A survey on two model equations for compressible viscous fluid

By

Nobutoshi Itaya

(Communicated by Prof. M. Yamaguti, Feb. 25, 1978)

In this paper we shall discuss again the temporally global problem of the two model equations treated in [5] and [6]. The notation to be used here is similar to that in [5] and [6].

§ 1. On the generalized Burgers' equation

For the initial-value problem of the generalized Burgers' equation

$$
\begin{align*}
& \left\{\begin{array}{l}
\frac{\partial}{\partial t} v(x, t)=\frac{\mu}{\rho(x, t)} \frac{\partial^{2}}{\partial x^{2}} v(x, t)-v \cdot \frac{\partial}{\partial x} v, \\
\frac{\partial}{\partial t} \rho(x, t)+\frac{\partial}{\partial x}(\rho v)=0,(v, \text { one-dimensional velocity; } \rho, \text { density (scalar } \\
\quad \text { quantity); } \\
x \in R^{1}, \text { spatial variable } ; t, \text { temporal variable }(\geqq 0) ; \mu \text { positive constant), }
\end{array}\right. \tag{1.1}\\
& \left\{\begin{array}{l}
v(x, 0)=v_{0}(x) \in H^{2+\alpha}, \\
\rho(x, 0)=\rho_{0}(x) \in H^{1+\alpha},\left(0<\bar{\rho}_{0} \equiv \inf \rho_{0} \leqq \rho_{0} \leqq \bar{\rho}_{0} \equiv\left|\rho_{0}\right|^{(0)}<+\infty\right),
\end{array}\right.
\end{align*}
$$

we have already obtained ([4], [5], [6]):
Theorem 1. For some $T \in(0,+\infty)$, there exists a unique solution (v, ρ) of (1.1) $-(1.2)$ belonging to $H_{T}^{2+\alpha} \times B_{T}^{1+\alpha}$.

Moreover, we have a result that there is a unique temporally global solution (v, ρ) of (1.1)-(1.2) belonging to $H_{T}^{2+\alpha} \times B_{T}^{1+\alpha}$ for an arbitrary $T \in(0,+\infty)$ under the condition that v_{0} is to be represented as

$$
\begin{equation*}
v_{0}=v_{01}+v_{02}\left(v_{01}, v_{02} \in H^{2+\alpha} ; v_{01}^{\prime} \leqq 0, v_{02} \in L_{1}\left(R^{1}\right)\right) . \tag{1.3}
\end{equation*}
$$

We shall show here the existence of a unique temporally global solution of (1.1)(1.2) such as mentioned above, without any additional conditions. For this purpose
it is required to have a priori estimates for (v, ρ) in $H_{T}^{2+\alpha} \times B_{T}^{1+\alpha}$.
Now, if (v, ρ) is a solution of (1.1)-(1.2) belonging to $H_{T}^{2+\alpha} \times B_{T}^{1+\alpha}$ for $T \epsilon$ $(0,+\infty)$, then

$$
\begin{equation*}
\rho(x, t)=\rho_{0}\left(x_{0}(x, t)\right) \exp \left\{-\int_{0}^{t} v_{x}(\bar{x}(\tau ; x, t), \tau) d \tau\right\}, \tag{1.4}
\end{equation*}
$$

where $\bar{x}(\tau ; x, t)$ satisfies

$$
\left\{\begin{array}{l}
\frac{d}{d \tau} \bar{x}(\tau ; x, t)=v(\bar{x}(\tau ; x, t), \tau), \tag{1.5}\\
\bar{x}(t ; x, t)=x(\tau \in[0, T])
\end{array}\right.
$$

and

$$
\begin{equation*}
x_{0}(x, t)=\bar{x}(0 ; x, t) . \tag{1.6}
\end{equation*}
$$

The transformation $\left(x_{0}=x_{0}(x, t), t_{0}=t\right)$ from $R^{1} \times[0, T]$ into itself is obviously one-to-one and onto. We call $\left(x_{0}, t_{0}\right)$ the (v-)charcteristic co-ordinates ([4], [7]). We define by use of the above co-ordinates

$$
\begin{equation*}
\hat{v}\left(x_{0}, t_{0}\right)=v\left(\bar{x}\left(t_{0} ; x_{0}, 0\right), t=t_{0}\right), \quad \text { etc. } \tag{1.7}
\end{equation*}
$$

Then, (1.1)-(1.2) is transformed into

$$
\left\{\begin{align*}
&\left\{\hat{v}_{t_{0}}\left(x_{0}, t_{0}\right)=\right. \tag{1.8}\\
& \frac{\mu}{\rho_{0}\left(x_{0}\right)}\left(\frac{\hat{v}_{x_{0}}}{1+\omega\left(x_{0}, t_{0}\right)}\right)_{x_{0}} \tag{1.9}\\
& \rho\left(x_{0}, t_{0}\right)= \rho_{0}\left(x_{0}\right) \frac{1}{1+\omega}, \quad\left(\omega=\int_{0}^{t_{0}} \hat{v}_{x_{0}}\left(x_{0}, t_{0}^{\prime}\right) d t_{0}^{\prime}\right) . \\
& \hat{v}\left(0, x_{0}\right)=v_{0}\left(x_{0}\right) \in H^{2+x},
\end{align*}\right.
$$

where the suffixes t_{0} etc. denote differentiation in t_{0} etc., respectively. Here, we note that

$$
\left\{\begin{align*}
e^{-t\left|v_{x}\right|_{t}^{(0)}} & \leqq \frac{\partial x_{0}}{\partial x}=\frac{1}{1+\omega}=\exp \left\{-\int_{0}^{t} v_{x}(\bar{x}(\tau ; x, t), \tau) d \tau\right\} \tag{1.10}\\
& \left.\leqq e^{t\left|v_{x}\right|_{t}^{(0)}}, \quad \hat{v} \in H_{T}^{2+a}, \frac{1}{1+\omega} \in B_{T}^{1+\alpha} \text { (thus, } \in H_{T}^{1+\alpha}\right)
\end{align*}\right.
$$

It is already known ([4], [5]) that, in order to have a priori estimates for (v, ρ) in $H_{T}^{2+\alpha} \times B_{T}^{1+\alpha}$, it suffices to have those for $|v|_{T}^{(0)},|\rho|_{T}^{(0)},\left|\rho^{-1}\right|_{T}^{(0)}$. It is obvious from (1.1) -(1.2) that

$$
\begin{equation*}
|v|_{T}^{(0)} \leqq\left|v_{0}\right|^{(0)} \tag{1.11}
\end{equation*}
$$

Thus, it remains to have a priori estimates for $|\rho|_{T}^{(0)}$ and $\left|\rho^{-1}\right|_{T}^{(0)}$, accordingly those for $\left|\frac{1}{1+\omega}\right|_{T}^{(0)}$ and $|1+\omega|_{T}^{(0)}$ (cf. (1.8)). Now, we put

$$
\left\{\begin{array}{l}
Y^{a}\left(x_{0}, t_{0}\right) \equiv \int_{a}^{x_{0}} \frac{\rho_{0}\left(x_{0}^{\prime}\right)}{\mu}\left\{v_{0}\left(x_{0}^{\prime}\right)-\hat{v}\left(x_{0}^{\prime}, t_{0}\right)\right\} d x_{0}^{\prime} \tag{1.12}\\
-\log \left(1+\omega\left(a, t_{0}\right)\right)
\end{array}\right.
$$

Then, by (1.8), Y^{a} satisfies

$$
\left\{\begin{array}{l}
\left(Y^{a}\right)_{t_{0}}=-\frac{\hat{v}_{x_{0}}}{1+\omega}=\frac{\mu}{1+\omega}\left(\frac{\left(Y^{a}\right)_{x_{0}}}{\rho_{0}}\right)_{x_{0}}-\frac{v_{0}^{\prime}}{1+\omega} \tag{1.13}\\
Y^{a}\left(x_{0}, 0\right)=0, \quad\left(\left(Y^{a}\right)_{x_{0}}=\frac{\rho_{0}}{\mu}\left(v_{0}-\hat{v}\right)\right)
\end{array}\right.
$$

Obviously, Y^{a} satisfies Täcklind's condition. Therefore, for any a and $a^{\prime} \in R^{1}, Y^{a}=$ $Y^{a^{\prime}}$. Thus, we define

$$
\begin{equation*}
Y \equiv Y^{a}=Y^{a^{\prime}} . \tag{1.14}
\end{equation*}
$$

We remark that

$$
\begin{equation*}
Y\left(x_{0}, t_{0}\right)=Y\left(a, t_{0}\right)+\int_{a}^{x_{0}} \frac{\rho_{0}}{\mu}\left(v_{0}-\hat{v}\right) d x_{0}^{\prime} \tag{1.15}
\end{equation*}
$$

and that, by (1.13),

$$
\begin{equation*}
Y_{t_{0}}=(-\log (1+\omega))_{t_{0}} . \tag{1.16}
\end{equation*}
$$

Thus, we have

$$
\begin{equation*}
\frac{1}{1+\omega}=e^{Y} . \tag{1.17}
\end{equation*}
$$

From (1.10) and (1.17) follows that

$$
\begin{equation*}
Y\left(x_{0}, t_{0}\right)=-\left.\int_{0}^{t_{0}} v_{x}(\bar{x}(\tau ; x, t), \tau) d \tau\right|_{\substack{x=x\left(x_{0}, t_{0}\right) \\ t=t_{0}}} . \tag{1.18}
\end{equation*}
$$

From above, we have

$$
\begin{equation*}
\left|Y\left(\cdot, t_{0}\right)\right|^{(0)} \leqq|Y|_{T}^{(0)} \leqq\left.\left|v_{x}\right|\right|_{T} ^{(0)} \cdot T, \quad\left(t_{0} \in[0, T]\right) \tag{1.19}
\end{equation*}
$$

By (1.17), it suffices for us to have a priori estimates for $\left|e^{Y}\right|_{T}^{(0)}$ and $\left|e^{-Y}\right|_{T}^{(0)}$ (or $\left.|Y|_{T}^{(0)}\right)$. By (1.15), it holds that, for an arbitrary number $a \in R^{1}$,

$$
\left\{\begin{align*}
1+\omega\left(x_{0}, t_{0}\right)= & e^{-Y\left(x_{0}, t_{0}\right)}=e^{-Y\left(a, t_{0}\right)} \tag{1.20}\\
& \times \exp \left\{-\int_{a}^{x_{0}} \frac{\rho_{0}}{\mu}\left(v_{0}-\hat{v}\right) d x_{0}^{\prime}\right\} .
\end{align*}\right.
$$

Therefore,

$$
\begin{align*}
\int_{a}^{a+l}(1+\omega) d x_{0} & =l+\int_{0}^{t_{0}}\{\hat{v}(a+l, \tau)-\hat{v}(a, \tau)\} d \tau \tag{1>0}\\
& =e^{-Y\left(a, t_{0}\right)} \times \int_{a}^{a+l} \exp \left\{-\int_{a}^{x_{0}} \frac{\rho_{0}}{\mu}\left(v_{0}-\hat{v}\right) d x_{0}^{\prime}\right\} d x_{0} \tag{1.21}
\end{align*}
$$

First, take $l=1$. Then, we have an inequality

$$
\begin{equation*}
1+2\left|v_{0}\right|^{(0)} \cdot T \geqq e^{-Y\left(a, t_{0}\right)} \times \exp \left\{-\frac{2 \rho_{0}}{\mu}\left|v_{0}\right|^{(0)}\right\} . \tag{1.22}
\end{equation*}
$$

Hence, it holds that

$$
\begin{equation*}
e^{-Y\left(a, t_{0}\right)} \leqq\left(1+2\left|v_{0}\right|^{(0)} \cdot T\right) \exp \left\{\frac{2 \rho_{0}}{\mu}\left|v_{0}\right|^{(0)}\right\} . \tag{1.23}
\end{equation*}
$$

Next, take $l=1+2\left|v_{0}\right|^{(0)} \cdot T$. Then, we have

$$
\begin{equation*}
1 \leqq \int_{a}^{a+1+2\left|v_{0}\right| T}(1+\omega) d x_{0} . \tag{1.24}
\end{equation*}
$$

Thus, it holds that

$$
\begin{equation*}
e^{Y\left(a, t_{0}\right)} \leqq\left(1+2\left|v_{0}\right|^{(0)} \cdot T\right) \exp \left\{\left(1+2\left|v_{0}\right|^{(0)} \cdot T\right) \frac{2 \mu}{\rho_{0}}\left|v_{0}\right|^{(0)}\right\} . \tag{1.25}
\end{equation*}
$$

By (1.23) and (1.25), we have a priori estimates for $|\rho|_{T}^{(0)}$ and $\left|\rho^{-1}\right|_{T}^{(0)}$. From the discussion made above follows:

Theorem 2. There exists a unique temporally global solution (v, ρ) of (1.1)-(1.2) such that it belongs to $H_{T}^{2+\alpha} \times B_{T}^{1+\alpha}$ for any $T \in(0,+\infty)$.

§ 2. On the generalized Burgers' equation with a pressure model term

Here, we shall discuss the Gauchy problem of the following system of differential equations

$$
\begin{gather*}
\left\{\begin{array}{l}
v_{t}(x, t)=\frac{\mu}{\rho(x, t)} v_{x x}(x, t)-v \cdot v_{x}-K \frac{\rho_{x}}{\rho}, \\
\rho_{t}(x, t)+(\rho v)_{x}=0, \quad\left(K, \text { positive constant } ; x \in R^{1}, t \geqq 0\right),
\end{array}\right. \tag{2.1}\\
\left\{\begin{array}{c}
v(x, 0)=v_{0}(x) \in H^{2+\alpha}, \quad \rho(x, 0)=\rho_{0}(x) \in H^{1+\alpha}\left(0<\bar{\rho}_{0} \leqq \rho_{0} \leqq \bar{\rho}_{0}<+\infty,\right. \\
\text { cf. (1.2)), } \left.\rho_{0}^{\prime} \in L_{0} / R^{1}\right) .
\end{array}\right. \tag{2.2}
\end{gather*}
$$

In order to show that there exists a unique temporally global solution of (2.1)-(2.2) such as discussed in § 1, it suffices to obtain a priori estimates for $|v|_{T}^{(0)},|\rho|_{T}^{(0)}$, and $\left|\rho^{-1}\right|_{T}^{(0)}$, where (v, ρ) is assumed to be a solution of (2.1)-(2.2) belonging to $H_{T}^{2+\alpha} \times$ $B_{T}^{1+\alpha}$ for $T \in(0,+\infty)$. This is based on reasons analogous to those in $\S 1$ and on
the fact that $-\rho^{-1} \cdot \rho_{x}$ is to be expressed in the following way (cf. [6], [7])

$$
\left\{\begin{align*}
&-\frac{\rho_{x}}{\rho}=\left(\frac{\rho_{0}^{\prime}}{\rho_{0}}\right)\left(x_{0}(x, t) \frac{\partial x_{0}}{\partial x}-\rho\left[v-v_{0}\left(x_{0}(x, t)\right)\right.\right. \\
& \times \exp \left\{-k \rho \int_{0}^{t} \bar{x}_{x}(\tau ; x, t)^{-1} d \tau\right\}-k \int_{0}^{t} \exp \{-k \rho(x, t) \\
&\left.\times \int_{\tau}^{t} \bar{x}_{x}\left(\tau^{\prime} ; x, t\right)^{-1} d \tau^{\prime}\right\} \times\{\rho(x, t) v(\bar{x}(\tau ; x, t), \tau) \\
& \times \bar{x}_{x}(\tau ; x, t)^{-1}-\left(\frac{\rho_{0}^{\prime}}{\rho_{0}}\right)\left(x_{0}(x, t)\right) \tag{2.3}\\
&\left.\left.\times \exp \left\{-\int_{0}^{\tau} v_{x}\left(\bar{x}\left(\tau^{\prime} ; x, t\right), \tau^{\prime}\right) d \tau^{\prime}\right\}\right\} d \tau\right],\left(k=\frac{K}{\mu}\right), \\
&\left(N . B: \rho(x, t)=\rho_{0}\left(x_{0}(x, t)\right) \frac{\partial x_{0}}{\partial x}=\rho(\bar{x}(\tau ; x, t), \tau) \times \bar{x}_{x}(\tau ; x, t)\right) .
\end{align*}\right.
$$

Now, we assume that $(v, \rho) \in H_{T}^{2+\alpha} \times B_{T}^{1+\alpha}$ satisfies (2.1)-(2.2). Then, by expressing (2.1)-(2.2) in the $(v-$-)characteristic co-ordinates, we have

$$
\begin{gather*}
\left\{\hat{v}_{t_{0}}\left(x_{0}, t_{0}\right)=\frac{\mu}{\rho_{0}\left(x_{0}\right)}\left(\frac{\hat{v}_{x_{0}}}{1+\omega}\right)_{x_{0}}-\frac{K}{\rho_{0}}\left(\frac{\rho_{0}}{1+\omega}\right)_{x_{0}}, \quad \hat{\rho}=\frac{\rho_{0}}{1+\omega},\right. \tag{2.4}\\
\hat{v}\left(x_{0}, 0\right)=v_{0}\left(x_{0}\right) \in H^{1+\alpha}, \quad\left(\rho_{0} \in H^{1+\alpha}\left(0<\bar{\rho}_{0} \leqq \rho_{0} \leqq \overline{\bar{\rho}}_{0}<+\infty ; \rho_{0}^{\prime} \in L_{1}\left(R^{1}\right)\right),\right. \tag{2.5}
\end{gather*}
$$

where we note that $(\hat{v}, \hat{\rho})$ belongs to $H_{T}^{2+\alpha} \times B_{T}^{1+\alpha}$. Hence, \hat{v} is expressed in the following way

$$
\left\{\begin{align*}
\hat{v}\left(x_{0}, t_{0}\right)= & \int_{R^{1}} G\left(x_{0}, t_{0} ; \xi, 0\right) v_{0}(\xi) d \xi \tag{2.6}\\
& -\int_{0}^{t_{0}} d \tau \int_{R^{1}} G\left(x_{0}, t_{0} ; \xi, \tau\right) \frac{K}{\rho_{0}}\left(\frac{\rho_{0}}{1+\omega}\right)_{\xi} d \xi
\end{align*}\right.
$$

where $G\left(x_{0}, t_{0} ; \xi, \tau\right)$ is the fundamental solution of (2.4) as a linear equation. Moreover, noting that

$$
\begin{equation*}
\left(\frac{\rho_{0}}{1+\omega}\right)_{\xi}=\left(\frac{\rho_{0}}{1+\omega}-\rho_{0}+\rho_{0}\right)_{\xi}=-\left(\frac{\rho_{0} \omega}{1+\omega}\right)_{\xi}+\rho_{0}^{\prime}(\xi) \tag{2.7}
\end{equation*}
$$

we have

$$
\left\{\begin{array}{c}
\int_{0}^{t_{0}} d \tau \int_{R^{1}} G \frac{K}{\rho_{0}}\left(\frac{\rho_{0}}{1+\omega}\right)_{\xi} d \xi=\frac{K}{\mu} \int_{0}^{t_{0}} d \tau \int_{R_{1}^{1}}\left(\frac{\mu}{\rho_{0}} G\right)_{\xi} \tag{2.8}\\
\times \frac{\rho_{0} \omega}{1+\omega}+d \xi \int_{0}^{t_{0}} d \tau \int_{R^{1}} G \frac{K \rho_{0}^{\prime}}{\rho_{0}} d \xi \equiv I_{1}+I_{2}
\end{array}\right.
$$

As for I_{1}, it holds that

$$
\begin{align*}
I_{1}= & -\frac{K}{\mu} \int_{0}^{t_{0}} d \tau \int_{R^{1}} d \xi\left(\frac{\mu}{1+\omega}\left(\frac{G}{\rho_{0}}\right)_{\xi}\right)_{\xi} \\
& \times\left\{\rho_{0}(\xi) \int_{0}^{\tau} \hat{v}\left(\xi, \tau^{\prime}\right) d \tau^{\prime}-\int_{0}^{\tau} d \tau^{\prime} \int_{-\infty}^{\xi} \hat{v}\left(\xi^{\prime}, \tau\right) \rho_{0}^{\prime}\left(\xi^{\prime}\right) d \xi^{\prime}\right\}_{1} \\
& \left(N . B .: \rho_{0} \hat{v}_{\xi}=\left(\rho_{0} \hat{v}-\int_{-\infty}^{\xi} \hat{v} \rho_{0}^{\prime}\left(\xi^{\prime}\right) d \xi^{\prime}\right)_{\xi}\right) \\
= & \frac{K}{\mu} \int_{0}^{t_{0}} d \tau \int_{R^{1}} d \xi \frac{\partial G}{\partial \tau}\{\cdots\}_{1} \tag{2.9}\\
= & \frac{K}{\mu}\left[\rho_{0}\left(x_{0}\right) \cdot \int_{0}^{t_{0}} \hat{v}\left(x_{0}, \tau\right) d \tau-\int_{0}^{t_{0}} d \tau \int_{-\infty}^{x_{0}} \hat{v}(\xi, \tau) \rho_{0}^{\prime}(\xi) d \xi\right. \\
& \left.-\int_{0}^{t_{0}} d \tau \int_{R^{1}} G\left(x_{0}, t_{0} ; \xi, \tau\right)\left\{\rho_{0}(\xi) \hat{v}(\xi, \tau)-\int_{-\infty}^{\xi} \hat{v}\left(\xi^{\prime}, \tau\right) \rho_{0}^{\prime}\left(\xi^{\prime}\right) d \xi^{\prime}\right\} d \xi\right] .
\end{align*}
$$

Hence, it follows that

$$
\begin{align*}
& |v|_{t_{0}}^{(0)} \leqq\left|v_{0}\right|^{(0)}+K\left|\frac{\rho_{0}^{\prime}}{\rho_{0}}\right|^{(0)} \cdot t_{0} \\
& \quad+\frac{2 K}{\mu}\left(\left|\rho_{0}\right|^{(0)}+\left\|\rho_{0}^{\prime}\right\|_{L_{1}\left(R^{1}\right)}\right) \cdot \int_{0}^{t_{0}}|\hat{v}|_{z}^{(0)} d \tau,\left(t_{0} \in[0, T]\right) \tag{2.10}
\end{align*}
$$

Thus, we have

$$
\begin{align*}
|v|_{t_{0}}^{(0)} & \leqq\left|v_{0}\right|^{(0)} \cdot e^{C_{0} T}+\frac{K}{C_{0}}\left|\frac{\rho_{0}^{\prime}}{\rho_{0}}\right|^{(0)} \cdot\left(e^{C_{0} T}-1\right) \\
& \equiv C_{1}(T)(<+\infty),\left(C_{1}(T) \nearrow \text { as } T \nearrow, C_{0} \equiv \frac{2 K}{\mu}\left(\bar{\rho}_{0}+\left\|\rho_{0}^{\prime}\right\|_{L_{1}\left(R^{1}\right)}\right) .\right. \tag{2.11}
\end{align*}
$$

Taking (2.4) into consideration, we define, for an arbitrary number $a \in R^{1}$,

$$
\begin{equation*}
Y^{a}\left(x_{0}, t_{0}\right) \equiv \int_{a}^{x_{0}} \frac{\rho_{0}}{\mu}\left(v_{0}-\hat{v}\right) d x_{0}^{\prime}-\log \left(1+\omega\left(a, t_{0}\right)\right)+\int_{0}^{t_{0}} \frac{K}{\mu} \frac{\rho_{0}}{1+\omega\left(a, t_{0}^{\prime}\right)} d t_{0}^{\prime} \tag{2.12}
\end{equation*}
$$

Y^{a} satisfies the relation

$$
\left\{\begin{array}{l}
\left(Y^{a}\right)_{t_{0}}=\frac{\mu}{1+\omega}\left(\frac{\left(Y^{a}\right)_{x_{0}}}{\rho_{0}}\right)_{x_{0}}-\frac{v_{0}^{\prime}-k \rho_{0}}{1+\omega}=\frac{-\hat{v}_{x_{0}}+k \rho_{0}}{1+\omega} \tag{2.13}\\
Y^{a}\left(x_{0}, 0\right)=0, \quad\left(k=\frac{K}{\mu}\right)
\end{array}\right.
$$

Y^{a} satisfies Täcklind's condition. Therefore,

$$
\begin{equation*}
Y^{a}=Y^{a^{\prime}} \equiv Y \quad\left(\text { for any } a \text { and } a^{\prime} \in R^{1}\right) \tag{2.14}
\end{equation*}
$$

Here, we note that, for an arbitrary $a \in R^{1}$,

$$
\begin{equation*}
Y\left(x_{0}, t_{0}\right)=Y^{a}\left(a, t_{0}\right)+\int_{a}^{x_{0}} \frac{\rho_{0}}{\mu}\left(v_{0}-\hat{v}\right) d x_{0}^{\prime} \tag{2.15}
\end{equation*}
$$

From (2.13) follows the relation

$$
\left\{\begin{array}{l}
(1+\omega)_{t_{0}}+(1+\omega) Y_{t_{0}}=k \rho_{0} \tag{2.16}\\
(1+\omega)\left(x_{0}, 0\right)=1
\end{array}\right.
$$

Hence, we have

$$
\begin{equation*}
(1+\omega)\left(x_{0}, t_{0}\right)=e^{-Y\left(x_{0}, t_{0}\right)}\left\{1+k \rho_{0}\left(x_{0}\right) \cdot \int_{0}^{t_{0}} e^{Y\left(x_{0}, \tau\right)} d \tau\right\} \tag{2.17}
\end{equation*}
$$

Thus, for an arbitrary and fixed $a \notin R^{1}$,

$$
\begin{align*}
e^{Y\left(a, t_{0}\right)} \cdot & \left(1+\omega\left(x_{0}, t_{0}\right)\right)=\exp \left\{-\int_{a}^{x_{0}} \frac{\rho_{0}}{\mu}\left(v_{0}-v\right) d x_{0}^{\prime}\right\} \\
& \times\left[1+k \rho_{0}\left(x_{0}\right) \cdot \int_{0}^{t_{0}} d t_{0}^{\prime} e^{Y\left(a, t_{0}^{\prime}\right)}\right. \tag{2.18}\\
& \left.\times \exp \left\{\int_{a}^{x_{0}} \frac{\rho_{0}}{\mu}\left(v_{0}\left(x_{0}^{\prime}\right)-\hat{v}\left(x_{0}^{\prime}, t_{0}^{\prime}\right)\right) d x_{0}^{\prime}\right\}\right]_{A}, \quad\left(0 \leqq t_{0} \leqq T\right)
\end{align*}
$$

Therefore, by integrating in x_{0} both sides of (2.18) over a closed interval $[a, a+l]$ $(l>0)$ we have

$$
\begin{align*}
& (0<) e^{Y\left(a, t_{0}\right)} \cdot\left\{l+\int_{0}^{t_{0}}(\hat{v}(a+l, \tau)-\hat{v}(a, \tau)) d \tau\right\} \\
& \quad=\int_{a}^{a+0} d x_{0} \exp \left\{-\int_{a}^{x_{0}} \frac{\rho_{0}}{\rho}\left(v_{0}-\hat{v}\right) d x_{0}^{\prime}\right\} \times[\cdots]_{A} \tag{2.19}
\end{align*}
$$

Take $l=1+2 C_{1}(T) T \equiv L(T)$. Then, we obtain an inequality

$$
\begin{align*}
e^{Y\left(a, t_{0}\right)} & \leqq L(T) \exp \left\{\frac{\overline{\bar{\rho}}_{0} L(T)}{\mu}\left(\left|v_{0}\right|^{(0)}+C_{1}(T)\right)\right\} \\
\times & {\left[1+k \overline{\bar{\rho}}_{0} \cdot \exp \left\{\frac{\overline{\bar{\rho}}_{0} L(T)}{\mu}\left(\left|v_{0}\right|^{(0)}+C_{1}(T)\right)\right\} \cdot \int_{0}^{t_{0}} e^{Y\left(a, t_{0}^{\prime}\right)} d t_{0}^{\prime}\right], \quad\left(0 \leqq t_{0} \leqq T\right) } \tag{2.20}
\end{align*}
$$

Thus, for an arbitrary $a \in R^{1}$, we have

$$
\begin{align*}
\left(1+\omega\left(a, t_{0}\right)\right)^{-1} & =e^{Y\left(a, t_{0}\right)}\left(1+k \rho_{0}(a) \cdot \int_{0}^{t_{0}} e^{Y(a, \tau)} d \tau\right)^{-1} \tag{2.21}\\
& \leqq e^{Y\left(a, t_{0}\right)} \leqq C_{2}(T)(<+\infty), \quad\left(C_{2}(T) \nearrow \text { as } T \nearrow\right) .
\end{align*}
$$

Next, seeing that, by (2.13), the following equality holds

$$
\left\{\begin{array}{l}
Y\left(x_{0}, t_{0}\right)=\int_{0}^{t_{0}} d \tau \int_{R^{1}} \bar{G}\left(x_{0}, t_{0} ; \xi, \tau\right) \frac{k \rho_{0}-v_{0}^{\prime}}{1+\omega} d \xi \tag{2.22}\\
(\bar{G} \text { is the fundamental solution of (2.13) as a linear equation) }
\end{array}\right.
$$

we have

$$
\begin{equation*}
|Y|_{t_{0}}^{(0)} \leqq\left(k \overline{\bar{\rho}}_{0}+\left|v_{0}^{\prime}\right|^{(0)}\right) t_{0} \cdot\left|\frac{1}{1+\omega}\right|_{t_{0}}^{(0)} . \tag{2.23}
\end{equation*}
$$

Thus, it holds that

$$
\begin{align*}
(1+\omega) & \leqq \exp \left(|Y|_{\iota_{0}}^{(0)}\right) \cdot\left(1+k \bar{\rho}_{0} t_{0} \cdot \exp \left(|Y|_{t_{0}^{(0)}}^{(0)}\right)\right) \tag{2.24}\\
& \leqq C_{3}(T)(<+\infty), \quad\left(C_{3}(T) / \text { as } T \nearrow\right)
\end{align*}
$$

By the discussion made above, we obtain:
Theorem 3. There exists a unique temporally global solution (v, ρ) of (2.1)-(2.2) such that it belongs to $H_{T}^{2+\alpha} \times B_{T}^{1+\alpha}$ for any $T \in(0,+\infty)$.

Finally, we add that Kazhikhov and Shelukhin ([9]) have recently obtained a good result contributing to the study of our related problems.

Kōbe College of Commerce

References

[1] Friedman, A., Partial differential equations of parabolic type, (1964), Prentice Hall.
[2] Hopf, E., The partial differential equation $u_{t}+u \cdot u_{x}=\mu u_{x x}$, Comm. Pure Appl. Math., 5 201-230.
[3] Imai, I. Fluid mechanics I, (1975), Shōkabō. (Japanese).
[4] Itaya, N., On the Cauchy problem for the system of fundamental equations describing the movement of compressible viscous fluid, Kôdai Math. Sem. Rep., 23, 1 (1971), 60120.
[5] Itaya, N., On the temporally global problem of the generalized Burgers' equation, J. Math. Kyoto Univ., 14, 1 (1974), 129-177.
[6] Itaya, N., A survey on the generalized Burgers' equation with a pressure model term, J. Math. Kyoto Univ., 16, 1 (1976), 223-240.
[7] Itaya, N., On the fundamental system of equations for compressible viscous fluid, Sūgaku, 28, 2 (1976), 25-40. (Japanese).
[8] Itaya, N., On the initial value problem of the motion of compressible viscous fluid, especially on the problem of uniqueness, J. Math. Kyoto Univ., 16, 2 (1976), 413-427.
[9] Кажихов, А. В., и В. В. Шелухин, Однозначная разрешимость 《в целом》по времени начально-краевых задач для одномерных уравнений вязкого газа, Прикл. Мат. Mex., 41, 2 (1977), 282-291.
[10] Tani, A., On the first initial-boundary value problem of the generalized Burgers' equation, Publ. RIMS Kyoto Univ., 10, 1 (1974), 209-233.
[11] Tani, A., On the first initial-boundary value problem of compressible viscous fluid motion, Publ. RIMS Kyoto Univ., 13, 1 (1977), 193-253.

