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With the rapid development of communication technology and the popularization of network, information security has been highly 
valued by all walks of life. Random numbers are used in many cryptographic protocols, key management, identity authentication, 
image encryption, and so on. True random numbers (TRNs) have better randomness and unpredictability in encryption and key than 
pseudorandom numbers (PRNs). Chaos has good features of sensitive dependence on initial conditions, randomness, periodicity, 
and reproduction. �ese demands coincide with the rise of TRNs generating approaches in chaos field. �is survey paper intends 
to provide a systematic review of true random number generators (TRNGs) based on chaos. Firstly, the two kinds of popular 
chaotic systems for generating TRNs based on chaos, including continuous time chaotic system and discrete time chaotic system 
are introduced. �e main approaches and challenges are exposed to help researchers decide which are the ones that best suit their 
needs and goals. �en, existing methods are reviewed, highlighting their contributions and their significance in the field. We also 
devote a part of the paper to review TRNGs based on current-mode chaos for this problem. Finally, quantitative results are given 
for the described methods in which they were evaluated, following up with a discussion of the results. At last, we point out a set of 
promising future works and draw our own conclusions about the state of the art of TRNGs based on chaos.  

1. Introduction

In recent years, with the rapid development of the Internet, 
the requirements for information security in various fields are 
getting higher and higher, and the security issues are getting 
more and more attention [1–5]. In the field of information 
security, encryption algorithm, and key generation are impor-
tant factors of encryption system; they must be unpredictable 
[6–9]. In most cryptographic algorithms, random number is 
an indispensable element, and random number generator 
(RNG) has important applications in the field of information 
security, such as generating parameters of public key crypto-
systems (such as ECC, RSA) or image encryption [10–12].

According to the different random sequence generated, 
random numbers can be divided into two categories, namely 
pseudo-random numbers (PRNs) and true random numbers 
(TRNs), as shown in Figure 1. PRNs [13, 14] refer to the exten-
sion of one seed into another long output sequence by a deter-
mined algorithm, which are generally repeatable, so they are 
widely used in the field of simulation and testing. Unlike PRNs, 
TRNs [15, 16] cannot be generated by pure mathematical 

random algorithms, but only by random physical processes. 
Compared with PRNs, TRNs not only have good statistical 
characteristics but also have good unpredictability. �ey could 
be used in systems with high security requirements.

�e typical TRNG structure can be divided into five mod-
ules: (1) analog random signal is obtained from the entropy 
source; (2) sampling and quantifying the random signal; (3) 
analog-to-digital conversion of the analog signal to output the 
random number sequence; (4) the sequence obtained at this 
time does not necessarily satisfy the uniform distribution, and 
it needs to be processed; and (5) through random number test 
suite, as shown in Figure 2.

In true random number generators (TRNGs), there are 
three main types of entropy sources: thermal noise on resistors 
and capacitors [17, 18], phase jitter of oscillating signals 
[19–21], chaos [22–24] and others, as shown in Figure 1. For 
the TRNGs based on thermal noise, the resistance noise is 
amplified to a suitable range by an ideal amplifier, and then 
processed by a comparator to compare the amplified noise 
voltage with the reference level to obtain a digital random 
signal [17]. In practice, due to the influence of some nonideal 
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factors, such as the limited bandwidth of the amplifier, 
misalignment, periodic noise of the power supply coupled to 
the system, the randomness of the random number sequence 
generated by the system will be affected [18]. For the oscillator-
based TRNGs, the random source is the phase jitter noise in 
the ring oscillator in Complementary Metal Oxide 
Semiconductor (CMOS) circuit [20]. �e quality of the 
random sequence generated by the true random number 
generator is largely determined by the root mean square 
(RMS) value of the phase jitter of the low frequency oscillator 
[21]. But the disadvantage is that it is not suitable for full 
custom integrated circuit (IC), and the randomness of circuit 
implementation is low. Compared with the former two 
methods, the characteristics of chaos, such as nonperiodicity, 
wide spectrum, unpredictability, and sensitivity to initial 
conditions [25–28], are in good agreement with the properties 
of random numbers. �erefore, chaotic theory opens up broad 
prospects for the design and implementation of TRNGs.

�e main contributions of our work are as follows: (1) 
we provide a broad survey of generating methods that might 
be useful for TRNGs with chaos; (2) an in-depth and organ-
ized review of the most significant methods that use chaos 
for TRNGs, their origins, and their contributions; (3) we 
have conducted a comprehensive performance evaluation, 
which collects quantitative indicators. For example, power, 
output bit rate, energy and technology, etc.; and (4) a dis-
cussion about the above results, and a list of possible future 
works that may determine the course of upcoming advances, 
as well as a conclusion summarizing the state of the art of 
the field.

�e remainder of this paper is organized as follows. 
Firstly, Section 2 describes existing TRNG methods based on 
chaos, challenges, and benchmarks. It reviews existing meth-
ods following two kinds of popular chaotic systems based on 
their contributions. �e TRNGs based on current-mode 
chaos is described. Other background concepts such as com-
mon chaotic model definitions are also reviewed. �is section 
focuses on describing the design techniques and highlights 
of those methods rather than performing a quantitative eval-
uation. �en, Section 3 presents a brief discussion on the 
presented methods based on their quantitative results on the 
aforementioned TRNGs. In addition, future research direc-
tions are also laid out. At last, Section 4 summarizes the paper 

and draws conclusions about this work and the state of the 
art of the field.

2. Overview of TRNGs Based on Chaos

Up to date, there are a lot of TRNG structures based on chaos. 
In this section, we supply a brief introduction about the two 
most popular and fundamental structures in of TRNG struc-
tures based on chaos. Both of them are presented according 
to a well thought taxonomy of the research completed in the 
area. We also devote a part of this section to review TRNG 
based on current-mode chaos for this problem.

2.1. TRNGs Based on Continuous Time Chaotic 

System. Continuous time chaotic system is a chaotic system 
based on observation time series, and its state is time-
dependent. �e mathematical model of continuous time 
chaotic dynamic system is as follows:

where � ∈ �� is the state variable and � : �� × �� → ��. 
Common continuous time chaotic systems like Lorenz system 
[29], Chua’s circuit system [30], Jerk system [31], chaotic oscil-
lator [32–34], and many hyperchaotic systems have been pro-
posed [35–37]. �roughout the years, continuous time chaotic 
systems have been mostly focused on neural network, syn-
chronization, secure communication [38–42], and other fields, 
especially the design of TRNGs. For that reason, continuous 
time chaotic circuits are the most abundant ones. In this sec-
tion, we describe the most popular continuous time chaotic 
circuits for TRNGs design, considering continuous time cha-
otic systems that contain any kind of continuous time chaotic 
circuits representation such as Chua’s circuit, Jerk circuit, var-
ious chaotic oscillators, and FPGA.

2.1.1. Chua’s System. Chua’s system is a classical nonlinear 
electronic circuit, which can show the standard double scroll 
chaotic dynamic behavior. It was published by Professor 
Shaotang Cai in 1983. Blaszczyk and Guinee [43] proposed 
a TRNG which was employed by Chua’s circuit and used 
a simple temperature dependent control resistor in the 
oscillator circuit and optimal voltage threshold settings. �e 
randomness attributes of the generator were confirmed via 
PSpice simulation, by the NIST tests for statistical validation. 
Moqadasi and Ghaznavi-Ghoushchi [44] proposed a TRNG 
which based on a new Chua’s circuit that its negative resistor 
was a monolithic CMOS based circuit with 12 transistors. 
�is proposed system also consisted of a sample and hold 
block, an analog to digital converter (ADC) block and a 
linear feedback shi© register (LFSR) block which scrambles 
generated bit stream and increases randomness, as shown in 
Figure 3. When the number of LFSR bits changed from 6 to 32, 
the experiments confirmed that the 6 bits length was optimum 
for LFSR which was better than previous works.

2.1.2. Jerk System. American scholar Sprott [45] proposed 
the Jerk system 

...� = �(�̈, �̇, �), where �̇ = ��/�� is the 
first derivative of position, �̈ = �2�/��2 call acceleration, 

(1)�̇ = �(�, �),
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Figure 1: �e architecture of random numbers generator.
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...� = �3�/��3 call Jerk. Its generalized dimensionless equation 
of state is:

where �, �, � are the state variable, �, � are the system param-
eters, �(�) is a nonlinear term. In (2), the transformation sys-
tem of (�, �, �) → (−�,−�,−�) can remain unchanged. �e 
system is symmetrical about the origin. Jerk system is charac-
terized by concise equation form and easy circuit 
realization.

In 2018, Wannaboon et al. [46] presented a fully custom-
ized design of TRNG which implemented on a 0.18 µm CMOS 
technology with unique composition of three major compo-
nents, chaotic jerk oscillator, Δ∑ modulator, and simple pre/
post-processing. �e block diagram of the proposed TRNG is 
shown in Figure 4. �e chaotic Jerk circuit provided chaotic 
signals with strong robustness and randomness, and exhibited 
the unique characteristics of smoothly balanced-to-unbal-
anced alternation of double scroll attractors. In order to 
improve the resolution of random bit sequence, the continuous 
time second-order Δ∑ modulator was introduced as the 
mixed signal interface without additional clock. �e simple 
structure of shi©-registers was implemented as a post-process-
ing process. �e bit sequence of the proposed TRNG success-
fully passed all statistical tests of NIST SP800-22 test suite, and 
the final output bit rate was 50 Mbps. However, the slight 
uncertainty of the initial conditions, which is unavoidable in 
IC implementation, leads to a very large uncertainty a©er very 
short time. Because of this, the system behavior can only be 
predicted for a short time period.

2.1.3. Boolean Chaotic Oscillator. Boolean chaos [47] is 
a phenomenon in an autonomous network which shows 

(2)
{{
{{
{

��/�� = �,
��/�� = �,
��/�� = −�� − �� + �(�),

nonrepeating chaotic oscillations, exponential sensitivity 
to initial conditions, and has a broadband power spectrum. 
Boolean chaotic oscillator includes Boolean-like state 
transitions with a fast transition time, and a feedback loop 
with incommensurate delay inputs. �e dynamics of nodes 
network is described by:

where ��� is the delay time from the �th node to the �th node, 
�� (�) is the Boolean logic state at the �th node at time �, and 
�� is the logic function for the �th node. Park et al. [48] 
reported on a TRNG whose randomness derived from a 
Boolean chaotic oscillator, as shown in Figure 5. Using a 
CMOS 0.35 µm process, the paper built a CMOS Boolean cha-
otic oscillator, which consisted of a core chaotic oscillator and 
a source follower buffer. �e generated random bit sequences 
passed the widely accepted statistical tests used for evaluating 
cryptographic random number generators.

2.1.4. Jitter Booster Circuit. �e nonperiodicity of a chaotic 
signal implies that the signal has irregular temporal zero 
crossings as in the case of highly jittered oscillations. �e idea 
of using chaos for enhancing jitter can be an alternative to the 
multiring oscillator sampling approach. Çiçek and Dündar 
[49] presented a chaos based integrated jitter booster circuit for 
multiple oscillator sampling TRNG architecture. �e proposed 
circuit provided an alternative method for enhancing jitter 
using the chaotic dynamics produced by nonlinear coupling 
of two ring oscillators, which required fewer components.

2.1.5. Coupled Chaotic Oscillator. Coupled chaotic oscillators 
are very suitable for monolithic implementation and capable 
of operating at very high frequencies when appropriate design 
considerations and experience are exercised. In [50], two 
integrated continuous-time chaotic oscillators based on cross-
coupled −�� oscillators were presented and their application 

(3)��(�) = ��[�, �1 (� − ��1), . . . , ��(� − ���)],
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Figure 2: �e typical TRNG structure.
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Figure 3: True random number generation from the Chua’s circuit core proposed by Moqadasi and Ghaznavi-Ghoushchi.
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Figure 4: Block diagram of the TRBG with sigma-delta modulation of chaotic jerk signals proposed by Wannaboon et al.
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sequence {��, � = 0, 1, 2, ⋅ ⋅ ⋅}. �is sequence is called a trajec-
tory of the discrete time dynamic system. Classical discrete 
time chaotic systems include logistic mapping, tent mapping, 
Bernoulli mapping, and so on. FPGAs can be used to imple-
ment discrete time systems as well, but as far as the author 
knows, there are few literatures about the realization of TRNGs 
based on discrete time chaotic systems by using FPGA, so 
there is no detailed introduction here.

2.2.1. Logistic Mapping. A very simple but widely studied 
dynamical system is logistic mapping, which originates 
from the insect population model. Its definition has many 
forms: (1) ��+1 = ��� (1 − ��), when 3.5699456 ⋅ ⋅ ⋅ ≤ � ≤ 4  ,  
logistic mapping works in chaotic state; (2) ��+1 = 1 − ��2� , 
when � ∈ (1.5437, 2), logistic mapping works in chaotic state; 
(3) ��+1 = ��� − �2�, when � ∈ (3.5699, 4), logistic mapping 
works in chaotic state. It can be seen that logistic mapping is 
actually a first-order equation, which requires initialization 
conditions and control parameters. �erefore, it is easy to 
implement in hardware, and people o©en use this mapping 
to design TRNGs.

In 2015, Avaroğlu et al. [56] used logistic map in post-pro-
cessing to ensure that numbers generated by RO-based TRNG 
were of high quality. In order to observe the influences of the 
logistic map, four different scenarios considering RO-based 
TRNG structure were studied. [57] proposed a TRNGs with 
graphics processing units as the source of entropy, unpredict-
able behavior of which was managed by computing logistic 
maps, and high throughput achieved 447.83 Mbit/s. Tuncer 
[58] applied the random challenges from the logistic map to 
physical unclonable functions based on ring oscillator 
(RO-PUF) to generate random numbers in real time in FPGA, 
which prevented the PUF from being attacked (cracked) and 
improved the randomness of the random numbers. Because 
the value distribution of logistic mapping points is too cen-
tralized and blank bands appear in other regions, the uniform 
distribution characteristics of the mapping points are poor, so 
that logistic mapping needs post-processing (Von Neumann 
corrector [59], XOR correctors [60], one-way hash function 
[61], etc.) to achieve uniform distribution. At the same time, 
logistic mapping reduces the speed of generating random 
numbers and has a higher tolerance for the performance of 
the FPGA.

2.2.2. Tent Mapping. Tent mapping is a piecewise linear 
one-dimensional mapping with uniform probability density 
function (PDF), power spectral density (PSD). And the 
iteration speed of tent mapping is faster than that of Logistic 
mapping. Angulo et al. [62] constructed a discrete chaotic 

to random bit generation was described. In [51], a TRNG 
design was proposed which employed a dual coupled oscillator 
architecture. �is structure improved the output throughput 
and solved the external interference problems. �e frequency 
of a slower clock modulated the chaotic oscillator output 
signal, and with the rising edge of the chaotic modulation 
clock, a faster clock was sampled. �e proposed design fulfilled 
the tests used in both the FIPS-140-2 and the NIST-800-22 
random number test suites.

2.1.6. FPGA-Based. Considering technologies mentioned 
above, the highest performance could be obtained 
from IC-based chaotic generators. However, IC-based 
implementations do not promise a flexible use. In addition, 
the cost of prototyping and testing such systems will be high. 
FPGA chips are able to run concurrently and have relatively 
flexible architecture. �e cost of design and test cycles of 
FPGA chips is particularly low [52]. Because of its high-speed 
and high-quality random generation, FPGA has become a 
popular platform for implementing random generators or 
complete cryptographic schemes. Koyuncu and Ozcerit 
[53] modeled Sundarapandian-Pehlivan chaotic system and 
simulated in three distinct platforms to show the advantages 
of FPGA-based chaotic oscillator with respect to alternative 
solutions. �e chaotic system was modeled by the Runge-
Kutta (RK4) in hardware description language (VHDL) and 
the model was synthesized and tested on Xilinx Virtex-6 
FPGA chip, the block diagram of an FPGA based TRNG 
designed is illustrated in Figure 6. �e designed chaotic 
oscillator was tested by TRNG and the maximum operating 
frequency was 293 MHz with a speed of 58.76 Mbit/s. Akgul 
et al. [54] used the 3D chaotic system without equilibrium 
points as the source of entropy built the chaotic system model 
with FPGA, then designed and implemented the chaotic 
oscillator with VHDL and RK-4 algorithm, and finally chose 
the most complex bits of binary numbers to generate random 
numbers.

2.2. TRNGs Based on Discrete Time Chaotic System. Discrete 
time chaotic systems also exist widely in the field of nonlinear 
science, such as physics, biology, and chemistry [55], especially 
in the generation of TRNs. One-dimensional discrete time 
nonlinear dynamical systems are defined as follows:

where ��, � = 0, 1, 2, ⋅ ⋅ ⋅, are state. And � is a mapping that 
mapping the current state �� to the next state ��+1. If we start 
with an initial �0 value and apply � repeatedly, we get a 

(4)��+1 = �(��),
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Figure 5: Schematic diagram of random number generation using CMOS Boolean chaotic oscillator.
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extensible mapping � : [−1, 1]|→ [−1, 1] is divided into n 
sub-intervals ��, � = 1, 2, ⋅ ⋅ ⋅ , �. For any interval �� and ��, or 
�(��) ∩�� = Ø or �� ⊂ (��), then the mapping � is also 
called the PWAM mapping of the piecewise interval. Milos 
and Pavol [67] proposed PWAM mapping to the switched 
capacitor based hybrid signal PSoC devices to reduce the 
impact of circuit imperfections on the quality of random 
bit streams. Pareschi et al. [68] proposed two methods of 
rearranging a pipelined ADC to generate random bit stream 
using discrete chaotic circuit as entropy source. �e two 
methods were compared with the traditional methods. �e 
CMOS technology of 0.35 µm and 0.18 µm were used to 
realize the two methods, respectively. PWAM mapping is 
better than traditional mappings in security, randomness, and 
other aspects, but its equations and implementation are more 
complex than traditional mappings.

2.2.5. Discrete Time Chaotic Oscillator. Discrete time chaotic 
oscillator is one of the most interesting topics of research 
and the designing of the circuit been extensively studied for 
many decades. A common structure of discrete time chaotic 
oscillator is shown in Figure 7. It can be seen that this chaotic 
oscillator consisted of three parts of circuit, a nonlinear 
circuit to represents the chaotic map, two sample-and-hold 
circuits (S/H) to track and store the signals as a memory and 
the buffer to carry signals to the next stage implemented by a 
two-stage operational amplifier (op-amp). Dhanuskodi et al. 
[69] had proposed a TRNG based on chaotic ring oscillator. 
In order to pass the statistical test, XOR was used to post-
process the random number generated by the chaotic ring 
oscillator. �e output bitstream of TRNG implemented in 
45 nm CMOS process was tested by NIST test suite and it 
passed 11 tests with throughput of 127 MB/s. Jiteurtragool et 
al. [70] proposed a TRNG for discrete time chaotic oscillator 
based on 0.18 µm CMOS technology. A chaotic oscillator 
was designed by using three transistor mapping circuits and 
approximating V-shaped mapping as a chaotic nonlinear 
function. In order to improve the randomness of the output 
signal, the double oscillator and XOR were used to sample 
the random signal generated by the chaotic oscillator. �e 
random number generated by the processing technology 

oscillator with tent mapping, buffer and clock generator, and 
then generated random numbers by 8 bit LFSR corrector. A low 
power real random number generator based on discrete-time 
chaos was designed and implemented using standard CMOS 
AMS 0.35 µm process. Cicek et al. [63] used a one-dimensional 
discrete-time skew tent map as the entropy source to design 
TRNGs. A practical information measurement method was 
used to determine the maximum allowable parameter range, 
and a current mode skew tent circuit was designed to verify 
the method. Teh and Samsudin [64] proposed a new AEAD 
(authenticated encryption with associated data) scheme that 
was implemented with true random number generators based 
on the chaotic tent map. However, there were small periodic 
and unstable periodic points in the tent iteration sequence, 
it would degrade the random performance and reduce the 
security.

2.2.3. Bernoulli Mapping. Bernoulli mapping is a linear 
mapping consisting of two piecewise linear parts, which 
are separated by discontinuous points and are o©en used 
in random number generators. In 2014, Cicek et al. [65] 
proposed a dual entropy core TRNG architecture, by using 
Bernoulli mapping as the entropy source, and using FPGA to 
successfully design and implement the proposed architecture. 
Compared with the single entropy core, this architecture has 
a wide range of control parameter values, and the stochastic 
performance is better. However, the single Lyapunov index 
and limited entropy of bernoulli mapping leads to higher 
cost. In 2019, Hsueh and Chen [66] proposed an ultra-low 
voltage chaos-based true random number generator for IoT 
applications. �e authors used folded Bernoulli mapping to 
generate random numbers. In the switched-capacitor chaotic 
circuits, bulk-driven amplifiers were used to alleviate gate 
leakage issue, two-stage comparators were used to increase 
voltage headroom.

2.2.4. Piece-Wise Affine Markov (PWAM) Mapping. PWAM 
mapping is piecewise one-dimensional Markov mapping 
which has infinite folding property with uniform distribution 
in finite intervals to enhance robustness in simulation 
implementation. �e state interval [−1, 1] of an exact 
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also be used in TRNG. �e application of discrete time chaos 
is well known, but there are few experimental reports on inte-
grated circuits, most of them use FPGA to realize TRNGs. 
Continuous time chaos is easy to integrate, but it needs to be 
discretized before sampling. TRNG based on discrete time 
chaos dynamically controls the evolution and bit generation 
speed by adjusting the clock signal. Table 1 summarizes the 
implementation methods of chaos-based TRNGs in recent 
years.

According to the random bit rate requirement of output 
per second, it can be defined as:

As can be seen from Table 1, by comparing the output bit rates 
of all continuous time chaotic oscillators, it can be seen that 
the speed of Boolean chaotic oscillator in [48] is much higher 
than that of other TRNGs based on continuous time chaotic 
oscillators. Meanwhile, the power of Boolean chaotic oscillator 
in [48] is much larger than that in [47]. Because of the low 
frequency and narrow bandwidth of chaos, TRNG is based on 
the traditional chaotic oscillator as the source of entropy, such 
as Chua’s circuit [44], Jerk circuit [46], no-equilibrium chaotic 
system [54], etc. By comparing the output bit rates of all 
TRNGs based on discrete time chaos, we can see that the speed 
of [57] is much faster than that of other chaotic output bits, 
because it is realized by CPU. In addition, [67] provides higher 
throughput than most designs in lower regions, reaching 
127 Mbit/s. In [69], besides the inherent chaos, the oscillator 
also collects physical noise, and uses the combination of two 
light sources to improve the output speed of the oscillator. 
Compared with the TRNG’s area of the same CMOS process, 
under 0.35 µm CMOS process in [48], [62] and [69], the largest 
area is [69]. �e reason is that the authors used eight-stage 
pipeline ADC and two-stage pipeline ADC to design circuits. 
ADC is o©en used to design chaotic maps to generate random 
numbers, speed is better, but it takes up a large area.

4. Conclusion and Future Work

To identify the state-of-the-art in the area of TRN and to 
find out what we know about TRNGs based on chaos, we 
conducted and presented in this article a systematic liter-
ature mapping. The purpose of this article is to help readers 

(5)Bit Rate = Power Dissipation (mW)
�� (nJ/bit)

.

was evenly distributed, and the final output bit rate was 
23 MB/s.

2.3. TRNGS Based on Current-Mode Chaos. One of the main 
drawbacks of chaotic RNG integrated circuits is the robustness 
of the system. Chaotic nonlinear finite difference equation 
(FDE) is very sensitive to the coefficients of the equation 
[71]. �erefore, the circuit for realizing chaotic FDE must 
be very precise and have narrower boundaries than other 
analog applications. Small variations in coefficients can also 
be attributed to external effects, such as power supply voltage, 
temperature, and process variations [72].

Many chaotic circuits are implemented in switched capac-
itor voltage-mode. Contrary to current-mode, voltage-mode 
circuits require large capacitors and high gain amplifiers, 
which consume both power and area [73]. In addition, in sub-
100 nm technology, the leakage current of the capacitor is 
larger, and its capacitance value has higher dispersion, which 
reduces the robustness of voltage mode design [74–77]. In 
recent years, the realization of chaotic oscillation circuits by 
current mode devices has become a new research direction, 
such as current followers (CF) [78], second-generation current 
conveyor (CCII) [79], current controlled current conveyor 
(CCCII) [80], current-feedback operational amplifier (CFOA) 
[81], Operational Transconductance Amplifier (OTA) [82] 
and unity-gain cells (UGCs) [83], etc. Katz et al. [84] proposed 
a robust TRNG based on a differential current-mode chaos 
which was implemented on 90 nm CMOS-SOI technology. 
�e differential design also showed excellent robustness to 
power supply voltage, temperature and process changes. In 
order to verify that the circuit could be used as a white noise 
generator, according to the suggestion of Federal Information 
Processing Standard (FIPS), the simulation results were tested 
and verified on hardware.

3. Discussion

In the previous section we reviewed the existing TRNGs based 
on chaos from a literary and qualitative point of view, i.e., 
Figure 8 shows a graph of the reviewed methods for the 
TRNGs based on chaos. In this Section we are going to discuss 
the merits and demerits of TRNGs based on chaos.

Discrete time chaos has long been used in TRNG, but 
recent studies have shown that continuous time oscillators can 

f(x)

Non-linear circuit

S/H

C1

S/H

C2

Xn f(Xn) Xn+1

Buffer

Φ1 Φ2

Figure 7: A common structure of discrete-time chaotic oscillator.
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By classifying the entire body of knowledge, this survey 
paper “mapped” the body of knowledge on TRNGs based on 
chaos. We systematically classified a large set of 85 papers and 
investigated several review structures under three groups. �e 
first group investigated the contribution as well as the TRNGs 
based on continuous time chaotic systems. �e second group 
investigated the mappings for TRNGs based on discrete time 
chaotic systems. �e third group investigated the TRNGs 
based on current-mode chaos.

(including practitioners and researchers) conduct the most 
comprehensive survey in the field of TRNG based on 
chaos. In the end, the research results are discussed, which 
provides useful insights for future research directions and 
open issues in this field. From this study, we can draw a 
general conclusion that TRNGs based on chaos has 
obtained many successful cases, but it is still an open prob-
lem, and its solution will prove very useful for wide 
application.

Discrete time 
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map

PWAM 

map

Chaotic 

oscillator

Others
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chaos

continuous 

time 
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circuit
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circuit
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Jitter 
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FPGA -
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Others

TRNG 

based on 

chaos

Figure 8: A graph of the reviewed methods for the TRNGs based on chaos.

Table 1: Summary of TRNGs methods based on chaos.

Classification
Author and 

reference
Area (mm2)

Power 
(mW)

Out bit rate 
(speed) 
(Mbit/s)

Energy  
(PJ/bit)

Post  
processing

Test suite Technology

Chua’s system Moqadasi [44] N/A N/A 2.02 N/A 6 bit LFSR FIPS 140-1
0.18 µm 
CMOS

Jerk system Wannaboon [46] 0.037689 1.32 50 26.4
Von 

 Neumann
NIST SP800-22 

and TestU01
0.18 µm 
CMOS

Boolean 
chaotic 
oscillator

Park [48] 0.057 26.1 300 87 XOR NIST
0.35 µm 
CMOS

Coupled 
chaotic 
oscillator

Ozoguz [51] N/A N/A 2 N/A
Von Neu-

mann
FIPS 140-1 and 

NIST
0.35 µm 
CMOS

FPGA-based Akgul [54] N/A N/A 4.59 N/A XOR
FIPS 140-1 and 
NIST SP800-22

FPGA

Logistic 
mapping

Avaroglu [56] N/A N/A 20 N/A
RO and 
 inverter 
 number

NIST SP800-22 
and TestU01

FPGA

Logistic 
mapping

Teh [57] N/A N/A 447.83 N/A
XOR and32-
bit addition

NIST SP 800-22 CPU

Tent mapping Angulo [62] 0.07 0.15 0.25 800 8 bit LFSR NIST
0.35 µm 
CMOS

Bernoulli 
mapping

Cicek [65] N/A 125 1.5 83300 N/A NIST SP800-22 FPGA

PWAM 
mapping

Pareschi [68] 0.752 29 40 0.725 N/A NIST SP800-22
0.35 µm 
CMOS

Discrete-
timechaotic 
oscillator

Dhanuskodi [69] 93.1 1.0967 127 8 XOR NIST
0.45 µm 
CMOS

Current-
modechaos

Katz [80] 0.02 0.8 25 32 N/A FIPS 140-2
0.09 µm 
CMOS
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 [2]  K. Gu, W. Jia, G. Wang, and S. Wen, “Efficient and secure 
attribute-based signature for monotone predicates,” Acta 
Informatica, vol. 54, no. 5, pp. 521–541, 2017.

 [3]  Z. Xia, Z. Fang, F. Zou, J. Wang, and A. K. Sangaiah, “Research 
on defensive strategy of real-time price attack based on 
multiperson zero-determinant,” Security and Communication 

Networks, vol. 2019, Article ID 6956072, 13 pages, 2019.

 [4]  K. Gu, N. Wu, B. Yin, and W. Jia, “Secure data query framework 
for cloud and fog computing,” IEEE Transactions on Network 
and Service Management, 2019.

 [5]  K. Gu, Y. Wang, and S. Wen, “Traceable �reshold Proxy 
Signature,” Journal of Information Science and Engineering,  
vol. 33, pp. 63–79, 2017.

 [6]  S. He, W. Zeng, K. Xie, H. Yang, M. Lai, and X. Su, “PPNC: 
privacy preserving scheme for random linear network coding 
in smart grid,” KSII Transactions on Internet and Information 
Systems, vol. 11, no. 3, pp. 1510–1533, 2017.

 [7]  K. Gu, N. Wu, B. Yin, and W. Jia, “Secure data sequence query 
framework based on multiple fogs,” IEEE Transactions on 
Emerging Topics in Computing, 2019.

 [8]  K. Gu, K. Wang, and L. Yang, “Traceable attribute-based 
signature,” Journal of Information Security and Applications, 
vol. 49, pp. 1–13, 2019.

 [9]  K. Gu, X. Dong, and L. Wang, “Efficient traceable ring 
signature scheme without pairings,” Advances in Mathematics 
of Communications, 2019.

[10]  G. Cheng, C. Wang, and H. Chen, “A novel color image 
encryption algorithm based on hyperchaotic system and 
permutation-diffusion architecture,” International Journal of 
Bifurcation and Chaos, vol. 29, no. 9, p. 1950115, 2019.

[11]  M. Long, F. Peng, and H. Y. Li, “Separable reversible data hiding 
and encryption for HEVC video,” Journal of Real-Time Image 
Processing, vol. 14, no. 1, pp. 171–182, 2018.

[12]  F. Peng, X. W. Zhu, and M. Long, “An ROI. privacy protection 
scheme for H.264 video based on FMO and chaos,” IEEE 
Transactions on Information Forensics and Security, vol. 8,  
no. 10, pp. 1688–1699, 2013.

[13]  F. Yu, L. Li, B. He et al., “Design and FPGA implementation 
of a pseudorandom number generator based on a four-wing 
memristive hyperchaotic system and Bernoulli map,” IEEE 
Access, 2019.

[14]  A. A. Rezk, A. H. Madian, A. G. Radwan, and A. M. Soliman, 
“Reconfigurable chaotic pseudo random number generator 
based on FPGA,” AEU-International Journal of Electronics and 
Communications, vol. 98, pp. 174–180, 2019.

[15]  R. S. Hasan, S. K. Tawfeeq, N. Q. Mohammed, and A. I. Khaleel, 
“A true random number generator based on the photon arrival 
time registered in a coincidence window between two single-
photon counting modules,” Chinese Journal of Physics, vol. 56, 
no. 1, pp. 385–391, 2018.

[16]  M. M. Abutaleb, “A novel true random number generator based 
on QCA nanocomputing,” Nano Communication Networks,  
vol. 17, pp. 14–20, 2018.

[17]  E. Kim, M. Lee, and J.-J. Kim, “8.2 8 Mb/s 28 Mb/mJ robust 
true-random-number generator in 65  nm CMOS based on 
differential ring oscillator with feedback resistors,” in 2017 
IEEE International Solid-State Circuits Conference (ISSCC),  
pp. 144–145, IEEE, San Francisco, CA, USA, 2017.

[18]  M. Drutarovsky and P. Galajda, “A robust chaos-based true 
random number generator embedded in reconfigurable 
switched-capacitor hardware,” in 17th International Conference 
Radioelektronika, pp. 1–6, IEEE, Brno, Czech Republic, 2007.

In recent years, it has been proved that continuous time 
chaotic systems can be used in the design of TRNGs. Because 
the number of positive Lyapunov exponents of entropy sources 
is limited, so hyperchaotic systems used in TRNGs is one of 
the important development directions in the future. It can be 
seen that PRNGs based on discrete-time chaos have developed 
from one-dimensional to two-dimensional and multi-dimen-
sional, so the design of TRNGs using multi-dimensional dis-
crete-time chaotic map is also the future research direction.

�e current-mode devices have good frequency gain char-
acteristics and the bandwidth of these kind of devices are 
almost independent of gain, so there are no need to weigh the 
gain and bandwidth in the design circuit, which can improve 
the working frequency of the circuit. �erefore, using current 
mode devices to realize TRNGs have gradually become a new 
research direction.

Recently, a TRBG based on a memristive chaotic circuit 
was proposed in [85]. �e proposed TRBG structure used a 
memristive canonical Chua’s oscillator and a logistic mapping 
as the entropy source, while the XOR function was used for 
post-processing. It can be seen that TRBGs based on memris-
tive chaotic system and multi-entropy sources will be an 
important development direction in the future.

As future work, we are committed to improving the out 
bit rate, randomness and development cost of TRNG solutions 
and applications. �ere are three very important research 
groups, many of which are under development based on chaos 
of current mode devices or memristive chaotic system or mul-
ti-entropy sources, like combination of continuous-time cha-
otic system and discrete-time chaotic system. We are currently 
analysing how to study different solutions and other sugges-
tions in these approaches.
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