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In order to ensure high-quality and on-time delivery in logistic distribution processes, it is necessary to e
ciently manage the
delivery �eet. Nowadays, due to the new policies and regulations related to greenhouse gas emission in the transport sector,
logistic companies are paying higher penalties for each emission gram of CO2/km. With electric vehicle market penetration, many
companies are evaluating the integration of electric vehicles in their �eet, as they do not have local greenhouse gas emissions,
produce minimal noise, and are independent of the �uctuating oil price. 	e well-researched vehicle routing problem (VRP) is
extended to the electric vehicle routing problem (E-VRP), which takes into account speci�c characteristics of electric vehicles.
In this paper, a literature review on recent developments regarding the E-VRP is presented. 	e challenges that emerged with the
integration of electric vehicles in the delivery processes are described, together with electric vehicle characteristics and recent energy
consumption models. Several variants of the E-VRP and related problems are observed. To cope with the new routing challenges in
E-VRP, e
cient VRP heuristics and metaheuristics had to be adapted. An overview of the state-of-the-art procedures for solving
the E-VRP and related problems is presented.

1. Introduction

	e vehicle routing problem (VRP) is an NP-hard optimiza-
tion problem that aims to determine a set of least-cost deliv-
ery routes from a depot to a set of geographically scattered
customers, subject to side constraints [1]. 	e problem was
�rst de�ned by Dantzig and Ramser [2] as the Truck Dis-
patching Problem. VRP is a generalization of the well-known
traveling salesman problem (TSP), which aims to design one
least-cost route to visit all the customers. 	e problem has
applications in several real-life optimization problems, which
has led to the de�nition of many problem variants over the
years: limited vehicle load capacity (capacitated VRP, CVRP),
customer time windows (VRPwith time windows, VRPTW),
multiple depots (multidepot VRP, MDVRP), pickup and
delivery (VRP with pickup and delivery, VRPPD), time-
dependent travel time (time-dependent VRP, TD-VRP), het-
erogeneous �eet (mixed �eet VRP, MFVRP), etc. [3, 4].
Due to the complexity of the problem, exact procedures are
only capable of optimally solving small-sized problems: up

to 360 customers for CVRP [5] and 50-100 customers for
VRPTW [6]. Over the years, a vast number of heuristics,
metaheuristics, and hybrid procedures were proposed for
solving di�erent VRP problems.

In the past decade, the European Union (EU) has
announced many new actions and regulations related to
greenhouse gas (GHG) emissions in the transport sector
[7]. External factors and the rise of social and ecological
awareness have prompted green initiatives in many com-
panies. Conventional internal combustion engine vehicles
(ICEVs), which are dependent on limited fossil fuels, severely
pollute the environment, especially in congested urban areas.
According to WEEA [8], the EU intends to decrease GHG
emissions by 20% and 40% by 2020 and 2030, respectively.
Sbihi and Eglese [9] introduced the research �eld of green
logistics, which deals with the sustainability of delivery
processes by taking into account environmental and social
factors. With the electric vehicle (EV) market penetration,
many logistic companies evaluated the use of the EVs in
their vehicle �eet in order to decrease GHG emissions and,
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therefore, reduce the charges for every emission gram of
CO2/km. EVs have several advantages compared to ICEVs:
(i) they do not have local GHG emissions; (ii) they produce
minimal noise; (iii) they can be powered from renewable
energy sources; and (iv) they are independent of the �uctu-
ating oil price [10, 11]. 	ere are two basic con�gurations of
EVs: the battery electric vehicle (BEV), which is exclusively
powered from batteries mounted inside the vehicle, and the
hybrid electric vehicle (HEV), which can be powered from
batteries inside the vehicle or by other energy sources, most
commonly internal combustion engine. 	e plug-in HEV
(PHEV) can be recharged by connecting the plug to the
electric power source. In this paper mostly BEVs for logistic
purposes are considered, where two main problems come to
the fore: limited driving range and the need for additional
recharging infrastructure.

Due to the limited battery capacity, the range that delivery
BEVs can achieve with a fully charged battery is 160-240 km
[12], which is much lower than the 480-650 km range of
ICEVs [13]. To achieve a similar driving range as ICEVs, BEVs
have to visit charging stations (CSs) more frequently. Today,
there is still a lack of CSs in the road network infrastructure,
and their locations and energy demand should be planned
in future infrastructural plans. For an empty BEV to become
operable again, battery energy has to be renewed at a CS.
	is can be performed in two ways: (i) by swapping empty
batteries with fully charged ones at Battery Swapping Station
(BSS) or (ii) by charging at CS [14, 15]. 	e former process
can be performed in a time comparable to the refueling time
of ICEVs. In the latter process BEVs recharge their batteries at
CSs by plugging into the electric power source. 	e recharge
time depends on the state of charge (SoC) when entering the
CS, the desired SoC level when leaving CS, and the charging
function.

1.1. Recent Literature Reviews and Scienti�c Contribution.
Here we present, to our knowledge, the most recent literature
reviews on the E-VRP and related problems.

Juan et al. [16] presented a review regarding the envi-
ronmental, strategic, and operational challenges of EV inte-
gration in logistics and transportation activities. 	e authors
performed a comprehensive analysis of environmental chal-
lenges including the transportation impact on the pollution
and EVs’ possible contribution to the reduction of carbon
emissions. Regarding the strategic challenges, the authors
presented issues related to CSs: battery swap technology,
di�erent charging technologies, CS location problem, limited
number of charges, and charging network; issues related to
the EVs: mixed �eet of ICEVs and EVs, economic challenges
when integrating EVs in a �eet, and routing constraints.
	e solution approaches for the E-VRP were presented in
general, as a class of VRP solving procedures. Similarly,
Margaritis et al. [17] presented practical and research chal-
lenges of EVs focusing on battery development, lack of
charger compatibility, systematic energy management, the
lack of optimization procedures that could minimize the
EV routing and scheduling decisions, cooling/heating usage,
�nancial sources, novel policies,measures for EVdeployment
in transport services, etc.

Montoya [18] researched several variants of the E-VRP:
green VRP (GVRP), E-VRP with partial recharging and
nonlinear charging functions, and the technician routing
problem with a mixed �eet of ICEVs and EVs. For each
problem, e�ective solving procedures were proposed: multi-
space sampling heuristic, iterated local search enhanced with
heuristic concentration, and two-phase parallel metaheuris-
tic based on solving a set of subproblems and extended set-
covering formulation. 	e authors also formulated a �xed
route vehicle charging problem (FRVCP) with and without
time windows to optimize the charging decisions for a route
with a �xed customer sequence. 	e authors did not focus as
much on reviewing the E-VRP literature, especially not on the
procedures for solving the problem. Compared to Montoya
[18], this paper did not focus as much on the FRVCP and
technician routing problem or on detailed procedures used
to solve those problems.

	e most recent survey on the E-VRP is presented by
Pelletier et al. [19] and it includes technical background
on EV types and batteries, EV market penetration, EV
competitiveness and incentives, and an overview of the
existing research regarding EVs in transportation science.
	e authors provided a comprehensive review on, at the time,
the latest solving procedures for the E-VRP with mixed �eet
and optimal paths and covered several key papers regarding
partial recharges, hybrid vehicles, and di�erent charging
technologies.

In this paper, a survey on the E-VRP is presented,
which includes approaches for solving the E-VRP and related
problems that emerged with BEVs integration in the logistic
processes.	e focus is not on the economic and environmen-
tal challenges related to BEVs. Most of the latest literature
reviews were published in 2016; hence, to the best of our
knowledge, there is no published research that summarizes
the state-of-the-art research in the E-VRP �eld. In this paper
we outline the following contributions:

(i) a review of the recent energy consumption models
that could be used in BEV routing models;

(ii) an updated literature review and a concise table
summary of already reviewed E-VRP variants such
as GVRP, mixed �eet, BSSs, partial recharges, and
di�erent charging technologies;

(iii) a review of the additional emerged E-VRP variants,
which include hybrid vehicles, CS siting, nonlinear
charging function, dynamic tra
c conditions and
charging schedule optimization;

(iv) a comprehensive analysis of operation research proce-
dures in the E-VRP, which includes an overview of the
procedures employed for solving various E-VRP vari-
ants, highlighting state-of-the-art procedures, and a
concise table summary of the applied procedures.

1.2. Organization of �is Paper. 	e remainder of this paper
is organized as follows. In Section 2, the E-VRP is described
and the literature review of the basic problem formulation
is presented. In Section 3, basic characteristics and recent
energy consumption models of BEVs are described together
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with the BEV’s application and evaluation in the delivery
processes. In Section 4, variants of the E-VRP are presented
with some related problems from the literature. In Section 5,
approaches for solving E-VRP are presented, which include
state-of-the-art exact, heuristic, metaheuristic, and hybrid
procedures.	e conclusion and future research directions are
given in Section 6.

2. Electric Vehicle Routing Problem

With BEV penetration in logistic distribution processes, a
problem of routing a �eet of BEVs has emerged: the E-
VRP. 	e E-VRP aims to design least-cost BEV routes in
order to serve a set of customers by taking into account
o�en used constraints: vehicle load capacity, customer time
windows, working hours, etc. [3, 20]. Additionally, BEVs
have the limited driving range which directly corresponds to
more frequent recharging events at CSs. CSs can be built at
separate locations as public CSs or mounted at customers’
locations as private CSs. 	e time needed to travel to a CS
and the recharging time are important aspects of �eet routing,
especially if customer time windows are taken into account.

To the best of our knowledge, the �rst research regarding
the routing of an electric �eet was published by Gonçalves
et al. [21], with the authors observing VRPPD using a mixed
�eet of EVs and ICEVs. Refueling of the vehicle is performed
at the location where the need for the refueling occurred and
the total refuel time is computed, based on the total distance
traveled by the EV. Conrad and Figliozzi [22] formulated
recharging VRP in which vehicles with limited driving range
are allowed to refuel at customers’ locations during the route
to up to 80% of the vehicle’s battery capacity. 	e authors
described an application of the model and analyzed the
impact of di�erent driving ranges, �xed charging times, and
time windows on EV routes and solution quality. 	e results
indicated that customer time windows greatly limit route
distance when recharging time is long and vehicle range
is constrained. Erdoğan and Miller-Hooks [23] formulated
GVRP in which a �eet of vehicles is powered by alterna-
tive fuels (alternative fuel vehicle, AFV): biodiesel, ethanol,
hydrogen, methanol, natural gas, electricity, etc. AFVs can
refuel at separately located stations, with �xed refueling
time. 	e authors did not consider customer time windows
and vehicle load capacity constraints. New problem-speci�c
instances were developed and two heuristics for solving the
problem were applied. 	e results showed that the limitation
of driving range severely increased the number of refueling
stations and the total traveled distance in the solution. A
similar problem was researched by Omidvar and Tavakkoli-
Moghaddam [24], in which the authors added vehicle load
constraint, customer time windows, and congestion manage-
ment, as the vehicle can stay at the customer’s location during
the congestion hours. 	e authors minimized emission and
pollution costs by applying commercial so�ware for solving
small instances and two metaheuristics for solving larger
instances. Schneider et al. [25] published the �rst research
on routing a BEV �eet by taking into account possible
visits to CSs and charging time dependent on the SoC level
when entering a CS. 	e problem was formulated as E-VRP

with time windows (E-VRPTW) as they took into account
load, battery, and time window constraints. 	e authors
formulated E-VRPTW as the mixed integer linear program
(MILP) on the complete directed graph �, where customers
are modeled as graph vertices and paths between customers
are modeled as graph arcs. Here, the basic model formulation
is given. Let � = {1, . . . , �} be a set of geographically
scattered customers who need to be served, and let � be a set
of CSs for BEVs. In order to allow multiple visits to the same
CS, a virtual set of CSs �� is de�ned. Vertices 0 and � + 1
denote the depot, and every route begins with vertex 0 and
ends with vertex � + 1 (�0,�+1 = � ∪ {0} ∪ {� + 1}). Graph� is de�ned as � = (�0,�+1 ∪ ��, �), where � is set of arcs,� = {(�, 	) | �, 	 ∈ �0,�+1 ∪ ��, � ̸= 	}. Depending on the real-
life constraints, di�erent (�, 	) arc values can be interpreted
as distance ���, travel time ��, energy consumption ���, speed
V��, cost ���, etc. 	e binary variable ��� = {0, 1} is equal to 1
if arc (�, 	) is traversed in the solution, and 0 otherwise. 	e
whole MILP program for the E-VRPTW with equations for
load, battery, time windows, �ow, and subtour constraints is
presented by Schneider et al. [25].

In the VRP, it is customary for the primary objective
to minimize the total number of vehicles used (1) and then
to minimize the total distance traveled (2) or some other
objective functions [26]. Total vehicle number is a primary
objective as generally greater savings can be achieved with
fewer vehicles (vehicle �xed costs, labor cost, etc.). Such an
objective is contradictory as with fewer vehicles total traveled
distance increases and vice versa. By taking into account the
high purchase cost of BEVs, such a hierarchical objective
seems justi�able in BEV routing applications [25, 27].

min ∑
�∈�∪	�

�0� (1)

min ∑
�∈�0∪	�,�∈��+1∪	�,� ̸=�

������ (2)

Objective functions can be complex with simultaneous mini-
mization of vehicle number, total traveled distance [28], total
travel times [29], total routing cost and planning horizon [11,
27, 30, 31], GHG emission [32, 33], energy consumption [34–
36], etc. Total routing costs of BEVs usually consist of BEV
acquisition cost, circulation tax, maintenance, costs related
to the energy consumption (electric energy price), cost of
battery pack renewal a�er its lifetime, labor costs, etc. Instead
of a single-objective function, some authors use multiobjec-
tive function, i.e., fuel consumption and total driving time
[37], fuel consumption and route cost [38], battery swapping
and charge scheduling [39], etc. An overview of di�erent
objectives in E-VRP is presented in Table 1 in the column
Objective.

3. Battery Electric Vehicles in
Delivery Processes

	e major problem that BEVs in delivery processes are
facing is the limited driving range. Grunditz and 	iringer
[101] analyzed over 40 globally available BEVs, which can
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be categorized into small, medium-large, high-performing,
and sports cars. All of the BEV models utilize lithium-based
batteries, especially lithium-ion [102] with battery capacity
and distance varying within the ranges 12-90 kWh and 85-
528 km, respectively. An averagemedium-sized personal BEV
has a battery capacity of 30 kWh, which is enough to travel
250 km. In the delivery process, mostly light vans and freight
BEVs are used, which have a shorter driving range (160-
240 km) compared to the driving range of ICEVs (480-650
km) [13, 43, 103]. 	e reason is that the battery has lower
speci�c energy (130 Wh/kg) than the fossil oil (1233Wh/kg),
and the amount of energy that can be stored in the battery
is much lower than in the fossil oil. Batteries mounted in
BEVs are mostly the main cause of high acquisition costs
and technical limitations as the battery degrades over time,
resulting in decreased maximal capacity. Pelletier et al. [104]
concluded that the battery should be replaced a�er �ve
to ten years or a�er 1,000 to 2,000 cycles with large SoC
variations. 	e authors also described factors that in�uence
such battery degradation: overcharging, overdischarging,
high and low temperatures, high SoC during storage, large
depth of discharge, etc., and they presented battery degra-
dation models that can be used in goods distribution with
BEVs.

3.1. BEV Application. BEVs are more likely to be used on
short distances and/or in urban areas where they are more
e�ective than ICEVs due to the low driving speed, low
noise production, frequent stops, and �nancial incentives.
In cases when the average route length is short, such as the
average FedEx route length in the USA, which is 68 km
[12], BEVs can be applied directly and recharging can be
performed on return to the depot. BEVs are already being
applied in such occasions: DHL, UPS, FedEx, and Coca-
Cola [105, 106] use BEVs mostly for last-mile deliveries
as distances are shorter and vehicle loads are lower. Many
companies are performing case studies of integrating BEVs
in their delivery �eet. Lin et al. [60] were debating the use
of BEVs in time-precise deliveries as the long recharging
time at CS causes hard completion of an on-time delivery,
which then signi�cantly increases the overall routing costs.
Davis and Figliozzi [10] and van Duin et al. [43] evaluated
a wide range of scenarios to compare the routing costs of
ICEVs and BEVs. Van Duin et al. [43] concluded that BEVs
have the ability to e
ciently perform urban freight transport
and meanwhile to reduce the GHG emissions and noise
nuisance. Davis and Figliozzi [10] reported that BEVs are not
competitive if the solution to the same problem results in a
higher number of BEVs than the number of ICEVs. For BEVs
to be competitive, the authors pointed out a combination
of several key elements: high daily distance (as much as
maximum BEV driving range), low speeds and congestions,
frequent customer stops, the reduction of a BEV’s purchase
cost by tax incentives or technology development, and long
planning horizon. On the other hand, Schi�er et al. [27]
conducted a case study using freight BEVs for deliveries with
a planning horizon of �ve years and compared the results
to the delivery done by conventional freight trucks. Several
characteristics of the performed case study are important:

(i) delivery radius up to 190 km from the depot; (ii) CSs
located at customers’ locations, which allows simultaneous
charging while unloading goods; (iii) already existing strong
current at CSs; and (iv) vehicles returning to the depot at least
once a day. Overall, the authors concluded that there is no
operational limitation when using BEVs compared to ICEVs,
as the used number of vehicles and total traveled distance are
competitive, and at the same time, the overall costs are lower
with almost 25% less CO2 emission. A year later, Schi�er et
al. [11] repeated the case study with more realistic costs when
a strong current at the CS is not available and concluded
that, with the higher CS investment costs, BEVs are no
longer competitive. To fully assess the integration of BEVs in
logistic processes, the authors pointed out three key elements:
di�erent network structures, future CO2 emission policies,
and future technology development (battery capacity and
charging infrastructure).

3.2. Energy Consumption. Due to the low speci�c energy,
energy consumption should be precisely estimated in order
to achieve a BEV’s maximal driving range and to reduce
the overall routing costs. 	e energy consumption can be
estimated by simulation models but due to the complexity of
the E-VRP and unknown driving cycles in advance, mostly
macroscopic models with several real-world approximations
are applied in the BEV routing models. In the available
literature, energy consumption is o�en estimated using lon-
gitudinal dynamics model (LDM). Here, the LDM of Asamer
et al. [107] is presented. Force � needed to accelerate and to
overcome resistances (grade, rolling, and air) is given by (3),
where � is vehicle mass (mostly empty vehicle), � accelera-
tion, V vehicle speed, � gravitational constant, � the inertia
force of vehicle rotating parts (up to 5% of the total vehicle
mass), � road slope, �� rolling friction coe
cient, �� air drag
coe
cient, � air density, and � vehicle frontal air surface. If� ≥ 0, the vehicle is accelerating and power is needed for
the movement of BEV (motor mode); otherwise, if � < 0,
deceleration (braking) or driving downhill is occurring and
energy is returned into theBEV’s battery as the electric engine
has the ability to return the energy (recuperating mode).
By process of recuperation, up to 15% of totally consumed
energy can be returned [51, 108]. Electric power that comes
from the battery is divided into the auxiliary power �0 and
mechanical power � = �V. Auxiliary power is spent on
the electronic devices in the vehicle: heating, ventilation,
light, etc., which can shorten the BEV’s range up to 30%
[109]. Battery power �� can be computed by (4), where � is
the transmission coe
cient between the electric motor and
drivetrain, �� is the conversion ratio from chemical energy
in the battery to electric energy, and �� is the conversion
ratio from mechanical energy on wheels to chemical energy
stored in the battery. Energy is returned into the battery
only if the force � is lower than zero and speed is higher
than the experimentally determined value V�� [107]. Energy
consumption can be computed by the time integration of
(4).

� = �� sin �⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Grade

+ ���� cos �⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Rolling

+ 0.5����V2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Air

+ ���⏟⏟⏟⏟⏟⏟⏟
Acc.

(3)



Journal of Advanced Transportation 13

�� = {{{{{{{{{
�� (��V + �0) , if � ≥ 0{{{
0, if V ≤ V�����V + �0, else, if � < 0 (4)

Goeke and Schneider [30] extended the energy consump-
tion model by taking into account variable vehicle load mass
when delivering goods without acceleration and braking
processes. In the CVRP variants, as customers are being
served, vehicle load is decreasing. 	e authors concluded that
actual load strongly improves the solution quality, as a large
number of solutions generated without taking into account
load distribution tend to be infeasible due to the violation of
battery capacity or time windows.

Genikomsakis and Mitrentsis [85] presented a more
realistic electric engine model: the load-e
ciency curve is
approximated by piecewise function and the normalization
factor is added to take into account the motor size. 	e
authors used the recuperation energy factor dependent on
the vehicle speed as follows: below V�� there is no energy
recuperation, beyond V�� maximum energy is recuperated,
and in between linear interpolation of energy recuperation
is assumed. 	erefore, regarding the energy recuperation the
authors observed two cases: (i) when recuperated energy
exceeds the consumption of the auxiliary devices and the
excess of energy is stored into the battery; (ii) when recu-
perated energy is not su
cient to cover the consumption
of the auxiliary devices and thus the energy is drawn from
the battery. 	e authors compared their model on nine char-
acteristic driving cycles (short/long, congested/uncongested,
highway, etc.) to the FASTSim simulation tool [110], and this
resulted in a relative energy consumption error of up to 4%.
	e developed energy consumption model was used to create
a database of coe
cients for several key characteristics:motor
type, motor power, battery type, road type, road slope, road
speed limit, etc.

Macrina et al. [99] developed an energy model for
mixed GVRP with partial recharging and time windows.
	e authors modeled vehicle speed on arc (�, 	) with three
phases ℎ: acceleration (ℎ = 1), constant speed (ℎ = 2),
and deceleration (ℎ = 3), resulting with either triangular
function (1 '→ 3) or trapezoidal function (1 '→ 2 '→3). 	e fuel consumption of ICEV is based on the similar
LDM model, presented by (5) and (6), where -� is the load
(cargo) weight, / fuel-to-air mass ratio, 4 heating value of
typical diesel fuel, 6 conversion factor, 7 engine friction
coe
cient, �� radial engine speed, 8� engine displacement,�� diesel engine e
ciency, ��� drivetrain e
ciency, and ℎ
travel spent in phase ℎ [40, 111]. For the consumption of BEV,
the authors proposed a similar model to that presented by
(7), where 9+ℎ and 9−ℎ are the e
ciency of the electric engine
in motor and recuperating mode. 	e authors compared the
proposed energy consumption model to the basic model,
where energy consumed is proportional to the distance
traveled, and the energy consumption model of Goeke and
Schneider [30], where acceleration and braking processes are
not taken into account. 	e results showed that, compared
to the proposed energy consumption model, basic energy
consumption model and the model of Goeke and Schneider

[30] produce an average relative error of 70% and 4%,
respectively.���ℎ (-�)= (� sin � + ��� cos � + � (��ℎ)) (� + -�) + 0.5����V (��ℎ)2 (5)

���� (-�) = ∑
ℎ=1,2,3

( /46)(7��8� + ���ℎ (-�) V (��ℎ)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
����ℎ (��)

/�����)ℎ (6)

C��� (-�) = ∑
ℎ=1,2,3
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Basso et al. [92] developed an energy consumption model
for two-stage E-VRP (2sEVRP) that includes detailed topog-
raphy and speed pro�les. 	e similar LDMmodel of Asamer
et al. [107] is applied for computing the energy consumption
on a road segment (link), but with time-dependent speed,
varying mass, constant slope, and link distance. For each link,
similar to Macrina et al. [99], the three or two characteristic
phases of speed curve can be distinguished. In such a way,
acceleration and breaking processes before and a�er the
intersection are taken into account. As mass changes during
the delivery, the energy consumption is expressed as a linear
function of mass. 	en, the shortest energy paths between
all vertices pairs (customers, depot, CSs) without charging
constraint are determined by applying the Bellman-Ford
algorithm [112]. A nominal mass value between the mass of
full and empty vehicle is used in the computation. 	e exper-
iments showed an average energy estimation error of 2.28%
and improved energy feasibility compared to some of the
previous consumptionmodels.	e authors also reported that
the use of average speed consumed at least 24% less energy.

Asamer et al. [107] analyzed the data collected from the
BEV trips in order to determine the dependency between
BEV energy share and average trip speed. Results showed that
on lower speeds V ≤ 30 km/h, most of the energy is spent
on the acceleration and auxiliary devices, while on the higher
speeds V ≥ 80 km/h, approx. 70% of total energy is spent on
overcoming the air drag force.	e slope of the terrain in total
energy consumption has the lowest share, and its value is even
decreasing with the increase of average trip speed.	e rolling
resistance energy consumption share does not depend on the
average trip speed.

Preis et al. [35] analyzed the energy optimal routing of
BEV, where the routes were designed in di�erent terrain
slopes and battery capacity scenarios. 	e authors concluded
that energy savings grow linearly with the maximum altitude
di�erence and that decreasing the battery capacity of BEVs
does not a�ect the recharging schedule but increases the
total energy consumption. Fiori et al. [113] compared the
power-based consumption model of BEV and ICEV [114].
	e authors concluded that BEVs and ICEVs have di�erent
fuel/energy-optimized assignment. 	e faster routes increase
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the BEV’s energy consumption while the congested and low-
speed arterial routes consume less energy. Masmoudi et
al. [84] compared the realistic energy consumption model
of Genikomsakis and Mitrentsis [85] to the constant con-
sumption model (237.5 W/km) on instances for the dial-a-
ride problem with EVs. 	e authors concluded that using
the realistic model is more e
cient with 0.14% di�erence
between realistic and constant energy consumption from the
best-known solutions (BKS). To emphasize the importance
of the energy consumption model and energy minimiza-
tion, Zhang et al. [36] compared the distance and energy
minimization and concluded that the distance-minimizing
objective consumes 16.44% more energy than the energy-
minimizing objective.

In real-life conditions, speeds on the roads are time-
dependent and can be described as the speed pro�le over the
observed timeperiod. Speed pro�le depends on the road type,
driver behavior, tra
c (accidents, recurrent congestions),
weather conditions, etc. [115, 116]. A large number of param-
eters make it hard to predict a BEV’s energy consumption in
di�erent tra
c scenarios. 	erefore, some researchers apply
data-driven approaches to predict the energy consumption
of a BEV. De Cauwer et al. [117] developed a model for BEV
energy consumption by applying multiple linear regression to
real-world measured BEV data. 	e proposed multiple linear
regression model (MLR) has seven features: distance, speed,
energy consumed by auxiliary devices, positive elevation,
negative elevation, temperature, and kinetic energy change
per unit distance. Results showed that the prediction error
of trip energy consumption is within 25%. De Cauwer et
al. [115] applied a similar MLR model for predicting energy
consumption on road segments, suited for BEV routing. 	e
authors used a neural network based on the road-tra
c
and weather-related features to predict the speed pro�le of
a road segment. 	e error prediction of the trip’s energy
consumption is 12-14%. Lebeau et al. [52] used real-life
data to model the energy consumed and recuperated on
the trip through least square analysis. 	e used function
depends on the trip duration, measured energy consumption,

temperature, and correction parameter.	eF2 for the energy
consumption model is 0.93 and 0.77 for the recuperated
energymodel.Wu et al. [118] presented an empirical and ana-
lytical method that can estimate a BEV’s instantaneous power
in real time and overall trip energy consumption, with the
average prediction error up to 15.6%. Fiori andMarzano [119]
proposed a backward microscopic power-based LDM energy
consumption model based on the known driving cycle. 	e
acceleration, speed, and regenerative braking e
ciency were
modeled as functions of time. Based on the real driving BEV
data, for each vehicle, six parameters were optimized: three
parameters regarding the drivetrain and battery e
ciency,
the parameter for determining when the regenerative braking
is occurring, and two traction power thresholds. 	e authors
concluded that the proposed model is �exible enough to be
applied to any kind of driving cycle and BEV type with given
kinematic pro�le and characteristics.

Pelletier et al. [104] presented battery degradation models
that could be used in BEV routing applications, as batteries
are a crucial part of the economic BEV routing. Several

lithium-ion battery degradation mechanisms with storage
and operating conditions that a�ect battery lifespan were
described. Barco et al. [42] applied a battery degradation
model based on the temperature, SoC, and depth of discharge
in their airport shuttle service with BEVs. It was observed that
the consideration of the battery degradation model a�ects the
charging patterns.

4. Variants of the Electric Vehicle
Routing Problem

Many di�erent VRP variants were researched over the years.
With BEV appearance, researchers started to adapt them to
the E-VRP context. Due to the speci�c characteristics of BEV
routing, some new problem-speci�c variants emerged. Here,
we present some of the most relevant E-VRP variants and
related problems.

4.1. Energy Shortest Path Problem and the Electric Traveling
Salesman Problem. 	e energy shortest path problem (E-
SPP) and electric TSP (E-TSP) can be considered as two of
the simplest forms of the E-VRP. Inmost of the VRP variants,
graph arcs have positive weight values that can represent
distance, travel time, cost, etc. To compute the shortest path
between customers, the most commonly applied algorithms
are Dijkstra, Bellman-Ford, A∗, contraction hierarchies, etc.
[108, 120]. By taking into account the recuperated energy of
BEV, some arc weights could have a negative value, which
makes most of the shortest path algorithms inapplicable.
To overcome this problem, Artmeier et al. [108] formalized
energy-e
cient routing with rechargeable batteries as a
special case of the constrained SPP (CSPP) in which the
battery charge is limited with its capacity, and there is no
recharging at CS. 	e authors adapted the Bellman-Ford

shortest path algorithm with time complexity O(G3) in order
to solve the energy CSPP. To overcome negative graph edges,
Eisner et al. [121] used Johnson’s shi�ing technique [122]
to transform negative edge cost functions into nonnegative
ones and applied Dijsktra’s algorithm with time complexity
of O(G log (G) + �) [123]. Storandt [124] introduced CSPP
for EVs with battery swapping, while Sweda and Klabjan
[125] added recharging events at CSs with a di�erentiable
charging function. Zündorf [50] solved the CSPP for BEV
routing with battery constraints, di�erent types of CSs, and
nonlinear charging process.	e author developed a charging
function propagating algorithm in order to minimize travel
time and applied CH andA∗ algorithms to solve the problem.
Liao et al. [103] considered the BEV’s shortest travel path
problem and presented a dynamic programming algorithm

for solving the problem that runs in O(7G2), where 7 is the
upper bound on the number of BSSs. More recently, Strehler
et al. [126] observed recharging events in the graph vertices
and arcs for the energy-e
cient shortest routes of BEVs and
HEVs, while Zhang et al. [127] dealt with the electric vehicle
route planning with recharging problem (EVRC), which
minimizes the overall travel and charging time and takes into
account CSs’ locations, partial recharging, nonlinear charg-
ing functions, service time duration, and service frequency at
CS.
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As VRP is the generalization of the TSP, the E-VRP is
closely related to the E-TSP, in which a set of customers
has to be served by only one BEV. Roberti and Wen [64]
formulated the E-TSP with time windows (E-TSPTW) as a
compact MILP program with binary variables for recharging
paths with intermediate stops. 	e authors observed full and
partial recharge policies and applied three-phase heuristic for
solving the problem. 	e authors solved multiple instances,
among them the 13 E-VRPTW instances of Schneider et al.
[25], which were solved optimally with only one vehicle.
Doppstadt et al. [58] formulated the HEV-TSP with four
working modes of HEV and provided new test instances.
Liao et al. [103] introduced the EV touring problem, as the
generalization of TSP, with the minimization of the total
required time. Two scenarios with battery swap scheme were
observed: the on-site station model, in which each city has
a BSS; the o�-site station model, in which BSS is located at
an acceptable distance from the city. 	e authors proposed
e
cient polynomial time algorithms for the problem.

4.2. Heterogeneous or Mixed Vehicle Fleet. In today’s vehicle
�eets, mostly ICEVs are present. Transition to an almost
wholly electric �eet is a very challenging economic task.
	erefore, most companies are gradually integrating BEVs
into their existing ICEV �eet. Routing algorithms have to be
upgraded and adapted for electric �eet characteristics, as on-
time priority is harder to achieve.

Fleet size and mix VRP (FSM-VRP) was �rst introduced
by Golden et al. [128], where the authors considered routing
a �eet of vehicles with di�erent acquisition costs and the
routing cost is dependent on the vehicle type. Goeke and
Schneider [30] formulated E-VRPTW and mixed �eet (E-
VRPTWMF) with equal vehicle load capacities of BEVs
and ICEVs, and equal BEV battery capacities. 	e authors
compared the percentage share of BEVs to the total trav-
eled distance obtained with three objective functions: total
traveled distance, total costs with battery costs, and total
costs without battery costs. 	e traveled distance on one
battery pack was assumed to be 241,350 km (150,000 miles)
with the payment of an additional $600 per kWh in case
of replacement. 	e results showed that the BEV’s share in
total traveled distance increased signi�cantly when battery
costs are not considered, while in the other two scenarios
ICEVs performed most of the deliveries. Hiermann et al.
[31] analyzed a similar problem, the electric �eet size and
mix VRPTW and recharging stations (E-FSMFTW), with
di�erent vehicle load and battery capacities. 	e authors
showed the overall positive in�uence of the heterogeneous
vehicle �eet on the generalized total cost function. In most
of the instances, three to four vehicle types are used in the
�nal solution. A similar analysis on small-sized instances
with di�erent BEVs, ICEVs, and HEVs was undertaken by
Lebeau et al. [52].	e authors de�ned seven groups of vehicle
types that could be used for the delivery, from small vans and
quadricycles through diesel-only or electric-only groups to a
group of all vehicle types. 	e results showed the following
aspects of routing: (i) the �eet with di�erent vehicle types
reduced the total routing costs; (ii) in the large van group,
ICEVs outperformed BEVs; and (iii) HEVs showed a great

application in deliveries solelymade by trucks. Sassi et al. [47–
49] also observed a heterogeneous �eet of ICEVs and BEVs
with di�erent load and battery capacities, di�erent operating
costs, time-dependent charges, and the compatibility of BEVs
and chargers at CSs. 	e authors focused on the procedures
for solving the problem, so they did not o�er any compar-
ison between the ICEV and BEV solutions. Hiermann et
al. [96] introduced the Hybrid heterogeneous electric �eet
routing problem with time windows and recharging stations

(H2E-FTW), in which the �eet consists of ICEVs, BEVs,
and PHEVs. 	e authors compared the overall costs of the
solutions obtained with a homogeneous �eet of ICEVs, BEVs,
and PHEVs to the optimized solution with a mixed �eet. 	e
gap for the ICEV �eet is the largest, with an average value of
60% in the extreme case when the fuel cost is the highest. In
contrast, when the electric cost is the highest, the BEV�eet on
average produces a 40% gap, while the PHEV �eet shows the
lowest gap value, up to 25%. 	e authors pointed out that, in
mixed solutions, BEVs are preferred for clustered instances,
ICEVs for randomly distributed instances, and PHEVs for
randomly clustered and distributed instances. Overall, the
results showed that operational costs can be 7% lower in a
mixed case compared to the homogeneous case.

4.3. Hybrid Vehicles. As compensation for the limited driving
range of BEVs, HEVs, which have both an internal com-
bustion engine and an electric engine, have been developed.
Two main types of HEVs are present on the market: the
series hybrid, in which only the electric motor drives the train
and the internal combustion engine is used to recharge the
battery pack, and the parallel hybrid, which uses both internal
combustion engine and electric engine to drive the train,
where the electric engine is more e
cient in stop-and-go
activities and the internal combustion engine ismore e
cient
at high speeds.We focus on the PHEVas a version of a parallel
hybrid in which batteries can be recharged by connecting a
plug to the electric power source. 	e PHEVs have an option
to decide during the route to run on either electric energy
or fossil oil. 	is enables the visiting of customers far from
the depot with almost no refuel/recharge during the route.
As PHEVshave two engines, their load is heavier compared to
the BEVs and ICEVs, and therefore they have a higher energy
consumption rate.	e time spent on the deliveries is shorter,
whichmakes it easier to achieve time-precise deliveries and to
reduce the costs of recharging, at the expense of higher costs
due to fossil oil consumption.

One of the �rst papers that dealt with the PHEVs routing
problem was published by Abdallah [41], where the author
de�ned the problem as the plug-in hybrid electric VRPTW
(PHEVRPTW). 	e objective of the proposed problem is
to minimize the routing costs on the internal combustion
engine while satisfying the demand and time window con-
straints. At each customer, the driver can either recharge
the vehicle battery or go to the next open time window
using an internal combustion enginewhen the electric energy
has been depleted. Doppstadt et al. [58] de�ned the HEV-
TSP in which the authors observed HEVs that are not plug-
in and can only be charged while driving. Four working
modes were observed, combustion-only mode, electric-only
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mode, charging mode, and boost mode, when the combined
internal combustion engine and electric engine are used.
As the authors assumed that there was not a charge le�
from the day before, the initial charging of the battery was
set to zero. 	e authors presented the positive e�ects of
using HEVs: (i) compared to the ICEV routes, the overall
costs for the HEV routes in the tested instances reduced up
to 13% and driving time increased up to 11%; (ii) savings
depend highly on the depot location, and not on the limited
battery capacity, which was an a priori assumption. Mancini
[71] introduced hybrid VRP (HVRP), in which PHEVs can
change propulsion mode at any time and the electric engine,
rather than the internal combustion engine, is promoted.
Vincent et al. [76] introduced a similar HVRP problem with
PHEVs and mild-HEVs, which do not have an electric-only
mode of propulsion. 	e results showed that PHEVs have
a lower average cost per mile in all scenarios compared to
the mild-HEVs and ICEVs. Hiermann et al. [96], in their
H2E-FTW, used the electric motor of the PHEV as priority
mode choice. When a time window of a PHEV route is
violated, the mode could be changed at any time during the
route by exchanging recharging time for the corresponding
amount of fuel at no additional costs.	e authors showed the
positive impact of a PHEV �eet compared to ICEV and BEV
�eets, especially for randomly clustered instances. PHEVs are
usually represented with only 20% of the overall number of
vehicles used in the solution due to their higher consumption
and utility costs but, still, they constitute an important part of
the �eet con�guration due to their �exibility.

4.4. Partial Recharging. In the beginning, in most of the E-
VRP problems, full recharge was considered when a BEV
visited a CS [25]. 	is can be time-consuming because,
depending on the SoC level, available charging technology,
and battery capacity, the vehicle can charge from �ve min-
utes to eight hours [15]. 	erefore, in real-life applications,
partial recharging should be taken into account. 	e battery
should be charged enough to complete the whole route or
to surpass a fear that vehicle range will not be enough to
perform designated tasks, the so-called range anxiety [75].
	is particularly has an e�ect on customers with narrow
time windows, where e
cient charge scheduling can enable
the feasibility of the route. On the economic side, signi�cant
savings can be achieved by applying partial recharging as a
minimal amount of energy could be recharged during the
day when electricity cost and energy network load are higher,
and the rest of the energy could be replenished during the
night [46, 47]. In some cases, it is natural to maintain the
energy reserve. 	is can be done by SoC range limitation,
i.e., [20, 95] [42, 47, 80]. Having an energy reserve seems even
more important if energy consumption and range anxiety are
taken into account because up to 30%of the consumed energy
can be spent on BEV’s auxiliary devices [109]. Limiting SoC
value also helps to preserve the battery as battery capacity
decreases by overcharging and overdischarging [104].

Several papers have analyzed strategies of partial recharg-
ing and formulated the problem as E-VRPTW with partial
recharging (E-VRPTWPR). Bruglieri et al. [29, 51] and
Moghaddam [53] modeled the concept of partial charging in

E-VRP. Felipe et al. [46], in GRVP with multiple technologies
and partial recharges (GVRP-MTPR), and Keskin and Çatay
[28], in E-VRPTWPR, ensured that a�er every change in
the route con�guration, at the previous CS, the BEV is
charged only with the amount of energy su
cient to �nish
the segment of the route until the next CS or the depot.
	is results in the removal of certain CSs in the route,
compared to full recharge strategy, and the arrival of a vehicle
at the depot with an empty battery. 	e authors presented
the positive impact of partial recharges on the total costs
and energy savings. A similar procedure was applied by
Sassi et al. [47–49] but with multiple charging technologies,
di�erent charging periods, and BEV chargers compatibility
checks. Schi�er and Walther [73] compared full and partial
recharge by solving small E-VRPTWPR test instances using
commercial so�ware. 	e authors concluded that, in some
cases, a partial recharging strategy reduces the total traveled
distance and number of visits to CSs. Montoya [18] and
Montoya et al. [72] formulated the FRVCP for BEVs in which,
for a �xed sequence of customers in the route, CS position
and charging amount are optimized.	e results on the newly
derived test instances showed that good solutions tend to
exploit partial recharges. A similar procedure was applied by
Keskin and Çatay [79], Hiermann et al. [96], Froger et al. [68],
and Schi�er and Walther [88, 89] to enhance the incumbent
best solution by optimizing the charging decisions along the
BEV route with a �xed customer sequence. Desaulniers et al.
[57] presented the e�ects of partial recharging by optimally
solving E-VRPTW instances containing up to 100 customers.
In a case with a single recharge per route, the partial recharge
reduced the routing costs by 0.97% and the number of
vehicles by 2.25%, while in a case with multiple recharges per
route these values are 1.91% and 3.80%, respectively, with a
signi�cant increase in the average number of recharges per
route.

4.5. Di
erent Charging Technologies. Today, multiple charg-
ing technologies are present: (i) slow, 3 kW (6-8 h); (ii)
fast, 7-43 kW (1-2 h); and (iii) rapid, 50-250 kW (5-30
min) [15, 129]. To better control charging time in the E-
VRP context, the selection of possible charging technology
could also be optimized. 	is could make some customers
who have narrow time windows more accessible by fast
charging at previous CSs, or if the time windows are long,
an economically better approach could be slow charging.
Such a problem could be extended by taking into account CS
working hours, time-dependent charging costs, the number
of available chargers and their compatibility with BEVs, the
power grid load, the charger power, etc. [46–49, 68, 80, 81, 87].
Felipe et al. [46] analyzed the e�ect of di�erent charging
technologies on the recharge cost.	e authors concluded that
none of the technologies dominated the others. 	e rapid
and fast charging options provided slightly better results than
the slow charging, but the best results were obtained when
joint technologies were used as the most appropriate one
could be chosen in each case. Çatay and Keskin [67] solved
small-sized instances to present the insights of the quick
charge option. 	e results showed that quick charging might
reduce the �eet size and decrease the cost of energy needed to
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operate BEVs. Keskin and Çatay [79] formulated E-VRPTW
and fast charging (E-VRPTW-FC) with partial recharges and
three di�erent charging technologies. 	e authors provided
MILP formulation and minimized total recharging costs
while operating a minimum number of vehicles. 	e authors
compared two mixed integer programming (MIP) models:
(i) model 1, in which binary variables are used as decision
variables to choose which charging technology to use; (ii)
model 2, based on the model of Schneider et al. [25] and
Keskin and Çatay [28], in which the authors copied each
station vertex three times depending on the charging tech-
nology.	e results showed that in all cases model 1 produced
better results with shorter computation time. Testing on
larger instances showed that the fast charging option is more
bene�cial when customers have narrow time windows and
that multiple charging technologies improved the overall
results (in 28 of 29 instances), while in the instances with
larger time windows the average improvement was 0.17%.

4.6. Nonlinear Charging Function. In most of the E-VRP
related literature, either linear or constant charging time
is considered. Most of the BEVs have lithium-ion batter-
ies installed, which are o�en charged in constant-current
constant-voltage (CC-CV) phases: �rst by constant current
until approx. 80% of the SoC value and then by a constant
voltage. In the CC phase, SoC increases linearly, and in the
CV phase, the current drops exponentially and SoC increases
nonlinearly in time, which prolongs charging time [102,
104]. In only a few reviewed papers the author considered
nonlinear charging process and solved the E-VRP either by
linearization per segments or by estimating charging time
by a data-driven approach [50, 68, 72, 87, 95]. Zündorf
[50] developed a charging function propagation algorithm
for determining an EV battery-constrained route by taking
into account piecewise linear and concave functions of the
recharging process. Montoya et al. [72] formulated the E-
VRP with nonlinear charging functions (E-VRP-NL) and
presented theMILP formulation. 	e authors �tted piecewise
linear functions for 11, 22, and 44 kWCSs to the realmeasured
data. 	e results showed that neglecting the nonlinear charge
can lead to infeasible or overly expensive solutions: 12% of
the routes in good solutions recharged the battery in the
nonlinear part, a�er 80% of the SoC value. Froger et al. [95]
proposed two new formulations for the E-VRP-NL: (i) the
improved MILP version of Montoya et al. [72] by arc-based
tracking of the SoC value; (ii) a path-based model without
CS replication, where a sequence of vertices (a path) between
a pair of customers or depots is determined. 	e second
one yielded much better results with shorter computing
time. Froger et al. [68] explored similar formulations for
the E-VRP-NL with capacitated CSs (E-VRP-NL-C): (i) the
CS replication-based formulation with �ow and event-based
formulations forCS capacity constraints; (ii) recharging path-
based formulation.

4.7. BEV Routing and CS Location. Due to the currently low
BEV market share, the number of CSs installed in the road
infrastructure is also relatively low.	erefore, great potential
lies in the simultaneous decision-making of CS locations

and BEV routes. 	e classic location routing problem (LRP)
consists of determining the locations of the depots and
vehicle routes supplying customers from these depots [130].
A modi�cation of the LRP that deals with CS facilities is
formulated as electric LRP (E-LRP) [11, 27, 73, 88].

Schi�er et al. [11, 27] presented a case study for solving
ELRPTWPR. It was assumed that CSs can be located at
customers’ locations and that service time can be used
for recharging. Overall, results indicated the viability of
combining CSs siting and BEV routing for speci�c cases
when a delivery range is not far from the depot. Schi�er
and Walther [73] compared ELRPTWPR and E-VRPTWPR
solutions on down-scaled test instances and concluded that
the ELRPTWPR gives a better solution in all instances. 	e
reason comes from the fact that BEV can be charged while
serving, which reduces the overall route time, as there is
no travel time wasted on traveling to and from CS. Hof
et al. [69] and Yang and Sun [56] addressed the problem
of E-LRP but with BSSs. Results indicated that decreasing
the construction cost of BSS led to the expected increase
in their number in the solution. Schi�er and Walther [88]
formulated the LRP with intraroute facilities (LRPIF) as a
more general problem, in which intraroute facilities can be
used for refueling, loading, or unloading goods. Sun et al.
[131] proposed a location model for CSs without routing
based on the travel demands of urban residents. For short-
distance travelers, slow CSs are utilized, while for long-
distance travelers, the rapid CSs are considered. 	e CSs’
locations are determined to maximize coverage and �ow
according to the concept of vehicle refueling. In the case
study, the authors pointed out two critical aspects: the BEV
driving range and the budget constraint.

4.8. Battery Swap. Instead of charging at CS, at specially
designed BSS, empty or nearly empty batteries can be
replaced with fully charged ones [14]. 	e main advantages
of such procedure are the time in which it can be performed
and the ability to recharge when energy network load and
electricity costs are lower, i.e., during the night. A whole
replacement procedure could last less than ten minutes,
which is competitive to the refueling time of ICEVs andmuch
faster than one of the fastest charging BEV technologies.
	e drawbacks of such procedure are the nonstandardized
batteries and their installation in BEVs, which makes it
hard to swap empty batteries with fully charged ones. Adler
and Mirchandani [44] observed the E-VRP with swappable
batteries, already determined BSS’s locations, a �xed number
of batteries per BSS, full recharge of four hours, and a
�xed swapping time of two minutes. Full battery recharge
is considered so it is possible that when the vehicle arrives
at the station, there is no fully charged battery available
and the vehicle has to wait. First, the total routing cost is
minimized and then the battery reservations aremade, so that
the vehicle could avoid BSSs without available batteries. Yang
and Sun [56] and Hof et al. [69] simultaneously determined
the locations of BSSs and the vehicle routing plan and
provided di�erent metaheuristics for solving the problem.
Yang and Sun [56] formulated the problem as BSS-EV-LRP
and compared the solutions of the BSS-EV-LRP instances
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to the corresponding best-known CVRP solutions. 	e total
routing costs for 150 km and 300 km driving ranges increased
to 7% and 3.5%, respectively, and in some cases, there was
no gap between BSS-EV-LRP and CVRP solutions. Hof et al.
[69] on the same problem reported that if construction costs
of BSSs are equal to zero, the BSSs would be constructed in
83% of total available candidate sites.

4.9. Two-Echelon Routing Problem. Breunig et al. [93] pro-
posed the electric two-echelon VRP (E2EVRP), in which
goods are transported in two echelons: (i) in the �rst echelon,
goods are transported by conventional freight vehicles from
the depot to the satellite facilities; (ii) in the second echelon,
goods are transported from the satellite facilities to the
customers by light BEVs. Two vehicle types are observed in
the problem: ICEVs with higher load capacity located at the
depot and BEVs with lower load capacity located at satellite
facilities. BEVs are used for the last-mile deliveries due to
their lower pollution, noise, and size.	e authors formulated
the problem on the multigraph and applied exact proce-
dures on smaller instances to solve the problem optimally
and a metaheuristic procedure on larger newly developed
instances. 	e results showed that the increase in CS density� decreased the detour costs following the expression 1/�1.24.
Also, the vehicle range has a great impact on the solution
quality: a range below 70 km produced infeasible solutions
while a range higher than 150 km decreased recharging visits
to almost zero. Jie et al. [97] analyzed a similar problem, the
two-echelon capacitated E-VRP with BSS (2E-EVRP-BSS), in
which, in both echelons, BEVs are used.	e BEVs in the �rst
echelonhave higher load and battery capacities than theBEVs
in the second echelon. 	e authors reported that the battery
driving range is themost important aspect of routing and that
it slightly depends on the number of BSSs used.

4.10. Charging Schedule. Many companies that use BEVs
prefer charging the vehicles at their own facilities in order to
charge the vehicles between the delivery routes and during
speci�c periods of the day. In such occasions, there are usually
a limited number of chargers at the depot, typically fewer than
the �eet size; therefore, the e
cient charging schedule at the
depot has to be determined.

Pelletier et al. [87] considered the electric freight vehicles
charge scheduling problem (EFV-CSP) at the depot for the
BEVs that deliver goods to a set of customers over multiple
days. 	e authors included multiple charging technologies at
the depot, realistic charging process (piecewise linearization
of nonlinear charging function), time-dependent charging
costs, grid power restriction, battery degradation costs (cyclic
and calendar aging), and facility-related demand (FRD)
charges representing the maximal demand registered over
the billing period. 	e �xed vehicle routes are known in
advance and the number of charging events in the depot is
limited to avoid impractical solutions of constantly moving a
vehicle from one charger to another. 	e authors presented
the following aspects of charge scheduling tests conducted
in summer (higher electricity costs) and winter (lower
electricity costs) periods: (i) model tries to keep the SoC
lower when battery degradation costs are included; (ii) in

summer, vehicles are rarely charged in peak hours, which
results in more vehicle charging simultaneously or the use
of fast chargers that retrieve more power from the grid in
nonpeak hours but incur higher FRD charges; (iii) to avoid
cycling the battery in high SoC, it is preferable to split the long
routes into smaller ones; (iv) fast chargers are heavily used
in a high BEV utilization context; (v) grid power restriction
increases overall energy costs, especially in summer months,
and leads to infeasible solutions, limiting the number of
vehicles simultaneously charging; and (vi) total costs are
always lower with larger batteries, as smaller batteries require
larger discharge cycles.

Barco et al. [34, 42] also analyzed charge scheduling for
assigned routes in an airport shuttle scenario. 	e authors
de�ned the set of charging actions (charge pro�le) over the
determined programming horizon and minimized overall
operating costs. Sassi et al. [47, 49] also dealt with determin-
ing the charging schedule of BEVs at the depot and included
time-dependent charging costs and chargers compatibility
checks with BEVs. Adler and Mirchandani [44] provided an
online routing model of BEVs by taking into account battery
reservations to minimize the average delay of all vehicles
by occasionally detouring them. Wen et al. [65] observed
the service time of CSs, meaning that a CS can be visited
only in some speci�c time period, usually working hours.
	e authors proposed a battery reservation model in order
to charge the reserved battery at the de�ned time period.
Sweda et al. [75] dealt with the possibility that a CS might
not be available at some point in time and rerouting should be
performed.	eproblem is formulated as the adaptive routing
and recharging policies for EVs. First, optimal a priori routing
and recharging policies were determined and then heuristic
procedures were applied for the adaptive routing.

4.11. Dynamic Tra�c Conditions. Most of the E-VRP research
considers static conditions on the road network. 	e tra
c
states change recurrently, depending on the time of the day,
day of the week, and season, or nonrecurrently when a tra
c
incident occurs, such as an accident [132–134]. TD-VRP
routes a �eet of vehicles by taking into account variable travel
time on the road network [135, 136]. Shao et al. [74] observed
BEVs in such time-dependent context in their E-VRP with
charging time and variable travel time (EVRP-CTVTT).
	e recharging time is �xed to 30 minutes and batteries
are always charged to full capacity. 	e authors discretized
one day into two-minute intervals and applied the dynamic
Dijkstra algorithm to �nd the shortest travel time path when
weights in the graph are not constant. 	e authors presented
a real-life problem and solved it by applying a genetic
algorithm with a running time of three hours. Omidvar and
Tavakkoli-Moghaddam [24] presented a model for routing
AFVs that aims to avoid routing during congestion hours,
when the pollution costs are high, by waiting at a customer’s
locations. 	ese costs were computed based on the road
speed pro�le. Mirmohammadi et al. [62] presented MILP
formulation for the periodic green heterogeneous VRP with
time-dependent urban tra
c and time windows, which is
green in terms of the emission minimization and not the
utilization of AFVs. 	e planning horizon is divided into
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several periods, duringwhich static tra
c conditions are con-
sidered.

4.12. Related Problems

4.12.1. Route Scheduling and Other Electric Variants. Many
researchers are dealing with the scheduling of bus/taxi routes
that are �xed or could be slightly altered. Li et al. [82]
addressed themixed bus �eetmanagement problem (MBFM)
composed of electric, diesel, compressed natural gas and
hybrid-diesel buses. 	e authors maximized the total bene�t
of replacement of old vehicles with new ones under budget
constraints while optimizing the route assignment for each
bus during the planning period. Two routing procedures were
developed to solve the recharging problem: single-period
routing and routing across multiple periods of a day. Analysis
of the results on the case study of Hong-Kong showed a cost-
e�ective scheme of �eet con�guration in the following order:
mixed �eet, electric, natural gas, diesel, and then hybrid-
diesel buses. Wen et al. [65] also dealt with the scheduling
of electric buses (electric vehicle scheduling problem, E-VSP)
in order to e
ciently serve a set of timetabled bus trips. 	e
linear partial and full recharge were considered, with the
minimization of bus numbers and the total traveled distance.
Lu et al. [83] addressed the problem of optimal scheduling of
a taxi �eet with mixed BEVs and ICEVs to service advance
reservations. 	e authors presented a multilayer taxi-�ow
time-space network in order to minimize the total operating
�eet cost.

Bruglieri et al. [77] formulated the MILP for a one-way
electric car-sharing problem as the electric vehicle relocation
problem (E-VReP). Relocation of BEVs is performed by
workers who come with bicycles to the pickup points, put the
bicycle into the BEV’s trunk, and drive the BEV to one of the
delivery points. 	e authors balance a trade-o� among the
customers’ satisfaction, the workers’ workload balance, and
the car-sharing provider’s objective.

Masmoudi et al. [84] formulated the dial-a-ride problem
with EVs and BSSs (DARP-EV) for customers with special
needs and disabilities. 	e authors observed a �eet of het-
erogeneous BEVs with equal battery capacity but di�erent
available resources for the customers: handicapped person’s
seat, stretcher, wheelchair, or accompanying person’s seat.	e
authors adapted the energy consumption model of Genikom-
sakis and Mitrentsis [85] with constant speed, acceleration,
road slope, and varying mass while loading/unloading pas-
sengers.

Paz et al. [86] addressed the multidepot electric vehicle
location routing problem with time windows (MDEVL-
RPTW) with three variants: (i) with BSS (MDEVLRPTW-
BS); (ii) with partial recharging (MDEVLRPTW-PR) at CSs
that could also be located at customers’ locations; and
(iii) with BSS and partial recharging (MDEVLRPTW-BSPR)
where conventional charging is considered at customers’
locations and battery swap is performed at a separately
located BSSs. 	ree MIP models were presented for each
case. 	e authors determined the number and location of
BSSs and/or CSs (without investment costs), the number
and location of the depots, the number of vehicles, and the

customers’ sequence in route. 	e proposed model allows
minimizing the number of vehicles given a �xed number of
CSs or BSSs, and vice versa. For the CS, linear recharge is
considered, while the battery swap time is set to 10% of the
corresponding linear recharge time. Results were presented
by solving small instances with a commercial solver. 	e
results showed that BSPR and PR variants provide better
results than the BS variant and that BSPR tends to act as PR
in most of the instances.

Schi�er and Walther [89] extended the ELRPTWPR
model of Schi�er and Walther [73] with uncertain cus-
tomer patterns related to customers spatial distribution,
demands, and service time windows. 	e authors formulated
robust ELRPTWPR (RELRPTWPR) as a MILP program.
Five scenarios were observed, which represent customer
pro�le for �ve working days. 	e authors used set-based
uncertainty representation, which is coveredwithin scenarios
that consider customer patterns in daily deliveries. To achieve
a computationally tractable model of robust counterpart
formulation, the adversarial approach was used, which uses
a �nite set of scenarios. 	e robust model was compared
to the deterministic model (selected customer pattern),
median model (average customer pattern), and worst-case
model (worst-case customer pattern), where �rst the E-
LRP was solved, and then the E-VRP. 	e deterministic
models produced infeasible solutions in 35-63% of instances
and incurred, on average, 5% higher costs than the robust
approach. Also, the robust approach showed the most homo-
geneous con�guration of CSs.

Keskin et al. [80] extended E-VRPTW by considering
waiting times at the CSs and proposed a solution method
for solving small-sized instances. 	e authors assume single
charger at CS, Poisson arrivals, exponential distribution of
service times, �rst-in-�rst-out strategy, and penalties for
late arrivals. 	e planning horizon is split into morning,
a�ernoon, evening, and night period. 	e routing decisions
are determined based on time-dependent waiting times at
CSs.

Kullman et al. [81] introduced E-VRP with public-private
recharge strategy (E-VRP-PP), where demand at public CSs
is unknown. 	e queuing at CS is modeled as I/I/�
with �rst-in-�rst-out strategy, and � represents the number
of identical chargers at CS. 	e problem is modeled as
a Markov decision process, and an approximate dynamic
programming solution is proposed. 	e authors extended
the FRVCP formulation of Montoya et al. [72] with time-
dependent waiting times and discrete charging decisions.
Dynamic and static routing policies are proposed, where the
static policies are incorporated as base policies for dynamic
routing. Using dual bound on the optimal policy, the authors
concluded that proposed routing policies are within 4.7%.
	e authors pointed out that the use of a public-private
strategy outperformed the use of just private CSs, as overall
savings were 20% higher.

4.12.2. Green and Pollution Routing Problem. 	e green vehi-
cle routing problem focuses on the reduction of routing pollu-
tion on the environment.	e key idea is to promote the use of
sustainable energy sources and minimize overall emissions.
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Regarding the emission of BEV, Álvarez Fernández [137]
indicated that emission savings of BEVs can be signi�cant,
up to 80% in some scenarios compared to ICEVs.	e authors
presented a model for prediction of a BEV’s GHG emissions
linked to a route for each country, according to empirical
measurements and prediction of routes’ energy consumption.

Erdoğan and Miller-Hooks [23] �rst de�ned the GVRP
with AFVs and full refuel, where also BEVs were included.
	erefore, the E-VRP can be observed as a special case of
the GVRP. 	e authors provided MILP formulation of the
problem with replication of CSs vertices. Koç and Karaoglan
[59] improved the MILP formulation of Erdoğan and Miller-
Hooks [23] by removing dummy vertices that represent
multiple visits to refueling stations. Instead, a binary variable
related to traveling between two vertices by using the station
in between is introduced (arc-duplicating). 	is formulation
improved the average gap to the optimal integer solution on
all scenarios compared to the model of Erdoğan and Miller-
Hooks [23] by 25%. 	e authors proposed a combination
of exact branch-and-cut procedure and simulated annealing
with several moving strategies to solve the problem. Leggieri
andHaouari [70] formulated the problem as a nonlinear MIP,
whichwas linearized to derive MILP formulation by applying
a reformulation-linearization technique. 	e authors used
similar arc-duplicating to that of Koç and Karaoglan [59] but
de�ned the binary variable as the sum of binary variables for
the direct arc between the customers and binary variables for
the same direct arc but with stations inserted. 	e proposed
formulation without additional constraints was able to solve
to optimality 97.5% of test instances, which substantially
outperformed the formulations of Erdoğan andMiller-Hooks
[23] and Koç and Karaoglan [59]. In addition, the same
formulation with prepossessing consistently outperformed
the exact branch-and-cut procedure of Koç and Karaoglan
[59]. Andelmin and Bartolini [66] took a di�erent approach
for the exact solving of GVRP based on a set partition-
ing formulation in which columns correspond to feasible
routes. 	e problem is modeled using a multigraph in which
vertices correspond to customers and each arc represents a
possible sequence of stations visited when traveling between
customers. 	e authors added weak subset row inequalities,
subset row inequalities, and k-path cuts, with the latter
reported as the crucial part of the algorithm e
ciency.
	e results showed tight lower bounds and high e
ciency
of the algorithm as instances with up to 110 customers
were solved to optimality. Bruglieri et al. [94] presented a
path-based approach for solving the GVRP, based on two
phases. In the �rst phase, a set of feasible paths is generated,
removing from it all those paths that are dominated. In
the second phase, through MILP formulation, paths are
combined to create routes for the �nal solution. 	e authors
compared their results to previously observed research papers
of Erdoğan and Miller-Hooks [23], Koç and Karaoglan [59],
Leggieri and Haouari [70], and Andelmin and Bartolini [66].
On small-sized instances, the proposed algorithm produced
optimal solutions with the lowest running time while on
the larger instances it produced 2.3% worse solutions com-
pared to Andelmin and Bartolini [66], but in much less
time.

Poonthalir and Nadarajan [38] formulated biobjective
fuel e
cient GVRP (F-GVRP) with the minimization of
route costs and fuel consumption using goal programming.
	e authors analyzed the impact of varying speed on fuel
consumption where speed is modeled using triangular distri-
bution. To e
ciently solve the problem, the authors applied
a population-based metaheuristic. 	e tests were performed
by constraining the route cost of the solution to the BKS of
GVRP and then the fuel minimization was performed. 	e
authors pointed out that the use of varying speed instead of
constant speed reduced the fuel consumption on average by
20.48%, and in half of the instances it reduced the number
of vehicles. 	e lower number of vehicles is a consequence
of the lesser amount of time spent at the refueling stations as
less fuel is consumed, so the vehicle can visit more customers.
	e authors pointed out that if the route cost constraint was
relaxed, most of the instances might have better route costs
than the BKSs of GVRP.	e authors also analyzed the impact
of speed interval size on the fuel consumption and concluded
that fuel consumption and average speed increased with
larger interval size.

Normasari et al. [100] formulated capacitated GVRP
(CGVRP) as a MILP program and solved the problem by
applying a simulated annealing heuristic. Compared to the
GVRP, the results indicated that the number of tours and
total costs for the CGVRP increased by 38.8% and 32.5%,
respectively.

Macrina et al. [33] investigated the green mixed �eet
VRP with partial recharges and time windows (GMFVRP-
PRTW), in which polluting emissions are modeled through
the functions of both traveled distance and vehicle load.
	e problem was formulated as a MILP and solved by a
commercial solver for small instances and by an iterative
local search metaheuristic for large instances. 	e overall
pollution emissions are maintained below the designated
threshold value, to simulate emission limits of freight vehi-
cles. Macrina et al. [99] presented MILP formulation for a
similar GMFVRP-PRTW problem but added more realistic
consumption model presented in Section 3.2, where the
authors considered di�erent charging technologies (single
technology per CS), cost of energy recharged at the depot,
and the fuel cost. A large neighborhood search metaheuristic
is applied to solve the problem.

Koyuncu and Yavuz [98] compared the node- and
arc-duplicating MILP formulation of mixed �eet GVRP
(MGVRP) by taking into account the following: (i) a mixed
�eet of AFVs and ICEVs; (ii) load and time window con-
straints; (iii) internal station visits (at customer) and external
station visit (at separately located stations); (iv) �xed full,
variable full, or variable partial refuel at the station; (v)
site-dependent refueling rate; and (vi) the visit of two or
more consecutive stations being prohibited. In the node-
duplicating formulations [23, 25], each refueling vertex is
replicated at most � times, where � is the number of
customers. In the arc-duplicating formulation, two subsets of
arcs are contained: arcs between customers (direct arcs) and
refueling arcs which contain inserted station between cus-
tomers [70]. In the preprocessing step for both formulations,
unfeasible arcs are removed and tighter lower and upper
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bounds for auxiliary variables and number of vehicles are pre-
sented. On the GVRP test instances of Erdoğan and Miller-
Hooks [23], the authors reported that the node- and arc-
duplicating formulations yielded an average optimality gap
of 20.84% and 9.07%, respectively. On the GVRP instances
of Yavuz [138], signi�cant conclusions could not be drawn.

As BEVs have no local emissions, the E-VRP is closely
related to the minimization of GHG emissions, where a
problem-speci�c GVRP variant called the pollution routing
problem (PRP) was introduced [32, 40]. Bektaş and Laporte
[40] formulated the PRP as a nonlinear MIP where the
main objective is the optimization of vehicle speed and
GHG emissions. Demir et al. [32] concluded that speed
optimization improves the PRP solution and minimizes fuel
consumption and driver costs.

It can be noted that several papers are dealing with fuel
consumption and pollution emissions and not AFVs, but the
term green VRP is used to indicate a more ecologically aware
routing problem [62, 139].

4.12.3. More General Formulation of the E-VRP. 	e E-VRP
can be formulated more generally as the VRPwith intermedi-
ate stops (VRPIS), in which the vehicle visits intermediate or
intraroute facilities to replenish/unload the goods or to refuel
[55].	e LRPIF extends the problem in terms of the facilities
location optimization [88]. 	e service time depends on the
load and fuel level at the arrival at the facility. Schneider
et al. [55] presented the E-VRP with recharging facilities
(EVRPRF) as a special case of VRPIS, where BEVs have
a �xed recharging time and limited vehicle load capacity
without time windows constraints.

4.12.4. Multiobjective Variants. Most of the researchers are
using a single-objective function that represents travel dis-
tance, total costs, energy consumption, total time, etc. 	e
multiobjective variants are still relatively scarcely applied.
Generally, the solution of the multiobjective problem is not
the optimal solution for all of the objectives, but rather it is
satisfactory in those terms.

Demir et al. [37] introduced the biobjective PRP with
the minimization of fuel consumption and total driving
time. 	e fuel consumption is based on a model similar
to the one presented by (6) but with constant speed. An
adaptive large neighborhood search was used to generate
nondominated/Pareto optimal solutions while an additional
hybrid procedure was used to obtain the solution to the
biobjective model. 	e experiments showed that there is
no need to prolong driving time to achieve a signi�cant
reduction in fuel consumption.

	e already mentioned F-GVRP of Poonthalir and
Nadarajan [38] (Section 4.12.2) used biobjective minimiza-
tion of route costs and fuel consumption. Wang et al. [91]
considered multiobjective function to determine optimal
BEV routes between origin-destination pairs. 	ree objec-
tives are minimized: travel time, energy consumption, and
charging cost. Travel time includes driving time, queuing
time, and charging time, while charging cost includes elec-
tricity cost, service cost, and parking fee. 	e multiobjective
model is transformed into a single objective by applying

a fuzzy programming approach for objectives’ membership
functions and fuzzy preference relations to obtain weighting
coe
cients of each objective. A genetic algorithm is designed
to obtain an optimal solution. 	e in�uences of various
driver trade-o�s (weighting conditions) among di�erent
objectives are explored using Pareto curves. It was observed
that driver trade-o�s have an e�ect on the travel times, and
almost no e�ect on the energy consumption and charging
costs.

Amiri et al. [39] optimized the location of the battery
swapping in the BSSs network and the charging schedule of
depleted batteries. 	emultiobjective modelminimizes three
objectives: battery charging and power loss costs, deviation
from the nominal voltages, and network capacity releasing.
	e nondominated sorting genetic algorithm is applied to
solve the problem. 	e results on the test case showed that
an optimal charging schedule in terms of cost and network
constraints can be achieved. Besides, the electricity load
pro�le is more leveled.

Bruglieri et al. [77] focused on the E-VReP with three
objectives: minimization of workers used to relocate the
BEVs (service provider objective), maximization of reloca-
tion requests served (users’ objective), and minimization of
the longest routes’ duration (workload balance). 	e problem
is solved by approximating the Pareto optimal front based on
a two-phase approach: �rst, feasible solutions are generated
by randomized search heuristics, and in the second phase, to
�nd a set of nondominated solutions, the MILP formulation
is solved by epsilon constraint programming.

4.13. Summary of the E-VRP Variants. Table 1 presents a
summary of the E-VRP variants and related problems in
the available literature. In total, 79 papers were presented in
the table. 	e problem characteristics are observed in the
following order: vehicle load (cargo) capacity (48), linear
charging/refueling function at station (34), customer time
windows (34), partial recharging strategy (30), �xed refu-
eling/recharging time (19), di�erent charging technologies
at CSs (17), heterogeneous (mixed) �eet (16), energy con-
sumption model (15), BSS (9), nonlinear charging function(8), dynamic tra
c conditions (8), location routing (7),
capacitated stations (6), and HEVs (5). We can point out
that only a few papers are dealing with (i) simultaneous
CS siting and BEV routing (E-LRP) where great savings
can be achieved in companies whose business plans include
CS investments, as E-LRP generally gives better routing
con�guration than the E-VRP [73, 88]; (ii) nonlinear charging
function, negligence of which can lead to infeasible solutions
and additional penalty costs [68, 72]; (iii) HEVs (PHEVs) that
have an advantage in several routing scenarios but are being
researched only recently due to the higher complexity of the
problem as HEVs can change their propulsion mode at any
time during the route [96]; (iv) dynamic tra
c conditions,
which signi�cantly in�uence BEVs’ energy consumption
[74]; (v) di�erent charging technologies at CSs, which could
reduce the overall costs by selecting the best possible charger
option in each occasion [46, 79]; (vi) CS related challenges:
capacitated CS [68, 75, 80], CS reservations [44], and public-
private recharge strategy [81]; and (vii) robust E-VRP variant
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resistant to uncertainties in travel time, service time, and
demand [89].

5. Problem Solving Methods

Since VRP is a well-researched problem, a large number
of procedures for solving the problem have been proposed.
Due to the NP-hardness of the problem and a large number
of customers in real-life problems, most of the procedures
used in real-life applications are heuristics, metaheuristics,
and hybrid combinations. For small-sized problems, a great
number of exact procedures have been proposed. Many of
the VRP procedures in the available literature are with an
adaptation applicable for solving the E-VRP. An overview of
the applied procedures for solving the E-VRP and related
problems is presented in Table 2.

5.1. Feasibility. When creating or modifying a VRP solution,
two types of search procedures regarding the feasibility of
the solution can be observed: allowing only feasible solutions
or acceptance of infeasible solutions. 	e infeasible solution
means that some customers are served without satisfying all
of the problem constraints. Related, feasible procedures are
searching in the space of feasible solutions, while infeasible
procedures allow searching the space of infeasible solutions,
which broadens the search. In the E-VRP, the feasibility
mostly refers to vehicle load, customer time window, and bat-
tery (energy) constraints. In infeasible procedures, objective
function is o�ende�nedwith penalization coe
cients, which
are updated during the search process. At the beginning of
the search, infeasible solutions are allowed in order to search
a larger solution space. As the search process comes to an
end, penalties for infeasible solutions increase. An example
of such an objective function is given by (8) where �����(M)
is the total traveled distance in the solution M; penalties
coe
cients are �, N, and O;���V(M) is a diversi�cation penalty;
and ����(M), ���(M), and �����(M) are values of constraint
violation, respectively, load capacity, time windows, and
battery capacity [25]. An important part of such a function is
the e
cient computation of constraint violations [25, 31, 96,
140].� (M) = ����� (M) + ����� (M) + N��� (M) + O����� (M)+ ���V (M) (8)

Several researchers in the E-VRP �eld are allowing infeasible
solutions during the search [11, 25, 30, 31, 69, 84, 88, 96] while
some others are only allowing feasible solutions [23, 28, 46–
49, 52, 68, 72, 79]. For example, in the E-VRPTWPRof Keskin
and Çatay [28], the customer is inserted in the solution if
it satis�es the load and partial time window constraints. If
the solution is energy infeasible the CS is inserted to make
the solution completely feasible. If the former one was not
able to produce the energy feasible solution, the procedure
returns to the latest feasible solution. Similarly, Montoya et
al. [63] and Froger et al. [68] address the fuel infeasible route
by solving a CSPP on the auxiliary graph. A list of papers
allowing infeasible or feasible-only solutions is presented in
Table 2 in column NF.

5.2. Exact Procedures. Exact procedures are able to �nd an
optimal solution for a smaller number of customers: up
to 360 customers for CVRP and up to 100 customers for
VRPTW [5, 6]. Some of the most used exact algorithms are
branch-bound-cut-and-price, dynamic programming (DP),
MIP, set partitioning (SP), etc. [1]. In the E-VRP, many
researchers formulate the problem as a MIP and solve the
small instances with commercially available so�ware. Koç
and Karaoglan [59] applied the branch-and-cut algorithm
coupled with simulated annealing and four improvement
strategies to solve the GVRP. 	e authors reported that 22
out of 40 instances were solved to optimality. Hiermann et al.
[31] solved the heterogeneous E-VRP by applying a branch-
and-price algorithm on small instances up to 15 customers
where the pricing problem was solved using a bidirectional
labeling algorithm. 	e algorithm was able to �nd an optimal
solution for all of the instances in a couple of minutes, with
only three instances having computation time longer than
�ve minutes. Desaulniers et al. [57] presented branch-price-
and-cut algorithms for four E-VRPTW variants depending
on the full or partial recharge and on the single or multiple
recharges per route. On the 696 instances with 25, 50, and
100 customers, 98%, 90%, and 27%, respectively, were solved
optimally. Schi�er et al. [11, 27], Schi�er and Walther [88],
and Hiermann et al. [96] applied DP on resource CSPP
(RCSPP) to �nd the optimal facility route con�guration in
order to enhance the solutions produced by metaheuristic,
while Pourazarm et al. [54] applied DP to �nd the fastest BEV
routes in the single and multivehicle environment. Similarly,
Montoya et al. [63] used pulse algorithm to determine the
optimal placement of refueling facilities in a route with �xed
customers. Similar to the FRVCP formulation of Montoya
[18], Keskin and Çatay [79] in their E-VRPTW-FC formulated
the MILP program to optimize charging related decisions in
BEV route with the �xed customer positions. For every Ω
iteration, the authors tried to solve this problem exactly by
applyingCPLEX solver. Liao et al. [103] applied a branch-and-
bound algorithm to solve the EV touring problem. Montoya
et al. [63, 72] and Hiermann et al. [96] used set partitioning
on the pool of routes to select the best subset of routes guar-
anteeing no overlapping in customers assignments. Froger et
al. [68] used a branch-and-bound algorithm to solve the set
partitioning model and to discard the selection of routes that
are infeasible or for which the total time is underestimated.

5.3. Heuristic Procedures. Heuristic procedures seek to solve
the problem based on the speci�c knowledge of the problem,
usually suboptimal or close enough to a satisfactory solution.
In the research �eld of VRP, heuristic procedures can be split
into constructive and improvement heuristics.

5.3.1. Constructive Heuristics. Constructive heuristics are
o�en used to generate an initial solution by either serial
or parallel route construction. Solutions are constructed in
a greedy way, which o�en produces solutions of the VRP
that are 10-15% far from an optimal solution [4]. In the E-
VRP, constructive heuristics are modi�ed and adapted to the
BEV characteristics and feasibility checks. Some well-known
general constructive heuristics used in E-VRP are presented.
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Themodified savingsmethod ofClarke andWright (MCWS)
[141] with the insertion of CSs is used to generate an initial
solution of several E-VRP and related problems [23, 32, 52,
69]. 	e algorithm starts with the creation of back-and-forth
routes for each customer. Next, CSs are inserted in a least-
cost manner, in either feasible or infeasible routes. 	en, the
routes that increase the savings the most are merged together
and the procedure is repeated until all customers are served.

	e sweep algorithm [142] inserts customers in the active
route in a circular manner, resulting in e
cient space divi-
sion. 	e customers are sorted based on the value of a polar
angle between the depot and randomly chosen point. 	en,
customers are inserted in the active route at the position
causing minimal increase until a violation of route constraint,
when usually a new route is opened [25, 56, 97].

Nearest neighbor heuristic (NNH) starts from the depot,
and in each iteration the customerwith the least-cost increase
from the previously selected customers is added to the
route.	e route is terminated when some/any constraints are
violated and a new route is opened [76].

Route-�rst cluster-second [143] approach constructs a
giant infeasible TSP tour, usually with NNH, which is then
split into several routes. 	e split procedure can be solved
as the SPP on the acyclic graph. 	e procedure generates
energy infeasible solutions, so the CS placement and charging
schedule need to be determined to make the solution energy
feasible [63, 68, 72].

	e cluster-�rst route-second [144] approach divides the
customers into clusters and then each cluster is solved as a
subrouting problem. One example used in GVRP is the den-
sity based clustering algorithm (DBCA) proposed by Erdoğan
and Miller-Hooks [23], which determines customer clusters
based on their density, by ensuring that each customer has
at least some prede�ned number of customers in the R radial
neighborhood. In the second step to obtain the routes, the
MCWS is performed.

Many researchers are adopting some form of the inser-
tion heuristics, which have some characteristics of already
reviewed heuristics. 	e general idea of the insertion heuris-
tics is to iteratively insert or add customers in available routes.
In each step of the algorithm, an unserved customer together
with a route and its position in the route are determined to
least increase the objective function. 	is selection can be
deterministic but is o�en stochastic to select at random one
from 7-best inserts to diversify the solution, especially in pop-
ulationmetaheuristics. Inmost feasibility ensured caseswhen
the energy constraint is violated, a CS is added to the route to
make it energy feasible, and when the other constraints are
violated such as vehicle load capacity or time windows, the
new route is opened, and the procedure is repeated. Examples
of adaptations to the E-VRP are push forward insertion
heuristics (PIH) [41, 145], constructive-k-PseudoGreedy [46],
[28, 30, 31, 33, 36] modi�ed insertion heuristics, and charging
routing heuristic (CRH) [47–49], in which �rst the charging
scheme at the depot is determined, and then the least-cost
feasible customer insertions are performed.

5.3.2. Improvement Heuristics. Improvement heuristics or
local search (LS) explores the neighborhood of the incumbent

solution, searching for a better solution. 	e neighborhood is
explored by applying perturbation moves based on the com-
posite neighborhood operators. 	e local search stops when
no improving solution can be found in the neighborhood of
the incumbent solution, which is then called local optima. A
great variety of researchers have performed LS procedures
to intensify the search, coupled together with perturbation
moves to escape the local optima. O�en, the perturbation
moves are similar to the neighborhood operators used in LS
phase. Most of the classical VRP neighborhood operators [3,
4] are used in the E-VRP, but some additional neighborhood
operators have been developed. Depending on whether the
operators perform on only one route or between the routes,
they can be divided into intraroute and interroute operators.
Here, we present some of the most used LS neighborhood
operators in the E-VRP literature:

(i) 2-Opt [146] replaces two arcs with the two new ones,
with a possibility of route direction reversal.

(ii) 2-UV∗ [147], unlike the 2-Opt operator, avoids the
reversal of a route direction.

(iii) 4-Opt [84, 148] replaces four consecutive arcs with
four new ones.

(iv) Or-Opt [149] replaces three arcs with three new ones
such that a sequence of three vertices is relocated.

(v) Exchange (Swap) [150] exchanges the two vertices in
the solution.

(vi) FacilityInsertion [55] and StationInsertion [11] opera-
tors insert refueling or loading facility at best position
in between two consecutive facility visits where fuel
or load violation occurred. 	e similar operator
InsertRemoveIf [31] inserts CS into the part of the
route where the violation occurred to make the
route energy feasible and repair violations, but it also
removes redundant CS visits. Schneider et al. [55] also
proposed the facility-related removal and exchange
operators FacilityReplacement and Exchange.

(vii) RechargeRelocation [46] removes all visits to the CSs
and then tries to insert CSs at positions leading to
a better solution. Similarly, the GlobalChargingIm-
provement [72] operator removes all CS visits in the
route, and if the route is energy feasible, it stops;
otherwise, it solves FRVCP to optimize CSs positions
and charging amount.

(viii) Relocate [150] removes one vertex from the solution
and inserts it into another position in the solution.
Felipe et al. [46] proposed a modi�cation of the
relocation operator called Reinsertion, F�

� , for solving
GVRP-MTPR. Binary parameters W and - denote
whether the �rst-improve or best-improve strategy is
used and whether the values of savings are updated or
not.	e RemoveTwoInsertOne [84] operator removes
two vertices at random and inserts them one by one
into another vehicle at best possible positions.

(ix) CrossExchange [151] removes G1 consecutive vertices
from route X1 to route X2, and G2 consecutive vertices
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from route X2 to route X1 [84]. 	e RemoveSequence
[84] operator is similar as it removes consecutive
vertices from only one route and inserts it into
another one.

(x) Resize [31], RelocateAndResize [31], Y-OptWithMode-
Change [58], and VehicleSwap [96] change the vehicle
type assignment or the propulsion mode in the
heterogeneous E-VRP and HEV routing problems.

(xi) StationInRe [25] inserts and removes CSs from the
solution in so that if an arc to the CS is already in the
solution, it is removed; otherwise it is inserted.

	eorder of the operators a�ects both the solution quality
and the execution time. O�en, there is a question whether
to make a �rst better or the best improvement move in the
LS phase [152]. Some E-VRP researchers perform one or the
other, and some combine the two approaches, i.e., best move
of �rst 100 [11] or �rst 50 [31].

Neighborhood operators explore only the space of the
immediate vicinity of the current solution, which o�en leads
to local optima. In order to search a larger solution space,
Shaw [153] proposed the large neighborhood search (LNS)
heuristic, which is based on destroying and repairing the
solution. Heuristic e
ciency depends on the implemented
destroy and, especially, repair operators. 	e main drawback
of the heuristic is the repeated use of the same destroy
and repair operators, which can lead to local optima. A
modi�cation of LNS by Christiaens and Vanden Berghe [154]
is giving state-of-the-art results on a wide range of VRP
variants. In the E-VRP, LNS is successfully implemented by
Sassi et al. [47–49] and Zhang et al. [36], but most o�en it
still needs some other guiding heuristic to escape the local
optima. Macrina et al. [99] applied an LNS scheme to solve
GMFVRP-PRTW. A list of used destroy and repair operators
in the E-VRP is presented as a part of the adaptive LNS
version in the appendix.

5.3.3. Route or Move Evaluation. Operator evaluation is an
important part that highly a�ects execution time and has
to be e
ciently implemented. For example, in VRPTW, for
most of the basic neighborhood operators, the load capacity
check and time window check can be computed in constant
time O(1), if for each customer endogenous variables, i.e.,
remaining load capacity, latest arrival time, etc., are tracked.
In the E-VRP, there is also a constraint regarding the vehicle
battery capacity (battery feasibility), which also in�uences the
time window feasibility. 	erefore, time window evaluation
is more complex. For example, when the customer is trying
to be inserted into the route, the load and energy check
can be computed in constant time O(1) for most of the
basic neighborhood operators. 	e endogenous variables for
vertices between the insertion position and next CS have
to be recomputed in order to know the charging time at
next CS. 	e complexity of such approach is O(Z) whereZ is the number of customers between the position of the
insertion and next CS. If there is no CS in the second part
of the route, no recalculation is needed. By storing additional
information about the recharging position and its amount
and by the use of general concatenation operators presented

by Vidal et al. [155], Hiermann et al. [31] reported that all
of the basic neighborhood operators can be evaluated in
O(1). Goeke and Schneider [30], instead of storing additional
information about recharging, used a surrogate cost function
whose evaluation is less demanding. In the search process, the
authors store R best moves in the composite neighborhood
and evaluated either exact or surrogate cost, and at the end
if there is any move with the surrogate cost, its exact cost
is evaluated and the best move is chosen. Hiermann et al.
[96] presented a di�erent approach for H2E-FTW in which
customer sequence without CSs is determined, and then
in the route evaluation part time-consuming CSs insertions
and charging schedule are performed. Whenever the route
needs to be evaluated, the heuristic �nds the routing cost by
applying a labeling algorithm to determine CSs placement
and a greedy algorithm to determine charging amount and
running mode of PHEV. As such an evaluation is time-
consuming, the authors performed the following: (i) use
neighborhood restrictions to consider only promising arcs
for each customer vertex; (ii) keep track of move evaluations
in cache memory; and (iii) lower bounds to �rst evaluate the
move as ICEV in O(1), and then if it improves the objective
function, perform the route evaluation.

5.4. Hybrid Metaheuristic Procedures. Many researchers
employ metaheuristics to continue the exploration a�er the
�rst local optima occurrence. Metaheuristics can be de�ned
as heuristics guiding other heuristics and can be divided
into neighborhood-oriented metaheuristics and population
metaheuristics. Most o�en, multiple metaheuristics and
heuristics are combined together and adapted to the problem;
therefore, the term hybrid is used in such occasions.

5.4.1. Neighborhood-Oriented Metaheuristics. Neighbor-
hood-oriented heuristics iteratively explore the neighbor-
hood of the incumbent solution. Here, we present the most
used neighborhood heuristics in the E-VRP literature.

Simulated annealing (SA) [156] controls the search by
the temperature parameter, which mimics the physical cool-
ing process of the material. Most o�en, it is used as a
control heuristic for accepting solutions produced by other
heuristics. 	e probability of accepting solution M2, which
is worse than the current best solution M1, is computed as�(!("1)−!("2))/# (Boltzmann function [157]), where \ is the
temperature parameter.	ehigher the temperature value, the
higher is the probability of accepting a deteriorating move
to escape the local optima. 	e procedure starts with high
temperatures at the beginning and then dynamically lowers
the temperature as the search process comes to an end. In the
E-VRP, most o�en initial temperature is selected such that a�%worse solution than the initial solution is accepted with a
probability of 0.5 [25, 28, 30, 46].

Tabu search (TS) [158, 159] is a well-knownmetaheuristic,
which uses memory to forbid the exploration of the space
that has already been explored. It escapes the local optima
by accepting a worse solution if it is the best in the explored
space. Arcs that are deleted from the solution are stored in the
tabu-list, which prohibits the reinsertion of the deleted arcs
into a speci�c part of the solution for a designated number of



Journal of Advanced Transportation 37

iterations, tabu-tenure. In some implementation cases, when
the new best solution is found, some of the moves and arcs
are li�ed and removed from the tabu-list, aspire criterion [25].
In the E-VRP, TS with neighborhood operators is used to
intensify the search [25, 35, 48].

Variable neighborhood search (VNS) [160] is a meta-
heuristic that systematically changes the neighborhood each
time there is no improvement in LS phase. 	e changes are
based on prede�ned neighborhood structures. In each step,
the new neighborhood operator is used, which increases
the vicinity from the incumbent solution. 	e selection of
neighborhood operators and customers can be determinis-
tic (variable neighborhood decent (VND)) or probabilistic.
Schneider et al. [25] successfully adapted it in the E-VRPTW
for diversi�cation of the solution based on the cyclic exchange
moves, resulting in 15 di�erent neighborhood structures.	e
VNS in the E-VRP was also combined with exact algorithms
like branch-and-price [51], evolutionary algorithms [84],
deterministic LS operators [64, 72], and adaptivemechanisms
(AVNS) [11, 27, 55, 69].

Iterated local search (ILS) [161] is based on successively
repeating LS on the incumbent solution. When LS ends
up in local optima, perturbation move is applied to escape
from local optima. 	e perturbation move can be scaled
dynamically to overcome local optima. 	e e�ectiveness of
the procedure highly depends on the local search procedures
used. Montoya et al. [72] applied ILS together with VND for
solving E-VRP-NL with perturbation performed by splitting
perturbed giant TSP tour. Macrina et al. [33] used typical ILS
with some of the LS operators used in the perturbation phase
to solve GMFVRP-PRTW.Zhang et al. [36] used ILS and LNS
in an ant colony framework for solving GVRP. 	e LNS is
used as a perturbation mechanism while the LS is used to
further improve the solution. Sassi et al. [47, 49] also used
a multistart combination of ILS and LNS but without the LS
phase. Sassi et al. [48] applied similar ILS paradigm, but they
called it iterated tabu search (ITS), as they used TS for the
intensi�cation and LNS for the perturbation. A similar ITS
procedure is applied by Doppstadt et al. [58] for the HEV-
TSP.

Adaptive large neighborhood search (ALNS) [162, 163]
is the extension of LNS heuristic in which, throughout
the search process, di�erent procedures for destroying and
repairing the solution are selected in an adaptive manner
based on their past performance. 	e idea is to have versatile
destroy and repair operators in order to escape the local
optima. For each destroy and repair operator, the adaptive
weight and score are increased in the following order (scores^1 ≥ ^3 ≥ ^2): (i) ^1 if a new best solution is found; (ii) ^2
if the solution is better than the previous one; (iii) ^3 if the
solution is worse than the previous one but it is accepted due
to the acceptance criteria; and (iv) no increase if the solution
is not accepted. 	e score of worse solution ^3 is greater
than the score of better solution ^2, to reward unimproved
solutions that diversify the search [28]. For each� iteration,
the weights are updated based on the previous weight values
and new score values. As a great number of the researchers
used ALNS for solving the E-VRP and related problems
(Table 2), a vast number of destroy and repair operators were

applied. Some of them originated from Pisinger and Ropke
[162] but also some new problem-speci�c ones regarding the
CS have been developed [28, 30–32, 79, 88]. 	e description
of the applied destroy and repair operators in E-VRP is
presented in the appendix. Schi�er and Walther [89] applied
a parallel ALNS version of Schi�er and Walther [88] to solve
the RELRPTWPR. 	e OpenMP was used to solve multiple
scenarios in parallel, where the customer destroy and repair
operators, as well as the LS and DP, are performed in parallel.
	e change of facility con�guration, adaptive evaluations, and
stopping criterion are not parallelized.

SA is one of the most used metaheuristics for acceptance
criteria, in order to escape the local optima, but some others
can also be applied. Tiwari et al. [164] proposed the Cauchy

function (CA) \/((�(M1) − �(M2))2 + \2) for the acceptance
of the solution as it gives more opportunities to escape
from local optima.	e record-to-record (RR) principle [165],
which adds negative value to the objective function of the best
solution so far, can also be used to escape the local optima.
Several papers in the E-VRP �eld applied such heuristics for
solution acceptance [48, 49, 84].

5.4.2. Population Metaheuristics. Population metaheuristics
are based on the natural selection to evolve a population
and survival of the �ttest. 	ey have been widely applied
in the VRP �eld: genetic algorithm [166], path relinking
[167], scatter search [168], ant colony [169], bee colony [170],
particle swarm optimization [171, 172], etc.

Genetic algorithm (GA) consists of a pool of individuals
(VRP solutions) called a population, which goes through
the process of evolution. Such evolution process includes
evaluation of individuals, selection of parents, crossover,
mutation, and a replacement of the old population by a
new one. 	e important aspects of the algorithm are the
representation of the VRP solution, e
cient management
of population diversity, and �tness function to compare
the individuals in the population. For further algorithm
description and application, we refer to Potvin [173]. 	e
ant colony (AC) algorithm is based on ant behavior when
they search for food. As they search, they leave pheromones,
which accumulate over the most used path, leading to the
optimal path between the food and the nest. AC algorithm
consists of three procedures: pheromone initialization, prob-
ability adjustment, and pheromone update. Particle swarm
optimization (PSO) mimics the behavior of organisms such
as �sh schooling or bird �ocking. Physical movement of the
individual (particle) in the swarm is tracked and then well-
balanced moves are applied to adapt the individual to the
global and local exploration. Each particle has a position in
the swarm and corresponding velocity in order to optimize
the problem following personal best solution and global best
solution [172].

Barco et al. [34, 42] applied di
erential evolution to solve
the E-VRP and charge scheduling. 	e initial individual
represents the valid route assignment and charging pro�le.
Next,mutation based onOR andXORoperators is performed
on three randomly selected individuals. 	e crossover is a
random 2-point while the selection chooses between the
target individual and new individual, which is generated
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by the crossover. Alesiani and Maslekar [45] applied GA
for solving a single BEV routing problem. 	e individual
is represented as a two-dimensional binary array, where
the rows represent the routes and the columns represent
CSs. 	e initial population contains feasible individuals,
individuals without CSs, and individuals containing battery
CSPP routes. 	e authors select parents at random or based
on the probability and apply 2-point crossover. Mutation
is applied at random to remove, insert, or exchange CS,
while the LS is performed to improve the solution. Shao et
al. [74] applied GA without detailed description for solv-
ing real-life EVRP-CTVTT instances. 	e authors encoded
the individual with all visited vertices including customers,
depots, and CSs. 	e crossover operator tries to create a new
individual that satis�es all the constraints. Also, elitism is
applied to preserve the elite individuals. 	e authors reported
the average computational time of three hours. A similar
algorithm with the LS a�er the crossover and mutation is
applied for solving E-VRP by Shao et al. [90] to obtain an
optimal operation scheme including routes, charging plan,
and driving paths. Masliakova [61] applied the GA to �nd
the optimal placement of CSs for electric bus routes. 	e
individual is represented as the sequence of CSs and bus
stops visited, and a crossover is implemented as the swap
between the subroutes. Mutation moves the CS to the nearest
bus stop or creates a new bus stop with CS. For the �tness
function, the author used an AC approach, which ranks
the individuals in the population. Joo and Lim [78] used
the AC approach to determine the energy consumption and
speed in energy-e
cient BEV routing. Each ant selects the
next vertex with a greedy stochastic search, which combines
heuristic information about energy consumption, speed, and
pheromones. 	e authors concluded that AC strategy is
suitable for routing BEVs in terms of energy e
ciency. An
e
cient version of evolutionary algorithm and VNS (EVO-
VNS) is applied by Masmoudi et al. [84] for solving the
DARP-EV. Each population is divided into� groups in such a
way that each group contains good and bad solutions. Further
on, T solutions fromeach group are selected in theVNSphase.
If the best solution in the current group is not improved for
three iterations, the crossover between the selected solutions
and the rest of solutions in the group is performed. 	e rest
of the individuals in the population are generated by applying
destroy-repair procedure with regret heuristic. Poonthalir
and Nadarajan [38] applied particle swarm optimization
with greedy mutation operator and time-varying accelera-
tion coe
cient (TVa-PSOGMO) to solve the F-GVRP. Each
particle is encoded as the sequence of customers who are
converted to feasible routes by inserting depots and refueling
stations. Time-varying inertia and acceleration coe
cients
are employed to better manage diversi�cation and inten-
si�cation exploration in the multiobjective environment.
Additionally, to prevent premature convergence, a greedy
mutation operator (GMO) is performed.Hiermann et al. [96]
used hybrid GA (HGA) with LS to obtain good assignment

and routing decisions for H2E-FTW.	e authors represented
the solution as a set of vehicle routes and used a biased
�tness function. During the search, the authors maintained
two populations of feasible and infeasible individuals. Parents

are selected using binary tournament scheme from those two
populations. 	e recombination is performed on the parent
routes combined in a giant single tour, with an OX crossover
and a split algorithm to obtain a complete solution. 	e
mutation phase is performed as LNS with destroy and repair
operators similar to ones of Hiermann et al. [31]. In the end,
the solution is improved by the LS procedure.

5.5. Summary of the Applied Procedures. 	e overview of
the applied procedures in the E-VRP �eld is presented in
Table 2, where 78 papers are presented. Searching in the space
of infeasible solutions is applied in 17 papers, while the LS
for the intensi�cation is applied in 25 papers. Most of the
researchers do not use any special criteria for accepting the
solution, but 17 papers use SA as acceptance criteria, three
RR and one CA. For the initial solution, mostly some form of
the universal insertion heuristic is applied (18). 	en follow
MCWS (11), NNH (7), random (5), split procedure (4), and
sweep (3). Regarding the applied heuristics for solving the
problem, the order is the following: ALNS (14), GA (10), LNS(7), TS and ITS (6), ILS (6), AC (3), VNS (3), AVNS (2),
VND (2), PSO (1), and di�erential evolution (1). From all
of the exact procedures, the 8� is the most applied one (12)
and then there is the branch-bound-cut-and-price (5). Forty-
three papers use commercially available so�ware like CPLEX
(32), Gurobi (7), MATLAB (2), and XPRESS (2) for solving
either the whole problem or some subproblem during the
search, mostly charging decisions.

We can note that a vast number of researchers use
hybrid heuristics procedures with only a few focusing on the
exact procedures [31, 57]. It can be noted that most of the
procedures that are giving state-of-the-art results are using
exact procedures at some point during the search, usually
for (i) optimal determination of charging visits and charging
amount [79, 88, 96] and (ii) set partitioning over the set of
routes at the end of the search [65, 72, 95, 96].

	e ALNS is one of the most applied procedures and
it is giving the BKSs on various problem variants. Among
them, we can point out the following: ALNS of Hiermann
et al. [31] (HPH) and ALNS of Goeke and Schneider [30]
(GS) for heterogeneous �eet, ALNS of Keskin and Çatay
[28] (KC1) and ANLS of Keskin and Çatay [79] (KC2) for
partial recharges and di�erent charging technologies, and
ALNS of Schi�er and Walther [88] (SW) originally designed
for the LRPIF (ELRPTWPR) which is also giving BKSs on
the E-VRPTW and E-VRPTWPR. Schi�er and Walther [88]
compared their algorithm on the E-VRPTW instances to the
HPH, GS, KC1, and VNS-TS of Schneider et al. [25] (SSG).
	e authors found nine BKSs with an average gap of 0.27% to
the previous BKSs and average running time of 3.77 minutes.
On the E-VRPTWPR, compared to the KC1, the authors
found 41 new BKSs. 	e proposed ALNS of SW is e
ciently
parallelized to solve the RELRPTWPR [89].

Most of the population-based metaheuristics are not
e
ciently implemented so they are not giving high-quality
solutions. But, the HGA of Hiermann et al. [96] (HHPV)
gives some of the BKSs on the E-VRPTW, E-VRPTWPR,

and H2E-FTW. 	e authors compared their results on the
E-VRPTW and E-VRPTWPR to the SSG, HPH, GS, and
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KC1. On the E-VRPTW instances, the HHPV found 11 BKSs
with 1.36% increase in the vehicle number, 0.46% distance
gap from the previous BKSs, and an average running time
of 11.59 minutes. On the E-VRPTWPR, the authors found
28 new BKSs. By comparing the results of HHPV and SW
on E-VRPTW, we can conclude that in 20 instances SW
outperformed HHPV, while in the opposite case the HHPV
was better in 17 instances.

6. Conclusion and Future Research Directions

With the increase in popularity of electric-powered vehicles,
many logistics companies have started to integrate electric
vehicles into their delivery �eets. Routing a �eet of electric
vehicles for delivering goods was formulated as the electric
vehicle routing problem. Besides the o�en used load (cargo)
capacity and timewindow constraints, E-VRP routingmodels
have to account for the limited driving range of BEVs, which
directly corresponds to the more frequent recharging needs
at CS.

In this paper, a literature review on recent developments
in the E-VRP �eld is presented. We consider BEVs to be
vehicles powered only from batteries mounted inside the
vehicle. A general overview of the BEV’s characteristics for
goods delivery includes the driving range, battery capacity,
application, and case studies. As energy consumption esti-
mation is an important part of BEV routing, we summarized
the recent research on theoretical and data-driven energy
consumption models.

Due to the BEVs speci�c characteristics, new E-VRP vari-
ants have emerged: a mixed �eet of electric and conventional
vehicles, partial recharging, simultaneous CS siting and BEV
routing, nonlinear charging, di�erent charging technologies,
battery swap technology, hybrid vehicles, green routing, etc.
	e development of e
cient heuristics was necessary to
�nd optimal or near-optimal solutions to the new routing
problems. We reviewed the state-of-the-art exact, heuristic,
and hybrid procedures applied for solving various E-VRP
variants. 	e adaptive large neighborhood search [88] and
hybrid genetic algorithm [96] produced high-quality solu-
tions on various E-VRP variants. Most of the state-of-the-art
procedures use exact algorithms during the search to deter-
mine the optimal placement of CSs and the charging amount.

From the literature review, it can be noted that the electric
vehicle routing research community has grown rapidly in
the last few years and many problem variants have already
been explored. Nevertheless, we can highlight possible future
directions as follows.

By our observation, there is a lack of papers regarding case
studies and application cases, where actual E-VRP models
could be evaluated, and some meaningful insights could be
drawn. Several energy consumption models were reviewed,
but only few are predicting realistic energy consumption at
the road segment level in the road network. Only recently,
have researchers started to integrate a nonlinear charging
process, CS location problem, and hybrid electric vehicles
into the E-VRP models. A few papers addressed the problem
of CS capacity, as a limited number of BEVs can charge
simultaneously at a CS. Several variations were observed:

waiting times [68, 80, 81], battery reservations [44], and
adaptive routing with uncertainties in CS availability [75,
81]. Furthermore, the following real-life characteristics have
not been su
ciently studied in the E-VRP �eld: dynamic
tra
c conditions [74], uncertainties in demand, travel time,
time windows, service time and charging time [75, 81, 89],
compatibility of BEVs with chargers in CSs [48, 49], and
recharging at public or private CSs [81].

For future research regarding the solution procedures,
we can highlight the following. Although there have been
a couple of exact procedures developed for GVRP, only a
few exact procedures have been proposed for the E-VRP
and its extensions. A great number of researchers applied a
population metaheuristic to solve the problem, but only a
handful of them produced high-quality solutions in reason-
able computation time. To improve the computation time,
parallelized procedures could be used [18, 89]. Furthermore,
more general procedures could be investigated as most of
the state-of-the-art procedures are using complex problem-
speci�c heuristics.

Appendix

ALNS Destroy and Repair Operators

Here, we present an overview of the used destroy and repair
operators in ALNS metaheuristic for solving EVRP variants
and related problems. We divide the destroy operators in
terms of whether they include customer removal (C), sta-
tion/facility removal (S), or route removal (R).

Destroy operators:

(i) Add, Swap, Drop, SwapPerfect, and SwapPerfectOut
(S) [88, 174] operators change the con�guration of
CS in the solution. As the name says, Add, Swap,
and Drop operators add, remove, and exchange the
CSs in the solution. SwapPerfect and SwapPerfectOut
[88] close G arbitrarily or no longer needed CSs and
iteratively open G new ones with the best insertion
strategy.

(ii) BatteryBestUse (C) [97] operator detects the route
with the highest charge level at the return to the depot
and the customers between the depot and last-used
BSS are removed from the solution.

(iii) BSSCostBased (C) [97] operator removes customers
that have high traveling costs of arcs connecting to
the BSS. First, the random BSS is selected, and the
customers with the highest cost are removed from the
solution.

(iv) BSSCustomerRoute and BSSProprotionRoute (R) [97]
operators aim to remove routes that visit more BSSs
and fewer customers (BSSCustomerRoute) and routes
that have a relatively large cost of visiting BSSs
(BSSProprotionRoute).

(v) Cluster (C,S) [30, 163] operator removes clusters of
geographically close vertices. First, a random route is
selected and divided into two clusters. One of the two
clusters is selected at random, and all the vertices in
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the cluster are removed. If more vertices need to be
removed, �rst the random vertex from the removed
cluster is chosen.	en, the route closest to the chosen
vertex is selected, and the procedure is repeated.

(vi) ExpensiveStation (S) [79] operator removes stations
that incur the biggest costs.

(vii) FullCharge (S) [28] operator removes stations at
which BEVs are fully charged.

(viii) HistoricalKnowledge (C,S) [32, 163] operator remem-
bers the best position cost for each vertex during the
search and then the vertex that has the highest di�er-
ence from its best remembered position is removed
from the solution.

(ix) Ine�cientRouteAndNeighbour (R) [31] operator re-
moves one route based on its average cost per unit
transferred and then the next distance closest route
is selected for removal.

(x) LeastUsedStation (S) [79] operator aims to reduce
frequent visits to CSs. 	is operator ranks the CSs
in the nondecreasing order of charge amount and
removes the top G of them.

(xi) Neighborhood (C,S) [32] operator removes the ver-
tices that have the highest shares in routes average
distance.

(xii) NodeNeighborhood (C,S) [32] operator randomly
selects a vertex in the solution and removes it and G
vertices in rectangular area around it.

(xiii) Random (C,S) [32] operator randomly removes ver-
tices.

(xiv) RandomRoute and GreedyRoute (R) [28, 32, 174]
operators randomly or greedily remove _ routes.
GreedyRoute operator removes routes that have the
lowest number of customers.

(xv) Related, RandomAndRelated, WorstAndRelated [31,
162], and TimeRelated [65] (C) operators remove a
set of customers that are in some sense related. 	e
�rst vertex is selected at random or based on the
detour cost, and the next vertices are selected deter-
ministically or by a roulette wheel selection based on
the relatedness measure. 	e relatedness measure of
Pisinger and Ropke [162] takes into account only the
distance between the vertices, while Hiermann et al.
[31] took into account distance and fractions of time
window violations between the vertices.

(xvi) Remove customer options (C,S) [28]: (i) only customer
removal; (ii) removal of customer with preceding CS;
and (iii) removal of customer with succeeding CS.

(xvii) RequestGraph (C) [163] operator creates the undi-
rected graph where each customer is a vertex and arc
weight corresponds to the number of times the arc
is used in � currently known best solutions. 	en,
similar to the Shaw procedure, related customers are
removed from the solution.

(xviii) Shaw (C) [153] operator tries to remove customers
that are similar to each other by taking into account

geographical distance, demand di�erence, earliest
start time di�erence, and assigned route di�erence.
	e �rst customer is selected at random while the
other customers, instead of a deterministic way, can
be chosen in a probabilistic way from Z most similar
customers to the current one [30]. Demir et al.
[32] and Keskin and Çatay [28] use ProximityBased,
TimeBased, and DemandBased as a special case of
Shaw removal, where either only distance, time, or
demand is taken into consideration. ProximityBased
operator is used by Hiermann et al. [96] in LNS but it
is called a similar operator.

(xix) SinglePoint,TwoPoint, andBinary (C,S) [56] operators
remove vertices in the BSS service zones. First, the
route is selected at random. In the SinglePoint version,
the �rst position in the route is selected at random,
and then all the customers between the selected posi-
tion and the depot are removed.	e Binary version is
similar to SinglePoint, but the �rst position is selected
as the middle point in the route. In the TwoPoint
version, two positions are selected at random, and
customers between these positions are removed.

(xx) StationBased (C,S) [56] operator removes all vertices
connected to a randomly selected BSS.

(xxi) StationVicinty (C,S) [30] operator removes customers
and CS in the radial vicinity of the selected CS.

(xxii) Target (R) [31] operator selects a vertex with the high-
est contribution to the total distance of its assigned
route. 	en, the routes that are closest to the selected
vertex are removed from the solution.

(xxiii) Worst (C,S) [163] operator removes the solution
vertices that have high costs where cost is com-
puted as routing cost between preceding and suc-
ceeding vertex. Applied examples are WorstDistance
and WorstTime [28, 32] and the operator of Goeke
and Schneider [30] where a more complex objective
function is used. Yang and Sun [56] add a feasibility
measure to the worst selection method in order
to prefer the removal of vertices that improve the
feasibility of a solution.

(xxiv) WorstChargeUsage (S) [28] operator removes stations
at which BEV arrives with a relatively high charge
level.

(xxv) Zone (C,S) [28, 32] operator is based on the removal of
vertices in prede�ned zones.	e whole con�guration
region is divided into smaller zones. 	e operator
at random selects zones and removes customers and
stations from it.

Repair operators:

(i) Greedy (C,S) [162] operator iteratively inserts
removed vertices at the best possible position in
the solution. Modi�cation of Greedy operators are
(i) greedy randomized adaptive search (GRASP)
[175] insertion, which instead of selecting the best
possible insertion selects random insertion from
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a pool of 7 best insertions (Goeke and Schneider
[30] applied GRASP only on customer vertices); (ii)
GreedyWithNoise [32] operator adds noise to the cost
function in order to diversify the search (similar
to RR acceptance strategy); (iii) AdvanceGreedy
[56] operator adds feasibility value to the cost
function; (iv) SequentialNode [31] operator inserts
vertices based on the removal order followed by
restricted candidate list of �ve best options; and
(v) SequentialPerturbed [88] operator extends the
SequentialNode operator by perturbing insertion
costs. For the station insertions, Keskin and Çatay
[28] detect the �rst arc in the route that is energy
infeasible and then try one of the following three
operators to insert the station: Greedy inserts the best
station between the detected arc and the previous
customer; GreedyWithCopmarison compares the
Greedy insertions on the detected arc and on the
previous arc and chooses the one that increases the
cost at least; and the Best operator compares the
Greedy insertions on arcs between the detected arc
and the previous CS and chooses the best one.

(ii) Regret (C,S) [162] computes the 7-regret values for
each removed vertex as a di�erence between the
insertion cost in the best route and 7-best route.
	is so-called regret value quanti�es the amount of
increase in routing cost if a vertex is inserted in 7-
best route and not the �rst best route, meaning that
these vertices have a lower number of cost-e�ective
insertions. In EVRP mostly regret-2 and regret-3
heuristics are used. Similar to the greedy case, noise
or feasibility values can be added to the cost function:
RegretWithNoise [32], AdvanceRegret-k [56].

(iii) SemiParallelConstruction and SemiParallelInsertion
(C,S) [31] operators work as the initial construction
algorithms and either construct new routes or insert
customers in the existing routes.

(iv) TimeBased and ZoneBased (C,S) [28, 32] operators
insert vertices in the best route positions that mini-
mally increase the overall route time. In ZoneBased
case, the vertices can be inserted only within a certain
zone.

Nomenclature

2E-EVRP-BSS: Two-echelon capacitated
electric vehicle routing
problem with battery
swapping stations

2sEVRP: Two-stage electric
vehicle routing problem

AC: Ant colony algorithm
AFV: Alternative fuel vehicle
ALNS: Adaptive large

neighborhood search
BEV: Battery electric vehicle
BKS: Best-known solution
BSS: Battery swap station

BSS-EV-LRP: Electric vehicles battery
swap stations location
routing problem

CA: Cauchy function
CGVRP: Capacitated green

vehicle routing problem
CRH: Charge routing heuristic
CS: Charging station
CSPP: Constrained shortest

path problem
CVRP: Capacitated vehicle

routing problem
DARP-EV: Dial-a-ride problem

with electric vehicles and
battery swapping
stations

DBCA: Density based clustering
algorithm

DP: Dynamic programming
E-FSMFTW: Electric �eet size and

mix vehicle routing
problem with time
windows and recharging
stations

E-LRP: Electric location routing
problem

ELRPTWPR: Electric location routing
problem with time
windows and partial
recharges

E-SPP: Energy shortest path
problem

E-TSP: Electric traveling
salesman problem

E-TSPTW: Electric traveling
salesman problem with
time windows

E-VReP: Electric vehicle
relocation problem

E-VRP: Electric vehicle routing
problem

E-VRP-NL: Electric vehicle routing
problem with nonlinear
charging functions

E-VRP-NL-C: Electric vehicle routing
problem with nonlinear
charging functions and
capacitated CSs

E-VRP-PP: Electric vehicle routing
problem with
public-private
recharging strategy

E-VRPTW: Electric vehicle routing
problem with time
windows

E-VRPTW-FC: Electric vehicle routing
problem with time
windows and fast
charging
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E-VRPTW-SF/MF/SP/MP: Electric vehicle routing
problem with time
windows, S (single
recharge), M (multiple
recharges), F (full
recharge), P (partial
recharge)

E-VRPTWMF: Electric vehicle routing
problem with time
windows and mixed �eet

E-VRPTWPR: Electric vehicle routing
problem with time
windows with partial
recharging

E-VSP: Electric vehicle
scheduling problem

E2EVRP: Electric two-echelon
vehicle routing problem

EFV-CSP: Electric freight vehicles
charge scheduling
problem

EV: Electric vehicle
EVFSMVRPTW: Electric vehicle �eet size

and mix vehicle routing
problem with time
windows

EVO-VNS: Evolutionary variable
neighborhood search

EVRC: Electric vehicle route
planning with
recharging

EVRP-CTVTT: Electric vehicle routing
problem with charging
time and variable travel
time

EVRPRF: Electric vehicle routing
problem with recharging
facilities

F-GVRP: Fuel e
cient green
vehicle routing problem

FRD: Facility-related demand
FRVCP: Fixed route vehicle

charging problem
FSM-VRP/MFVRP: Fleet size and mix

vehicle routing problem
FSMVRPTW: Fleet size and mix

vehicle routing problem
with time windows

FSMVRPTW-EV: Fleet size and mix
vehicle routing problem
with time windows for
electric vehicles

GA: Genetic algorithm
GHG: Greenhouse gas
GMFVRP-PRTW: Green mixed �eet

vehicle routing problem
with partial battery
recharging and time
windows

GMO: Greedy mutation
operator

GRASP: Greedy randomized
adaptive search
procedure

GVRP: Green vehicle routing
problem

GVRP-MTPR: Green vehicle routing
problem with multiple
technologies and partial
recharges

H2E-FTW: Hybrid heterogeneous
electric �eet routing
problem with time
windows and recharging
stations

HDARP: Heterogeneous
dial-a-ride problem

HEV: Hybrid electric vehicle
HEV-TSP: Hybrid electric vehicle

traveling salesman
problem

HEVRP-TDMF: Heterogenous electric
vehicle routing problem
with time-dependent
charging costs and a
mixed �eet

HGA: Hybrid genetic
algorithm

HVRP: Hybrid vehicle routing
problem

ICEV: Internal combustion
engine vehicle

ILS: Iterated local search
ITS: Iterated tabu search
LDM: Longitudinal dynamics

model
LRP: Location routing

problem
LRPIF: Location routing

problem with intraroute
facilities

LS: Local search
MBFM: Mixed bus �eet

management problem
MCWS: Modi�ed Clark and

Wright savings method
MDEVLRPTW (BS/PR/BSPR): Multidepot electric

vehicle location routing
problem with time
windows (battery
swapping/partial
recharging)

MDVRP: Multidepot vehicle
routing problem

MDVRPI: Multidepot vehicle
routing problem with
inter-depot routes
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MGVRP: Mixed �eet green vehicle
routing problem

MILP: Mixed integer linear
program

MIP: Mixed integer program
MLR: Multiple linear

regression
MTFSP: Mixed taxi �eet

scheduling problem
NNH: Nearest neighbor

heuristic
PHEV: Plug-in hybrid electric

vehicles
PHEVRPTW: Plug-in hybrid electric

vehicle routing problem
with time windows

PIH: Push forward heuristics
PRP: Pollution routing

problem
PSO: Particle swarm

optimization
RCSPP: Resource constrained

shortest path algorithm
RELRPTWPR: Robust electric location

routing problem with
time windows and
partial recharging

RR: Record-to-record
procedure

SA: Simulated annealing
SoC: State of charge
TD-VRP: Time-dependent vehicle

routing problem
TS: Tabu search
TSP: Traveling salesman

problem
TSPTW: Traveling salesman

problem with time
windows

TVa-PSOGMO: Particle swarm
optimization with greedy
mutation operator and
time-varying
acceleration coe
cient

VND: Variable neighborhood
decent

VNS: Variable neighborhood
search

VRP: Vehicle routing problem
VRP-HFCC: Vehicle routing problem

with a mixed �eet of
conventional and
heterogenous electric
vehicles including new
constraints

VRP-MFHEV: Vehicle routing problem
with mixed �eet of
conventional and
heterogenous electric
vehicles

VRPIRF: Vehicle routing problem
with intermediate
replenishment facilities

VRPIS: Vehicle routing problem
with intermediate stops

VRPPD: Vehicle routing problem
with pickup and delivery

VRPTW: Vehicle routing problem
with time windows.
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[23] S. Erdoğan and E. Miller-Hooks, “A green vehicle routing
problem,” Transportation Research Part E: Logistics and Trans-
portation Review, vol. 48, no. 1, pp. 100–114, 2012.

[24] A. Omidvar and R. Tavakkoli-Moghaddam, “Sustainable vehi-
cle routing: Strategies for congestionmanagement and refueling
scheduling,” in Proceedings of the IEEE International Energy
Conference (ENERGYCON ’12), pp. 1089–1094, Florence, Italy,
September 2012.

[25] M. Schneider, A. Stenger, and D. Goeke, “	e electric vehicle-
routing problem with time windows and recharging stations,”
Transportation Science, vol. 48, no. 4, pp. 500–520, 2014.
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