the number of the order it belongs to, and to 
the order date. 

On the other hand, the multidimensional 
model implicitly assumes that the dimensions 
and the related levels are entirely static. This 
assumption is clearly unrealistic in most cases; 
for instance, considering again the order domain, 
a company may add new categories of products 
to its catalog while others can be dropped, or the 
category of a product may change in response 
to the marketing policy.

Another common assumption is that, once 
an event has been registered in a data mart, it is 
never modified so that the only possible writing 
operation consists in appending new events as 
they occur. While this is acceptable for a wide 
variety of domains, some applications call for 
a different behavior; for example the quantity 
of a product ordered in a given day could be 
wrongly registered or could be communicated 
after the ETL process has run.

These few examples emphasize the need 
for a correct handling of changes in the data 
mart content. Differently from the problem of 
handling schema changes, the issues related to 
data changes have been widely addressed by 
researchers and practitioners, even because in 
several cases they can be directly managed in 
commercial DBMSs. In the following subsec-
tions we separately discuss the issues related to 
changes in dimensional data and factual data, 
i.e., events��. 
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Changes in Dimensional Data

By this term we mean any content change that 
may occur within an instance of a hierarchy, 
involving either the dimension itself, or a level, 
or a property. For instance, considering a product 
hierarchy featuring levels type and category, 
the name of a product may change, or a new 
category may be introduced so that the existing 
types have to be reassigned to categories.

The study of changes in dimensional data 
has been pioneered by Kimball (1996), who 
coined the term slowly-changing dimension to 
point out that, differently from data in fact tables, 
changes within the dimension tables occur less 
frequently. He proposed three basic modeling 
solutions for a ROLAP implementation of 
the multidimensional model, each inducing a 
different capability of tracking the history of 
data. In the Type I solution he simply proposes 
to overwrite old tuples in dimension tables 
with new data: in this case, tracking history is 
not possible but changes in the hierarchy data 
keep the data mart up-to-date. Conversely, in 
the Type II solution, each change produces a 
new record in the dimension table: old events 
stay related to the old versions of hierarchies, 
while new events are related to the current 
version. In order to allow two or more tuples 
representing the same hierarchy instance to be 
included in the dimension table, surrogate keys 
must necessarily be adopted. Finally, the Type 
III solution is based on augmenting the schema 
of the dimension table by representing both the 
current and the previous value for each level or 
attribute subject to change.

Other solutions, based on these basic ones, 
have been proposed over time. In particular, a 
complete historicization of the dimension tables 
determines higher expressivity. This can be ob-
tained for instance as an extension of Type II, by 
adding to the dimension table schema a couple 
of timestamps storing the validity interval for 
each tuple, plus an attribute storing the surro-
gate key of the first version of the tuple. This 
solution is sometimes called Type VI (I+II+III) 
since it covers all the previous ones.

The solutions discussed so far have dif-
ferent querying capabilities; with reference 
to the terminology proposed by SAP (2000), 
three main querying scenarios can be distin-
guished:

•	 Today is yesterday: all events are related 
to the current value of the hierarchy. This 
scenario is supported by all the discussed 
solutions.

•	 Today or Yesterday: each event is related 
to the hierarchy value that was valid when 
the event occurred. This scenario, that re-
constructs the historical truth, is supported 
by Type II and VI solutions.

•	 Yesterday is Today: each event is related 
to the hierarchy value that was valid at a 
given time in the past. This scenario is 
supported by Type VI solution only.

Other solutions for handling changes in 
dimensional data have been devised thereafter. 
Two relevant proposals, that study the problem 
from a more conceptual point of view, are by 
Bliujute et al. (1998) and Pedersen and Jensen 
(1999). The first one proposes a temporal star 
schema that, differently from the traditional one, 
omits the time dimension table and timestamps 
each row in every table instead, treating the fact 
table and the dimension tables equally with 
respect to time. Similarly, the second one pro-
poses to handle changes by adding timestamps 
to all the components of a multidimensional 
schema: the values of both dimensions and 
facts, the inter-level partial order that shapes 
hierarchy instances and the fact-dimension 
relationships. Another model that supports 
changes in data by timestamping dimensional 
data is COMET (Eder, Koncilia, & Morzy, 
2002), that also supports schema versioning 
using a fully historicized meta-model. Finally, 
Chamoni and Stock (1999) suggest to couple 
the multidimensional cube with meta-cubes 
that store dimension structures together with 
their timestamps.

A model supporting data changes should 
be coupled with meaningful operators to 
carry them out. An interesting proposal in this 
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direction comes from Hurtado,������������  Mendelzon, 
& Vaisman����������������������������������       ���������������������������������     (1999b), who introduces a set of 
high-level operators based on sequences of 
elemental operators (�������������������� Hurtado,������������  Mendelzon, 
& Vaisman,���������������������������������       ��������������������������������     1999a) for both schema and data 
changes. The operators for data changes are 
reclassify, that changes the roll-up partial 
order between levels, split, that reorganizes a 
hierarchy after one instance has been replaced 
by two or more ones, merge, that merges two 
instances of a hierarchy into a single one, and 
update, that simply changes the value of an 
instance without affecting the roll-up partial 
order. Since changes to hierarchy instances 
could affect summarizability, the definition of 
models and operators is usually coupled with 
a set of constraints aimed at enforcing data 
consistency (����������������������  ���������Hurtado,��������������  ��������� Mendelzon, & Vaisman, 
1999b; �������������������������������������     Eder, �������������������������������    Koncilia, & Morzy,�������������   2002; ������Letz, 
Henn, & Vossen, 2002).

Changes in Factual Data

We start this section by preliminarily mention-
ing the two basic paradigms introduced by 
Kimball (1996) for representing inventory-like 
information in a data mart: the transactional 
model, where each increase and decrease in the 
inventory level is recorded as an event, and the 
snapshot model, where the current inventory level 
is periodically recorded. A similar characteriza-
tion is proposed by Bliujute et al. (1998), who 
distinguish between event-oriented data, like 
sales, inventory transfers, and financial transac-
tions, and state-oriented data, like unit prices, 
account balances, and inventory levels. This has 
been later generalized to define a classification 
of facts based on the conceptual role given to 
events (Golfarelli & Rizzi, 2007b):

•	 Flow facts (flow measures in Lenz & 
Shoshani, 1997) record a single transaction 
or summarize a set of transactions that oc-
cur during the same time interval; they are 
monitored by collecting their occurrences 
during a time interval and are cumulatively 
measured at the end of that period. Examples 
of flow facts are orders and enrollments.

•	 Stock facts (stock measures in Lenz & 
Shoshani, 1997) refer to an instant in time 
and are evaluated at that instant; they are 
monitored by periodically sampling and 
measuring their state. Examples are the 
price of a share and the level of a river.

By the term changes in factual data we mean 
any content change an event may be subject to, 
involving either the values of its measures or the 
dimensional elements it is connected to. Changes 
in factual data are a relevant issue in all those 
cases where the values measured for a given 
event may change over a period of time, to be 
consolidated only after the event has been for 
the first time registered in the data mart. These 
late measurements typically happens when the 
early measurements made for events are subject 
to errors (e.g., the amount of an order may be 
corrected after the order has been registered) or 
when events inherently evolve over time (e.g., 
notifications of university enrollments may be 
received and registered several days after they 
were issued). This problem becomes even more 
evident as the timeliness requirement takes more 
importance (Jarke, Jeusfeld, Quix, & Vassiliadis, 
1999). This is the case for zero-latency data ware-
housing systems (Bruckner & Tjoa, 2002), whose 
goal is to allow organizations to deliver relevant 
information as fast as possible to knowledge 
workers or decision systems that need to react 
in near real-time to new information.

In these contexts, if the up-to-date state is to 
be made timely visible to the decision makers, 
past events must be continuously updated to 
reflect the incoming late measurements. Unfor-
tunately, if updates are carried out by physically 
overwriting past registrations of events, some 
problems may arise. In fact, accountability and 
traceability require the capability of preserving 
the exact information the analyst based her de-
cision upon. If the old registration for an event 
is replaced by its latest version, past decisions 
can no longer be justified. Besides, in some ap-
plications, accessing only up-to-date versions 
of information is not sufficient to ensure the 
correctness of analysis. A typical case is that of 
queries requiring to compare the progress of an 



International Journal of Data Warehousing & Mining, 5(1), 1-17, January-March 2009   �

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global 
is prohibited.

ongoing phenomenon with past occurrences of 
the same phenomenon: since the data recorded 
for the ongoing phenomenon are not consolidated 
yet, comparing them with past consolidated data 
may not be meaningful (Golfarelli & Rizzi, 
2007b).

Supporting accountability and traceability 
in presence of late measurements requires the 
adoption of a bi-temporal solution where both 
valid and transaction time are represented by 
means of timestamps. Only few approaches in 
the literature are specifically focused on studying 
this specific topic. Kimball (2000) states that a 
bi-temporal solution may be useful to cope with 
late measurements. Bruckner & Tjoa (2002) 
discuss the problem of temporal consistency in 
consequence of delayed discovery of real-world 
changes and propose a solution based on valid 
time, revelation time and loading time. Loading 
time is the point in time when a new piece of 
information is loaded in the data mart, while 
revelation time is the point in time when that 
piece of information was realized by at least one 
data source. Finally, Golfarelli & Rizzi (2007b) 
propose to couple valid time and transaction 
time and distinguish two different solutions for 
managing late measurements: delta solution, 
where each new measurement for an event is 
represented as a delta with respect to the previous 
measurement, and transaction time is modeled by 
adding to the schema a new temporal dimension 
to represent when each registration was made in 
the data mart; and consolidated solution, where 
late measurements are represented by recording 
the consolidated value for the event, and transac-
tion time is modeled by two temporal dimensions 
that delimit the time interval during which each 
registration is current.

Handling SCHEMA Changes in the 
Data Mart

According to (Wrembel & Bebel, 2007), schema 
changes in the data mart may be caused by 
different factors:

•	 Subsequent design iterations in the context 
of an incremental approach to data mart 
design.

•	 Changes in the user requirements, triggered 
for instance by the need for producing more 
sophisticated reports, or by new categories 
of users that subscribe to the data mart.

•	 Changes in the application domain, i.e., 
arising from modifications in the busi-
ness world, such as a change in the way 
a business is done, or a changing in the 
organizational structure of the company.

•	 New versions of software components 
being installed.

•	 System tuning activities.

For instance, it may be necessary to add a 
subcategory level to the product hierarchy to 
allow more detailed analysis, or to add a mea-
sure revenueInEuro due to the introduction of 
a new currency.

As stated in the second section, depending 
on how previous schema versions are man-
aged, two main classes of approaches may be 
distinguished: schema evolution, that allows 
modifications of the schema without loss of data 
but does not maintain the schema history, and 
schema versioning, where past schema defini-
tions are retained so that all data may be accessed 
through a version specified by the user. In the 
two following subsection these two classes of 
approaches will be separately surveyed.

Evolution

The main problem here is to support a set of 
operators for changing the data mart schema, 
while enabling lossless migration of existing 
data from the past schema version to the new 
one.

In this context, FIESTA is a methodology 
where the evolution of multidimensional sche-
mata is supported on a conceptual level, thus 
for both ROLAP and MOLAP implementations 
(Blaschka, Sapia, & Höfling, 1999; Blaschka, 
2000). Core of the approach is a schema evolu-
tion algebra which includes a formal multidi-
mensional data model together with a wide set 
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of schema evolution operations, whose effects 
on both schema and instances are described. 
Essentially, the operations allow dimensions, 
hierarchy levels, properties and measures to 
be added and deleted from the multidimen-
sional schema. Since OLAP systems are often 
implemented on top of relational DBMSs, the 
approach also shows how a multidimensional 
schema can be mapped to a relational schema by 
means of a meta-schema that extends the cata-
logue of the underlying DBMS. Each sequence 
of evolution operations is then transformed into a 
sequence of relational evolution commands that 
adapt the relational database schema together 
with its instances, and update the contents of 
the meta-schema accordingly.

Conversely, in (Kaas, Pedersen, & Rasmus-
sen, 2004) the evolution problem is investigated 
with particular reference to its impact on the 
logical level for ROLAP implementations, 
namely, on star and snowflake schemata. Eight 
basic evolution operators are defined (insert/de-
lete dimension, level, property, and measure). 
For each of them, the changes implied on star 
and snowflake schemata are described and their 
impact on existing SQL queries in reporting 
tools is discussed. Remarkably, an in-depth 
comparison reveals that the star schema is gen-
erally more robust than the snowflake schema 
against schema changes. 

A comprehensive approach to evolution 
is the one jointly devised at the Universities of 
Toronto and Buenos Aires. The fundamentals 
are laid by Hurtado, Mendelzon, & Vaisman 
(1999a), who propose a formal model for updat-
ing dimensions at both the schema and instance 
level, based on a set of modification operators 
(generalize, specialize, relate/unrelated/delete 
level are those defined at the schema level). An 
incremental algorithm for efficiently maintain-
ing a set of materialized views in the presence 
of dimension updates is also presented. This 
work is then extended by Vaisman, Mendelzon, 
Ruaro, & Cymerman (2004) by introducing 
TSOLAP, an OLAP server supporting dimension 
updates and view maintenance, built following 
the OLE DB for OLAP proposal. The approach 
is completed by MDDLX, an extension of MDX 

(Microsoft’s language for OLAP) with a set of 
statements supporting dimension update opera-
tors at both schema and instance levels.

A relevant aspect related to evolution is 
how changes in schema affect the data mart 
quality, which is discussed in (Quix, 1999). A 
set of schema evolution operators is adapted 
from those for object-oriented databases; for 
each operator, its impact on the quality fac-
tors (such as completeness, correctness, and 
consistency between the conceptual and logi-
cal schema) as emerged in the context of the 
DWQ Project - Foundations of Data Warehouse 
Quality (Jarke, Jeusfeld, Quix, & Vassiliadis, 
1999) is discussed. The tracking of the history 
of changes and the consistency rules to enforce 
when a quality factor has to be re-evaluated 
due to evolution is supported by an ad hoc 
meta-model. 

Versioning

According to the frequently cited definition 
by Inmon (1996), one of the characteristic 
features of a data warehouse is its non-volatil-
ity, which means that data is integrated into 
the data warehousing system once and remains 
unchanged afterwards. Importantly, this feature 
implies that the re-execution of a single query 
will always produce the same result. In other 
words, past analysis results can be verified 
and then inspected by means of more detailed 
OLAP sessions at any point in time. While 
non-volatility in the presence of changes at 
the data level can be achieved by adopting one 
of the solutions discussed in the third section, 
non-volatility in the presence of changes at the 
schema level requires some versioning approach 
to be undertaken. In fact, it is easy to see that 
the ability to re-execute previous queries in the 
presence of schema changes requires access to 
past schema versions, which cannot be achieved 
with an evolution approach.

The first work in this direction is COMET 
(Eder, Koncilia, & Morzy, 2002), a metamodel 
that supports schema and instance versioning. 
All classes in the metamodel are timestamped 
with a validity interval, so multiple, subsequent 
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versions of cubes can be stored and queried. 
Transformation of data from one version into 
the (immediate) succeeding or preceding one 
is supported; though the paper reports no 
details on how a new version can be obtained 
from the previous one, a comprehensive set of 
constraints that the versions have to fulfill in 
order to ensure the integrity of the temporal 
model is proposed.

The peculiarity of the timestamp-based 
versioning model proposed by Body, Miquel, 
Bédard, and Tchounikine (2003) is that hi-
erarchies are deduced from the dimensions 
instances, so that explicitly defining the mul-
tidimensional schema is not necessary. In this 
way, schema changes are implicitly managed 
as a result of handling changes in instances. 
On the other hand, the versioning approach 
proposed by Ravat, Teste, & Zurfluh (2006) 
uses a constellation of star schemata to model 
different versions of the same fact, and populates 
versions by means of mapping functions.

A comprehensive approach to versioning 
is presented by Wrembel and Bebel (2007). 
Essentially, they propose two metamodels: one 
for managing a multi-version data mart and one 
for detecting changes in the operational sources. 
A multi-version data mart is a sequence of 
versions, each composed of a schema version 
and an instance version. Remarkably, besides 
“real” versions determined by changes in the 
application domain or in users’ requirements, 
also “alternative” versions are introduced, to be 
used for simulating and managing hypotheti-
cal business scenarios within what-if analysis 
settings.

Another approach to versioning specifically 
oriented to supporting cross-version queries is 
the one by Golfarelli, Lechtenbörger, Rizzi and 
Vossen (2006). Here, multidimensional sche-
mata are represented as graphs of simple func-
tional dependencies, and an algebra of graph 
operations to define new versions is defined. 
Data migration from the old to the new version 
is semi-automated, i.e., based on the differences 
between the two versions the system suggests 
a set of migration actions and gives support for 
their execution. The key idea of this approach 

is to support flexible cross-version querying by 
allowing the designer to enrich previous ver-
sions using the knowledge of current schema 
modifications. For this purpose, when creating a 
new schema version the designer may choose to 
create augmented schemata that extend previous 
schema versions to reflect the current schema 
extension, both at the schema and the instance 
level. In a nutshell, the augmented schema 
associated with a version is the most general 
schema describing the data that are actually 
recorded for that version and thus are available 
for querying purposes. Like for migration, a set 
of possible augmentation actions is proposed 
to the designer (e.g., the designer may choose 
to manually insert values of a newly added at-
tribute for hierarchy instances whose validity 
was limited to previous versions).

To the best of our knowledge, only two 
approaches use both valid and transaction time 
in the context of versioning. Koncilia (2003) 
presents a bi-temporal extension of the COMET 
metamodel, aimed at representing not only the 
valid time of schema modifications, but also the 
transaction time. Rechy-Ramírez and Benítez-
Guerrero (2006) introduce a conceptual model 
for bi-temporal versioning of multidimensional 
schemata, aimed at enabling modifications in the 
data mart schema without affecting the exist-
ing applications. Each version has a temporal 
pertinence composed by a valid time and a 
transaction time, thus enabling the existence of 
two or more versions with the same valid time, 
but different transaction times. Associated to 
this model, there are 16 operators for schema 
changing and a SQL-like language to create 
and modify versions.

querying temporal data 

The development of a model for temporal data 
warehousing is of little use without an appro-
priate query language capable of effectively 
handling time. In principle, a temporal query 
could be directly formulated on a relational 
schema using standard SQL, but this would 
be exceedingly long and complex even for a 
skilled user. 
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In this direction, Bliujute, Saltenis, Slivin-
skas, & Jensen��������������������������������     (1998) discuss the performance 
of their temporal star schema considering five 
types of temporal queries. Golfarelli & Rizzi 
(2007b) distinguish three querying scenarios 
in presence of late measurements:

•	 Up-to-date queries, that require the most 
recent measurement for each event;

•	 Rollback queries, that require a past version 
measurement for each event;

•	 Historical queries, that require multiple 
measurements for events, i.e., are aimed 
at reconstructing the history of event 
changes.

To cope with schema changes, Mendelzon 
and Vaisman (2000) proposed the Temporal 
OLAP (TOLAP) query language. TOLAP, based 
on the temporal multidimensional model pro-
posed by Hurtado et al. (1999b), fully ���������supports 
schema evolution and versioning, differently 
from best-known temporal query languages 
such as TSQL2 (Snodgrass, 1995), that sup-
ports versioning in a limited way only. TOLAP 
combines the temporal features of TSQL2 with 
some high-order features of SchemaLog in order 
to support querying multidimensional data with 
reference to different instants in time in a concise 
and elegant way. All three querying scenarios 
(today is yesterday, yesterday is today, and today 
or yesterday) are supported. Also meta-queries, 
e.g. concerning the instant changes to data took 
place, can be expressed.

Several approaches face the problem of 
formulating cross-version querying, i.e., for-
mulating queries that span different schema 
versions. For instance, Morzy and Wrembel 
(2004) propose a SQL extension aimed at 
expressing queries on multiple (either real or 
alternative) schema versions. Each query is 
decomposed into a set of partial queries, one 
for each schema version involved. The results 
of partial queries are separately presented, an-
notated with version and metadata information; 
in some cases, partial queries results can be 
merged into a common set of data. In (Wrembel 
& Bebel, 2007), the problem of cross-version 

queries is addressed by allowing users to specify 
either implicitly (by specifying a time interval 
for the query) or explicitly (by specifying a 
set of version identifiers) the set of versions 
for querying. Similarly, in (Golfarelli & Rizzi, 
2007a) the relevant versions for answering a 
query are either chosen explicitly by the user 
or implicitly by the system based on the time 
interval spanned by the query, as shown in the 
prototype implementation X-Time.

In the context of querying, a number of 
works are related to the so-called temporal ag-
gregation problem, that was studied mainly in 
the context of MOLAP systems and consists in 
efficiently computing and maintaining temporal 
aggregates. In fact, time dimensions typically 
lead to a high degree of sparseness in traditional 
array-based MOLAP cubes because of their 
large cardinality, and to significant overhead to 
answer time-parameterized range queries. For 
instance, the work by Tao, Papadias, & Falout-
sos (2004) focuses on approximate temporal 
aggregate processing. Specifically, for count 
queries, its goal is to provide answers guaranteed 
to deviate from the exact ones within a given 
threshold. Riedewald, Agrawal, & El Abbadi 
(2002) proposed efficient range aggregation 
in temporal data warehouses by exploiting the 
append-only property of the time-related dimen-
sion. Their framework allows large amounts of 
new data to be integrated into the warehouse and 
historical summaries to be efficiently generated, 
independently of the extent of the data set in 
the time dimension. Feng, Li, Agrawal, & El 
Abbadi (2005) proposed a general approach 
to improve the efficiency of range aggregate 
queries on MOLAP data cubes in a temporal 
data warehouse by separately handling time-
related dimensions to take advantage of their 
monotonic trend over time. Finally, Yang & 
Widom (2001) introduce a new index structure 
called the SB-tree, which supports fast lookup 
of aggregate results based on time, and can be 
maintained efficiently when the data changes 
along the time line.
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Designing Temporal Data 
Warehouses

It is widely recognized that designing a data 
warehousing system requires techniques that 
are radically different from those normally 
adopted for designing operational databases 
(Golfarelli & Rizzi, 1999). On the other hand, 
though the literature reports several attempts 
to devise design methodologies for data ware-
houses, very few attention has been posed on 
the specific design issues related to time. Indeed, 
as stated by Rizzi et al. (2006), devising design 
techniques capable of taking time and changes 
into account is one of the open issues in data 
warehouse research.

Pedersen and Jensen (1999) recognize 
that properly handling time and changes is a 
must-have for multidimensional models. Sarda 
(1999) summarizes the distinguishing charac-
teristics of time dimensions: they are continu-
ously valued and constantly increasing, they 
can be associated with multiple user-defined 
calendars, they express the validity of both 
facts and other dimensions (either in the form 
of time instants or validity intervals). Sarda also 
proposes a design methodology for temporal 
data warehouses featuring two phases: logical 
design, that produces relations characterized by 
a temporal validity, and physical design, that 
addresses efficient storage and access.

Considering the leading role played by 
temporal hierarchies within data marts and 
OLAP queries, it is worth adopting ad hoc 
approaches for their modeling not only from 
the logical, but also from the conceptual point 
of view. While all conceptual models for data 
marts allow for temporal hierarchies to be 
represented like any other hierarchies, to the 
best of our knowledge the only approach that 
provides ad hoc concepts for modeling time 
is the one by Malinowski & Zimányi (2008), 
based on a temporal extensions of the MultiDim 
conceptual model. Different temporality types 
are allowed (namely, valid time, transaction 
time, lifespan, and loading time), and temporal 
support for levels, properties, hierarchies, and 
measures is granted.

Finally, Golfarelli & Rizzi (2007b) discuss 
the different design solutions that can be adopted 
in presence of late measurements, depending 
on the flow or stock nature of the events and on 
the types of queries to be executed.

OPEN ISSUES AND 
CONCLUSIONS 

In this survey we classified and discussed the 
issues related to temporal data warehousing. An 
in-depth analysis of the literature revealed that 
the research community not always devoted a 
comprehensive attention to all these aspects. 
As a matter of fact, a wide agreement on the 
possible design solutions has been reached only 
with reference to changes in dimensional data. 
As to changes in factual data and changes in 
schema, though some interesting solutions have 
been proposed, no broad and shared framework 
has been devised yet. 

Similarly, on the commercial side, changes 
in data have been supported since almost a de-
cade ago. Already in year 2000, systems such 
as Business Warehouse by SAP (2000) were 
allowing to track changes in data and to effec-
tively query cubes based on different temporal 
scenarios by letting users choose which version 
of the hierarchies to adopt for querying. On the 
other hand, today there still is very marginal 
support to changes in schema by commercial 
tools. For instance, SQL Compare compares and 
synchronizes SQL Server database schemata, 
and can be used when changes made to the 
schema of a local database need to be pushed to 
a central database on a remote server. Also, the 
Oracle Change Management Pack is aimed to 
report and track the evolving state of meta-data, 
thus allowing to compare database schemata, 
and to generate and execute scripts to carry 
out the changes. In both cases, formulating a 
single query spanning multiple databases with 
different schemata is not possible.

We believe that, considering the maturity 
of the field and the wide diffusion of data ware-
housing systems, in the near future decision 
makers will be more and more demanding for 
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advanced temporal support. Thus, it is essential 
that both vendors and researchers be ready to 
deliver effective solutions. In this direction we 
envision two main open issues. On the one hand, 
some research aspects indeed require further 
investigation. For instance, support for cross-
version queries is not satisfactory yet, and its 
impact on performance has not been completely 
investigated; similarly, the effectiveness of view 
adaptation approaches is still limited. On the 
other hand, in order to encourage vendors to add 
full temporal support to commercial platforms, 
the solutions proposed in the literature should be 
better harmonized to converge into a complete, 
flexible approach that could be effortlessly ac-
cepted by the market.
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