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A survey on two model equations for
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In this paper we shall discuss again the temporally global problem of the two
model equations treated in [5] and [6]. The notation to be used here is similar to
that in [5] and [6].

§1. On the generalized Burgers’ equation

For the initial-value problem of the generalized Burgers’ equation

0 o 0* 0
—u(x, t)= v(x, t)—v-—u,
ot (. 1) o(x, 1) ox* >, 1) ox
(1.1) %p(x, t)+ai(pv)=0, (v, one-dimensional velocity; p, density (scalar
x

quantity);
x e R, spatial variable; ¢, temporal variable (=0); g positive constant),

(1.2) {v(x, 0)=1v,(x) € H***,

p(x, 0)=py(x) € H'**, (0<p,=inf p, < 0, < 5o=|0,|” < + o),
we have already obtained ([4], [5], [6]):

Theorem 1.  For some T € (0, + o), there exists a unique solution (v, p) of (1.1)
—(1.2) belonging to H% * X By+e.

Moreover, we have a result that there is a unique temporally global solution
(v, p) of (1.1)~(1.2) belonging to H% *X Bt'* for an arbitrary T e (0, + o) under
the condition that v, is to be represented as

(1.3) Uy = Upy + Ugz(Vos» Uz € H**"; v <0, Up, € L,(RY)).

We shall show here the existence of a unique temporally global solution of (1.1)-
(1.2) such as mentioned above, without any additional conditions. For this purpose
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it is required to have a priori estimates for (v, p) in H%"*X By,
Now, if (v, p) is a solution of (1.1)-(1.2) belonging to H3'*XBL= for Te
(0, 4 ), then
¢
(1.4) e, )= piGe, D) exp { = [[ vulxtes x, 1), )],
0

where x(z; x, t) satisfies

i;‘c(f; x, ) =v(x(z; x, 1), 7),
dr

(1.5)

x(t; x,t)=x(r € [0, T))
and
(1.6) x(x, 1)=x(0; x, t).

The transformation (x,=x,(x, t), t,=1¢) from R*X[0, T] into itself is obviously one-
to-one and onto. We call (x,, #,) the (v-)charcteristic co-ordinates ([4], [7]). We de-
fine by use of the above co-ordinates

1.7 0(xos 2) =V(X(ts; X0, 0), t=1,), etc.

Then, (1.1)-(1.2) is transformed into

b o(x » t)= = ( 6" ) s
O () \ L (X, 1)

(1.8) 1 "
ol 1) =pe) > (0= o 1))
(1.9) (0, xo) =vo(x,) € H**",

where the suffixes #, etc. denote differentiation in ¢, etc., respectively. Here, we note
that

e-tlv:lgwéﬁz_l__:exp {-Jw vx(x(—;; X, t), z')df},
ox l+w 0
(1.10) |

@

<et:1{”  {e Hir,

€ Byt (thus, € H; ).

It is already known ([4], [5]) that, in order to have a priori estimates for (v, p) in
H% = x B+, it suffices to have those for |v|{?, [p|, |o7'|$”. It is obvious from (1.1)
—(1.2) that

1.11) [V < v, |,

Thus, it remains to have a priori estimates for |p|{” and |p~'|{, accordingly those for

(0) and [1+ | (cf. (1.8)). Now, we put

T

} 1
14w
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@ = 0 Po(x(/)) N D ’
(1.12) [Y %, ’o)—L Ta {va(xa) — 0(xs, 2)}dxg

—log (1+w(a, t,)).
Then, by (1.8), Y satisfies

S(Y“)to=— sy .t ((Ya)">,o_ W

l—l-w— l+w O 4w’

i Yo(x,, 0)=0, (( Ye), — % (0 — 6)).

(1.13)

Obviously, Y* satisfies Tacklind’s condition. Therefore, for any @ and @’ € R, Y=
Y%. Thus, we define

(1.14) Y=Y*=Y"%.
We remark that

(1.15) Y (% 1) = Y(a, t)+ f " 0o(y,— f)dx,
o p

and that, by (1.13),

(1.16) Y,,=(—log (14 )),.

Thus, we have

(1.17) 1J1rw —e¥

From (1.10) and (1.17) follows that

(1.18) Y 1) = — [ v.((e3 x, 1), e A
From above, we have

(1.19) 1Y(, )<Y P<Z|v[f"- T, (%, &[0, T].

By (1.17), it suffices for us to have a priori estimates for |e¥ ¥ and |e"Y | (or | Y [{).
By (1.15), it holds that, for an arbitrary number a € R},
1+(l)(x0, t0)= e—Y(zo,lo):.e-Y(a,to)
1.20 2o
(1:20) X exp {—f ﬁ(vo—ﬁ)dxé}.
o p

Therefore,
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j “ (1t w)dxy= I+ j : (Ba+1, ©)— B(a, D)}dx
azn °

a+l T
=g Y(a:to) xj exp {—j &(vo—i})dx(,}dxo, (1>0).
a a {_[
First, take /=1. Then, we have an inequality
(1.22) 142|0,]@- T=e Y@ x exp {—E&Jw,,rw}.
7
Hence, it holds that
(1.23) e T WS (142 [0 T) exp {20 o],
7
Next, take /=142 |v,|”-T. Then, we have
a+1+2|vg|T
(1.24) 1< f (1+ w)dx,.

a

Thus, it holds that
(1.29) e < (142 T) exp {(1+2 |0 1) 2 v},
Qo

By (1.23) and (1.25), we have a priori estimates for |p|{” and |p~'|{". From the dis-
cussion made above follows:

Theorem 2. There exists a unique temporally global solution (v, p) of (1.1)-(1.2)
such that it belongs to H% “X By for any T € (0, + o).

§2. On the generalized Burgers’ equation with a pressure model term

Here, we shall discuss the Gauchy problem of the following system of differential
equations

vt(x> t): H vzz(xa t)_v'va:—Kp_x’
2.1 p(x, 1) e
px, 1)+ (pv),=0, (K, positive constant; x € R, 1=0),

u(x, 0)=vy(x) € H***, p(x, 0)=py(x) € H'"* (0<Py=py =0, < + o,

2.2) {
of. (1.2)), g, € Lo/RY).

In order to show that there exists a unique temporally global solution of (2.1)-(2.2)
such as discussed in § 1, it suffices to obtain a priori estimates for |v|{, |p|?”, and
|0, where (v, p) is assumed to be a solution of (2.1)-(2.2) belonging to H7"* X
Blr=for T e (0, + o). This is based on reasons analogous to those in §1 and on
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the fact that —p~'-p, is to be expressed in the following way (cf. [6], [7])
= o (£ ), ) — o0 v, 1)
o Oo
X exp {—kpj x,(z; x, t)“dz’}—kft exp {—kp(x, 1)
1] 0
xr x(t'; x, t)"dz"} X {p(x, Hu(x(z; x, t), 7)

(2.3) XX (z; %, 1)1 — (2—‘;)(%(36, 1))

X exp {—Io v (x('; x, 1), z")dr'}}dr], ( =%),

<N.B: (%, 1) = oo, t))%: o(x(z; x, 1), 7) X Eules ¥, z)).

Now, we assume that (v, p) € H7 X B}« satisfies (2.1)~(2.2). Then, by ex-
pressing (2.1)-(2.2) in the (v-)characteristic co-ordinates, we have

D K
24 {putr =t L) — (o) e
@9 ol T Po(xo) l4w /2 py \1+o /2 P I+o

(2.5)  0(xo, 0)=0y(x,) € H'*, (oo € H'** (O<(_30§—PO§F_70< 4 o0} Pt; e L(RY),

where we note that (0, ¢) belongs to H3**X B}*". Hence, { is expressed in the fol-
lowing way

6(36'0, to):I G(xO» ty; 5’ O)UO(f)d‘E

2.6) [ aef Gt f)—<

1+a)) 4,

where G(x,, 1,; &, 7) is the fundamental solution of (2.4) as alinear equation. More-
over, noting that

27 ( lﬁ—ow )ez( lfl—ow —p°+p°)e=_(%>e+pé(5)’

we have

Joaefuon (o) ae= e L (2

X —"&ergf dfj Ko ge—1 1.
14w 0 R1 0o

),

(2.8)

As for I, it holds that
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e[ ] e (),
fos® [ 06, e [[ < [ s opienae],
(N.B.: Pl = (Poﬁ—r_w ﬁ‘o‘/’(&/)dg)e)
Sl ]

_ _{;_[po(xo) IRCRCE [z [" o e

2.9

~["ac| Gt nie Do 0o, e jaz |

Hence, it follows that

(0)
. [0

ISl + K|
Do

(2.10) - .
2K 00 ol ) [, 101 d. (0, T,

Thus, we have

lvlgg)élvol(m_ecor_l_i(_

0

7 |(0;
o |

Oo

=) (<), €D/ T/ C=2E (pot e )

(1)

2.11)

Taking (2.4) into consideration, we define, for an arbitrary number a € R',

Q12 Y(x, zo)zj”" B8 (v, — B)dx—log (1+w(a, 1))+ j K o gy
o p o pu l+o(a, ty)

Y* satisfies the relation

(Ya.) — )2 <(Ya)zo) _U(;—kpoz”‘ﬁzo'FkPU
o 14w 0o z0 14w 14w ’

Y(x,, 0)=0, ( =%)

(2.13)

Y satisfies Ticklind’s condition. Therefore,
2.14) Ye=Y¥=Y (for any a and a’ € RY).

Here, we note that, for an arbitrary a € R',
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2.15) Y (%, )= Y(a, 1)+ f " £y, — B)dx.
«p

From (2.13) follows the relation

{(1 +a’)to+(1 +w)Y,,,=kp0,

(2.16) (14 w)(x,, 0)=1.

Hence, we have
to

2.17) () =e "o {1 tkpx)- " ereadz).
(]

Thus, for an arbitrary and fixed a ¢ R',
e¥( @t (14 w(x, t,))=exp {—J:o %(vo—v)dx(’,}
@.18) % [1 +hou(x)- L dtlet s
xexp {[[7 Eoua) — 0 cpaif| . 0=

Therefore, by integrating in x, both sides of (2.18) over a closed interval [a, a+/]
(I>0) we have

0<)e o {1 + L (ba+1, 9)—0(a, f))df}

@.19) )
=[x exp {~ [ Lo@— D)t} <[+ L
« P

a

Take I=1+2C,(T)T=L(T). Then, we obtain an inequality

¥ @ < [(T) exp {E_L@q vo|© + CI(T))}

(2.20) —#L to

x[1+8-exp {EED quo oyl [ ereoary].  0=n=D).
P 0

Thus, for an arbitrary a € R', we have

to _1
oy  (Ito@ to))"=e”°"°’(1+kpo(a)' J 0 e”““’dr)
§eY(u,to)__<_C2(T)(< + OO)’ (CZ(T)/' as T/‘).
Next, seeing that, by (2.13), the following equality holds

Y(xO’ tO) Jto dT G('an to; 59 T)kpo vods’
0 R1 14w
(2.22)

(G is the fundamental solution of (2.13) as a linear equation),
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we have
_ , 1 @
(2.23) | Y16 < (kpo+]| o] )t -
4o |,

Thus, it holds that

(I+w)<exp (| Y[)-(1+kpots-exp (| Y [))

(2.24)

SC(TYK+ o), (C(T) as T ).

By the discussion made above, we obtain:

Theorem 3. There exists a unique temporally global solution (v, p) of (2.1)~(2.2)

such that it belongs to Hy “X BYt* for any T e (0, 4 o).

* %k k % %k %k % %k % k% *x x

Finally, we add that Kazhikhov and Shelukhin ([9]) have recently obtained a

good result contributing to the study of our related problems.
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