

 University of Groningen

A Survey on the Interplay between Software Engineering and Systems Engineering during
SoS Architecting
Cadavid Rengifo, Hector; Andrikopoulos, Vasilios; Avgeriou, Paris; Klein, John

Published in:
Proceedings of the International Conference on Empirical Software Engineering and Measurement, 2020

DOI:
10.1145/3382494.3410671

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2020

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Cadavid Rengifo, H., Andrikopoulos, V., Avgeriou, P., & Klein, J. (2020). A Survey on the Interplay between
Software Engineering and Systems Engineering during SoS Architecting. In Proceedings of the
International Conference on Empirical Software Engineering and Measurement, 2020 Association for
Computing Machinery. https://doi.org/10.1145/3382494.3410671

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

https://doi.org/10.1145/3382494.3410671
https://research.rug.nl/en/publications/40bf7606-fa5e-405d-9642-bbc4d6eb8228
https://doi.org/10.1145/3382494.3410671

A Survey on the Interplay between So�ware Engineering and
Systems Engineering during SoS Architecting

Héctor Cadavid∗

h.f.cadavid.rengifo@rug.nl
University of Groningen

Groningen, the Netherlands

Vasilios Andrikopoulos
v.andrikopoulos@rug.nl
University of Groningen

Groningen, the Netherlands

Paris Avgeriou
p.avgeriou@rug.nl

University of Groningen
Groningen, the Netherlands

John Klein
john.klein@computer.org
Gloucester, Massachusetts

ABSTRACT

Background: The Systems Engineering and Software Engineer-

ing disciplines are highly intertwined in most modern Systems of

Systems (SoS), and particularly so in industries such as defense,

transportation, energy and health care. However, the combination

of these disciplines during the architecting of SoS seems to be es-

pecially challenging; the literature suggests that major integration

and operational issues are often linked to ambiguities and gaps

between system-level and software-level architectures.

Aims: The objective of this paper is to empirically investigate: 1)

the state of practice on the interplay between these two disciplines

in the architecting process of systems with SoS characteristics;

2) the problems perceived due to this interplay during said archi-

tecting process; and 3) the problems arising due to the particular

characteristics of SoS systems.

Method:We conducted a questionnaire-based online survey among

practitioners from industries in the aforementioned domains, hav-

ing a background on Systems Engineering, Software Engineering

or both, and experience in the architecting of systems with SoS

characteristics. The survey combined multiple-choice and open-

ended questions, and the data collected from the 60 respondents

were analyzed using quantitative and qualitative methods.

Results: We found that although in most cases the software archi-

tecting process is governed by system-level requirements, the way

requirements were speci�ed by systems engineers, and the lack of

domain-knowledge of software engineers, often lead to misinter-

pretations at software level. Furthermore, we found that unclear

and/or incomplete speci�cations could be a common cause of tech-

nical debt in SoS projects, which is caused, in part, by insu�cient

interface de�nitions. It also appears that while the SoS concept has

been adopted by some practitioners in the �eld, the same is not true

∗Also with Escuela Colombiana de Ingeniería.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.

ESEM ’20, October 8–9, 2020, Bari, Italy

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7580-1/20/10. . . $15.00
https://doi.org/10.1145/3382494.3410671

about the existing and growing body of knowledge on the subject in

Software Engineering resulting in recurring problems with system

integration. Finally, while not directly related to the interplay of the

two disciplines, the survey also indicates that low-level hardware

components, despite being identi�ed as the root cause of undesired

emergent behavior, are often not considered when modeling or

simulating the system.

Conclusions: The survey indicates the need for tighter collabo-

ration between the two disciplines, structured around concrete

guidelines and practices for reconciling their di�erences. A number

of open issues identi�ed by this study require further investigation.

CCS CONCEPTS

• Software and its engineering→ Software architectures;Ultra-

large-scale systems.

KEYWORDS

systems of systems, architecting, practitioners survey

ACM Reference Format:

Héctor Cadavid, Vasilios Andrikopoulos, Paris Avgeriou, and John Klein.

2020. A Survey on the Interplay between Software Engineering and Systems

Engineering during SoS Architecting. In ESEM ’20: ACM / IEEE International

Symposium on Empirical Software Engineering and Measurement (ESEM)

(ESEM ’20), October 8–9, 2020, Bari, Italy.ACM, New York, NY, USA, 11 pages.

https://doi.org/10.1145/3382494.3410671

1 INTRODUCTION

The concept of System of Systems (SoS) is used across applica-

tion domains like defense, automotive, energy and health care to

describe a family of systems that cooperate to provide new capabil-

ities [24]. Strictly speaking, most systems could be considered as

SoS, since they can be decomposed into smaller subsystems [19];

however, the engineered SoS — in contrast to a naturally occurring

one like an ecosystem — is often distinguished by some degree

of operational and managerial independence of its constituents, as

proposed by Maier’s seminal paper [28]. The SoS paradigm is of

strategic importance in industry, as it promotes the cooperation

among already operational systems towards the delivery of new

capabilities [5].

The architecting process of an SoS, compared with other en-

gineered systems, must address a unique set of challenges. For

https://doi.org/10.1145/3382494.3410671
https://doi.org/10.1145/3382494.3410671

ESEM ’20, October 8–9, 2020, Bari, Italy Cadavid, et al.

instance, architecting an SoS involves the adaptation and integra-

tion of existing and usually heterogeneous independent systems as

constituent systems of the SoS. Such integration should enable the

ful�llment of the SoS mission or capabilities through cooperation

between its constituent systems [7]. However, those constituent

systems are fundamentally independent, and their own needs must

also be balanced with the needs of the SoS that they are integrated

into [34]. At the same time, the architecting process of most modern

engineered SoS must follow the complementary perspectives of

two related but distinct disciplines: Systems Engineering (SE) and

Software Engineering (SWE). Historically, the development of SoS

has usually been driven by SE processes [33] due to the integration

of physical (e.g. mechanical, electronic) constituent systems. How-

ever, software is now not only pervasive and abundant, but also a

critical element of the performance and features o�ered by most

modern engineered systems [17, 35].

Unfortunately, the interplay between the two disciplines has

proven problematic. Integration and operational problems in SoS

are often linked to inconsistencies or gaps between the system-level

and the software-level architectural elements created, respectively,

by these two disciplines [12, 20]. This seems to be a consequence of

the way SE and SWE have evolved over time: starting with common

roots but becoming misaligned due to their separate evolutionary

paths [35]. The di�erences in their approaches make the architec-

ture perspectives di�cult to synchronize, and as Sheard et al. [40]

reported, these di�erences can interfere with each discipline’s prac-

tices. For example, in a project using a SE decomposition approach,

the design and development of the software components of the sys-

tem may become distributed across several physical sub-systems

and assigned to independent development teams or contractors. In

that case, the architectural concerns of the system (e.g. performance,

reliability, security) would be di�cult to address in a uni�ed way

at the software level.

The need to reconcile the SE and SWE disciplines has driven a

number of initiatives to integrate them at a development process

level. For instance, the ISO 15288 standard for SE processes [23] in-

cludes suggestions for its integration with ISO 12207-compliant [41]

SWE processes. However, most methodologies and guidelines tai-

lored for SoS are mostly SE-centered and lack guidelines for the

integration of SWE architecting practices. Prominent examples of

such methodologies and guidelines are the Systems Engineering

Guide for SoS [34], the ISO/IEC 21839 standard [24], and the results

of the FP71 projects DANSE [2], COMPASS [1] and AMADEOS [3].

Nevertheless, none of these approaches prescribes practices to align

software-level with system-level architectures, as they consider

software as just another type of constituent system and not as a

cross-cutting element of an SoS.

Therefore, to contribute to the improvement of the architecting

processes of engineered SoS, we believe it is important to address

the problems posed by the interplay between SWE and the SE dis-

ciplines. There is little up-to-date evidence about these problems in

‘traditional’ engineered systems, and to the best of our knowledge,

no evidence at all for the particular case of SoS. This work addresses

this gap by identifying, from the perspective of practitioners from

1Seventh framework programme of the European Commission for research and tech-
nological development including demonstration activities

both disciplines, the challenges that arise from the interplay of these

two disciplines when architecting systems with SoS characteristics.

To this end, this paper reports on the design, execution and main

�ndings of an online survey of practitioners working on complex

systems with SoS characteristics that took place between December

2019 and February 2020.

The rest of this paper is structured as follows: Section 2 summa-

rizes the state of the art on the interplay between SE and SWE in

and out of the context of SoS systems. Section 3 presents the design

of the practitioner survey, and Section 4 summarizes its results. Sec-

tion 5 discusses the relevance of our �ndings for practitioners and

researchers, and outlines open issues for further research. Finally,

Section 6 concludes this study.

2 RELATED WORK

The interplay between SE and SWE in the context of SoS archi-

tecting has not been widely studied. We found only two studies

exploring this issue, each focused on a particular scenario. Boehm

et al. [8] focused on the acquisition and integration of constituent

systems, and proposed an approach to address the problem of un-

derperforming SE in the domain of defense caused by the traditional

hardware-centered systems engineering and subsystem acquisition

practices. Gagliardi et al. [20] proposed an evaluation method for

SoS and software architectures to address the problem of lack of

attention of quality attributes caused by the diversity of notations

used for system and software elements of SoS.

Beyond the context of architecting in the speci�c domain of

SoS, there is related work exploring the problems between these

two disciplines in general and speci�c interdisciplinary problems

in the architecting process of systems. Here, we provide a brief

description of both categories. In one of the earliest works in the

�rst category, Sommerville [42] pointed out how failed case studies

like the DIA Baggage System [15] were caused not only by soft-

ware problems, but by how software was integrated in the systems

engineering process. He proposed the introduction of systems en-

gineering concepts in computer science courses as an approach

to tackle this integration problem. Much later, Fairley et al. [18]

discussed how software engineers’ lack of quali�cations on SE con-

cepts limited their participation in system-level decision making.

Like Sommerville, they proposed to address this problem at its

roots by integrating SWE topics in SE curricula. This, and Fair-

leys’s follow-up works on alternative development models for SE

and SWE process articulation, led to the recently published book

Systems-Engineering for Software-enabled systems [17].

In the second category of related work, Maier’s paper on System

and Software Architecture reconciliation [29] is one of the earliest

studies that takes an architectural perspective on the SE-SWE inter-

relation problem. In this work, which later would become part of The

art of systems architecting book [30], Maier pointed out the problems

caused by mismatches between the architectural structures used by

the traditional, hardware-centered systems engineering and those

used by modern software engineering.

In recent years, INCOSE2 has promoted an empirical approach

to tackle the problems between these two disciplines. For instance,

Pyster et al. [35] reported on a workshop co-sponsored by INCOSE

2International Council on Systems Engineering

A Survey on the Interplay between So�ware Engineering and Systems Engineering during SoS Architecting ESEM ’20, October 8–9, 2020, Bari, Italy

with 29 professionals from academia and industry described as a

“cross section of systems and software engineering community”,

held to identify said problems, and the challenges created by them.

Subsequently, INCOSE approved the charter of the Systems and

Software Interface Working group (SaSIWG), and recently published

a series of problem-related �ndings identi�ed through its members

interaction [39, 40].

3 STUDY DESIGN

3.1 Study goal and research questions

The goal of this study is to identify the problems related to the

interplay between SE and SWE disciplines during SoS architecting

in practice. We used the �ve parameters proposed by the Goal-

Question-Metric (GQM) goal template [6] for a precise de�nition:

Analyze the architecting process of complex engineered systems

with SoS characteristics for the purpose of collecting and

characterizing the perceived challenges with respect to the in-

terplay between the Systems and Software Engineering disciplines

from the viewpoint of experts with practical experience and

background in Systems Engineering, Software Engineering or

both, in the context of application domains where said inter-

play takes place such as defense, energy, transportation and health.

The �rst parameter — the Object under study, focuses on sys-

tems with SoS characteristics, rather than systems self-identi�ed

as SoS; this is because of the unclear boundaries of SoS as a con-

cept. For instance, not all systems that present SoS characteristics

self-identify with this label [26]; some adopt a related term (e.g.

Cyber-Physical Systems or Software-intensive Systems [10]). This

could be due to the debate regarding whether an SoS is a distinct

class of systems [32], or whether it is an optional viewpoint for

complex systems [14]. On the other hand, there are many cases of

mis-classifying systems as SoS, as noted by Maier [28]. This prob-

lem is suggested, for example, by the way SoS as a concept is used in

some secondary studies in the �eld [10], with no references to any

of the multiple existing de�nitions or sets of characteristics [7, 19].

As a way to deal with these semantic ambiguities, we instead adopt

the SoS characteristics from Firesmith’s model [19] to classify the

systems used as reference for this study (see Section 3.2.1):

Constituent System Autonomy The degree to which the con-

stituents are operationally independent, i.e. with a purpose of

their own.

Constituent System Governance The degree to which the con-

stituents are managed, owned or operated by a higher-level au-

thority.

Constituent System Heterogeneity The degree to which the

constituents di�er from each other in terms of functionality or

architecture.

Constituent System Physical distribution The degree towhich

the constituents exist in geographically disperse locations.

SoS Complexity The degree to which the SoS is di�cult to un-

derstand and analyze.

SoS Evolution The degree to which the SoS requirements change

over time.

SoS Emergence The degree to which desired or undesired be-

haviors emerge from the cooperation between the constituent

systems.

Based on the goal described above, we de�ned the following

research questions:

RQ1 What challenges do practitioners face as a consequence of the

interplay between the Software Engineering and Systems

Engineering disciplines during SoS architecture analysis,

synthesis and evaluation?

RQ2 What challenges do practitioners face in SoS architecting

when dealing with the emergent behavior of SoS, and the

autonomy of their constituent systems (ConS)?

The �rst research question (RQ1) seeks to identify the problems

faced by practitioners due to the mismatches between the SE and

SWE disciplines in the architecting process of an SoS. Speci�cally,

we adopt the reference architecting process of Hofmeister et al. [22],

which considers three activities: (1) analysis—dealing with system

requirements, (2) synthesis—the way architectural decisions are

taken, and (3) evaluation of such architectural decisions. We con-

sider each of these three activities from the standpoint of both

systems and software engineering. The second research question

(RQ2), aims to identify relevant challenges in the architecting pro-

cess explicitly linked to two of the SoS characteristics: emergent

behavior and autonomy of the constituents of the system. We have

selected these two as they are the most distinctive characteristics

of SoS [21, 28].

3.2 Research method

To answer the research questions, we conducted a questionnaire-

based survey to collect insights from practitioners with experience

in the architecting of systems with SoS characteristics. The survey

research method was selected because the research questions re-

quire a broad overview of the studied object (architecting of systems

with SoS characteristics) and examination of knowledge, attitudes

and behaviors related to it (interdisciplinary problems experienced

by practitioners) [25]. More speci�cally, we use the online survey

method to obtain information from as wide a sample as possible

from the population of practitioners and researchers with prac-

tical experience. We adopted the guidelines of Kitchenham and

P�eeger [25] and followed the prescribed steps:

(1) Setting the objectives, as described in Section 3.1.

(2) Designing the survey.

(3) Developing the survey instrument.

(4) Obtaining valid data.

(5) Analyzing the data.

3.2.1 Survey design and development. The questionnaire designed

for this study has 24 questions, which include both multiple-choice

and open-ended questions, divided into three sets. The �rst set

focuses on the background of the respondents, and it is included to

characterize the demographics of the survey sample. The second

set begins by asking respondents to think about the most complex

system they have been involved in the last 10 years. That system

will be used as a reference to answer the rest of the questions in

the survey. The questions in the second set focus on identifying

ESEM ’20, October 8–9, 2020, Bari, Italy Cadavid, et al.

the characteristics of the selected system and the disciplines, ap-

proaches and terms used in the corresponding project. To pro�le

the selected system in terms of the SoS characteristics discussed in

Section 3.1, questions in this set used a slider widget to allow to

allow respondents to select a continuous value between 0 and 5 for

each characteristic. The third and �nal set of questions collect data

about the architecture practices used and problems observed by the

respondent while working on the selected system. The complete

questionnaire is available in the study replication package3. This is

the version of the questionnaire that was actually used for the sur-

vey, following a few iterations of pilot studies for its improvement,

as discussed further in Section 3.3.

3.2.2 Obtaining data. The survey was developed and distributed

through the Qualtrics.XM platform [37]. The target population of

this study was experts with a background in Software Engineering,

Systems Engineering or both, who have been involved in engineer-

ing projects for systems with SoS characteristics. This background

and experience makes the target population rather speci�c; hence,

it is not trivial to obtain a representative sample. Consequently, we

followed a non-probabilistic sampling that combined convenience

and snowballing sampling [27]. More speci�cally, an invitation to

participate and to further disseminate the survey was distributed

by email across the personal networks of the authors to contacts

who worked in industries like the ones mentioned in the study goal.

In addition, the survey was promoted through posts on relevant

LinkedIn groups and other social media platforms, the mailing list

of INCOSE’s Systems and Software-Interface working group which

had 54 members, and through publicity �iers at the INCOSE’s Inter-

national Workshop (held on January 25th/2020). Moreover, the �rst

author manually searched for publicly available email addresses of

practitioners who were likely to �t the inclusion criteria, based on

LinkedIn pro�le and group membership information. As a result,

281 additional contacts were identi�ed and then invited to partici-

pate in the survey, through a series of personalized emails which

described the survey, the average completion time, and linked to the

questionnaire itself. Two follow-up reminder messages were sent to

the potential respondents between mid-January and mid-February,

2020. This resulted in a total of 76 responses.

3.2.3 Analyzing the data. The data obtained from the survey were

analyzed with a combination of quantitative and qualitative meth-

ods. The responses to the open-ended questions were analyzed

using Qualitative Content Analysis (QCA) [16] following an induc-

tive approach, which involved open coding, creating categories,

and abstraction. The responses to closed-ended questions, on the

other hand, were analyzed following quantitative analysis meth-

ods, including data visualization and statistical analysis [43]. More

speci�cally, descriptive statistics, including frequencies and per-

centages, were used to describe the characteristics of the sample,

and the relationships between the variables. Since there were no

hypotheses to test, no statistical testing was employed.

3.3 Threats to validity

In the following we discuss the perceived threats to the validity of

this study and the steps taken to mitigate them. We use Runeson

3https://�gshare.com/s/5719c26fc74842ddc7ba

and Höst [38] as a guide for this purpose. We note that, as the

nature of this study is exploratory and did not investigate causal

relationships, it is not subject to internal validity threats.

Construct validity. Construct validity refers to the degree to

which the operational measures, in this case the online survey,

re�ect what the researchers have in mind and are consistent with

the research questions. To improve the validity of the study in this

respect, we piloted two consecutive versions of the survey, each

with a di�erent set of respondents, for a total of 7 respondents.

These respondents were selected according to the survey goal (see

Section 3.1), and could be described as experienced practitioners

and researchers with background in Systems Engineering (3), and

both Systems Engineering and Software Engineering (4). The pilot

survey respondents provided key feedback on the wording and the

consistency of the questions, particularly the ones that involved

Systems Engineering-related terms. This allowed us to minimize

potential miscommunication issues. The authors have also itera-

tively re�ned the study design to ensure that all aspects of the study

were clear prior to commencing the survey.

External validity. External validity is concerned with the degree

to which the �ndings can be generalized from the sample to the

population. The non-probabilistic sampling design used for data

collection is a potential threat for the external validity of the study.

For instance, there is a risk of a biased sample, which is not represen-

tative of the target population, or with a dominant participation of

a certain sector. To mitigate this threat, the survey was distributed

not only through the personal networks of the authors, but also

through organizations and social media platforms that address sys-

tems and software engineers from di�erent application domains.

The demographic information of the participants reported in Sec-

tion 4.1, including the application areas of the organization they

belong to, attests to the representativeness of our sample. However,

we also have to acknowledge that our �ndings cannot be general-

ized beyond the population our sample represents, e.g. in systems

that do not exhibit SoS characteristics or in application domains

outside those in Fig. 3.

Reliability. Reliability refers to the extent the data and the anal-

ysis are dependent on the speci�c researchers. The mature and

generally-accepted guidelines de�ned byKitchenham and P�eeger [25]

were followed for this purpose; the analysis of the respondents’

responses can also be veri�ed externally by means of the available

replication package. Given the exploratory nature of this study, we

did not use advanced statistics-based analysis approaches; instead,

we used a combination of quantitative and qualitative methods.

To mitigate researcher bias in this process, three of the four au-

thors were involved in the quantitative data analysis for consensus-

building purposes; these authors also came to an agreement about

the interpretations drawn from the analysis. Finally, the same au-

thors were involved in the qualitative data analysis: the �rst author

performed it using the QCA methodology [16], while its outcome

was validated for consistency by the other two.

https://figshare.com/s/5719c26fc74842ddc7ba

A Survey on the Interplay between So�ware Engineering and Systems Engineering during SoS Architecting ESEM ’20, October 8–9, 2020, Bari, Italy

1
2

0

3
1

3
2

14
12

22

0

5

10

15

20

25
1
0
0

9
0

8
0

7
0

6
0

5
0

4
0

3
0

2
0

1
0

12

21

16

7

4

0 0

0

5

10

15

20

25

1
0

2
0

3
0

4
0

5
0

6
0

7
0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

Years of experience

1
0
0

Number of projects

Figure 1: Right: years of experience of the respondents. Le�:

number of engineering projects respondents worked on

Figure 2: Distribution of the selected engineering practice

areas across the survey respondents as an Euler diagram

4 RESULTS

4.1 Demographics

A total of 76 responses were collected between December 20, 2019

and February 25, 2020. From this initial data set, 16 responses were

excluded before proceeding with the analysis: 15 responses were

incomplete and 1 response was from a respondent that indicated

zero years and projects as experience. Hence, the �nal data set

contains 60 responses from practitioners with a mean of 20.8 years

of experience who have participated on average in 24.4 engineering

projects, shown in Fig. 1. Three outlier respondents claimed expe-

rience of more than 90 projects each, which makes the standard

deviation of the number of projects nearly double that of the years

of experience (22.8 vs 11.19).

Figure 2 shows the engineering practice areas of the respondents.

The areas most frequently reported were Systems Engineering (73%)

and Software Engineering (65%). Respondents were able to select

more than one practice area. The Euler diagram shows that a to-

tal of 57 respondents (95%) identi�ed themselves as Systems Engi-

neers (30%), Software Engineers (22%) or both (43%). The remaining

3 respondents, added areas related to systems or software engi-

neering, as entries in ‘Other’: Computer systems designer, Software

Systems Engineering and Software-reliant Systems Engineering. All

the selected responses came from practitioners that �t the target

population described in the study goal.

The respondents’ organizational a�liations are shown in the top

part of Fig. 3. Multiple selections were allowed. Many respondents

(78%) identi�ed with companies. Fewer respondents (around 20%)

also identi�ed their organizations as research institutes, universi-

ties, or government agencies. The bottom part of Fig. 3, shows the

application areas of the respondents’ organizations. The results of

this survey are representative of domains such as transportation

29

27

18

15

14

10

6

5

5

4

Transportation

Defense

Energy

Manufacturing

Health

Consumer Products

Biomedical

Disaster Recovery

Business

Media

3

12

12

13

47

0 5 10 15 20 25 30 35 40 45 50

Other

Government Agency

Research Institute

University

Company

Figure 3: Organizations that respondents are a�liated with.

Top: organization type; Bo�om: application areas of the or-

ganizations

Figure 4: Distribution of project characteristics as violin plot

(48%), defense (45%), energy (30%) and manufacturing (25%). This

aligns with the study’s context: application domains where SoS ar-

chitecting requires an interplay between the systems and software

engineering disciplines.

4.2 Reference projects

As described in Section 3.2.1, respondents were asked to select a ref-

erence system to complete the survey and pro�le the characteristics

of that system. Figure 4 shows the distribution of response values for

each characteristic. Values for the Size, Complexity and Heterogene-

ity characteristics show that the sample of systems explored in this

study represents large, highly complex systems, whose constituents

are very heterogeneous. The response values for the Emergence,

Governance and Autonomy characteristics are spread throughout

the value range, indicating projects with di�erent degrees of control

on the constituent systems.

Respondents were also asked whether the selected project self-

identi�ed its system as a System of Systems. Of the 60 responses, 37

used the label ‘SoS’ to describe the system, whereas 23 used other

terms such as Complex System, Software Intensive System and Em-

bedded System.However, by comparing the distribution of the

characteristics of the systems that self-identify as SoS with

the ones that do not, shown in Fig. 5, there are only minor

ESEM ’20, October 8–9, 2020, Bari, Italy Cadavid, et al.

Figure 5: Distribution of project characteristics: systems self-

identi�ed as SoS vs. not self-identi�ed ones

di�erences (Finding 1), and they appear mostly in the distribu-

tions of Size, Evolution and Complexity values. This appears to

justify our decision to survey practitioners irrespective of whether

they use the term ‘SoS’ for their systems, and instead focus on

ensuring the presence of SoS characteristics.

Furthermore, it is worth noting that out of the 37 systems self-

identi�ed as SoS, only 10 applied well-known SoS-speci�c guide-

lines (e.g. DoD guidelines for SoS [34] or the ISO/IEC/IEEE 21839–

40 [24]), and none made reference to any of the guidelines or frame-

works proposed, in recent years, by research in the �eld of SoS

(e.g. [4, 31]). This suggests a low adoption by practitioners of

SoS-speci�c guidelines, and an even lower adoption of the

research produced in the domain of SoS (Finding 2).

4.3 Questions related to RQ1

4.3.1 Requirements at system and so�ware level. Q3.1 of the sur-

vey, which focused on the architecting phase of Analysis, asked

respondents how system-level requirements and software-level re-

quirements were related to each other in the system selected by them

during the second set of questions (see Section 3.2.1). The responses

are summarized in Table 1. In most cases, software-level require-

ments are linked to system requirements (71%), either by being

explicitly derived from them (39%) or based partially on them (32%).

Figure 6, however, shows that there are no signi�cant di�erences in

the characteristics between the systems developed following each

approach. It appears that the choice of approach is not related to

the characteristics of the system; further investigation is necessary.

In a follow-up question, respondents were asked an open-ended

question about the problems posed by the way system-level and

software-level requirements were related to each other. Six codes

emerged as the most prominent ones after applying QCA to the

responses. Two of the most frequent codes, Teams Coordination

Challenges andAssumptions AboutOtherDisciplines, seem to

be related, in the sense that the former could be reinforcing the latter.

That is to say, due to the challenges of coordination and communi-

cation between interdisciplinary teams, there could be assumptions

Table 1: Frequency of the responses given to Q3.1: relation

of system– and software–level requirements

Response Frequency

Software-level requirements were derived from system-

level requirements

23

Software-level requirements were elicited by taking into

consideration, among others, system-level requirements

19

Software-level and system-level requirements were elicited

independently by separate teams

7

Software-level and system-level requirements were elicited

simultaneously by the same team

5

Other 6

Figure 6: System characteristics of the twomost common re-

sponses to Q3.1

about how the other party would address the requirements, instead

of agreements. Incomplete System Reqirements (which includes

vague or poorly documented requirements) and Lack of Domain

Knowledge from the Software Engineers correspond to the prob-

lems that lead to misinterpretation of system-level requirements

at the software architecture level. These two problems (incom-

plete systems requirements and lack of domain knowledge)

are particularly important: for most of the systems consid-

ered in this survey, software-level requirements are derived

from or based on system-level requirements (Finding 3), as

discussed above. The remaining two codes are Lack of System-

level Perspective by the teams and organizations involved, and

perhaps even more interestingly Interdisciplinary Differences

resulting in con�icting or over-restrictive requirements coming

from the system level.

4.3.2 Architectural decisions at system and so�ware level. Q3.2,

related to the architecting activity of Synthesis, asked respondents

how the architectural decisions were taken for the selected project,

at system and software level. Table 2 shows that most of the re-

sponses (77%) are nearly evenly distributed between two oppo-

site approaches: Decisions are taken separately by independent

A Survey on the Interplay between So�ware Engineering and Systems Engineering during SoS Architecting ESEM ’20, October 8–9, 2020, Bari, Italy

Table 2: Frequency of the responses given toQ3.2: howwere

architectural decisions at di�erent levels taken

Response Frequency

System-level and software-level architectural decisions

were taken independently, by separate teams

24

System-level and software-level architectural decisions

were taken, together, by the same team

21

Architectural decisions were taken at system level only

(there was no intentionally designed software architecture)

4

Other 10

systems-engineering and software engineering teams (41%), or

taken together by an interdisciplinary team (36%). The high ratio

of systems where architectural decisions were taken inde-

pendently by teams from the two disciplines is noteworthy,

because intuitively, decisions taken independently could be

problematic in many cases. (Finding 4)

Q3.3 asked about the problems posed by the way architectural

decisions were taken at both system and software level. Applying

QCA to the responses shows that the most common problems can

be classi�ed as related to: integration (70% of responses in total),

documentation (53%) and operation (43%). The problems reported

by the respondents as ‘Other’ and coded as Unsatisfied reqire-

ments and Bugs/issues caused by under-scrutinized complex

interactions were counted as operation-related problems, and

included in the above percentage. Likewise, Third-party compo-

nents inconsistencies and Poor documentation, also reported

by the respondents as other problems, were counted as integration

and documentation-related problems, respectively. An observation

that requires further investigation is that respondents that selected

both the SE and SWE practice areas report more problems with

the architectural decisions (49% of all cases reported) compared

to respondents with other backgrounds. It may be that their un-

derstanding and experience in both practice areas allows them to

diagnose issues that otherwise would go unnoticed until much later;

this is the subject for a separate, future study.

Another observation is that both of the most frequently re-

ported approaches formaking architectural decisions, i.e. in

separate or interdisciplinarymixed teams, report a veryhigh

rate of integration problems (Finding 5). As shown in Fig. 7,

both approaches report similar frequency of documentation prob-

lems, but surprisingly operational problems were reported for only

33% of systems where teams from di�erent disciplines worked sep-

arately, compared to 48% of systems using interdisciplinary teams.

This may be simply due to reduced visibility of the overall opera-

tional situation in compartmentalized teams.

4.3.3 Architecture evaluation at system and so�ware level. The ques-

tions related to the architecting activity of Evaluation asked how

system-level (Q3.4) and software-level (Q3.5) architectural decisions

were evaluated with respect to functional and non-functional require-

ments, and what problems were posed by combining these two eval-

uation approaches (Q3.6). The responses to Q3.4, summarized in

Table 3, show that simulations and prototyping were the most

Figure 7: Problems reported given the approach followed for

architectural decision making, normalized (Q3.3)

Table 3: Frequency of the responses given to Q3.4: evalua-

tion of architectural decisions at system level

Response Frequency

Simulation-based evaluation 21

Prototype-based evaluation 17

Evaluation in production 16

Formal/mathematical evaluation 11

The architectural decisions were not evaluated 4

Do not know 7

Other 14

Table 4: Frequency of the responses given to Q3.5: evalua-

tion of architectural decisions at software level

Response Frequency

Software architecture was evaluated against the system re-

quirements, after the system requirements and architecture

were established

20

Software architecture was considered as implicitly evalu-

ated by the the system architecture validation

12

Software architecture was evaluated evaluated against a

set of requirements that are not related to the system re-

quirements

7

There was no architecture evaluation in the project 4

Do not know 9

Other 8

frequently reported approaches for system-level architectural de-

cision evaluation. The responses to Q3.5, summarized in Table 4,

on the other hand, show that in most cases (53%), the evaluation

of software-related architectural decisions were subordinated to

the system-level architecture: The evaluation was either based on

system-level requirements (33%), or considered as implicitly evalu-

ated by the system-level architecture validation (20%). Software-

related architectural decisions, from the evaluation stand-

point, appear to have lower priority compared to the system-

related decisions. (Finding 6) From these results, it is also worth

noting that approaches that would be expected to be more frequent,

such as the scenarios-based [11] ones, were mentioned as Other

approaches by a limited amount of respondents.

In the Euler diagram of Fig. 8, there appear two phenomena on

how the di�erent system-level evaluation approaches were com-

bined. First, for 17% of the systems, the system-level architectural

ESEM ’20, October 8–9, 2020, Bari, Italy Cadavid, et al.

Figure 8: Distribution of the selected approaches for System-

level architecture evaluation

Figure 9: Distribution of Software–level architecture evalu-

ation approaches given the followed System-level architec-

ture evaluation approaches

decisions were evaluated only when the system became operational

(i.e. the entire SoS running in a production environment). Second, in

most cases, a combination of two or more system-level evaluation ap-

proaches took place. Further related phenomena can be identi�ed in

Fig. 9, which shows the distribution of the approaches followed for

the evaluation of software-level architectural decisions, given the

approaches followed for the system-level ones. While Evaluation in

Production must include some evaluation of the software, for each

of the other three evaluation approaches there were a portion of

projects that reported doing no evaluation of software architecture

decisions. Furthermore, in most of the systems that used a for-

mal approach for the validation of their architecture, there

was no separate evaluation at software-architecture level, or

it was considered as implicitly evaluated. (Finding 7)

Regarding the problems arising by combining system-level and

software-level evaluation approaches (Q3.6), the QCA analysis cat-

egorized the 22 free-text responses in four codes: Architecture

Patching, Insufficient Evaluation, Evaluation Criteria and

Evaluation Complexity. It is interesting that the responses linked

to the most frequent problem category, Architecture Patching,

were not related to the evaluation process per se, but to the e�ort

required to address the issues found by the evaluation. Some re-

sponses suggest that a major part of the cost of these architecture

patches is due to the lack of clarity about which level (system or

software) to make the changes. Moreover, it is noteworthy that the

architectural evaluation of the systems linked to these responses

was either performed late in the process (in production) or through

throw-away prototypes.

A number of respondents also report Insufficient Evaluation

due to informal evaluation procedures, insu�cient attention, or lack

of learning from the evaluation. Finally, the categories Evaluation

Complexity and Evaluation Criteria both identify challenges

in performing an evaluation. The �rst includes responses that de-

scribe how the complexity of the architectural descriptions and the

processes involved in the system operation makes the evaluation

process equally complex. Evaluation Criteria includes responses

that describe the challenges on their de�nition given the need for

addressing both system- and software-level elements.

4.4 Questions related to RQ2

The results presented in this section concern the problems posed by

the interplay between SWE and the SE disciplines while addressing

two of the most distinctive characteristics of an SoS [28]: Emergent

Behavior of an SoS and the Independence of its constituents. These

questions were presented only to the respondents who scored these

characteristics higher than 0 for their reference system.

4.4.1 Emergent behavior. Q4.1 asked respondents whose system

presented some degree of emergence (54 out of 60), whether this

characteristic was an architectural concern, and if so, at which levels

(system or software level, or both) it was addressed. As seen on Table 5,

only 13% of this subset reported that emergence was not an archi-

tecture concern, whereas in most of the cases (43%) emergence was

addressed as an architectural concern at both system and software

level architectures. Only in a small fraction of the cases emergence-

related architectural concerns were addressed exclusively at either

the system or software level (7% and 4% respectively).

In the follow-up question (Q4.2), respondents were asked an

open-ended question about the problems posed by the way that emer-

gence was addressed. QCA was performed on the responses and

3 codes linked to requirements-related problems emerged as the

most prominent ones. The �rst, Modeling and Simulation Limi-

tations, includes quotes on how the limitations of the modeling

approaches for highly complex systems and the imperfectness of the

simulation approaches make it di�cult to anticipate and address un-

desired emergent behaviors. The second code, Subsystems-related

Emergence Causes includes quotes that describe problems at the

Constituent System level related to undesired emergent behaviors,

particularly failures and timing problems with low level hardware

components. Together, the quotes linked to these two codes suggest

that low level hardware components, despite being one of the

root causes of undesired emergent behavior, are sometimes

not considered in the architecting process of SoS. Further-

more, this could be due to limitations of the modeling and

simulation approaches, where such low-level components

are not considered due to the granularity level of such ap-

proaches. This is particularly important since simulation is

the most common approach to evaluate architectural deci-

sions at system level (Finding 8), as discussed in Section 4.3.3.

Finally, quotes linked to the third code, Time and Resources

Problems, describe both resource-related causes (insu�ciently allo-

cated time and resources) and consequences of undesired emergent

behavior (added costs, rework e�ort).

4.4.2 Autonomy/Independence. The interdisciplinary problems be-

tween SE and SWE related to the characteristic of independence of

SoS constituents are explored through questions Q4.3, Q4.4 and

A Survey on the Interplay between So�ware Engineering and Systems Engineering during SoS Architecting ESEM ’20, October 8–9, 2020, Bari, Italy

Table 5: Frequency of the responses given to Q4.1: desired

or undesired emergent behavior as an architectural concern,

and means to address it

Response Frequency

Emergent behaviour was addressed by both system-level

and software-level architecture

23

Emergent behaviour was a concern, but it was not ad-

dressed by the architecture

10

Emergent behaviour was not a concern 7

Emergent behaviour was addressed only by system-level

architecture

4

Emergent behaviour was addressed only by software-level

architecture

2

Other 8

Q4.5. These problems are explored from the perspective of the

interfaces and interface speci�cations of the constituent systems.

More speci�cally, Q4.3 asked the respondents about the existence

of interface speci�cations of the system’s constituents and the de-

tails provided in the speci�cations. All 60 respondents scored the

characteristics of Autonomy or Governance (corresponding to Op-

erational and Managerial independence, respectively) above zero

for their reference systems, and so these questions were presented

to all respondents. However, only 28 respondents provided informa-

tion about the details provided in the interface speci�cations and

only 3 respondents reported cases where all speci�cation elements

(syntactic, behavioral and QoS) were present.

Q4.4 asked respondents about the kind of problems posed (if

any) at system and software architecture level by the integration of

independent constituents. Out of the 60 respondents, 13 identi�ed

integration problems at software level due to loose or inconsistent

speci�cations. 17 identi�ed problems at system level due to incom-

plete speci�cations; 7 of those responses did not o�er any further

clari�cation, while the remaining 10 responses reported incom-

plete speci�cations, irrespective of what and how many interface

speci�cation types were developed.

In the follow-up question (Q4.5), respondents were asked an

open-ended question about the problems posed by the changes or evo-

lution of the independent constituents, given the way their interfaces

were provided. QCA was performed on the 24 responses and one

of the most common codes was Incomplete Interface Specifica-

tions. Despite its prominence, Incomplete Interface Specifica-

tions can be seen as a cause of problems as the constituent systems

change or evolve, rather than a problem per se. However, since 50%

of the respondents reported some kind of problems due to incom-

plete or inconsistent interfaces (Q4.4), the results of the qualitative

analysis on this question suggest that the unclear/incomplete

interface speci�cation problems faced during the system in-

tegration remain an issue as the independent constituents

evolve. This suggests that unclear/incomplete interface spec-

i�cation problems could be a cause of technical debt in SoS.

(Finding 9) Another common code, Con�guration Management,

provides further insight into problems that arise as the constituent

systems evolve. These quotes describe how inadequate con�gura-

tion management of interface speci�cations and the lack of

policies for their life-cycle lead to speci�cations that were

out-of-sync with reality. Moreover, communication of the

speci�cation changes to the interested parties might not be

considered as part of the con�gurationmanagement process.

(Finding 10) The remaining two codes re�ect issues related to

the management of change: how resources are allocated (Change

Costs) or theway the changes are approached (HardwareśSoftware

Changes Balance).

5 DISCUSSION

This survey collected data about the problems posed by the interplay

between the SE and SWE disciplines during SoS architecting in

practice. Each respondent was asked to characterize their reference

system along 8 dimensions. We discovered that there were only

minor di�erences in these characterizations between respondents

that labeled their system as SoS and those that did not. (Finding 1).

This, together with the strikingly low adoption of SoS-speci�c

guidelines, frameworks and tools for system development even in

systems explicitly identifying as SoS (Finding 2), points to a state

of practice that seemingly fails to take advantage of the existing body

of knowledge about SoS and the accruing bene�ts from it. This gap

between research e�orts and industrial needs is something that this

and other empirical studies of SoS and SE/SWE interplay, which

are scarce at the moment could and should contribute to address.

Looking at the research questions, RQ1 focused on SoS archi-

tecture analysis, synthesis and evaluation. The results show that

software requirements are inmost cases subordinate to system-level

requirements. Although this is not surprising, our study highlighted

major issues in the software part of the system when its require-

ments are derived or based on higher-level system requirements

(Finding 3); consider for example, the cycle of interdisciplinary co-

ordination problems (also reported in other studies e.g., in [39]) and

assumptions made about each other’s discipline leading to missed

requirements. In other cases, misinterpretations of the system-level

requirements are reported, either due to their incompleteness or a

lack of domain knowledge of the software engineers. Problems like

the lack of domain knowledge, or the lack of ‘system-perspective’

have been recognized since the earliest related literature [18, 42].

However, the fact that software engineers are perceiving the in-

completeness of system-level requirements as a cause of misinter-

pretation urges further research towards requirement speci�cation

approaches that are more balanced for both disciplines.

Considering how architectural design decisions at the system

and software level are taken, we found that in many systems (41%)

such decisions were taken by separate teams working indepen-

dently at each level. Intuitively, this approach is more likely to

be linked to problems in a project, however it turns out that the

distribution of integration and documentation issues—the most

frequent ones overall—are almost identical when compared to the

systems whose design decisions were taken by interdisciplinary

teams working together (Finding 4). This suggests that there may

be forces common to both approaches that cause these problems, with

further study warranted to identify the root causes of the problems.

The high percentage of integration problems (above 70%) reported

(Finding 5) further reinforces our previous point about the impor-

tance of bridging the gap between research and industry. For instance,

ESEM ’20, October 8–9, 2020, Bari, Italy Cadavid, et al.

a signi�cant number of studies on SoS interoperability have already

been reported [10] but barely ever used. Furthermore, more than

50% of systems using either architecture decision approach (inter-

disciplinary vs. separate), report documentation-related problems.

This suggests that even with a closer cooperation between the two

disciplines, the consistency of the architecture documentation is

still problematic. It might therefore be worth developing an archi-

tecture description language or framework for better capturing details

at both levels, while reconciling the terminology di�erences.

Turning to the evaluation phase of the architecting process, we

found that system-level architectural decisions are evaluated, in

most cases, through a combination of prototyping and simulation

approaches. However, the architectural decisions at software level,

despite being taken independently in many cases, are almost ex-

clusively validated against system-level requirements (Finding 6),

or even considered as implicitly evaluated, particularly in systems

evaluated using a formal approach (Finding 7). This suggests that

in most SoS governed by a systems engineering process, the evalu-

ation process might not be considering the software requirements

(esp. non-functional requirements) when they are not explicitly

linked to a higher-level system requirement. This is worth explor-

ing further through studying the implications of not integrating

software-speci�c architecture evaluation methods in higher-level sys-

tem evaluation processes, as well as ways to integrate such evaluation

approaches.

We also explored the interdisciplinary problems linked to the

independence of SoS constituents and the behaviors that emerge

from the constituents’ cooperation [28]. The results of the survey

show very few problems explicitly linked to the interplay of SE and

SWE disciplines when dealing with undesired emergent behavior.

However, the results reveal another issue to investigate further: fail-

ures of low-level hardware subsystems, which are not considered in the

modeling or simulation environments due to their granularity level,

are a common cause of undesired emergent behavior (Finding 8).

Furthermore, it is worth exploring to what extent software subsys-

tems are causing emergent behavior, because (like low-level hardware

subsystems) they might not be included in higher-level system models

and simulations.

Finally, the characteristic of constituent system independence

was explored from the perspective of the interfaces provided for

the integration of the independent constituents. We found that the

problem of incomplete speci�cations is reported both early in the

integration process and during system evolution. This seems to

be a common cause of technical debt in SoS projects (Finding 9).

Interestingly, another problem identi�ed in this study could be the

key to address this kind of technical debt: insu�cient interface

speci�cations management (Finding 10). As suggested by some

of the respondents, interface management in SoS should not only

become mandatory, but it needs to go beyond tracking and con-

trolling documentation changes to consider the full life cycle of

interfaces and the distribution/communication of changes to the

involved parties. An extension to the interface management processes

de�ned in well-known engineering bodies of knowledge [13, 36], con-

sidering the aforementioned life cycle and distribution elements, and

the hardware-software interfacing problems discussed in previous

works (e.g. [17]), is worth exploring further.

Overall, we feel that software engineering as a discipline, when

applied in the context of larger systems and particularly SoS, must

address the interplay with other disciplines and move towards using

standardized practices. We would like to note in particular that most

of the works that explore the interdisciplinary problems between SE

and SWE, like the ones discussed in Section 2, actually come from

the SE community. For instance, although the Systems Engineering

Body of Knowledge (SEBOK) [36] acknowledges the interdisciplinary

challenges with the software engineering discipline, the Software

Engineering Body of Knowledge (SWEBOK) [9] makes very few

references to other engineering disciplines. The research topics

derived from this study and other similar empirical studies in the

�eld could contribute signi�cantly to this underrepresented aspect

of the software engineering discipline.

6 CONCLUSIONS

The Systems Engineering (SE) and Software Engineering (SWE)

disciplines are highly interdependent in the development of modern

SoS in industries like defense, automotive, energy and health care.

However, the literature suggests that the gaps or inconsistencies

between the architecting approaches followed by each discipline

often cause system-wide problems in the resulting systems. This is,

to the best of our knowledge, the �rst empirical study that explores

the problems experienced by practitioners in the architecting pro-

cess of SoS when both disciplines are involved. For this purpose

we designed, piloted and carried out an online questionnaire-based

practitioner survey. We obtained a total of 60 pertinent responses.

The results of this study revealed predominant problems related

to three architecting artifacts that could bene�t from further in-

terdisciplinary research, namely requirements speci�cations across

system and software level, architectural description languages for the

documentation of the system, and interface speci�cations to enable

the independent evolution of the constituent systems. In addition,

the �ndings of this study also show persistent issues with SoS ar-

chitecting resulting in integration di�culties and an apparent low

priority given to the evaluation of software-speci�c architectural

decisions. In combination with the reported very low adoption of

the existing body of knowledge, such issues are a cause of concern

and a call for further interdisciplinary research between SE and

SWE. Last but not least, this study also uncovered a phenomenon

linked to undesired emergent behavior worthy of further explo-

ration: limitations of current system-level modeling and simulation

approaches due to their exclusion of low-level components.

In addition to working on the open research issues identi�ed

in Section 5, in the future we plan to conduct further empirical

studies oriented towards the identi�cation of SE/SWE architecting

harmonization practices in SoS and their relation to the problems

identi�ed in this study.

ACKNOWLEDGEMENTS
This work was supported by ITEA3 and RVO under grant agreement No.

17038 VISDOM (https://visdom-project.github.io/website/).

The authors would also like to thank the participants to the pilot studies

of this work for their invaluable help: Rochus Keller, Osasai Macauly, Sally

C. Muscarella, Philippe Krutchen, Lars de Groot, Remco Poelarends and

Sarah Sheard, and the anonymous reviewers for their comments.

https://visdom-project.github.io/website/

A Survey on the Interplay between So�ware Engineering and Systems Engineering during SoS Architecting ESEM ’20, October 8–9, 2020, Bari, Italy

REFERENCES
[1] 2011. COMPASS: Comprehensive Modelling for Advanced Systems of Systems.

http://www.compass-research.eu/
[2] 2011. DANSE: Designing for Adaptability and Evolution in System-of-Systems

Engineering. http://www.danse-ip.eu/
[3] 2013. AMADEOS: Architecture for Multi-criticality Agile Dependable Evolutionary

Open System-of-Systems. http://amadeos-project.eu/
[4] Arun Babu, Sorin Iacob, Paolo Lollini, and Marco Mori. 2016. AMADEOS Frame-

work and Supporting Tools. In Cyber-Physical Systems of Systems. Springer,
128–164.

[5] W Clifton Baldwin and Brian Sauser. 2009. Modeling the characteristics of system
of systems. In 2009 IEEE International Conference on System of Systems Engineering
(SoSE). IEEE, 1–6.

[6] Victor R Basili. 1992. Software modeling and measurement: the
Goal/Question/Metric paradigm. Technical Report.

[7] J Boardman, S Pallas, BJ Sauser, et al. 2006. Report on system of systems engineering,
�nal report for the o�ce of secretary of defense. Technical Report. Hoboken, NJ:
Stevens Institute of Technology.

[8] Barry Boehm and Jo Ann Lane. 2007. Using the incremental commitment model
to integrate system acquisition, systems engineering, and software engineering.
CrossTalk 19, 10 (2007), 4–9.

[9] Pierre Bourque, Richard E Fairley, et al. 2014. Guide to the software engineering
body of knowledge (SWEBOK (R)): Version 3.0. IEEE Computer Society Press.

[10] Héctor Cadavid, Vasilios Andrikopoulos, and Paris Avgeriou. 2019. Architecting
Systems of Systems: A Tertiary Study. Information and Software Technology
(2019).

[11] Paul Clements, R Kazman, and M Klein. 2002. Evaluating software architectures:
methods and case studies. Addison-Wesley.

[12] James A Crowder, John N Carbone, and Russell Demijohn. 2015. Multidisciplinary
systems engineering: Architecting the design process. Springer.

[13] DAU. 2004. Defense acquisition guidebook. Defense Acquisition University.
[14] Michael J de C Henshaw. 2016. SYSTEMS OF SYSTEMS, CYBER-PHYSICAL

SYSTEMS, THE INTERNET-OF-THINGS. . . WHATEVER NEXT? Insight 19, 3
(2016), 51–54.

[15] Richard De Neufville et al. 1994. The baggage system at Denver: prospects and
lessons. Journal of Air Transport Management 1, 4 (1994), 229–236.

[16] Satu Elo and Helvi Kyngäs. 2008. The qualitative content analysis process. Journal
of advanced nursing 62, 1 (2008), 107–115.

[17] Richard E Fairley. 2019. Systems Engineering of Software-enabled Systems. John
Wiley & Sons.

[18] Richard E Fairley and Mary Jane Willshire. 2011. Teaching systems engineering
to software engineering students. In 2011 24th IEEE-CS Conference on Software
Engineering Education and Training (CSEE&T). IEEE, 219–226.

[19] Donald Firesmith. 2010. Pro�ling systems using the de�ning characteristics of
systems of systems (SoS). Technical Report. CARNEGIE-MELLON UNIV PITTS-
BURGH PA SOFTWARE ENGINEERING INST.

[20] Michael Gagliardi, WG Wood, J Klein, and J Morley. 2009. A uniform approach
for system of systems architecture evaluation. CrossTalk 22, 3-4 (2009), 12–15.

[21] Alex Gorod, Brian Sauser, and John Boardman. 2008. System-of-systems engi-
neering management: A review of modern history and a path forward. IEEE
Systems Journal 2, 4 (2008), 484–499.

[22] Christine Hofmeister, Philippe Kruchten, Robert L Nord, Henk Obbink, Alexander
Ran, and Pierre America. 2005. Generalizing a model of software architecture
design from �ve industrial approaches. In 5th Working IEEE/IFIP Conference on
Software Architecture (WICSA’05). IEEE, 77–88.

[23] ISO/IEC/IEEE 15288:2015 2015. ISO/IEC 15288 Systems and software engineering
- System life cycle processes (also: IEEE Std 15288-2008). Standard. International
Organization for Standardization, Geneva, CH.

[24] ISO/IEC/IEEE 21839:2018(E) 2018. Draft BS ISO/IEC 21839 Information technology
- Systems and software engineering - System of Systems (SoS) considerations in life
cycle stages of a system. Standard. International Organization for Standardization,
Geneva, CH.

[25] Barbara A Kitchenham and Shari L P�eeger. 2008. Personal opinion surveys. In
Guide to advanced empirical software engineering. Springer, 63–92.

[26] John Klein and Hans van Vliet. 2013. A Systematic Review of System-of-Systems
Architecture Research. In Proceedings of the 9th International ACM Sigsoft Confer-
ence on Quality of Software Architectures (QoSA ’13). ACM, New York, NY, USA,
13–22. https://doi.org/10.1145/2465478.2465490

[27] Johan Linåker, Sardar Muhammad Sulaman, Rafael Maiani de Mello, and Martin
Höst. 2015. Guidelines for conducting surveys in software engineering. (2015).

[28] Mark W Maier. 1998. Architecting principles for systems-of-systems. Systems
Engineering: The Journal of the International Council on Systems Engineering 1, 4
(1998), 267–284.

[29] Mark W Maier. 2006. System and software architecture reconciliation. Systems
Engineering 9, 2 (2006), 146–159.

[30] Mark W Maier. 2009. The art of systems architecting. CRC press.

[31] L Mangeruca, R Passerone, C Etzien, T Gezgin, T Peikenkamp, M Jung, A Alexan-
dre, R Bullinga, S Imad, E Honour, et al. 2013. Designing for adaptability and
evolution in system of systems engineering-DANSEMethodology V2. The Seventh
Framework Programme (2013).

[32] Brian Mekdeci, Nirav Shah, Adam Michael Ross, Donna H Rhodes, and Daniel E
Hastings. 2014. Revisiting the Question: Are Systems of Systems just (traditional)
Systems or are they a new class of Systems? (2014).

[33] Gerrit Muller. 2012. Validation of systems engineering methods and techniques
in industry. Procedia Computer Science 8 (2012), 321–326.

[34] O�ce of the Under Secretary of Defense - AT&L 2008. Systems Engineering Guide
for Systems of Systems. O�ce of the Under Secretary of Defense - AT&L.

[35] Art Pyster, Rick Adcock, Mark Ardis, Rob Cloutier, Devanandham Henry, Linda
Laird, Michael Pennotti, Kevin Sullivan, Jon Wade, et al. 2015. Exploring the
relationship between systems engineering and software engineering. Procedia
Computer Science 44 (2015), 708–717.

[36] Art Pyster, DavidHOlwell, Nicole Hutchison, Stephanie Enck, James FAnthony Jr,
Devanandham Henry, et al. 2012. Guide to the systems engineering body of
knowledge (SEBoK) v. 1.0. 1. Guide to the Systems Engineering Body of Knowledge
(SEBoK) (2012).

[37] UARK Qualtrics. 2019. Qualtrics research suite. Copyright© 2019 (2019).
[38] Per Runeson and Martin Höst. 2009. Guidelines for conducting and reporting

case study research in software engineering. Empirical software engineering 14, 2
(2009), 131.

[39] Sarah Sheard, Rita Creel, John Cadigan, Joseph Marvin, Leung Chim, and
Michael E Pa�ord. 2018. INCOSEWorking Group Addresses System and Software
Interfaces. INSIGHT 21, 3 (2018), 62–71.

[40] Sarah Sheard, Michael E Pa�ord, and Mike Phillips. 2019. Systems Engineering–
Software Engineering Interface for Cyber-Physical Systems. In INCOSE Interna-
tional Symposium, Vol. 29. Wiley Online Library, 249–268.

[41] Raghu Singh. 1996. International Standard ISO/IEC 12207 software life cycle
processes. Software Process: Improvement and Practice 2, 1 (1996), 35–50.

[42] Ian Sommerville. 1998. Systems engineering for software engineers. Annals of
Software Engineering 6, 1-4 (1998), 111–129.

[43] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn Regnell, and
Anders Wesslén. 2012. Experimentation in software engineering. Springer Science
& Business Media.

http://www.compass-research.eu/
http://www.danse-ip.eu/
http://amadeos-project.eu/
https://doi.org/10.1145/2465478.2465490

	Abstract
	1 Introduction
	2 Related work
	3 Study design
	3.1 Study goal and research questions
	3.2 Research method
	3.3 Threats to validity

	4 Results
	4.1 Demographics
	4.2 Reference projects
	4.3 Questions related to RQ1
	4.4 Questions related to RQ2

	5 Discussion
	6 Conclusions
	References

