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Abstract

The intriguing phenomenon of adversarial exam-
ples has attracted significant attention in machine
learning and what might be more surprising to the
community is the existence of universal adversar-
ial perturbations (UAPs), i.e. a single perturbation
to fool the target DNN for most images. With the
focus on UAP against deep classifiers, this survey
summarizes the recent progress on universal adver-
sarial attacks, discussing the challenges from both
the attack and defense sides, as well as the rea-
son for the existence of UAP. We aim to extend
this work as a dynamic survey that will regularly
update its content to follow new works regarding
UAP or universal attack in a wide range of domains,
such as image, audio, video, text, etc. Relevant up-
dates will be discussed at: https://bit.ly/2SbQlLG.
We welcome authors of future works in this field to
contact us for including your new findings.

1 Introduction

Deep neural networks (DNNs) have achieved milestone per-
formances in numerous computer vision tasks. However, de-
spite their success, DNNs have been discovered to be vul-
nerable to adversarial examples [Szegedy et al., 2013], care-
fully crafted, quasi-imperceptible perturbations, which fool a
DNN when added to an image. More interestingly, the exis-
tence of image-agnostic (universal) adversarial perturbations
has been shown in recent works. A universal adversarial per-
turbation (UAP) is a single perturbation that is capable to
fool a DNN when added to most natural images [Moosavi-
Dezfooli et al., 2017a]. The discovery of UAPs led to various
explorations of this phenomenon, e.g. universal adversarial
attack, the defense against UAPs as well as attempts to un-
derstand the phenomenon of UAPs. Even though UAPs have
initially been studied in the domain of image classification,
their exploration has expanded into other domains as well.

Scope of the survey. To this date, the amount of works on
adversarial robustness is so large that it is impossible to cover
them in a single survey. We refer the readers to [Akhtar and
Mian, 2018] for an introduction to general adversarial attack
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and defense. The focus of this survey is mainly on the ad-
vancements on a special type of adversarial attack, i.e. uni-
versal adversarial attack, in the last few years. It is worth
mentioning that image classification is the main application
field where researchers design new attack and defense tech-
niques and analyze adversarial perturbations. The core ele-
ment of universal attack lies in the UAP, which can be gener-
ated beforehand and then directly applied with a simple sum-
mation operation during the attack stage. In this work, unless
specified, we discuss the UAP in the context of image clas-
sification. We highlight that this work will be extended as a
dynamic survey that will update its content for including new
works in this field and any feedback is welcome.

Structure. The survey is structured as follows: First, the
basic notion and notation of UAPs in the context of image-
classification will be introduced. Then universal adversarial
attack methods will be covered, followed by defense methods
against UAPs. Afterward, an overview will be given about the
different perspectives on the understanding of the UAP phe-
nomenon. We further identify data-dependency, black-box at-
tack capabilities, and class-discrimination as three challenges
of UAPs and discuss them. Finally, works covering UAPs
going beyond image-classification will be discussed.

2 A Short Primer on Image-Dependant

Attack Methods

Before we get into the topic of UAP, it is relevant to dis-
cuss general image-dependent adversarial attacks since most
UAP algorithms are developed based on image-dependent at-
tacks. We categorize the adversarial attack into two groups:
(a) minimizing perturbation magnitude given that the image
is misclassified; (b) maximizing the attack success rate given
a limited perturbation budget. Szegedy et al. proposed the
first adversarial attack algorithm, box-constrained L-BFGS,
to generate perturbations that can fool a network [Szegedy et
al., 2013]. This algorithm falls into the group (a). Another
popular attack method is the Carlini and Wagner (C&W) at-
tack [Carlini and Wagner, 2017]. In essence, the C&W at-
tack is the same as the L-BFGS attack, but with a different
loss, function applied. Carlini and Wagner investigate mul-
tiple loss functions and find that the loss that maximizes the
gap between the target class logit and highest logit (excluding
the target class logit) results in superior performance. Yet an-
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other popular attack falling into this group is DeepFool that
crafts perturbations iteratively by updating the gradient with
respect to the model’s decision boundaries. In every iteration,
DeepFool chooses the perturbation direction of the minimum
magnitude that is orthogonal to the decision hyperplane. With
the goal of finding pseudo-minimal perturbation, group (a)
has the disadvantage of being cumbersome and slow. Rela-
tively, Group (b) that maximizes the attack success rate given
a limited budget is more straightforward. The first algorithm
that falls into this group is the Fast Gradient Sign Method
(FGSM) [Goodfellow et al., 2015]. FGSM is simple and
fast, which comes at the cost of its effectiveness. Iterative
FGSM (I-FGSM) [Kurakin et al., 2017], iteratively performs
the FGSM attack. In each iteration, only a fraction of the
allowed noise limit is added, which contributes to its higher
attack effect compared to FGSM. Another widely used white-
box attack method is termed PGD introduced in [Madry et
al., 2018]. In essence, PGD is the same as I-FGSM and
the only difference lies in that the PGD attack initializes the
perturbation with random noise while I-FGSM just initializes
the perturbation with zero values. This random initialization
can help improve the attack success rate, especially when the
number of iterations is limited to a relatively small value. An-
other advantage of the initialization is that it can further help
improve the attack success rate with multiple trials.

3 Image-Agnostic Adversarial Attacks

3.1 Definition of UAPs in Deep Image Classifiers

The existence of UAPs to fool the deep classifier for most
images has first been demonstrated in [Moosavi-Dezfooli et
al., 2017a], and we will mainly follow the notation introduced
in their work. Given a distribution of images µ in R

d and a

classifier function k̂, we denote the output of the classifier

given an image x ∈ R
d as y = k̂(x). The overall objective is

to find a single perturbation vector ν ∈ R
d, such that the k̂ is

fooled for most encountered images. Additionally, ν should
be sufficiently small, which is commonly modeled through an
upper-bound ǫ on the lp-norm, commonly denoted as || · ||p,
of the perturbation, i.e. ||ν||p ≤ ǫ. More formally, we seek a
UAP, i.e. ν such that:

k̂(x+ v) 6= k̂(x) for most x ∼ µ s.t. ||ν||p ≤ ǫ. (1)

A popular choice is to set p = ∞, and to set the value of ǫ to
10/255, assuming images to be in the range [0, 1] [Moosavi-
Dezfooli et al., 2017a; Poursaeed et al., 2018; Zhang et al.,
2020b].

3.2 Metrics to Evaluate the UAP Effectiveness

Given the above definition of UAPs, the fooling ratio is the
most widely adopted metric for evaluating the efficacy of
the generated UAP. Specifically, the fooling ratio is defined
as the percentage of samples whose prediction changes af-

ter the UAP is applied, i.e. IP
x∼X

(k̂(x + ν) 6= k̂(x)). Some

works [Zhang et al., 2020b; Benz et al., 2020] have investi-
gated targeted UAPs whose goal is to flip the prediction of

most samples to a pre-defined target class. The targeted fool-
ing ratio is defined as IP

x∼X
(f(x + ν) = t), where t is the

target label.

3.3 Universal Attack Methods

The vanilla universal attack. UAPs were first introduced
in [Moosavi-Dezfooli et al., 2017a]. The proposed algo-
rithm accumulates the UAP by iteratively crafting image-
dependant perturbations for the data points. Specifically, if
the already accumulated perturbation does not send the cur-
rent data point across the decision boundary, the minimal per-
turbation ∆ν is computed to send the sample over the de-
cision boundary. After every iteration update, the perturba-
tion is projected on the lp ball of radius ǫ. In the vanilla
UAP algorithm the projection operator Pp,ǫ is defined as:
Pp,ǫ = argminν′ ||ν − ν′|| subject to ||ν′||p ≤ ǫ. The accu-
mulation of minimal perturbations is repeated until the fool-
ing rate of ν exceeds a certain threshold. The authors note
that the number of encountered data points can be smaller
than the number of total training points.

Generating UAPs with singular vectors (SV-UAP). A
different algorithm to craft UAPs has been proposed
in [Khrulkov and Oseledets, 2018]. Their method is based
on the calculation of the singular vectors of the Jacobian ma-
trices of the feature maps to obtain UAPs. The proposed
approach shows a good data-efficiency, which can generate
UAPs with a fooling rate of more than 60% on the ImageNet
validation set by using only 64 images.

Generating UAPs with generative networks. A Net-
work for adversary generation (NAG) was first introduced
by [Mopuri et al., 2018b]. Inspired by Generative Adversar-
ial Networks (GAN) [Goodfellow et al., 2014], NAG aims to
model the distribution of UAPs. Therefore the authors mod-
ify the GAN framework by replacing the discriminator with
the (frozen) target model and introduce a novel loss to train
the generator. The novel loss function is composed of a fool-
ing objective and a diversity objective. As the name suggests,
the fooling objective is designed such that the generated per-
turbation fools the target classifier. Specifically, the loss is
formulated to encourage the generator to generate perturba-
tions that decrease the confidence of the original (benign) pre-
dictions. The diversity objective encourages the diversity of
perturbations by increasing the distance of their feature em-
beddings predicted by the target classifier. Another variant of
generative adversarial perturbations (GAP) using a generator
to craft UAPs was also explored in [Poursaeed et al., 2018].
The objective is to train a generative network that transforms
a random pattern to an image-dependant perturbation or UAP.
The scale operation is introduced to guarantee the perturba-
tion lies in a certain range. Concurrent to this, the authors of
[Hayes and Danezis, 2018] also explored the idea of generat-
ing adversarial perturbations with a generator network.

Dominant Feature-UAP (DF-UAP). [Zhang et al., 2020b]

treats the UAP as network weights and apply the DNN train-
ing techniques, such as Adam optimizer and batch training,
to maximize feature content of a target class. In both non-
targeted and targeted setting, the resultant UAP has domi-
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Method AlexNet GoogleNet VGG16 VGG19 ResNet152

UAP [Moosavi-Dezfooli et al., 2017a] 93.3 78.9 78.3 77.8 84.0

SV-UAP [Khrulkov and Oseledets, 2018] − − 52.0 60.0 −

GAP [Poursaeed et al., 2018] - 82.7 83.7 80.1 -
NAG [Mopuri et al., 2018b] 96.44 90.37 77.57 83.78 87.24

DF-UAP [Zhang et al., 2020b] 96.17 88.94 94.30 94.98 90.08

Cos-UAP [Zhang et al., 2021a] 96.5 90.5 97.4 96.4 90.2

FFF [Mopuri et al., 2017] 80.92 56.44 47.10 43.62 -
AAA [Mopuri et al., 2018c] 89.04 75.28 71.59 72.84 60.72

GD-UAP [Mopuri et al., 2018a] 87.02 71.44 63.08 64.67 37.3

PD-UA [Liu et al., 2019] − 67.12 53.09 48.95 53.51

DF-UAP (COCO) [Zhang et al., 2020b] 89.9 76.8 92.2 91.6 79.9

Cos-UAP (Jigsaw) [Zhang et al., 2021a] 91.07 87.57 89.48 86.81 65.35

Table 1: Fooling ratio (%) of different UAP generation methods in
the white-box attack scenario. The results are divided into universal
attacks with access to the original ImageNet training data (upper)
and data-free methods (lower).

nant features (DF). Zhang et al. investigate various loss func-
tions in the context of targeted UAP generation. For the non-
targeted setting, Zhang et al. further propose a cosine similar-
ity based loss for alleviating the need of ground-truth labels.

A comparison between the different algorithms. The
vanilla algorithm [Moosavi-Dezfooli et al., 2017a] attacks a
single image at once, scaling the number of iterations linearly
with the number of processed images, leading to slow con-
vergence. Moreover, their algorithm is based on the image-
dependant DeepFool attack [Moosavi-Dezfooli et al., 2016],
which is overall found to be one of the slower attack tech-
niques. Dai and Shu identify that minimum perturbation re-
sulted from the DeepFool is not optimal for the efficient UAP
generation. At each iteration, instead of choosing the min-
imal perturbation vector, they proposed to choose the per-
turbation that has a similar orientation to the former one.
Their empirical results demonstrate that this technique can
help boost both the convergence and performance, leading to
an increase of 9% in fooling rate over the vanilla UAP at-
tack. The generative networks-based approaches somewhat
alleviate the rather cumbersome and slow procedure of the
vanilla UAP algorithm. Adopting generative networks has the
benefit that conventional training techniques can be applied
to obtain a powerful UAP generation network, which overall
showed superior performance over the early UAP generation
methods. However, the requirement of a generative model it-
self is a drawback of these UAP generation approaches. The
simple methods which directly update the perturbation with
the calculated gradient proposed in [Zhang et al., 2020b;
Shafahi et al., 2020; Zhang et al., 2021a] demonstrate that
a direct optimization of the UAP does not only remove the
requirement to train a separate generative network but can
also achieve superior performance. We provide an overview
of different UAP generation methods in the white-box attack
scenario in Table 1 supporting the here presented discussion
with quantitative results.

3.4 Defending Against UAP

To mitigate the effect of adversarial perturbations, numer-
ous works have attempted to either detect or defend through
various techniques. To our knowledge, adversarial learn-
ing is the only defense method that has not been broken
by strong white-box attacks [Madry et al., 2018], thus it

has become the de-facto most widely used defense tech-
nique. A wide range of works [Goodfellow et al., 2015;
Madry et al., 2018; Shafahi et al., 2019b; Zhang et al., 2019;
Wong et al., 2020] have investigated adversarial training,
but the scope of these techniques is often limited to image-
dependent attacks. Here, we summarize relevant advance-
ments on defending against UAPs. One straightforward ap-
proach to extend adversarial training to the field of universal
attack is to replace the image-dependent adversarial exam-
ples with the samples perturbed by the UAP during network
training. The main challenge lies in the fact that an effective
UAP often takes many iterations to converge, thus adversar-
ial training against universal attacks is challenging in prac-
tice due to constraints in computation resources. Note that
it can be (N+1) time slower than normal training, where N
is the required number of attack iterations. To address this
concern, [Moosavi-Dezfooli et al., 2017a] proposes to fine-
tune the model parameters with the images perturbed by pre-
computed UAPs. Unfortunately, this only leads to marginal
robustness enhancements against UAPs, which is somewhat
reasonable because the pre-computed fixed UAP is unlike
the dynamically generated perturbation for normal (image-
dependent) adversarial training. Thus, the model would be
expected to be only robust to the fixed perturbations. To
alleviate such concern, Mummadi et al. have proposed to
generate UAPs on-the-fly through shared adversarial train-
ing [Mummadi et al., 2019]. However, it still takes 20 times
more computation resources than the normal training because
the UAP generation process resembles the multi-step PGD
adversarial training [Madry et al., 2018]. Universal adversar-
ial training (UAT) [Shafahi et al., 2020] elegantly handles this
issue by concurrently updating the networks and perturba-
tion, resulting in fast adversarial training [Wong et al., 2020].
Identifying that the UAP does not attack all classes equally, a
recent work [Benz et al., 2021] extends the UAT with class-
wise perturbations, enhancing the robustness against the at-
tack of UAP by a large margin. Moreover, it also leads to
a more balanced class-wise robustness against UAP. The ad-
versarial training on UAP has been perceived as a two-player
zero-sum game [Perolat et al., 2018]. Beyond adversarial
training, a defense against UAPs has also been applied on the
feature-level, through selective feature generation in [Borkar
et al., 2020]. Another framework for defending against UAP
is proposed in [Akhtar et al., 2018] which has two compo-
nents: (a) Perturbation Rectifying Network (PRN) used as a
rectifier to de-noise the UAP in the adversarial examples; (b)
a binary classifier that detects adversarial examples perturbed
through UAPs.

4 On the Existence of UAP

The fundamental reason that adversarial examples are intrigu-
ing to the community is that a well-trained deep classifier
can be fooled by a small imperceptible perturbation. It is
counter-intuitive that human invisible adversarial perturba-
tion can fool the target model, which motivates numerous
works attempting to explain its existence from a wide range
of perspectives, such as the local linearity of DNNs [Good-
fellow et al., 2015], input high-dimensionality [Shafahi et al.,
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2019a] and over-fitting [Schmidt et al., 2018], and noise dis-
turbance [Fawzi et al., 2016]. Those explanations are lim-
ited to explain only image-dependent perturbations, in other
words, they can not be easily extended to explain the image-
agnostic properties of UAPs. The investigation on the ex-
istence of UAP is still in its infancy and in the following,
we summarize the works in the literature on the existence of
UAP. Specifically, we find that those explanations can be di-
vided into two categories: (a) geometric perspective; (b) fea-
ture perspective.

Understanding UAPs from a geometric perspective.
Moosavi-Dezfooli et al. have attributed the existence of
UAPs to redundancies in the geometry of the decision bound-
aries, which was partially supported by their singular value
analysis [Moosavi-Dezfooli et al., 2017a]. Overall, the au-
thors conclude that there exists a subspace of low dimension
in the high-dimensional input space that contains a perturba-
tion vector being somewhat normal to the decision boundary
for most images and that the UAP algorithm exploits this to
generate the UAP in that subspace. In [Moosavi-Dezfooli et
al., 2017b], UAPs are further interpreted from a geometry
perspective in a more fine-grained manner. Specifically, the
authors established two models of decision boundaries: (a)
flat decision boundaries and (b) curved decision boundaries.
The authors showed that positively curved decision bound-
aries provide a better explanation of the existence of UAPs,
which is supported by both theoretical analysis and empirical
results. Based on this understanding from the geometric per-
spective, the analysis in [Jetley et al., 2018] has found that the
predictive power and adversarial vulnerability of the studied
deep classifier are intertwined, suggesting any gain in robust-
ness must come at the cost of accuracy.

Understanding UAPs from a feature perspective. Re-
cently, the existence of adversarial examples has been at-
tributed to the non-robust features [Ilyas et al., 2019]. In-
spired by this phenomenon, Zhang et al. showed that the
UAPs have semantically human-aligned features as shown in
Figure 1. The chosen target class is “sea lion”, and the hu-
man observer can identify the pattern that looks like a sea
lion. Specifically, the authors have analyzed the mutual influ-
ence of images and perturbations through a Pearson Correla-
tion Coefficient (PCC) analysis and found that UAPs domi-
nate over the images for the model prediction, which is not
the case for image-dependent perturbation. As a result, the
UAPs can be seen to have independent semantic features and
the images behave like noise to them. This is somewhat con-
trary to the popular belief to only perceive the perturbation as
noise to the images. This feature perspective inspires a much
more simple yet effective algorithm as discussed in Sec 3.3.
Zhang et al. have further analyzed the reason why UAP of
small magnitude can dominate over images through an in-
vestigation of the universal adversarial attack and universal
deep hiding [Zhang et al., 2020c]. Frequency is a key fac-
tor for the success of both tasks and the reason can be at-
tributed to DNNs being highly sensitive to high-frequency
features [Zhang et al., 2021b].

Figure 1: Targeted universal perturbations (target class “sea lion”)
generated with DF-UAP for different network architectures.

5 Challenges of UAP Attack

The above discussed UAP algorithms deal with the basic task
of universal attacks without taking some underlying chal-
lenges into account. Here, we identify three challenges of
universal attacks. First, it is not reasonable to get access to
the original training dataset that is used for training the target
model, thus it is desirable to generate UAPs without the de-
pendence on the original training dataset, i.e. data-free UAPs.
Second, in practice, access to the target model weights might
not be available. Instead, a substitute model that is trained on
the same or similar training dataset or the ability to only query
the target model might be possible. Thus, black-box univer-
sal attacks play also an important role in the area of universal
attacks. Lastly, the UAP attacks all images without discrimi-
nation, thus causing a serious threat to security-sensitive ap-
plications, such as autonomous driving. However, in practice,
such an attack also easily catches the attention of the users
because samples from all classes are misclassified. Thus,
a UAP that can attack the samples in a class-discriminative
manner can be more stealthy and might present a more dan-
gerous threat. In the following, we will discuss each of these
directions.

5.1 Data-Free UAPs

Despite early works observing that only a subset of the initial
training dataset is sufficient to craft UAPs, a data dependence
still persists.The issue of crafting data-free UAPs has been
addressed by several works. The earliest data-free method
was Fast Feature Fool (FFF) [Mopuri et al., 2017], which
generates data-free UAPs by introducing a loss function that
maximizes the activations at each layer. This over-firing of
the neurons in order to deteriorate the extracted features has
been further explored in an extension of their work. The au-
thors demonstrate that the generalizable data-free objective
for UAPs (GD-UAP) [Mopuri et al., 2018a] can generalize
across multiple vision tasks, in particular, image recognition,
image segmentation, and depth estimation. Similar to FFF,
the work by [Sam et al., 2019] also aims to maximize a certain
activation. Specifically, the authors introduce the dilate loss,
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which maximizes the Euclidean norm of the activation vec-
tor before the ReLU layer. We term this approach UAP with
dilated loss (UAP-DL). Mopuri et al. craft data-free UAPs
by leveraging class-impressions [Mopuri et al., 2018c]. They
generate data-free UAPs in a two-stage process. First, class
impressions are generated as a substitute for the actual data
samples. Class-impressions are generic representations of an
object category learned by a model in the input space. Start-
ing from a noisy image, class-impressions are obtained by
updating the input noise with the objective to maximize the
confidence of the desired class category. In the second stage,
a generator is trained to craft UAPs which fool the classi-
fier when added to the class-impression images. During in-
ference, the generated UAP can then be applied to the real
images. Instead of generating class impressions, the authors
in [Zhang et al., 2020b] leverage a random proxy dataset, dif-
ferent from the original training dataset, to craft UAPs. The
authors motivated the use of proxy datasets by their finding
that images only behave like noise to the perturbation. To al-
leviate the need of real images, [Zhang et al., 2021a] further
extends by applying jigsaw images to replace proxy dataset.

5.2 Black-Box UAPs

One property of adversarial examples is their transferabil-
ity, meaning that a perturbation crafted for a source model is
also capable of attacking another, unseen model. This is also
called a black-box attack since no knowledge about the target
model is assumed. The transferability property emphasizes
the threat of adversarial examples for the application of Deep
Neural Networks in security-critical applications. Transfer-
ability is a very active research field for image-dependant at-
tacks. Very few works on UAPs solely focus on the explo-
ration of the transferability properties of UAPs. However, a
great portion of the works on UAP report the transferabil-
ity capabilities of their generated UAPs. We summarize the
black-box attack capabilities of a few works in Table 2. Over-
all Table 2 shows that in the context of UAPs it is a good
rule of thumb that a higher white-box attack rate correlates
with a higher black-box capability. Further, we discuss a
few works that specifically aim to increase the transferabil-
ity capabilities of UAPs. The authors of [Li et al., 2020b]

investigate the regional homogeneity of UAPs. Their finding
suggests that perturbations crafted for models, which are op-
timized to defend against adversarial examples, show more
homogeneous patterns than those crafted for naturally trained
models. Therefore, the authors propose regionally homoge-
neous perturbations (RHP) and showcase their effectiveness
against defense models in the transfer setting. To achieve
more transferable UAPs (T-UAP) Hashemi et al. introduce
a new loss that focuses on the adversarial energy in the first
layer of source models to work together with the widely used
cross-entropy loss to improve its transferability on the target
models [Hashemi et al., 2020]. Naseer et al. take transferabil-
ity a step further and shows the existence of domain-invariant
adversaries [Naseer et al., 2019]. The authors show that ad-
versaries learned on Paintings, Cartoons or Medical Images
can successfully perturb ImageNet samples to fool the target
classifier. A Decision-based UAP was introduced by [Wu et
al., 2020]. Their decision-based universal adversarial attack

(DUAttack) has no access to the internal information of the
target models. DUAttack only has access to the hard-label
returned by the target models. It utilizes the final inferred
label to guide the direction of the perturbation. Specifically,
to craft a perturbation with a stripe texture, they apply the
orthogonal matrix and iteratively switch the rows of the ma-
trix to determine the location of where the alteration should
be applied. Besides, to avoid the altered pixels to offset each
other, DUAttack extends its approach with a momentum term,
which is commonly used in deep learning, helping to reduce
the number of queries. The majority of these works discuss
the transferability of UAPs in the non-targeted context, mean-
ing that the attack is considered successful if misclassification
on the black-box model is achieved. The targeted black-box
attack, in which the samples have to be misclassified toward
a specific target class is a much more challenging attack sce-
nario and is rarely discussed. Due to the problem setup of
UAPs, targeted UAPs can also only be discussed in a more
limited scenario, where only one target class can be chosen
for all samples since it is unlikely that a single perturbation
will be capable to misclassify different samples toward dif-
ferent target classes. The work by Zhang et al. also considers
the data-free targeted UAP case. With relatively low targeted
fooling ratios for most networks, but interestingly higher tar-
geted fooling ratios for models from the same architecture
families, it emphasizes the difficulty of this attack scenario.
Since their attack method can be categorized as a data-free
universal attack method, it is considered as the first work to
achieve data-free targeted UAPs [Zhang et al., 2020b]. Im-
proving its performance in the black-box scenario would be
an interesting future direction.

5.3 Class-Discriminative UAPs (CD-UAPs)

All of the previously introduced attack methods attack sam-
ples from all classes. The authors of [Zhang et al., 2020a]

argue that this obvious misbehavior caused by UAPs might
be suspicious to an observer. The authors investigate whether
such a UAP exists that only attacks samples from a few
classes while limiting the adversarial influence on the remain-
ing classes. Such CD-UAPs would then raise less suspicion
since the system under attack would only misbehave when a
specific sample from a targeted class would be encountered.
By combining separated loss terms for the samples from the
non-targeted and targeted samples the authors successfully
demonstrate a CD-UAP achieving class discrimination. In an
extension to this work, the same group of authors further ex-
tends the CD-UAP to a targeted version. The objective of the
introduced Double Targeted Attack (DTA) [Benz et al., 2020]

is to craft a single perturbation to fool samples of a specific
class toward a pre-defined targeted class. Class-wise UAPs
have also been explored in [Gupta et al., 2019]. Gupta et
al. propose a data-independent approach to craft CD-UAPs,
by exploiting the linearity of the decision boundaries of deep
neural networks.

6 Universal Attack Beyond Classification

The universal attack against deep classifier has been extended
from the image domain to video domain. Li et al. introduce
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Method VGG-F CaffeNet GoogleNet VGG-16 VGG-19 ResNet152

UAP [Moosavi-Dezfooli et al., 2017a] 64.0 57.2 53.6 73.5 77.8 58.0
NAG [Mopuri et al., 2018b] 67.8 67.6 74.5 80.6 83.8 65.4

T-UAP [Hashemi et al., 2020] - - - 84.7 94.0 36.4

FFF [Mopuri et al., 2017] 39.9 38.0 30.7 38.2 43.6 26.3
GD-UAP [Mopuri et al., 2018a] 49.1 53.5 40.9 55.7 64.7 35.8

UAP-DL [Sam et al., 2019] - - 33.7 47.5 52.0 30.4
AAA [Mopuri et al., 2018c] 62.5 59.6 68.8 69.5 72.8 51.7

DF-UAP [Zhang et al., 2020b] - 53.7 39.8 83.4 92.5 35.4

Table 2: Fooling ratio (%) of various transfer-based attack methods with VGG-19 as the source model. The results are divided into universal
attacks with access to the original ImageNet training data (upper) and data-free methods (lower).

the first UAP against video recognition [Li et al., 2018]. Chen
et al. introduce a new variant of a universal attack on videos
by appending multiple dummy frames to an arbitrary video
clip [Chen et al., 2019]. We briefly summarize the universal
attack in applications beyond image (video) classification.

6.1 Beyond Classification in the Image Domain

Hendrik Metzen et al. explore how to exploit universal ad-
versarial perturbations against semantic segmentation [Hen-
drik Metzen et al., 2017]. The authors proposed two suc-
cessful methods for the attack: the first method is to teach a
network to output a desired target segmentation map regard-
less of the input image; the second method aims to remove
target classes from the resulting segmentation map leaving
other parts unchanged. Mopuri et al. show that their proposed
data-free GD-UAP also attacks semantic segmentation effec-
tively [Mopuri et al., 2018a]. Additionally, the success of
GD-UAP for attacking depth estimation is demonstrated. Li
et al. proposed a universal adversarial perturbation technique
against the image-retrieval task [Li et al., 2019]. The main
idea is to attack the point-wise, pair-wise, and list-wise neigh-
borhood relationships. In addition, a coarse-to-fine distilla-
tion strategy is also introduced for the black-box attack. De-
spite good performance on standard benchmarks, the method
also extends to real-world systems such as Google Images.

6.2 Text Classification

Wallace et al. have introduced universal adversarial trig-
gers for attacking and analyzing natural language process-
ing (NLP) [Wallace et al., 2019]. Universal adversarial trig-
gers are defined in [Wallace et al., 2019] as input-agnostic
sequences of tokens that can be concatenated to any input
from a dataset and consequently result in a specific predic-
tion. Behjati et al. introduce for UAP against text classi-
fier. The UAP for text is defined as a sequence of words that
can be added to any input sentence in order and leads to a
significant accuracy drop for the text classifier[Behjati et al.,
2019]. The existence of a universal yet small perturbation
vector in the embedding space that causes natural text to be
misclassified is discovered in [Gao and Oates, 2019]. Un-
like images for which a UAP of fixed size can be found, the
length of the text can change. Thus, the “universality” has
been defined as “token-agnostic”. Specifically, they apply a
single perturbation to each token, resulting in different per-
turbations of flexible sizes at the sequence level. The meth-
ods introduced in [Wallace et al., 2019; Behjati et al., 2019;

Gao and Oates, 2019] for attacking text classifier are success-
ful. However, the generated sequence of words do not carry
semantic meaning thus can be easily detected by the human.
To overcome this drawback, Song et al. leverage an adversar-
ially regularized autoencoder (ARAE) for generating natural
English phrases that can confuse the text classifier.

6.3 Audio Classification

The existence of UAPs that can fool audio classification ar-
chitectures for tasks such as speech commands, has been
demonstrated in some co-occurring works [Vadillo and San-
tana, 2019; Neekhara et al., 2019]. The algorithms adopted
in [Vadillo and Santana, 2019; Neekhara et al., 2019] resem-
ble each other and are inspired by the DeepFool based vanilla
UAP algorithm [Moosavi-Dezfooli et al., 2017a]. Due to the
reasons discussed abovr, such algorithms are often cumber-
some and slow. In [Xie et al., 2020a; Li et al., 2020a] UAPs
are generated for audio classifier based on generative net-
works. For example, Xie et al. adopt a Wave-U-Net based
fast audio adversarial perturbation generator (FAPG). To im-
prove the robustness of the generated UAP against audio, Xie
et al. propose to adopt an acoustic room simulator to esti-
mate the sound distortions [Xie et al., 2020b]. Their results
show that the proposed acoustic room simulator significantly
improves the performance of the UAP. The efficacy of their
approach has been demonstrated on a public dataset of 109
speakers. Overall, we find that the research in the audio do-
main is highly influenced by the algorithms developed in the
image domain, which is expected because most of the early
researches on UAP is exclusively done on the image domain.

7 Conclusion

With a focus on image classification, this survey discusses
the recent progress of UAPs for both attack and defense as
well as the reason for the existence of UAPs. Additionally,
this survey identifies data-dependency, black-box attack, and
class-discrimination as three challenges for UAPs and dis-
cusses them. This survey also summarizes universal adver-
sarial attacks in a wide range of applications beyond image
classification. Overall, the topic of UAP is a fast-evolving
field, and our survey can serve as a solid basis for future re-
searches in this field. We believe a joint investigation with
data hiding as done in [Zhang et al., 2021b] might be an in-
teresting future direction for providing deeper insight.
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