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Abstract—This paper presents a survey of the state-of-the-art 

advances in human vital signs detection using radar sensors, their 

integration and coexistence with communication systems, and 

their issues in spectrum sharing. The focus of this survey is to 

review the detection, monitoring, and tracking of vital signs, 

specifically the respiration rate and heartbeat rate over the recent 

five years. It is observed that in line with technological 

advancements, a multitude of radar types operating in a diverse 

frequency spectra have been introduced with different hardware 

implementations, considering various detection scenarios, and 

applying multiple signal processing algorithms. The aim of these 

researches varies, from enhancing the detection accuracy, 

improving the processing speed, reducing the power consumption, 

simplifying the hardware used, lowering implementation costs, 

and the combinations of them. Besides that, this review also 

focuses on literature aimed at increasing the detection accuracy 

and reducing the processing time using FPGAs, prior to 

benchmarking them against other processing platforms. Finally, a 

perspective on the future of human vital signs detection using 

radar sensors concludes this review.    

 
Index Terms—Radars, vital sign detection, respiration, 

heartbeat rate, FPGAs. 

I. INTRODUCTION 

uman health status can be mainly determined from the 

available vital signals that can be acquired directly from the 

body, whether invasively or non-invasively. Signals such as 

blood pressure, heart rate, respiration rate, blood oxygen, 

motion parameters etc., can provide a precursor to indicate the 

quality of life for an individual. Among them, signals acquired 

to indicate the heart rate (HR) and respiration rate (RR) are vital 

physiological signals indicating the health condition of the 

person.  

Heart rate detection and monitoring can indicate the health 

status of a person’s cardiovascular system. The heart rate 

changes based on how a person reacts to different situations 

such as fear, illness, depression etc. Likewise, the instability of 

respiration rate is an early indicator of physiological variability, 

whether short- or long term. Thus, HR and RR can be used in 

various applications, such as sleep monitoring, elderly health 

home-monitoring, infants or preterm condition monitoring, 

post-surgery monitoring and trapped victim detection in search 

and rescue operations [1]. 

 

The topic of human vital sign detection has been attracting 

the interest of many researchers in recent years and has been 

enabled using different methods and technologies. While some 

researchers use contact-type methods to detect human vital 

signs, such as wearable devices and sensors to perform 

measurements when attached to the human body, other 

researchers tend to use contactless technologies such as radar 

systems, cameras and laser technologies. Non-invasive radar-

based detection method is preferred by many researchers over 

other available detection methods. This is because such radar 

systems reduce the inconvenience caused by wearable devices 

and electrocardiogram (ECG) equipment. Direct contact 

methods applied on the human body potentially causes 

discomfort/harm to the target, and this is especially evident in 

the case of skin burn injuries, preterm and sleep monitoring. 

Moreover, the use of direct contact methods may also cause the 

targets to change their behavior due to awareness and obtrusion 

caused by the device, thus affecting the measurement accuracy. 

On the contrary, the application of radar systems eliminates 

these possibilities and their potential errors. 

Besides that, radar-based detection has also been favored in 

many cases over other non-contact methods due to its 

applicability for non-line-of-sight monitoring, sensing in foggy 

environments, and its ability in through-wall detection. 

Moreover, privacy concern does not arise when using such 

methods, as no videos or pictures are involved in the detection 

[1],[2],[3]. In radar-based human vital sign detection, the 

received signal upon reflection is processed to acquire useful 

information. Several of the processing steps involved include 

demodulation, amplification, digitization, transfer, storage, 

denoising, filtration, and information extraction. These steps 

are generally categorized as signal acquisition and processing. 

Radar signals can be processed using different platforms such 

as Central processing unit (CPU), digital signal processors 

(DSP), Graphic processing units (GPU), application specific 

integrated circuits (ASIC)-based processors, field 

programmable gate arrays (FPGAs), or the combinations of 

these platforms. Table 1 compares the features of radar-based 

sensors, ECGs, wearable devices, camera-based sensors, and 

laser-based sensors for vital sign detection. 
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Table 1 Comparison between different technologies for vital sign 

detection 

Feature Radar ECG Wearable 

devices 

Camera Laser 

Convenience Yes No No Yes Yes 

Through wall detection Yes 
N/A N/A No No 

Privacy concerns No 
No No Yes No 

Safety concerns Yes N/A N/A No No 

Dark, foggy 

environment 

Yes Yes Yes No No 

Non-line-of-sight 

detection 

Yes N/A N/A No No 

Interference Yes No No No No 

 

Besides that, it is highly possible that radars and 

communication devices coexist in the same location. Such 

coexistence may result in both applications sharing the same 

spectrum and lead to interference. To facilitate coexistence in 

the radio spectrum, all radar sensors must comply with 

regulations of unlicensed operation. The Federal 

Communication Commission (FCC) in the US allows 

unlicensed UWB transmission in the 3.1 to 10.6 GHz range 

with an average transmitted power of less than -41.3dBm/MHz 

[4]. Radars in the unlicensed frequency band are increasingly 

being considered for indoor scanning and localization in 

coexistence with 5G and the Internet of Things (IoT). In other 

situations, radars and communication devices may utilize the 

same hardware to reduce cost and complexity. It is also foreseen 

in the near future that a growing number of communication 

devices and detection radars coexist and share the spectrum in 

a heterogenous way. Thus, advancements in techniques to 

mitigate such coexistence are one of the main issues currently 

being investigated.  

This survey provides a review of the state-of-the-art in this 

growing research area from the different aspects of processing 

platforms, detection algorithms, operating frequencies and 

wireless communication hardware. Such review is the first of 

its kind, to the best of the authors’ knowledge. Some of these 

researches may not be necessarily applied for vital sign 

detection but can potentially be used in such application. The 

rest of this review is organized as follows. The next section will 

describe and summarize the technical background of radar 

principles, classifying the types of radar and the processing 

platforms used, with a specific focus on FPGAs, the signal 

processing algorithms, the operating frequency spectrum 

utilized, and the communication of data. Finally, this review 

ends with a future perspective of potential radar architectures 

and features that are most suited for applications in vital sign 

detection. This work intends to highlight the main challenges in 

vital sign detection using radar techniques and concentrate on 

its real-time detection aspect to depart from existing reviews 

available in literature. This is due to the need for alternative 

solutions and considerations for real-time radar detection, 

which include innovative parallel processing paradigms on 

reconfigurable processing devices such as the FPGA. 

II. RADAR BACKGROUND AND PRINCIPLES  

Radars use electromagnetic (EM) waves to detect and 

monitor remote targets. They transmit and capture reflected 

radio frequency (RF) waves from one or several targets and 

process them to obtain information about the targets. In general, 

a signal source is needed to generate the wave to be transmitted 

via an antenna. Once the transmitted signal hits the target, a 

portion of the signal is reflected to the radar while the rest is 

reflected in other directions or absorbed by the body. 

The type and shape of the transmitted signal depends on the 

radar type. There are four widely used radar types for vital sign 

detection: continuous wave radar (CW), ultra-wide band 

impulse radar (UWB-IR), linearly frequency-modulated 

continuous wave radar (LFMCW) or (FMCW) and step 

frequency continues wave radar (SFCW). The CW radar 

transmits unmodulated continuous wave single tone signals, 

which can be written as follows [5]: 

 𝑇(𝑡) = 𝑐𝑜𝑠(2𝜋𝑓𝑡 + 𝜙(𝑡))                                                             (1) 

 

where  𝑓 is the oscillation frequency, 𝑡 is the elapsed time, and 𝜙(𝑡) is the phase noise caused by the oscillator. 

The UWB-IR radars, on the other hand, transmits pulses 

which are wide in bandwidth. The rate at which these pulses are 

transmitted per second is called the pulse repetition frequency 

(PRF). The interval between transmitted pulses is usually used 

to listen for incoming reflections from objects. The pulse signal 

is modulated before being amplified and emitted. The 

transmission signal for the 𝑖𝑡ℎ frame, can be written as: 

 𝑆𝑖(𝑡) = 𝑝(𝑡 − 𝑖𝑇𝑓)cos(2𝜋𝑓0(𝑡 − 𝑖𝑇𝑓))                                  (2) 

 

where 𝑝(𝑡 − 𝑖𝑇𝑓) is the pulse signal , 𝑡 is elapsed time, 𝑇𝑓 is the 

duration of the frame (𝑇𝑓 = 1𝑓𝑝) , 𝑓𝑝 is the pulse repetition 

frequency, and cos(2𝜋𝑓0(𝑡 − 𝑖𝑇𝑓) is the carrier with the carrier 

frequency 𝑓0 [6]. 

The FMCW radar transmits chirps of sinusoidal signals, 

which frequency is linearly swept from 𝑓0 to 𝑓1. The complex 

chirp signal can be modeled as follows [7] : 

 S(𝑡) = 𝐴𝑡 exp(𝑗(2𝜋𝑓0𝑡 + 𝜋𝐾𝑡2)) , 0 < 𝑡 < 𝑇𝑠                     (3) 

 

where 𝐴𝑡 is the magnitude associated with the power 

transmitted, 𝑓0 is the start frequency, 𝑡 is the time elapsed, and 𝐾 is the slope of the sweep of frequencies from 𝑓0 to 𝑓1 during 

the duration 𝑇𝑠. The sweeping bandwidth can then be written 

as: 

 𝐵 = 𝑓1 −𝑓0 = 𝐾𝑇𝑠                                                               (4) 

 

The transmitted FMCW waveform is illustrated in Figure 1.  
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Next is the SFCW radar, which transmits series of discrete 

tones in a stepwise manner. The waveform of the SFCW 

consists of N coherent pulses, which frequencies monotonically 

increases by a fixed increment,  𝛥𝑓. If the carrier frequency of 

the first pulse is 𝑓0, then the 𝑛𝑡ℎ pulse frequency is: 

 

 𝑓𝑛−1 = 𝑓0 + (𝑛 + 1)𝛥𝑓                                                                     (5) 

 

In SFCW radars, the time interval between adjacent pulses is 

called 𝜏 , while the time interval between two groups of 𝑁pulses 

is 𝑁𝜏 , with each group is called a burst. The burst time (𝑁𝜏) is 

called the coherent processing interval (CPI). Its concepts are 

illustrated in Figure 2 [2].   

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The receiving antenna captures part of the reflected signal, 

which is then compared with the transmitted signal to extract 

useful information about the target. Typically, the following 

four signal parameters are expected to differ between the 

transmitted and received signal:  amplitude, frequency, phase, 

and polarization. Another major determinant in ensuring radars 

can extract useful information about the target, is the amount of 

reflected power captured by the receiver. This factor also 

determines the maximum radar operating range - the distance 

below where the radar can correctly detect the target and extract 

information. The power reflected from the target can be 

expressed as follows [8]: 

 𝑃𝑟𝑒𝑓 = 𝑃𝑡𝐺𝑡𝜎4𝜋𝑅2                                                                         (6) 

 

where 𝑃𝑡 is the transmitted signal power, 𝑃𝑟𝑒𝑓is the reflected 

power, 𝐺𝑡is the gain of the transmitting antenna, 𝜎is the radar 

cross section (RCS) of the target, and 𝑅is the distance between 

the radar and the target. It should be noted that the 

aforementioned equation is a simplified version which assumes 

no attenuation exist between the radar and the target due to 

precipitation, cloud or gases. It also assumes that the angular 

extent of the target is greater than the radar beam width in both 

azimuth and elevation planes. The received power is:  

 𝑃𝑟 = 𝑃𝑡𝐺𝑡𝐺𝑟𝜎𝐴𝑒(4𝜋𝑅2)2                                                                     (7) 

 

where 𝐴𝑒 is the effective area of receiving antenna and 𝐺𝑟 is its 

gain. Based on the previous equation, the maximum radar 

detectable range, 𝑅𝑚𝑎𝑥 can be calculated as follows [8]: 

 𝑅𝑚𝑎𝑥 = [𝑃𝑡𝐺𝑡𝐺𝑟𝜎𝐴𝑒16𝜋2𝑆𝑚𝑖𝑛 ]14                                                       (8) 

 

where 𝑆𝑚𝑖𝑛 is the minimum detectable signal power. 

If the reflection is received from a moving target, the wave is 

modulated by the target motion based on the Doppler effect. 

The phase of the received signal, 𝜃, can be written as 

 𝜃 = 4𝜋𝑑𝜆                                                                                      (9) 

 

where 𝑑 is the distance to the target and 𝜆 is the wavelength of 

the radar signal.  

The phase noise is significant in the principle of radar-based 

detection. It is a characteristic of the signal source and is due to 

the phase fluctuation within the oscillator. Assuming equation 

(1) is transmitted, the received signal could be written as [1] : 

 𝑅(𝑡) = 𝐴𝑟𝑐𝑜𝑠(𝜔0𝑡 + 2𝜋𝜆 (2𝑑0 + 2𝑥(𝑡)) + 𝜙(𝑡 − 2𝑑0𝑐 ))         (10) 

 

where 𝐴𝑟 is amplitude of received signal, 𝜔0 is the oscillation 

frequency, 𝑡 is elapsed time, 𝜆 is the signal wavelength, 𝑑0 is 

the nominal distance between the target and the radar, 𝑥(𝑡) is 

the time varying chest displacement of the target, the term 𝜙(𝑡 − 2𝑑0𝑐 ) is the delayed version of the transmitted phase noise 

and 𝑐 is the speed of light. This equation indicates that the phase 

has been modulated by the chest motion to some extent, and 

phase demodulation is needed to detect this motion. Moreover, 

this motion is buried in the phase noise, which may affect the 

actual phase of the target and, hence, the chest displacement 

Figure 1: Transmitted FMCW signal with varying 

frequency in the duration, 𝑇𝑠 [8]   

Figure 2 Time frequency representation of SFCW waves [2] 
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accuracy. When using the same source in the transmission and 

receive, the phase noise of the reflected signal is correlated with 

the receiver local oscillator. If the time delay between the two 

signals is small; which is usually the case in vital sign detection, 

then the phase noise effect can be greatly reduced. This phase 

noise reduction is usually referred to as range correlation in 

coherent radar systems. Once the received signal is down-

converted by means of multiplication with the transmitted 

signal and low-pass filtered, the resulting signal can be written 

as [1]: 

 𝑅(𝑡) = 1/2𝐴𝑟𝑐𝑜𝑠(2𝜋𝜆 (2𝑑0 + 2𝑥(𝑡)) + 𝜙(𝑡 − 2𝑑0𝑐 ) − 𝜙(𝑡))     
(11) 

 

Since this is a coherent receiver, the phase noise difference is 

small and can be ignored. The output of the baseband can be 

written as: 

 𝑅(𝑡) = 1/2𝐴𝑟𝑐𝑜𝑠(2𝜋𝜆 (2𝑑0 + 2𝑥(𝑡)))                                      (12) 

 

which presents the relation between chest displacement and the 

phase of baseband signal [1] . 

To account for the Doppler effect in the phase of the received 

signal, equation (9) is can be modified as follows:  

 𝛻𝜃 = 4𝜋𝛻𝑑𝜆                                                                                  (13) 

 

 

where ∇𝜃 is the phase changes caused by the change of position 

(motion), ∇𝑑. The Doppler modulated frequency of the 

reflected wave can then be calculated by integrating both sides, 

resulting in: 

 𝑓𝑑(𝑡) = 2𝑣(𝑡)𝜆                                                                             (14) 

 

 

where 𝑣(𝑡) is the target velocity. 

Typically, the received signal containing the Doppler 

frequency is then channeled through a low noise amplifier 

(LNA). Next, this signal is down converted into baseband using 

a mixer and a low pass filter. The remaining signal contains the 

Doppler frequency,𝑓𝑑, caused by the target motion. From this, 

the target speed can by extracted using equation (14). Another 

important parameter is 𝜏, which is the total travel time taken by 

the signal from the transmitter to the receiver after being 

reflected by the target at a distance 𝑅 from the transmitter. It 

can be expressed as follow: 

 𝜏 = 2𝑅𝐶                                                                              (15) 

 

 

This parameter is usually associated with the calculation of the 

range profile in linear frequency modulated continuous wave 

(LFMCW) radars, or commonly known as FMCW radars. All 

aforementioned principles and equations are fundamental in the 

calculation and detection of respiration rate and heart rate [8]. 

One of the most widely used concepts in literature to model 

respiration and heartbeat is the “rib cage model”. During the 

respiration, the chest’s anterior and lateral diameters expand 

and shrinks periodically in the anterior-posterior and lateral 

directions. On the other hand, the heart expands and shrinks 

periodically in all directions. The changes in the boundaries of 

the chest wall and the heart in the “rib cage model” are 

described as sinusoidal oscillations as follows [9]: 

 𝑑(𝑡)𝑟 = 𝑚𝑟𝑠𝑖𝑛(2𝜋𝑓𝑟𝑡)                                                     (16) 

 𝑑(𝑡)ℎ = 𝑚ℎ𝑠𝑖𝑛(2𝜋𝑓ℎ𝑡)                                                    (17) 

 

where 𝑑(𝑡)𝑟 and 𝑑(𝑡)ℎdescribes the displacement due to 

respiration and heartbeat, respectively. Parameters 𝑚𝑟 and 𝑚ℎ  

represent the amplitude of the displacement due to respiration 

and heartbeat, respectively, 𝑓𝑟 is the respiratory rate, and 𝑓ℎis 

the heart rate [9], [10]. Radars can detect these tiny 

displacements in the human chest due to respiration and 

heartbeat, as described in by (16) and (17). These displacements 

modulate the phase of the signals transmitted by the radar, 

based on the Doppler principle. Thus, the target respiration and 

heart rate information are embedded in the modulated phase of 

the received radar signal. The extraction of the vital sign 

information from the phase of the radar signal can then be 

performed using a variety of algorithms. 

III. RADAR TYPES FOR VITAL SIGN DETECTION 

 

Generally, vital sign detection is made more effective by 

selecting the right type of radar. Besides that, practical aspects 

such as technical requirements and environment in which the 

vital sign detection takes place determines the suitability of the 

radar type. These requirements may include typical detection 

distance, multiple targets detection, moving targets sensing, and 

through-wall detection. The four potential radar types, namely 

continuous wave radar (CW), linearly frequency-modulated 

continuous wave radar (LFMCW) or (FMCW), ultra-wide band 

impulse radar (UWB-IR) and step frequency continues wave 

radar (SFCW) and their features, advantages and drawbacks are 

summarized in Table 2. CW radar is used in vital sign detection 

for its cost efficiency and design simplicity. However, CW 

radars do not have range detection capability, they receive 

reflections from everywhere. As a result, compared to other 

types of radars, they are less immune to jammers and unwanted 

reflections. Consequently, their detection is limited for used 

within short distances. Moreover, a CW radar is not suitable in 

detecting vital signs of multiple human targets and/or human 

target localization and tracking. On the other hand, the detection 

distance in radars is dependent on the type of application. In the 

case that a long-range detection is needed in the target 

application, signals with high power and very directive 

antennas can be introduced. Despite that, for the indoor vital 

sign detection, the transmit power is limited to 0 dBm/50MHz, 

which then also restricts the maximum detection distance. A 

FMCW, a UWB impulse, or a SFCW radars can be used in vital 

sign detection for multiple targets. However, UWB impulse 

radars are more complex and costlier compared to the CW 

radars. On the other hand, both FMCW and SFCW radars are 

capable of vital sign detection for multiple subjects, localization 

and tracking, features high SNR, are less complex and more 
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cost efficient compared to UWB impulse radars. The preference 

of SFCW over FMCW signal types in vital sign detection tends 

to be influenced by factors such as availability of stepped 

frequency in the radar’s transmit signals. Due to this feature, 
compressive sensing can be applied to this radar type, resulting 

in improved detection speed [2]. Since CW radars are less 

immune to jammers, they typically achieve less SNR compared 

to the other radar types. Depending on the coherence integration 

and design, UWB-IR, FMCW and SFCW enable higher process 

gains and consequently improve SNR relative to CW radars. 

The sign (x) in Table 2 indicate that the radar does not possess 

the specified feature, or it exists with significant limitations. 

 
Table 2 Features of different potential radar types for use in vital sign 

detection  

Feature CW FMCW UWB-IR SFCW 

Long distance detection x ✓ ✓ ✓ 

High detection accuracy ✓ ✓✓ ✓✓ ✓✓ 

Target speed detection ✓ ✓ ✓ ✓ 

Multiple subjects’ detection x ✓ ✓ ✓ 

Through wall detection ✓ ✓✓ ✓✓ ✓✓ 

Localization  x ✓ ✓ ✓ 

Simplicity ✓✓✓ ✓✓ ✓ ✓✓ 

Low cost ✓✓✓ ✓✓ ✓ ✓✓ 

Target range x ✓ ✓ ✓ 

Tiny motion detection ✓ ✓ ✓ ✓ 

High SNR ✓ ✓✓ ✓✓ ✓✓ 

 

The detection of vital signs of a human using radar systems 

involves the use of electromagnetic frequency spectrum, which 

also varies depending on the type of radar and their application. 

One of the main frequency bands used is the industrial, 

scientific and medical (ISM), a band of radio and microwave 

frequencies reserved and designated for industrial, scientific 

and medical equipment that use RF. Besides that, UWB radars 

are increasing being chosen due to the regulation by the Federal 

Communication Commission (FCC). This regulation allows 

unlicensed wireless operation of radars in the UWB band of 3.1 

to 10.6 GHz [11][12], [13], with not more than -41.3 dB/MHz 

of average power transmission. On the other hand, the European 

Telecommunication Standards Institute (ETSI) also permits the 

unlicensed operation of communication technologies in the 

spectrum between 6 and 8.5 GHz, whereas the Korean 

Communication Commission (KCC) permits operation in the 

frequency band of 7.2 to 10.2 GHz [4],[14], [15]. 

Besides the radar type and the operating frequency band, 

several other important considerations in designing radar-based 

vital sign detection systems include the type of vital signal to 

be detected and the power consumption level. A comparison of 

the power consumption levels of several recently reported 

radars operating between 2 and 15 GHz is presented in  

Table 3 [16]. Notice that the highest DC peak power 

consumption of 148 mW is observed in [17], whereas the lowest 

of 19 mW is presented in [16]. During active detection, the 

design in [18] consumed the highest DC power of 695 mW, 

while [16] again featured a remarkably low DC power 

consumption of 0.68 mW. Such low power consumption levels 

will enable the effective implementation of battery-powered 

radar-based sensors. The state-of-the-art literature for radar-

based vital sign detection is summarized based on the type of 

radar in Table 4. The following subsections will present more 

details of the different radar types and their respective state-of-

the-art literature.  
 

Table 3 Comparison of power consumption of several state-of-the-art 

radars 

 [16] [4] [18] [19] [17] 

Freq (GHz) 6.8-8.2 7.2-8.5 2-5 10 15 

VDD (V) 1/1.1 1.8 1.9 1.2 1.2 

Chip 

Content 

ADC, LPF, 

HPF, PA, 

DCO, 

LNA/mixer 

OSC, PLLs, 

PMU, DAC 

preamp, 

LNA 

comparators, 

HPF, digital 

backend and 

control logic 

Switch, 

LNA, buffer, 

S&H circ, 

T&H, 

integrator, 

VGA, pulse 

gener. timing 

circu, power 

splitter, 

output buff. 

4ch RX 

RFFEs, 4 

ch RXBBs, 

SPI, DLL 

MPS, 

DDSs, 

PLLs, PSs, 

PAs 

ADC, 

VGA, BPF, 

Rx RFFE, 

DA-PA, 

chirp 

synthesizer 

and DSP 

reservation 

Peak DC 

power  

19mW N/A N/A 141mW/ch 148mW 

DC power 

during 

active 

detection 

0.68mW 118mW 695mW 141mW/ch 148mW 

Table abbreviations: 

ADC: analogue to digital converter , LPF: low pass filter, HPF: high pass filter, 

LNA: low noise amplifier, DCO: digitally controlled oscillator, PA: power 

amplifier, OSC: oscillator, PLL: phased locked loop, PMU: power management 

unit, DAC: digital to analog converter, T & H: track and hold amplifiers, S & 

H: sample and hold block, VGA: variable gain amplifier, 4ch RX RFFE: 4 

channels receiver RF front end block, 4ch RXBBs: 4channels receiver baseband 

block, SPI: serial peripheral interphase, DLL MPS: delay locked loop based on 

multiphase synthesizer, DDS: direct digital synthesizer, PS: phase shifter, BPF: 

bandpass filter, DA-PA: driver amplifier-power amplifier, DSP: digital signal 

processing. 

 
Table 4 Radar types for vital sign detection 

Radar Type Reference 

CW  [1], [3],  [8],  [20], [21], [22], [23], [24], [25], [26], 

[27], [28], [29], [30], [31], [32], [33], [34], [35] 

UWB-IR [2], [10], [21], [36], [37], [38], [39], [4], [40],  [41], 

[42], [43], [44], [45], [46], [47], [48], [49], [50] 

FMCW [8], [7],  [51], [52], [53], [54],  

SFCW [2], [9],[55], [56], [57] [58] 

 

A. CW Radar 

The authors in [1] used a CW Doppler and a pulse radar to 
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wirelessly detect heart signal and breathing signal. Several 

sources of signal distortion were also introduced into these 

signals to be evaluated. One of the distortion sources studied in 

this work is channel imbalance in quadrature receivers. This 

work also proposed an innovative hardware design using packet 

radar and low pulse IF receiver architecture to overcome these 

issues. Next, the work in [3] developed a CMOS direct 

conversion CW radar. This radar sensor contains a voltage-

controlled oscillator to generate the CW signal, and other 

necessary components such as frequency divider, power 

amplifier and quasi circulator (QC). This design also includes a 

clutter canceller block consisting of variable gain amplifier and 

360° phase shifter. This clutter canceller performs cancellation 

for the transmitted leakage power leakage from the QC and the 

stationary background reflection clutter. Experimental 

assessments for the detection of human vital signs at 75 cm was 

demonstrated, with the heartbeat and respiration signals clearly 

observed. Meanwhile, the thesis in [8] introduces a unique 

architecture based on multidimensional signal processing for 

directional sensing and remote localization. This architecture 

integrates CW Doppler radar with array signal processing based 

on 2-D Infinite Impulse Response (IIR) Spatial Band Pass 

(SBP) digital filters. The proposed architecture consists of a 

wideband omnidirectional Uniform Linear Array (ULA) 

consisting of 64 receiver antennas. It spatially samples the 

reflected RF waves with each antenna having its own RF front 

end. Each front end consists of an LNA, band pass filter (BPF), 

gain amplifier (GA), and phase shifter (PS) to generate the in-

phase and quadrature components. These signals are then down 

converted to baseband using mixers which multiply the output 

of the PS with a copy of the transmitted signal. This copy is 

generated using a voltage-controlled oscillator (VCO) and 65-

way splitter. This step is followed by baseband amplification 

and low pass filtering. The baseband signals are then down 

sampled using dedicated down-sampling ADCs at each 

antenna. After that, the signals are digitally processed using 2-

D IIR SBP beamformer to provide information of the 

surrounding targets. Although the main application of this work 

is in micro unmanned aerial system (UAS) detection and 

automated cyber physical system (CPS), the radar signal 

extraction methods can be applied to vital sign signal 

extraction.  

Next, in [20], a CW radar and its corresponding processing 

techniques are used to detect cardiopulmonary activities of 

human body. Detection is performed at several body positions 

and scenarios. Meanwhile, a human sensing application radar is 

presented in [21] using a CW Doppler radar. The CW radar 

generates a 3 GHz CW signal which is then amplified through 

a power amplifier before being transmitted via a Vivaldi 

antenna. In the receiver side, the received signal is amplified by 

an LNA. The CW radar utilizes a super-heterodyne receiver to 

eliminate out-of-band noise and nonlinear distortions by 

converting the received signal into intermediate frequency (IF) 

signals, followed by the application of a BPF. Next, the IF 

signal is digitized, and the sampled data is sent to the FPGA-

based digital downconverter. The structure of the CW radar is 

shown in Figure 3. Note that the architecture of the super-

heterodyne receiver is more complex compared to the radar 

architecture shown in Figure 5, which enables direct mixing of 

the received signal with the local oscillator signal. Despite this, 

the CW radar in Figure 3 enables the elimination of low 

frequency noise and interference, at the cost of added 

complexity. 

 
Figure 3 Block diagram of the CW radar prototype [21] © 2013 IEEE  

A recent study [22] demonstrated that a machine learning-

based algorithm can be used to model heart beat signal using 

respiration artifacts. For this purpose, a CW radar is used to 

measure the results, which confirms that the heartbeat signal is 

independent and separable from respiration signal. Another 

interesting study in [23] proposed a time domain detection 

method using a CW Doppler radar to reduce the time required 

to obtain a high resolution spectrum of RR and HR. This 

process typically takes around 30 seconds. The proposed time 

domain peak detection algorithm is capable in acquiring RR and 

HR in a breathing cycle (of around 5 seconds). Meanwhile, the 

design of an SDR prototype for vital sign sensing and detection 

based on CW radar is presented in [25]. This research is aimed 

at investigating the validity of remotely sensed of RR and HR. 

Besides this, another interesting detection method based on CW 

radar is presented in [26]. Heart rate variability was able to be 

monitored in real time. The proposed method uses a combined 

frequency- and time domain technique to obtain the beat-to-

beat interval. The low computational complexity of the 

proposed algorithm makes its application in real time possible. 

Next, in [27], a CW radar system was developed and 

implemented on a printed circuit board (PCB) to conduct vital 

sign detection measurement. It applies a 24 GHz transceiver 

chip (BGT24MTR11 from Infineon) with homodyne 

architecture. The prototyped three-layered PCB is shown in 

Figure 4. 

A proposed heart beat model and heart rate variability 

detection method was presented in [28] based on a 2.4 GHz 

bistatic quadrature CW Doppler radar. The heart signal was 

modeled based on Gaussian pulses rather than standard 

sinusoidal signals. The system hardware generates a single tone 

continuous wave and transmits it through the antenna. The 

reflected signal from the target is captured by the receiver 

antenna, demodulated, amplified and then sampled by the ADC. 

The signal is then fed into a laptop for processing. Theoretical 

and experimental studies conducted validated the operation of 

the radar at 1.5 m from a human body. Most importantly, the 
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proposed method was able to reconstruct the heart-beat signal 

and determine the heart rate variability accurately. Next, in 

[29], a 24 GHz vital sign CW Doppler radar was proposed. This 

radar system adopts a commercially available and cost-effective 

24 GHz transceiver module. The received signal is down 

converted to obtain the I/Q signals, which are then filtered using 

4 taps Butterworth bandpass filter with a 30 Hz cut off 

frequency. The output of the filtered signal is then amplified 

100 times before being digitized using a microcontroller unit. 

The interesting aspect in this design is its use of a Wireless 

Local Area Network (WLAN) module to transmit the digitized 

signal to a PC for further extraction of cardiopulmonary rate. 

All modules in this work were implemented on a custom PCB 

to ensure size compactness. Next, a CW radar system to 

remotely sense human signals outdoors was presented in [30]. 

It is designed to find survivors after any chemical or nuclear 

catastrophe. This portable radar which is integrated with 

advanced respiration signal detection methods is also capable 

of minimizing interference from other moving objects in the 

environment. This method was experimentally validated 

outdoors for a target located at 6 m distance. The block diagram 

of the system is shown in Figure 5. 

The work in [31] addresses the vital signs and human 

walking modeling issue. It proposed a new electromagnetic 

model using a CW radar based on a software defined radio. 

Meanwhile, researchers in [32] presented a singular spectrum 

analysis (SSA) method to detect human signals. The reflected 

signals transmitted by a CW radar are then processed using 

SSA. Experiments were conducted on a person located at 2 m 

distance behind a wall. The simulation and experimental data 

validated the effectiveness and accuracy of the proposed SSA 

method when benchmarked against the use of band pass filters 

(BPF). Next, a novel architecture for tracking phase modulation 

caused by cardiopulmonary activities was proposed in  [33]. It 

is based on a CW radar operating as a PLL in demodulation 

configuration. Its block diagram is shown in Figure 6 and 

Figure 7. As an alternative, optimization algorithms can be used 

in place of direct spectral analysis to detect vital signs in 

different scenarios using a CW Doppler radar [34]. Besides that, 

the SNR of the reflected signals from human subjects can be 

improved for a CW radar, as demonstrated in [35]. 

Classification algorithms were also used to identify six different 

human subjects in this work, and therefore can be used to detect 

vital sign fingerprints. Frequencies generally used in CW radars 

for detection purposes starts from as low as 2 GHz [32]  up to 

110 GHz [25], whereas other commonly used bands are 

centered at 2.4 GHz, 5.8 GHz, 10 GHz, 24 GHz, and 60 GHz, 

as summarized in Table 5. Higher sensitivity to chest 

displacements is exhibited in CW radars with increasing 

frequency (towards millimeter-waves) due to the shorter 

wavelength. On the other hand, millimeter-waves frequency 

operation attenuates more easily, especially when the signal is 

transmitted through highly lossy human tissues such as muscles 

or skin [59]. 

  

 

 

 

 
Figure 4 Photograph of prototyped radar (a) the structure of three-

layered PCB (b) top view (c) bottom view [27] © 2016 IEICE   

 

 
Figure 5 Block diagram of proposed system in [30]. Licensed under 

Creative Commons attribution license 

https://creativecommons.org/licenses/by/4.0/ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 PLL configuration [33] © 2018 IEEE 
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B. UWB Impulse Radar 

UWB impulse radar operates throughout a wide bandwidth, 

and consistently transmits narrow pulses (or impulses) to the 

target. Then, information about the target range can be extracted 

with high resolution by processing the received echoes. It is also 

capable of target localization, tiny motion detection and through 

wall detection. On the other hand, due to the moderately high 

noise accompanying the signal, UWB-IR typically has low 

SNR. Moreover, it is more complex in architecture, and thus 

more costly to implement compared to CW radars [2],[8].  

The application of such radar type in health monitoring 

includes a novel method proposed to simultaneously extract 

heart rate and breathing information from echo signals [10]. 

Another UWB impulse radar used for human sensing 

application is presented in [21]. This UWB radar utilizes the 

same carrier frequency of 3 GHz used in the CW radar 

described in the previous subsection. In fact, the CW and the 

UWB radars of this work shared fundamental elements such as 

the transmitter and receiver antennas, the power amplifier, the 

LNA and the mixer for cost-efficiency. In this UWB radar, a 

700 ps Gaussian pulse is modulated with a 3 GHz carrier using 

a mixer and channeled through a high gain power amplifier 

before being transmitted via a wideband Vivaldi antenna. On 

the receiver side, an eight-element array collects the signal, with 

one channel selected at a time using a switch. Next, the signal 

is passed through an LNA to be down-converted into baseband. 

The output of the coherent down-conversion is then filtered 

before being channeled into an amplifier. The output is then 

sent for digitization based on the equivalent time sampling 

strategy. The structure of this UWB radar is shown Figure 8. 

A more challenging work involving the detection of 

heartbeats originating from multiple stationary targets at equal 

distances from an UWB radar is presented by [37]. An 

algorithm to separate the fundamental frequency of the 

heartbeat from its harmonics was proposed and analyzed 

numerically, prior to its experimental validation using two 

targets. Results from this experiment were then compared with 

camera-based results. Next, an algorithm was proposed to 

extract heart rate from respiration signal in [38] using an UWB 

impulse radar. Different experimental scenarios were 

performed to prove the validity of this algorithm. Besides that, 

an auto-correlation method was explored to detect random body 

movements during experiments. The algorithm was applied to 

the echoes reflected from stationary and non-stationary targets. 

Meanwhile, the effects of speech and hand movements on the 

measurement of respiration signal using an UWB radar was 

studied in [39]. It can be observed that the noise from these 

activities affected the accuracy of the target signal.  

 

 
 
Figure 8 Block diagram of the UWB radar prototype [21] © 2013 

IEEE  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

In terms of hardware development, a 55 nm CMOS SoC-

based pulsed radar was developed in [4] for vital sign detection. 

The block diagram of the SoC radar system is shown in Figure 

9. Successful detection of the radar signals at 5 m and 9 m 

distances were also reported in this work. In [40], a universal 

software radio peripheral platform (USRP-2954R) was used to 

implement the impulse radar system illustrated in Figure 10. 

This system aims to detect displacement and vibration 

accurately in real time. The time domain cross correlation 

ranging was performed using an FPGA. Meanwhile, the work 

in [44] focuses on the signal processing of a low power wireless 

CMOS impulse radar sensing system. A new reconstruction 

methodology of the compressive sensing algorithm was 

proposed. It was implemented on an FPGA and can support 

real-time human detection. Next, in [45], a signal processing 

platform for UWB radar used for analyzing human breathing 

was presented. This platform analyzes new features of human 

breathing, which have not been investigated using radar 

Figure 7 Phase detection  [33] © 2018 IEEE 

Figure 9 Block diagram of SoC radar in [4]. licensed 

under Creative Commons attribution license 
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systems. Examples of these features are inspiration and 

expiration speeds, respiration intensity and holding ratio. To do 

so, a new respiration signal model known as the four segments 

linear waveform (FSLW) respiration model was proposed, with 

early termination techniques. The radar transceiver diagram is 

shown in Figure 11. 

 

 

 
Figure 10 Pulse radar system in  [40]. Licensed under Creative 

Commons attribution licenses 

https://creativecommons.org/licenses/by/4.0/ 

 
Figure 11 CMOS UWB radar diagram  [45] © 2016 IEEE  

In [47], a new method using UWB impulse radar to detect 

human heart signal is proposed. This method is aimed at 

introducing a solution with low power consumption, low 

implementation complexity and considers the safety of the 

target. Spectral analysis is performed to minimize the effects of 

unwanted noise originating from movements of the human 

body on the detection accuracy. The experimental validation 

included a subject imitating chest vibration to ensure 

repeatability and reproducibility of the data. Next, an analysis 

on the extraction of human vital signs in the presence of noise 

was presented in [48]. The heart rate and respiration rate were 

obtained after phase demodulation of the received signal. The 

results show that monitoring of heart rate and respiration rate 

can be achieved even at 10 m distance from the radar.  

As summarized in Table 5, various frequency bands have 

been used for UWB impulse radars. Several examples are the 

one used by [50] operating from 0.5 to 5.5 GHz, the radar in 

[45] with center frequencies ranging from 1 GHz to 18 GHz, 

and bandwidth ranging from 7.3 to 12.7 GHz; and the radar in 

[21] with a center frequency of 3 GHz and a bandwidth of 1.5 

GHz. Other reported UWB impulse radars operated in a single 

frequency such as in [48]  using 5.4 GHz, the radar in [40] using 

5.75 GHz, and the radar in [36] using 6 GHz. In literature, the 

highest center frequency reported for such type of radar is at 7.3 

GHz, operating with a bandwidth of 1.4 GHz [46]. 

C. FMCW Radar 

FMCW radars are designed to overcome the disadvantages 

of CW and UWB radars. Operation of the FMCW radar 

includes the linear frequency sweeping of the transmit signal 

over time for repeated periods. The resulting frequency 

modulated signal is called a “chirp”. The radar then measures 

the frequency differences between the transmitted signal (which 

is linearly frequency modulated) and the received signal from 

which information about the range and velocity can be obtained 

[2],[8].  In a recent work in [7], an FMCW radar is used to 

obtain the RR and HR of a patient in a bedroom environment. 

A signal-processing algorithm featuring advanced phase 

unwrapping manipulation was used. Meanwhile, the work in 

[51] prototyped a 60 GHz FMCW single chip human sensing 

radar. Aimed at integration and size compactness, validations 

of this radar were performed on a target located 1 m away in 

different scenarios. Next, the work in [52] proposed a digital 

closed loop compensation architecture for LFMCW. It is aimed 

at solving nonlinear distortions caused by the analogue 

modules, which deteriorates detection accuracy. Despite not 

being specifically developed for vital sign detection, such 

design can be adapted for such purpose, especially when 

implemented using an FPGA. Besides that, a pulse noise 

generator is proposed to be implemented to jam a linear 

frequency modulated pulse compression (LFM-PC) radar in 

[53]. Finally, a new signal processing module and algorithm for 

target detection is introduced and implemented on a FPGA on 

a FMCW radar in [54].  It is capable to be used to extract range, 

Doppler speed and angle of the targets. 

The authors in [60] and [16] proposed a novel chip-based 

radar for vital sign detection fabricated using the 40nm CMOS 

process technology. In this work, the FMCW radar operated 

based on burst chirp, which is generated using a digitally 

controlled oscillator (DCO) structure with embedded domino 

chirp generation. A time domain digital predistortion block is 

included in the DCO to generate fast and linear chirps. Each 

block is controlled by the finite state machine (FSM). The radar 

has fat chirp slope of  0.7GHz/40μs with low RMS error of  0.5MHz. Due to the deactivation of all radar circuits out of the 

burst-chirp duration, the power consumption was reduced more 

than 30 times to a record-low of 680μW . This radar has the 

capability of detecting human respiration at a distance of 15 m 

and heart beat detection at a distance of 5 m. The authors in [61] 

demonstrated the application of this chip on multi-people 

tracking and vital sign detection. The frequency used in FMCW 

radars ranges from an initial frequency and is then swept over a 

period of time to arrive at the final frequency. This process is 

repeated over multiple periods. Next, as illustrated in Table 5, 

a radar for detection applications is designed with a center 

frequency of 600 MHz and a bandwidth of 300 MHz in [52]. 

These frequencies will possibly be too low if a higher range 

resolution is needed, especially when potentially detecting the 

small movements from the chest wall. The radar used for RR 
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and HR detection in [7] operates between 76 GHz and 81 GHz, 

offering a high range resolution. Other operating frequencies 

include from as low as several gigahertz to as high as nearly 

100 GHz [8], [51], [53]. 

D. SFCW Radar 

SFCW operates by stepping the frequencies in the transmit 

signal, or by stepping randomly selected frequencies. It can 

function approximately as an UWB radar in the frequency 

domain, and therefore has similar capabilities. Due to the 

frequency step, compressive sensing can be applied to this 

radar, which enables faster detection. In addition to that, such 

radars do not require high sampling rate from their ADCs. 

SFCW radars are also capable of target tracking and multiple 

targets’ detection. It also has higher SNR compared to the UWB 

radar. In comparison to FMCW, calibration of the signal 

distortion due to hardware imperfections is simpler in SFCW 

radars. However, its main drawback is that the data acquisition 

time to step over many frequencies is very high, and 

compressive sensing algorithms are generally used to speed up 

this process [2].  

The research in [2] uses two types of radars, UWB and 

SFCW. Despite the higher resolution range-time-frequency 

information featured by the UWB radar, it suffers from low 

SNR. To overcome this, a phase-based method to tackle the 

issue of low SNR during human vital sign detection is proposed 

in [2] and [49]. The work in [2] solves the issue of SFCW long 

data acqusition time. It is done by proposing a multi-channel 

SFCW and using compressive sensing to randomly step only 

through 20% of the original frequencies. The block diagrams of 

both types of radars are shown in Figure 12 and Figure 13, 

respectively. 

 
Figure 12 UWB radar system [2] and [49] © 2016 IEEE  

 
Figure 13 Multi-channel SFCW radar in [2] 

Next, researchers in [9] presented the detection of human 

heart and breathing signal using SFCW radar. In this study, a 

hybrid approach of inhomogeneous object to calculate the 

received signal from the human rib cage and heart was 

employed. After that, Fourier analysis was conducted to find 

heart rate and respiration rate. The preliminary results show 

good agreement with practical data. In [55], a MIMO SFCW 

radar was designed to detect multiple humans via their vital 

signs. A signal model of the vital signs was developed first, 

followed by the detection method involving improving the 

SNR. This is prior to the application of an enhanced imaging 

algorithm to suppress clutter and mutual coupling. The 

proposed radar configuration is shown in Figure 14. 

 
Figure 14 MIMO SFCW radar in [55]. Licensed under Creative 

Commons attribution license 

https://creativecommons.org/licenses/by/4.0/ 

The research in [56] studied the detection of human signals 

behind walls using SFCW radar. The main issue with this 

scenario is the substantial loss of signal energy due to wall 

reflections. Thus, clutter reduction methods were used to 

improve the detection accuracy of the vital signs. On the other 

hand, the effects of different human orientations and multiple 

humans in the environment were studied using an SFCW radar 

in [57]. The human rib cage model was adopted in this study. 

Finally, [58] presents an overview of the use of different radar 

types for vital sign detection. It also discusses the results of 

using SFCW radar, relative to reference measurements. The 

designed SFCW is comprised of direct digital synthesizer 

(DDS), controlled by a complex programmable logic device  
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Table 5 Classification of literature based on the operating frequency spectrum 

 

(CPLD), phased locked loop (PLL) and a power amplifier 

feeding the transmit antenna. At the receiver side, the antenna 

is connected to an LNA and an IQ demodulator. This radar has 

two channels to minimize acquisition time and more channels 

can be added with one master clock. The results indicate errors  

of 0.1%, 0.3%, and 0.8% for RR of a person at 1 m, 1.5 m, 2 m 

distances, respectively. For HR results, the error was 0.4%, 

0.1% and 0.4%, respectively. 

SFCW radar uses a single tone in its transmitted signal, 

stepped in (sometimes random) frequency steps. This is the 

Radar 

Type 

Frequency Spectrum Reference Vital sign/other application 

CW 2 𝐺𝛨𝑧 [32]  RR HR 

2.4 𝐺𝛨𝑧  [1], [20], [28]  RR HR 

[35]  RR 

[8]  Det. and class. of micro unmanned aerial system 

2.45 𝐺𝛨𝑧 [31]  RR HR 

3 𝐺𝛨𝑧 [21]  RR 

5.8 𝐺𝛨𝑧 [20], [22], [33]  RR HR 

10 𝐺𝛨𝑧, 16 𝐺𝛨𝑧 [20]  RR HR 

24 𝐺𝛨𝑧 [23], [27], [29]  RR HR 

[30]  RR 

[26]  HR 

60 𝐺𝛨𝑧 [3], [20], [34]  RR HR 

110 𝐺𝛨𝑧 [25]  RR HR 

FMCW fc =600 𝑀𝛨𝑧, BW=300 𝑀𝛨𝑧 [52]  General radar detection 

1-1.2 𝐺𝛨𝑧 [8]  Det. and class. of micro unmanned aerial system 

fc = 3.0085 𝐺𝛨𝑧, BW =15 𝑀𝛨𝑧 [53]  Noise jamming 

57.12-64.08 𝐺𝛨𝑧 [51]  RR HR 

76-81 𝐺𝛨𝑧 [7]  RR HR 

- [54]  General range & velocity detection 

SFCW 40-4400 𝑀𝛨𝑧 [55]  RR 

1-3 𝐺𝛨𝑧 [56]  RR 

2-3 𝐺𝛨𝑧 [57]  RR HR 

2-4 𝐺𝛨𝑧 [2], [58]  RR HR 

- [9]  RR HR 

UWB 

impulse 

0.5-5.5 𝐺𝛨𝑧 [50]  RR HR 

fc=1-18 𝐺𝛨𝑧, BW =7.3-12.7 𝐺𝛨𝑧 [45]  RR 

1.5-4.5 𝐺𝛨𝑧 [2], [49]  RR HR 

fc=3 𝐺𝛨𝑧, BW =1.5𝐺𝛨𝑧 [21]  RR 

3.3-5.3 𝐺𝛨𝑧 [10]  RR HR 

fc=3.8- 9 𝐺𝛨𝑧, BW =2 𝐺𝛨𝑧 [42]  RR HR 

fc=4.5-9.5 𝐺𝛨𝑧, BW = 1.75 𝐺𝛨𝑧 [39]  RR 

5.4 𝐺𝛨𝑧 [48]  RR HR 

5.755 𝐺𝛨𝑧 [40]  Displacement and vibration 

6 𝐺𝛨𝑧 [36] RR HR 

fc=6.8 𝐺𝛨𝑧, BW =2.3 𝐺𝛨𝑧 [38]  RR HR 

[41], [47]  HR 

fc=7.29 & 8.748 𝐺𝛨𝑧 [4]  RR HR 

fc=7.29 𝐺𝛨𝑧, BW =1.5 𝐺𝛨𝑧 [37]  RR HR 

fc=7.3 𝐺𝛨𝑧, BW =1.4 𝐺𝛨𝑧 [46]  RR HR 

- [44]  RR 

- [43] - 
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reason why such radar eliminates the need for ADC with high 

sampling frequency. The typical bandwidth for the SFCW radar 

ranges between 1 GHz and 3 GHz [56], 2 GHz and 3 GHz [57], 

and 2 GHz and 4 GHz [2], [58] as illustrated in Table 5. 

In this section, a review of state-of-the-art research on 

commonly used types of radars for vital sign detection was 

presented. The CW, UWB, FMCW, SFCW have all been used 

in this application, and each radar has its own advantages and 

disadvantages. The selection of the radar type in the research is 

subject to practical and detection environment requirements.  

The different signal processing algorithms used in the 

literature in the human vital sign detection application will also 

be discussed in the next section. The development/selection of 

the right algorithm can affect the detection from many angles 

such as detection accuracy, speed, implementation complexity 

etc. 

IV. SIGNAL PROCESSING ALGORITHMS FOR VITAL SIGNS 

DETECTION 

 

Algorithms adopted in vital signs detection to process and 

extract useful information, depend on their objectives and vary 

in complexity. The challenge that needs to be addressed with 

the algorithms is the weak respiration and heartbeat signals, the 

heart signal being superimposed on the respiration signal, and 

the environment being filled with noise such as clutter, body 

movements, and other noise sources in the radar’s environment. 
Thus, an important feature of these algorithms must be being 

capable of distinguishing RR from HR and distinguishing RR 

and HR from noise. This is crucial as abnormal RR and HR can 

be mistaken as noise [62]. 

Due to this, there have been a considerable number of 

algorithms introduced to “clean” the received signal from 
unwanted noise. Other algorithms tend to focus on increasing 

the SNR, since HR and RR signals are very weak. In addition 

to that, several other algorithms focus on the separation of the 

HR from the RR signal, given that the HR is much smaller than 

RR. The HR is generally superimposed onto the RR signal, 

resulting in very sophisticated algorithms to separate and to 

eliminate the HR intermodulation effect on the RR signal. 

Therefore, most of the successfully adopted algorithms in the 

human vital sign detection application are computationally 

complex due to these stringent requirements. They mostly 

involve matrix inversion or multiplication, or both. Large sizes 

of data matrices are also involved, thus affecting the processing 

speed, hardware complexity, power consumption, and possibly 

accuracy. Such requirements also remain the main driver for 

researchers to develop new algorithms and detection methods, 

and to employ new architectures and configurations in the 

processing platforms. 

Several algorithms for vital sign detection for radar systems 

have been listed and categorized in Table 6. The multilevel fast 

multi pole method (MLFM) along with method of moment 

(MoM) algorithm were used in [31] to implemented a complex 

human electromagnetic model on a CW radar. Calculations 

were performed using a 13-node GPU cluster. This is aimed at 

accelerating the calculation process, enabling the solution of 

this large-sized problem. The MLFM is based on a grouping 

concept to speed up the iterative solution of the linear equation 

system of the conventional MoM. This grouping method 

significantly reduced the complexity of MoM from 𝑂(𝑁3) to 𝑂(𝑁𝑙𝑜𝑔𝑁), where 𝑁 is the number of unknowns corresponding 

to the number of edges in the meshed object. Due to the large 

problem size of this application, the time to complete the 

computation can be too long. As a result, MLFM was 

parallelized using high computing processor (GPU) cluster. 

Another important algorithm is presented in [44] where a 

novel reconstruction algorithm for compressive sensing is 

presented for UWB radar. It is a two-stage orthogonal matching 

pursuit (OMP) reconstruction algorithm, designed to reduce the 

complexity of the reconstruction process. This algorithm 

included a block wise OMP estimation, weight updating and 

decision mechanism, and finally, fine estimation. The flow 

chart of the proposed algorithm is illustrated in Figure 15. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The complexity of the proposed two stage OMP is much 

lower compared to the normal OMP algorithm. The OMP via 

matrix inversion bypass (MIB) algorithm can further reduce the 

OMP and the complexity of the two-stage algorithm, as shown 

in Figure 16. The reported SNR value of the radar system was 

-20 dB. 

 

 

Figure 15 Two stage reconstruction algorithm [44]. 
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Figure 16 Computational complexity of the two-stage OMP algorithm [44]. Licensed under Creative Commons attribution license 

https://creativecommons.org/licenses/by/4.0/ 

 

Research on vital sign detection of single stationary target to 

date has progressed well. On the other hand, vital sign detection 

of multiple humans is still a challenge due to the mutual 

interference of multiple humans. A new effort to tackle this 

challenge was introduced in [55], in which an automatic 

detection algorithm which combines CFAR, morphological 

filtering and clustering was implemented on a UWB MIMO 

radar. This is intended for the vital sign detection from multiple 

human targets, specifically to improve the detection of weak 

signals reflected from them. This detection method is composed 

of three main procedures: preprocessing, imaging 

enhancements, and automatic detection and localization, as 

shown in Figure 17. CFAR was adopted to automatically detect 

multiple vital signs with large differences in magnitude in low 

radar cross section (RCS) environments. It uses a 2D sliding 

window to scan all pixels in the enhanced image to search for 

possible vital signs. Figure 18 is an illustrative diagram of this 

method. 

 

 
Figure 17 Automatic Detection Method [55]. Licensed under 

Creative Commons attribution license 

https://creativecommons.org/licenses/by/4.0/ 

One of the major problems in the vital sign detection is in 

scenarios where the target is behind a wall or under a wrecked 

building. In such scenarios, reflections due to the wall cause 

substantial loss of signal energy. The remaining energy signal 

pass through the wall and propagates towards the human target 

and then the weak reflected signal reaches the antenna after 

passing through the wall again. Due to the inevitable clutter in 

the radar environment, it is important that an algorithm is able 

to separate target signal and clutter from the received signal is 

introduced. In [63], the performance of the singular value 

decomposition (SVD) approach was compared with moving 

average as a clutter reduction technique in a SFCW radar. SVD, 

also known as the subspace method, divides the data into two 

categories: target and clutter subspaces. The SVD is applied on 

the signal matrix to separate the target signature from the 

clutter. This matrix can be represented as a linear combination 

of its eigen components. If only a single target exists, then the 

second eigen component contains the target information, 

whereas the first will contain the clutter information. 

 

 
Figure 18 Illustration of the CFAR method [55]. Licensed under 

Creative Commons attribution license 

https://creativecommons.org/licenses/by/4.0/ 

 

While the chest displacement caused by breathing can be 

extracted from the phase variation, it is still challenging to 

extract the heart rate in the same way with high accuracy. This 

is mainly due to the harmonics of the respiration and the 

intermodulation between respiration and heartbeat signal that 

may become dominant and cause errors. To overcome this,  the 

state space method (SSM) was applied for RR and HR detection 

using SFCW radar in [2]. It successfully suppressed the 

unwanted harmonics and intermodulation interferences in the 

spectrum. Experimental results for different scenarios including 

subject holding breath, subject breathing normally, and subject 

facing the radar at different angles, were reported. In all cases, 

the SSM successfully extracts respiration and heart rate of the 
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subject. This method showed clear advantages over 

conventional FFT in avoiding unwanted harmonics and 

products resulting from intermodulation. This method also 

showed a relatively small error of 1.2 % in the heart rate 

estimation. The reported SNR was 50 dB when combining the 

SSM with either CSD or AD, 46.6 dB when suing SSM alone 

compared to 8.6 dB when using FFT alone. 

The reported algorithm in [64] uses targets removing random 

body motion that affect the detection of vital signs. It uses 

continuous wavelet transform (CWT) to identify the locations 

of the artifacts and then applies the moving average to smooth 

these identified artifacts. It also uses the discrete wavelet 

transform (DWT) to separate the heartbeat signal from the 

respiration signal which results in accurate detection. The 

reported process gain of this work was 32.83 dB. Considering 

the reflected powers at a target at 5m distance, the floor noise 

and the progress gain, the SNR is estimated to be 70dB for the 

person and 53 dB for the chest surface. 

Random body movement rejection in vital sign detection 

scenarios is one of the main challenges faced by the researchers. 

Researchers in [64] tackled this issue by first identifying the 

hidden in the modulated phase of the artifacts using CWT 

algorithm, prior to applying the moving average method to 

smooth the signal in those locations. Meanwhile, in [65] the 

features of the frequency spectrum of vital signs while 

undergoing random body motion are analyzed. This work 

utilized the motion modulation effect and extracted the 

direction of the body motion with the new position of the 

respiration peaks. Since body movements introduce frequency-

shifts in the spectrum, the direction and amount of this 

frequency shift depends on the direction and the speed of the 

body motion. Thus, this feature was used to account for the 

body motions in the spectrum to detect the respiration rate 

accordingly. Meanwhile, the work in [66] effectively reduced 

the random movement using two methods. The complex signal 

demodulation (CSD) and the arctangent demodulation methods 

were implemented in the Doppler radar detection of vital signs. 

It was targeted for sleep monitoring and baby monitoring to 

eliminate false alarm caused by random movements. The CSD 

is more immune against the effects of the dc offset, whereas the 

AD reduces the effect of harmonics and intermodulation 

interference and high carrier frequencies. Finally, an adaptive 

phase compensation method was used for random body 

movement cancellation in [67]. To measure the random body 

movements of a subject, a camera was integrated in the radar 

system. The camera measurement was fed back into the system 

as the phase information. Using the phase compensation avoids 

potential saturation of the high gain baseband in the presence of 

large body movements. A simple video processing was also 

performed to extract the random body information without 

using any markers. 

In this section, many of the algorithms used for vital sign 

detection were reviewed, regardless of the platforms on which 

they were implemented. Some of these algorithms focus on the 

rejection of clutter and noise, and thus on improving the 

accuracy. Meanwhile other algorithms focused on the 

separation of HR from RR and the extraction of the required 

features. Several important algorithms discussed here are the 

 Algorithm Purpose Process gain/ SNR Advantages Disadvantages 

[2] SSM – complex signal 

demod. 

SSM – Arctangent 

demod. 

Adopted to suppress the 

unwanted harmonics and 

intermodulation interferences in 

the spectrum 

50 dB compared to 8.4 

dB when using FFT 

and 46.6 dB when 

using SSM alone. 

SSM method can improve 

SNR by suppressing 

harmonics. When combined 

with other methods (such as 

CSD and AD) it is proven to 

achieve higher SNR values. 

The combined SSM with CSD or 

AD algorithm is done at the 

expense of the complexity 

[31] MLFM and MoM Implementation of human 

electromagnetic model to be 

used for vital sign detection 

N/A Very accurate in modeling the 

human for vital sign detection  

Demands high computational 

resources 

[44] Two stage OMP and 

OMP via MIB 

Designed to reduce the 

complexity of the reconstruction 

process of compressive sensing 

-20 dB Less complex than traditional 

OMP, advantageous in 

reducing computational 

complexity 

Needs to be implemented in more 

practical scenarios 

[55] Combined CFAR and 

morphological filtering 

and clustering 

Designed for the detection of 

multiple humans, specifically to 

improve the detection of weak 

signals reflected from human 

targets 

N/A Proven in detection of 

multiple vital sign detection 

with large magnitude 

difference in low signal to 

clutter ratio scenarios 

Implemented on stationary targets, 

more practical scenarios need to 

be tested. 

[63]  SVD and moving 

average 

Adopted for clutter reduction N/A Proven for clutter reduction 

from received signal where it 

divides the data into target and 

clutter subspaces.  

Computationally expensive and 

slow. SVDs require care dealing 

with missing data. 

[64] Random body motion 

rejection algorithm 

Designed for suppressing 

random body movement and 

separating HR from RR 

 Process gain 32.83 dB 

SNR is 70dB and 56dB 

for person and chest 

surface, respectively 

The combination of CWT, 

linear demodulation, DWT 

techniques are proven in 

suppressing random 

movement and providing 

accurate results.  

Combination of the algorithms is 

high in complexity as it involves 

many steps. 

Table 6 Comparison of Algorithms used for Vital Sign Detection 
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orthogonal matching pursuit, compressive sensing, singular 

value decomposition, and state space method. Another 

important aspect in radar detection for human vital sign, is the 

selection of processing platform. Summary of the algorithms, 

process gain/SNR feature and some remarks of their advantages 

and drawbacks have been listed in Table 6. The different 

processing platforms used in the literature will be discussed in 

the next section. The discussion will have special focus on the 

FPGA as a processing platform. 

V. PROCESSING PLATFORMS FOR VITAL SIGN DETECTION 

 

Several signal-processing platforms have been adopted for 

human vital sign detection. The most common platforms are: 

Central processing unit (CPU) of a PC, digital signal processor 

(DSP) unit, Graphic processing unit (GPU), application specific 

integrated circuits (ASIC) based processors, and field 

programmable gate array (FPGA). Besides these processing 

devices, the algorithm used also determines the processing 

speed, cost, resources utilization, and accuracy. 

When real-time processing is not required, the computational 

analysis can be performed on a CPU. On the contrary, when 

real-time processing is required, it will be challenging for the 

CPU to meet requirements such as high throughput, low 

latency, low resources utilization, and low power consumption. 

To overcome those challenges for radar based real time human 

vital signs detection, dedicated hardware implementations, such 

as ASIC or FPGA have been chosen by researchers in literature 

[68]. 

Another factor in considering the type of processing platform 

is whether it will be used for simultaneous control and/or 

processing. If the processing is performed using a PC platform, 

then the algorithms are coded using software such as MATLAB 

or LabVIEW and are executed in the CPU. A separate set of 

tools and software is used when the processing is performed on 

an FPGA using hardware description languages such as VHDL 

or Verilog. Table 7 summarizes the state-of-the-art signal 

processing platforms for detecting human vital signals. 

The choice of hardware (such as DSP boards, GPUs, 

microcontrollers or FPGAs) and consequently, the overall 

system’s implementation costs, are dependent on factors such 

as the radar architecture, detection techniques chosen, and 

whether these techniques and/or algorithms require parallel or 

serial processing. Moreover, factors such as the hardware 

functionalities (and limitations) and the number of hardware to 

fully and efficiently implement the intended system 

functionalities also need to be considered for cost-efficiency. 

Their relative per unit costs are typically low to high, listed in 

the following order: microcontrollers, DSP boards, FPGAs and 

GPUs. It is also noted that product range in each of the hardware 

exists with varying capabilities and subranges in costs. In many 

instances, FPGA’s are used as verifications tool, whereas in 
other instances, depending on the application, they also can be 

used as central processing unit. This can be tied to the cost 

effectiveness, for example, by using a single central processing 

unit instead of linking each radar with as separate processor to 

lower the cost of implementing the overall system. 

 

In [51], a DSP and microcontroller unit were used as 

processing platforms, while in [29], a microcontroller is used 

for digitization and a PC is used for further processing. Besides 

this, the work in [4] is performed based on SoC and PC 

processing, while [69] is based on FPGA and GPU processing. 

Moreover in [30], only a DSP core is used, and in [42] only an 

SoC is used. As can be seen from Table 7, vital sign detection 

can be performed on hybrid platforms, or on a single processor 

type, such as FPGA, PC, or DSP. The table also classifies the 

researches in which FPGA was applied, into two categories: (i) 

radar with FPGA used as processing platform, and solution is 

specifically targeted for vital signs detection; or (ii) radar with 

FPGA used as processing platform, but its application is not 

specifically targeted for vital signs detection. However, for the 

latter, the FPGA architecture and implementation can be 

modified or extended for application in vital signs detection. 

The classification of literature based on the processing platform 

is particularly useful when determining specific platforms for 

the implementation of different algorithms.  

 
Table 7 Summary of radar and/or vital sign detection processing 

platforms in literature 

Platform Reference 

PC [3], [20], [22], [23], [25], [26], [28], [37], [35], 

[7], [38], [39], [55], [56], [57], [70], [71]  

FPGA [2], [21], [31], [54], [40], [43], [44], [45], [49], 

[62], [72], [73], [74], [75], [76] 

FPGA (not specifically 

for vital sign detection) 

[52], [53], [68], [77], [78], [79], [80], [81], 

[82], [83], [84] 

SoC [42] 

DSP [30] 

FPGA-GPU [69] 

PC-microcontroller [29], [27] 

DSP-microcontroller [51] 

SoC-PC [4], [1] 

No focus on the 

processor 

[8], [9], [10], [32], [33], [34], [46], [47], [48], 

[50] 

 

FPGA has been widely used to implement algorithms on 

hardware, to confirm their accuracy and to ensure effective real 

time analyses [62]. The reconfigurable nature of an FPGA 

offers a multifunction implementation, resulting in resource 

efficiency compared to separate implementations of functions 

on an ASIC-based processing platform, for instance. In addition 

to that, its cost-efficiency and reconfigurability makes it a 

preferred rapid prototyping platform for researchers [69].  

The use of FPGA as a processing platform in the area of radar 

systems has been increasing steadily. Table 8 summarizes the 
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state-of-the-art literature where FPGA is used as a 

control/processing platform within a radar-based system for 

detection and monitoring of HR and RR signals. FPGAs were 

used for signal pre-processing, interfacing, as well as synthesis 

of certain mandatory blocks. Besides that, it can also be applied 

for control, digitization, signal generation, filtering, and 

demodulation. Another important function of an FPGA is to 

serve as an implementation platform of novel algorithms for HR 

and RR detection and monitoring. A summary of these 

algorithms implemented on FPGA is also presented in Table 8. 

Many of these articles presented novel FPGA designs and 

architectures to implement these algorithms. Some of these 

algorithms have been specifically implemented on FPGA for 

vital sign detection and monitoring, while others have been 

developed for other applications. However, most of them can 

be used for human detection with minor modifications. The 

features of flexibility and reconfigurability in FPGAs have 

influenced designers to apply them not only as a verification 

tool. Unlike ASICs, FPGAs can be used as an external 

processor due to its better flexibility in reconfiguring its design 

after implementation. 

These FPGA-based implementations have been applied to 

different types of radars such as CW, FMCW, UWB, and 

SFCW radar. More specifically, FPGA has been used in the 

context of CW radar in [21] and [31]. For UWB radar type, 

FPGA has been used in [21], [45] and [49]. Other pulse or 

impulse based radar also used FPGA such as in [83], [53], [44] 

and [40]. Other state-of-the-art articles in the table do not report 

the specific type of radar where the reported 

synthesis/implementation of the algorithm should be applied to.  

The different functions of FPGA in the literature have led to 

improved designs and validated implementation in the detection 

and monitoring of HR and RR signals. Whenever FPGA is 

adopted as the main platform for pre-processing or processing 

platform to extract RR and/or HR information, certain 

parameters have been typically focused on. These include the 

logic utilization, processing time/speed, latency, and accuracy 

by capitalizing on its parallelism ability. 

In [21], an FPGA was used to synthesize the digital 

downconverter as well as for sampling and digitization in the 

receiver part of the CW radar. Meanwhile, in the UWB radar, 

the main use of FPGA is for generating the clock frequency. 

Further processing of the UWB signal was performed using PC, 

and FPGA was also used as interface and control module, and 

as temporary memory of digitized data. Further improvement 

on this work was performed by implementing the Doppler 

frequency extraction algorithm (STFT) on both radar types 

(CW and UWB). In [74], an FPGA was used to synthesize the 

binary phase shift keying modulator/demodulator, which is 

used for high range resolution detection. This implementation 

achieved a processing delay of around 2.569 ns. Besides that, 

reconfigurable phase shift keying was synthesized using FPGA 

in reference [79].  

An OMP algorithm was used for CS reconstruction and was 

implemented on FPGA in [68] with a frequency of 165 MHz 

and dictionary size 512 x 2048. This implementation achieved 

a 33-time increase in speed compared with previous designs, 

and the time required for construction is around 391.8 µs with 

1.2 x 10-3 accuracy. An illustration of the FPGA 

implementation and interface of the algorithm and the design 

architecture is shown below. 

 

 

 
 

 

 

 

 

 

 For the LFMCW in [52], a DDS algorithm combined with 

CORDIC algorithm was used to build its nonlinear distortion 

compensation scheme, implemented on an FPGA. This 

implementation improved the peak side-lobe-ratio (PSLR) from 

5.7 dB to 0.3 dB after applying the scheme. Next, the MPSO 

and HAS algorithms implementation in [77] was performed on 

FPGA for radar applications. Another algorithm 

implementation was developed and implemented on 

FPGA/GPU in [69]. The new CS reconstruction algorithm is 

called blocking compressive sampling matching pursuit 

(BCoSaMP). This work also introduced a signal-processing 

tool (RSPT) which allowed designers to auto-generate fully 

optimized VHDL representation of BCoSaMP by just 

specifying several parameters. The reported FPGA 

implementation achieved 14-times faster processing over the 

sequential implementation, while the GPU implementation 

achieved a 10.7-time speed-up. For samples of 256, 512 and 

1024, the throughput was 41025, 71793 and 116304 cycles, 

respectively, whereas the execution time was 0.3487 ms, 0.61 

ms and 0.988 ms, respectively. The reported power 

consumption was 1960 mW. For 512 samples, the reported 

execution time was 3.1 ms, 0.3487 ms, and 0.442 ms for 

sequential, FPGA, and GPU processing, respectively. 

Another DDS implementation using FPGA was reported in 

[78]. This DDS has quadrature outputs, is based on look up 

tables (LUT), and was designed with a 100 MHz system clock. 

This design and implementation have spurious free dynamic 

range (SFDR) of 114 dB, which was improved by 70 dB 

compared to traditional DDS. However, this was at the expense 

of increased logic utilization. Next, a digital pulse compression 

algorithm was developed and implemented on FPGA in [80]. 

The use of FFT-OS method to provide range resolution and to 

improve the SNR was used in the DPC. The design achieved a 

pulse compression gain of 27 dB and peak range side lobe ratio 

of -56 dB. Meanwhile, a linear frequency modulation with 3 

μsec pulse duration using an off the shelf FPGA based DDS was 
designed in [81]. The design and implementation of the LFM 

Figure 19 Architecture of FPGA top level entity implementation [68]. 
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consisted of a) Implementation of spot frequency generation 

(from 150 MHz to 350 MHz) using DDS AD9858; b) Design 

and realization of LFM waveform using DDS for higher 

bandwidth. Simulation and results for a bandwidth of up to 200 

MHz were reported. In [82], a real time waveform generator 

suited for wideband and supporting many popular modulation 

schemes, was reported with its FPGA implementation. This 

implementation was reported with a DAC capable of up to 2.5 

GSps and with reduced memory manipulation to change 

waveform by two to three orders of magnitude. The 

reconfiguration time was reported to be in the range of hundreds 

of nano seconds, and the logic utilization was less than 5% of 

modern FPGA resources. As an example, for the CW, its 

memory requirement is 21.625 bytes and reconfiguration time 

is 120 ns.   

In [83], a fast convolution processing-based pulse 

compression and pulse Doppler processing were presented and 

implemented on FPGA. It resulted in improved target detection, 

range resolution, and speed estimation. Meanwhile, the work in 

[53] presents the FPGA implementation of a noise jammer 

using the pulsed noise jamming technique. The detection 

capability of the radar was reduced as the jamming to noise ratio 

(JSR) is increased, and the radar was blind at a JSR of 30 dB. 

Another reconfigurable modulator was reported and 

implemented in [84]. The FPGA implementation was reported 

to be dynamically reconfigurable on the fly, and features 

between 10.2 % and 91.43 % hardware resources utilization, 

and 76.38% of power consumption reduction. This is relative to 

the conventional non-reconfigurable modulator design. The 

reconfiguration time requirement for amplitude modulation and 

frequency modulation was reported to be 121 µs, whereas for 

other modulation types, reconfiguration time takes 184 µs.  

In [54], an FMCW radar for target detection via FFT was 

designed. To alleviate the problem of constant false alarm rate 

(CFAR), an ego-velocity compensation algorithm was 

introduced and implemented on an FPGA. The total processing 

time reported was 60 ms with 97% reduction in CFAR upon the 

implementation of the algorithm. The ego-velocity 

compensation logic reduction was decreased by around 96%, 

whereas in the case of CFAR, it was reduced by 62%. 

Meanwhile, a series of radar signal processing algorithms called 

adaptive pulse compression, and specifically the least square 

estimator, were implemented on FPGA with coprocessor in 

[75]. Implementation was performed using different 

architectures; (i) pipelining architecture, with an improved 

latency, but at the expense of high logic utilization; (ii) 

distributed memory architecture, which also has high logic 

utilization with better latency. This optimization architecture 

was reported to have reduced interval initiation of the 

coprocessor by two, but increased hardware utilization by 1.5 

times, while at the same time, reduced latency of the LS matrix 

when larger than 16 x 16.  

A CMOS impulse radar with two stage reconstruction 

algorithm for CS, and implemented on a FPGA, for human 

respiration feature extraction was reported in [44]. This 

algorithm featured 75% less complexity compared with the 

OMP algorithm for CS reconstruction. When the 

implementation was designed with a 318 MHz clock, a radar 

image resolution of 256 × 13 was achieved, with a throughput 

(radar image rate) of 28.2 frames per second and a latency of 

35.4 ms. Figure 20 shows the architectural blocks used for 

implementing the proposed OMP. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Meanwhile, another UWB radar and a respiration model, 

called FSLW model, along with chirp-Z transform to extract 

RR features, was presented in [45]. The FPGA implementation 

of the algorithm resulted in a maximum NSME of around 

3.93% for the FSLW model and around 9.67% for the MRCW 

model. Even though the C-Z transform is three times more 

complex compared to the FFT, the frequency estimation error 

is higher in the latter case.  

In [2] and [49], the CSD and AD were techniques used to 

improve detection accuracy of heart rate signals. These methods 

were combined with SSM to further increase the accuracy. The 

target subject was located at a distance of 0.8 m and the results 

were reported for more cases when the subject was holding its 

breath and when breathing normally. When the subject is 

holding its breath, maximum deviation of the HR was reported 

to be 3.1% and 1.7% using direct FFT and using SSM, 

respectively. However, this was minimized when using SSM-

CSD and SSM-AD to 0.5%. The maximum SNR was reported 

to be 50.2 when using SSM-AD, whereas it was 8.4 when using 

direct FFT. In the case of the target breathing normally, the 

maximum deviation of HR was reported to be 3.7% when using 

SSM and this was minimized to 1.7 % when using SSM-CSD 

and SSM-AD. The maximum SNR was reported to be 32.6 

when using SSM-AD and was 20.4 when using AD only. The 

FPGA was used in this work to generate the clock frequency, to  

digitize the data stored, and for further processing. In [31], an 

electromagnetic model of a walking human and of human vital 

signs were developed and validated using a CW radar. The main 

function of the FPGA in this design was an interfacing chip for 

the control and baseband signal. Meanwhile, an MRMN 

adaptive filter algorithm was developed and implemented on 

FPGA in [76]. The post route and place implementation of this 

FPGA indicated nearly 90% of reduction in resource utilization 

and nearly 2.6 times improvement in terms of clock frequency 

and speed. In [40], a range compression (time-domain cross-

correlation) algorithm was developed and implemented on an 

Figure 20 Architectural Block of algorithm FPGA implementation 
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FPGA for impulse radar. This was performed with a carrier 

frequency of 5.77 GHz and transmit power of 30 dBm. The 

design achieved cross correlation computation time of 121.63 

µs and a vibration spectrum monitoring of up to 50 Hz. 

 
Table 8 Summary of FPGAs Used and the Algorithms/Methods 

Ref. Methods/Algorithms FPGA Use 

[21] 

 

 

 

 

 

•  STFT to obtain Doppler frequency 

•  ETSM for narrow pulse digitization  

 

 

 

 

• Synthesize DDC in receiver 

• Sampling/digitization process 

• Generating clock frequency, 

temporary storage, control 

and interface with PC 

 
[74] • Digital modulator/demodulator 

synthesis (BPSK modulator) 

• Modulator/demodulator 

synthesis 

[68] •  Modified OMP for CS reconstruction 

•  FFT for correlation optimization 

•  CG for large scale least square 

problem  

• Algorithm implementation 

[52] • DDS combined with CORDIC to build 

a nonlinear distortion compensation 

scheme. 

• Distortion compensation 

scheme implementation 

[77] •  GOA specifically MPSO 

•  HSA for Mutation 

• Algorithm implementation 

[69] •  New CS called BCoSaMP    

•  RSPT  

• Algorithm implementation 

[78] 

 

 

• DDS based on LUT using wave 

compression and Taylor series 

 

• DDS synthesis 

 

 [80] • DPC via FC using (FFT-OS)   • DPC implementation 

[81] • LFM using FPGA based DDS • DDS implementation  

[82] • Waveform generation • Waveform generator 

synthesis 

[83] • FC based pulse compression and pulse 

Doppler processing  

• Algorithm implementation 

[53] • Noise jammer using pulsed noise 

jamming techniques. 

• Algorithm implementation 

[84] • Reconfigurable Modulators  • Modulator synthesis 

[54] •  FFT 

•  CFAR 

•  Ego-VC 

• Algorithm implementation 

[75] • APC specifically LSE • Algorithm implementation 

[44] •  Two-stage reconstruction for CS 

•  FSLW model 

• Algorithm implementation 

[45] •  FSLW with early termination 

•  Chirp z-transform (CZT)  

• Algorithm implementation 

[2] 

 

[49] 

• CSD and AD combined with 

• SSM  

• Clock frequency generation, 

digitized data storage  

[31] •  Electromagnetic model for motion and 

vital sign 

•  MLFM and MoM 

• Interfacing chip; through 

Ethernet; of control and 

baseband signals 

[76] • MRMN adaptive filter  • Algorithm implementation 

[40] • Range compression for time-domain 

cross-correlation  

• Algorithm implementation 

[79] • Reconfigurable PSK modulator • Modulator synthesis 

Table Abbreviations: 

STFT: Short Time Fourier Transform 

ETSM: Equivalent Time Sampling Method 

DDC: Digital Down Converter 

BPSK: Binary Phased Shift Keying 

OMP: Orthogonal Matching Pursuit 

CS: Compressive Sensing 

FFT: Fast Fourier Transform 

CG: Conjugate Gradient 

DDS: Direct Digital Synthesis 

CORDIC: Coordinate Rotation Digital Computer 

MPSO: Modified particle Swarm Optimization 

HAS: Hamming Scan Algorithm 

Blocking Compressive Sampling Matching Pursuit: BCoSaMP 

RSPT: Radar Signal Processing Tool is a tool allows the designer to auto-

generate fully optimized VHDL representation of BCoSaMP  

GOA: Global Optimization Algorithm 

LUT: Look Up Table 

DPC: Digital Pulse Compression 

FC: Fast Convolution 

OS: Overlap Save method 

LFM: Linear Frequency Modulation 

IFFT: Inverse Fast Fourier Transform 

CFAR: Constant False Alarm Rate 

Ego-VC: Ego-Velocity Compensation 

APC: Adaptive Pulse Compression 

LSE: Least Square Estimator 

FSLW: Four-Segment Linear Waveform Model. 

CZT: Chirp Z-Transform  

CSD: Complex Signal Demodulation 

AD: Arctangent Demodulation 

SSM: State Space Method 

MRMN: Modified Robust Mixed Norm 

MLFM: Multi Level Fast Multi Pole Method 

PT: Pan Tompkins Algorithm 

PSK: Phase Shift Keying 

MRCW: modified raised cosine waveform model 

 

In this section, the commonly used processing platforms for 

vital sign detection have been reviewed. Researchers in the 

reviewed literature used PC, MCU, GPU, FPGA, DSP, or a 

combination of these platforms. The choice of the dedicated 

processing platform, such as FPGA, is made by these 

researchers to achieve higher processing and detection speeds. 

The different uses of FPGAs in the context of vital sign 

detection and the different algorithms implemented on FPGAs 

have also been discussed. 

VI. DETECTION AND COMMUNICATION 

 

It is inevitable that detected signals via radars are required to 

be transferred/communicated in some way to another location. 

Several frequency bands used for communication in biomedical 

applications such as the industrial, scientific and medical (ISM) 

band, the UWB band, Radio Frequency Identification (RFID) 

band, Bluetooth frequency band, WLAN frequency band and 

Medical Body Area Network (MBAN) frequency band [20], 

[85]. Recently, several approaches for vital sign detection 

integrated with communication approaches have been 

proposed.  

A. Detection 

This subsection illustrates the techniques used for vital sign 

detection using communication devices (such as WLAN 

routers). For example, the work in [86] proposed time reversal 

based respiration rate detection within a very short period of 

time. This approach used off the shelf WLAN devices and their 

channel state information (CSI) to capture small variations in 

the surroundings caused by respiration [86],[87]. This method 

can be easily implemented using any existing WLAN hardware 

and networks available indoors. The two prototypes in [86] 

were built using WLAN cards with three omnidirectional 
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antennas. One of the prototypes works as the access point, while 

the other one works as the station. The center frequency used 

was 5.765 GHz with a bandwidth of 40 MHz. During 

experiments, only two to three WLAN networks were observed 

to be sharing the same channel, resulting in less than 1% of 

packet loss rate, which is insignificant and can be ignored. Jian 

et al. in [88] proposed a system to detect both heart rate and 

breathing during sleep using off-the-shelf WLAN (WiFi) 

devices. Similar to [86] and [87], this system reused the existing 

WLAN network and exploited the channel state information to 

capture the tiny movement due to respiration. This experiment 

was conducted in an 802.11n WLAN (Lenovo T500 Laptop) 

connected to a wireless access point (AP) (model TP-Link TL-

WDR4300) with a packet transmission rate of 20 pkts/s. 

Meanwhile, in [89], a ubiquitous off-the-shelf WLAN-

enabled device was used to detect breathing using the received 

signal strength (RSS). This can be performed due to the 

introduction of a dominant periodic component in the standard 

WLAN received signal. The proposed system can help to 

reliably extract the hidden breathing signal from a noisy WLAN 

RSS. The system handles many challenges, including noise 

elimination, interfering human, sudden movements as well as 

abnormal breathing situations. The functionality of remote 

monitoring may be restricted when using the available wireless 

infrastructure. Once there is a wireless terminal with an RF 

front-end transceiver and network connection, the detection of 

vital signs and the communication of the collected data to a 

remote monitoring facility will take place. Information on 

human respiration and heart rate only requires low bandwidth 

transmission capability. In [90], Victor et al. used an add-on 

module to an existing wireless terminal to detect human heart  

and breathing activities. The module included an antenna and 

mixing element to receive the transmission from the wireless 

terminal, which then produced a Doppler-based signal 

proportional to the heart and chest motion. This produced signal 

can be used for detection of heart and breathing activities and 

can potentially be relayed by the wireless terminal to a remote 

heath monitoring facility via the existing telecommunication 

network and infrastructure. 

B. Communication 

This section illustrates the different approaches and 

techniques used for combined sensing and communication 

functionality. The main drive for the integration of radar 

sensing with communication is to arrive at a compact hardware 

solution. Components such as transceiver and antenna can serve 

dual functions – in sensing and in communication. These 

systems operate in two modes: the detection mode measures 

range, velocity angle, etc., whereas the communication mode 

receives and demodulates the spread spectrum and returns 

connection with a remote station.  Other solutions include 

system solution where the frequency band of the 

communication transceiver is smaller compared to the pulse 

spectrum of the radar. This is so that both bands overlap, and 

the same RF front end could be used for both purposes, thus 

decreasing the cost of the system. This subsection also presents 

several designs where signals from sensor networks are 

transmitted wirelessly to base stations.  

The research presented in [91] studied the approach of using 

the same UWB transceiver for both sensing and 

communication. This system is focused specifically on heart 

rate variability (HRV) and its link as an indicator for the 

cardiovascular nerve system. Off the shelf commercial 

transceivers were used with minor modifications. The higher 

resolution in UWB systems offers more accurate sensing, 

whereas its resistance to multipath is used for high speed 

communication. From the bio-signal types that can be measured 

using this approach, heartrate was selected due to its 

importance. In this study, UWB radar principles were used to 

measure to heartbeat and the UWB communication standards 

were used to wirelessly transmit these measurement results. 

Such approach with dual purpose – sensing/detection and 

communication, makes these devices ideal nodes for wearable 

computing and in body area networks. 

Next, Bharat et al. in [92] highlighted the many advantages 

of using UWB as both a sensing and a communications standard 

for biomedical applications. These include its low radiated 

power (-41.3 dB/MHz), low power consumption, ability to 

coexist well with other wireless technologies and robustness to 

interference and multipath. This work integrated the sensing 

and communication functionalities into a single device using 

FM-UWB, enabling it to be used in two operational modes for 

heart rate monitoring. It is able to collect vital signs from its 

sensors and transmit to other sensors or to repositories in real 

time. While a data rate of 240 kbps is generally sufficient in 

biomedical applications, heart monitoring requires less than 

100 bps. This can be easily implemented in FM-UWB 

technology, enabling the health data to be transmitted to a 

remote medical server frequently for better diagnosis or for 

better responsiveness to emergencies. Next, the integrated 

transceiver proposed in [92] includes several purpose-dedicated 

components. These include the FM modulator for sensing, and 

the FSK demodulator for communication. Common 

components for both purposes used are the low pass filter and 

low noise amplifier. Sensing in the transceiver was performed 

using the simultaneous multiple frequency transmission 

method. This involved a slight increase in the complexity of the 

transmitter hardware compared to a conventional transmitter, 

where two FM modulators are needed instead of one.  

In [93], a biomedical wireless radar sensor network 

(BWRSN) for vital signs monitoring and fall detection was 

proposed. This is to overcome the limitations of using a single 

radar in real situations. The BWRSN consists of four radar-

based sensor nodes and a base station. Each node consists of  a 

microwave radar, a Zigbee module, and a microcontroller [93], 

[94]. The radar block generates and sends a CW signal at 5.8 

GHz to the target and receives the reflected signal. The digitized 

baseband information is then transmitted wirelessly to the base 

station for remote data processing to determine the vital signs 

rate and fall detection incidents. The proposed BWRSN was 

tested in a lab with two nodes fixed to the ceiling, and the other 

two were on the wall as shown in Figure 21. Experimental 

results demonstrated the limitation of using a single sensor in 

real situations and the ability of BWRSN in detecting 
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emergency situations while monitoring breathing. 

The research in [95] described the design of a monitoring 

system for the purpose of baby monitoring. This system 

consists of a monitoring unit and a receiver unit. The 

monitoring unit is to be hanged on the side of the infant’s crib 
to detect his/her breathing and heart rate. Collected signals are 

then communicated wirelessly to the receiver unit. Alarm sound 

and red lights will flash on both units if the child respiration and 

heart rate is detected to be too weak. The monitoring unit 

consists of an RF circuit to send and receive the radio signal, a 

microcontroller for processing, an Xbee chip for 

communication with the receiver, and several buttons and 

switches. The generated signal for transmission is a single tone 

at 5.8 GHz. The Xbee wireless transceiver communicates with 

the receiver in the monitoring unit and keeps it updated with the 

current alarm status. The choice of 5.8 GHz is due to its 

suitability in detecting vital signs, besides being an unlicensed 

ISM band, with wide availability of low-cost components. This 

prototype is capable in detecting vital signs up to 1.15 m, while 

the receiver unit can be as away as 50 m to be able to receive 

data from the monitoring unit. The block diagrams of the 

monitoring and receiving units are shown in Figure 22.  

In situations where a large network of radars and 

communication devices are co-located, their co-existence in the 

same spectrum will increase interference and affect 

performance. The tradeoff of these essential parameters in such 

situations has yet to be investigated [96]. A concept was 

presented in [97], with a system that can be used as radar or as 

communication device. The proposed system uses off-the-shelf 

components with orthogonal frequency division multiplexing 

(OFDM) architecture. Next, the work in [98] presented a similar 

concept applied to drones or unmanned systems. A practical 

mobile imaging device utilizing the 60 GHz band was 

introduced. The components for the communication were 

reused to image an object and perform measurements along the 

trajectory of this system. The authors in [99] proposed a 

wireless sensor network for a home environment, in which the 

sensors are dual mode radars for remote localization and fall 

detection. In this work, the network consists of multiple sensor 

nodes and a base station. The most important validation in the 

dual mode operation is that the radars’ functionality will not 
interfere with the operation of the wireless communication 

module. Time division multiplexing (TDM) is adopted to 

ensure that the wireless communication and each radar sensor 

do not function at the same time. In addition to this, frequency 

division multiplexing (FDM) is used to minimize interference 

between the radars. Experimental results of this work validated 

the feasibility of this method in conducting real time detection 

without interference. In [100], a system of using a common 

waveform for vehicle radar as well as vehicle communication 

system based on the WLAN standard was proposed. 

Specifically, an IEEE 802.11(ad)-based radar for long-range 

application was designed in the 60 GHz unlicensed band. 

Despite being intended for vehicle application, it illustrates the 

same concept of coexistence and functionality of radars and 

communication systems. 

 

 
Figure 21 Sensor nodes and base station setup in [93] © 2016 IEEE  

 
Figure 22 Block diagram of monitoring system described in [95] © 

2009 IEEE     

On the other hand, the work in [101] introduced the concept 

of personal mobile radar using a large number of arrays to map 

the environment. This radar operates in the millimeter(mm)-

wave band and it enables the integration of such large arrays 

within the users’ 5G mobile devices. This work proposed a grid-

based Bayesian mapping approach by introducing a new state 

space model. This research highlighted the correlation between 

the angular resolution, scanning time, signal bandwidth and 

ranging accuracy, besides methods to trade-off between these 

parameters. Results validated the feasibility of the introduced 

system concept, and a significant performance improvement in 

environment mapping is attained. This could be potentially 

attractive for applications such as indoor mapping using low-

cost massive array antennas embedded in next generation 

smartphones. Meanwhile, realizing the spectrum scarcity, 

Awais et al. [102] introduced a spectrum sharing methodology. 

The proposed method is a spatial approach for spectrum sharing 

between a MIMO radar and an LTE cellular system with a 

number of base stations. Since the MIMO radar and LTE 

standard share a number of channels, an interference-channel-

selection algorithm is introduced. Signals from the MIMO radar 

were projected onto the interference channel with maximum 

null space. Careful selection of the interference channels 
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minimizes interference from the MIMO radar and at the same 

time, protects the LTE base station from interference from the 

radar. Meanwhile, the coexistence between IEEE802.11 

WLAN and radars operating in adjacent channels (5 GHz) was 

studied in [103]. A modified WLAN receiver link was designed 

to mitigate the interference by impulse radar. Two proposed 

approaches for interference detection were reported, firstly the 

time domain cyclic prefix auto-correlation detection, and 

secondly, the frequency domain data subcarrier-based 

detection. The proposed system can significantly mitigate radar 

interference at high and low interference to noise ratios (INRs), 

whereas partial interference mitigation is also possible within 

the INR of 3<INR<30 dB.  

In the future, it is expected that a massive number of 

communication devices and radar systems will need to share the 

same spectrum. As a result, techniques and approaches to 

mitigate and minimize interference are of vital importance. It is 

safe to assume that the new norm will be to have these networks 

providing different and complementary services, sharing the 

same bandwidth in an uncoordinated way [96]. 

VII. DISCUSSION AND FUTURE PERSPECTIVES 

 

Generally, it can be summarized that the detection of human 

vital signs by radar techniques involves the selection of the 

radar type, the appropriate algorithms, as well as the right 

processing platforms. A special focus, was provided to identify 

where and how FPGA was implemented in these radars, either 

as a processing/preprocessing platform, or as the control, or an 

interfacing device in Section V. The flexibility and 

reconfigurability nature of the FPGA place it as an excellent 

candidate for parallel processing and for implementation of 

algorithms that are computationally more complex.  

It can be observed that there is more research directed 

towards real-time detection, as such feature is highly practical. 

Real-time detection requires a very powerful processing 

platform, which is not always affordable for everyday use. 

Alternative solutions that are being investigated include 

innovative parallel processing structures on reconfigurable 

processing devices. Nonetheless, recent developments in 

reconfigurable devices such as FPGA, enable the processing of 

multiple operations on hundreds of thousands of logic elements. 

This opens up opportunities of inventing novel solutions which 

are capable of processing very complex algorithms to meet the 

real-time detection requirements.  

On the other hand, researchers are still investigating new 

algorithms to maximize the detection accuracy, at the expense 

of more complex algorithms. At the same time, more detection 

scenarios are being experimentally assessed to validate these 

algorithms in practice. It is demonstrated throughout the survey 

that the main future trends in vital sign detection using radars is 

geared towards enabling more practical methods for real-time 

detection. More practical (and yet challenging) scenarios 

includes situations where vital signs need to be detected from a 

person located in a crowded room with multiple people, which 

is indirectly related to multipath detection. The introduced 

unwanted signals due to random movements affects detection 

accuracy due to the additional noise and interference. Other 

issues include dc offset, coupling issues, position sensitivity, 

amplitude and phase imbalance and circuits’ linearity. To solve 
these challenges, researchers have introduced more 

sophisticated algorithms and complex approaches which are 

computationally-intensive [104], [105], [106], [107]. Such 

computational requirements can naturally be solved using 

parallel processing platforms. Other challenges related to 

circuit design, power consumption etc. have also been 

addressed by different researchers at different levels [60], [16], 

[108]. With the recent advances in CMOS processes and 

technologies, the new challenge for these sophisticated 

miniaturized designs will then be in terms of low power 

consumption, which is becoming increasingly stringent. 

Moreover, the integration of different systems in one platform 

and interference between different systems are another set of 

future challenges requiring future research focus. More 

recently, artificial intelligence in the form of machine learning 

methods have been introduced to enhance detection accuracy. 

This brings great potential to the research activities in this field 

and may enable early warning of fatal situations such as a heart 

attack or asthma attack [6]. 

SFCW radar is one of the radar types which have gained the 

most preference in recent years in the application of vital signs 

monitoring and detection. The different state-of-the-art 

literature where SFCW radar was used for human vital sign 

detection and monitoring, is summarized in Table 9. The 

articles listed in Table 9 proposed and implemented several 

algorithms to SFCW, such as CFAR, morphological filtering, 

numerical method, Fourier transform, singular value 

decomposition SVD, method of moments, fast multipole 

method, state-space method, and compressive sensing 

algorithms. The authors in [55] validated the effectiveness of 

the proposed algorithms to be used in a MIMO SFCW radar. 

Through-wall detection of up to three adjacent human subjects 

can be detected and discriminated based on the reported results. 

On the other hand, the detection accuracies in [58] were 

reported to be of -0.8% error for RR detection and 0.4% for HR, 

with a maximum error of 2% when the subject is facing away 

from the radar. Meanwhile in [57],  errors of HR detection for 

multiple targets at different distances from the radar are 

reported to be about 2% and 5% error for the closest and furthest 

target, respectively. Finally in [2], when a CS algorithm is 

processed, an error of up to 6.63% was reported at 80% of 

frequency points. The implementation of SSM algorithm, on 

the contrary, resulted in about 1.2% error at normal incidence, 

whereas changing target orientation at different angles 

produced errors ranging from 0.4% to 5.7%. 

It is important to note that several literature on SFCW radars  

([55], [58], [9] and [57]), listed in Table 9, did not specify their 

processing platforms. In [56] and [2], a standard desktop 

computer was used as the main processing unit. These articles 

are focused proving the viability of the algorithm when applied 

to the SFCW radar for detection and monitoring of HR and RR. 

Therefore, accuracy is the most important parameter to be 

reported. Another important observation is that none of these 

algorithms are designed and implemented on FPGAs. When an 
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algorithm is implemented in software loaded into the CPU of a 

desktop for execution, it implies that the implementation of the 

algorithm is performed in a sequential manner. In such cases, 

execution speed, processing time, and the potential to apply 

such algorithm in real time applications are in doubt. Moreover, 

the aspects of computational speed, hardware complexity, and 

cost are elements of less importance in the cited studies.  An 

important final step for such investigations must be tailored 

towards successfully incorporating these elements (speed, time, 

hardware, real time) in the performance metrics without 

deteriorating the state-of-the-art results of reported accuracies. 

The discussion of the available algorithms applied for SFCW 

radars indicated that all of them have been validated to be 

detecting human vital signs with satisfactory accuracy. 

However, since these algorithms have neither been 

implemented on FPGA nor been investigated in terms of speed 

and processing time, future researches can be directed towards 

this aspect. Specifically, these algorithms are as follows: 

• Constant false alarm rate (CFAR) 

• Singular value decomposition (SVD) 

• State space method  

• Method of moment (MoM) 

• Fast multipole method (FMPM) 

Investigation on the most efficient approach of implementing 

these algorithms on FPGA can be further conducted. The aspect 

of processing speed in using SFCW radar detection for human 

vital signs can be improved as real time detection with more 

computationally complex and time-consuming processing 

should be feasible. 
  

Table 9 Summary of SFCW radar and algorithms used in literature 

Ref. Algorithms Functions/ Advantages Frequency 

Spectrum 

[2] • CS 

• SSM 

To reduce data acquisition time 

and to avoid producing inter-

modulation products in FFT 

2-4 𝐺𝛨𝑧 
[9] 

• FT and hybrid 

numerical method  

• MoM 

To decompose inhomogeneous 

object into sub-homogenous 

domains and detect the signal in 

simple way. 

Not reported 

[55] • CFAR 

•  MFC  

 

To suppress clutter and mutual 

coupling from multiple targets and 

to improve weak signals. 

40-4400 𝑀𝛨𝑧 
 

 

[56] 

SVD and MA  Clutter reduction techniques to 

improve detection accuracy. 
1-3 𝐺𝛨𝑧 

[57] • MoM parallel 

with FMPM 

• SSM 

To accelerate computation time 

and extract the rate. 
2-3 𝐺𝛨𝑧 

[58] • CS 

 

 

 

To avoid long data acquisition 

time. 
2-4 𝐺𝛨𝑧 
 

 

 Table abbreviations: 

MFC: Morphological Filtering and Clustering 

SVD: Singular Value Decomposition 

MA: Moving Average 

MoM: Method of Moment 

FMPM: Fast Multipole Method 

SSM: State Space Method 

VIII. CONCLUSION 

This survey reviewed the recent developments of radars for 

vital sign detection, with a special focus on the signal-

processing platform and the algorithms’ implementation using 

FPGAs. This review first introduced the various types of radars, 

architectures, hardware implementation, and methods of 

detection/sensing. Recent developments suggest that research 

in this area has prioritized efforts in designing suitable 

algorithms and processing architectures to meet the challenging 

real-time detection requirement. These recent trends also 

suggested that more research is being channeled towards 

investigating the more complex types of radars (i.e., FMCW 

and SFCW). Researchers are also striving to acquire better 

measurement accuracy, while investigating more practical use-

cases, such as improving the detection distance between radar 

and target, introducing intentional unwanted movements in the 

measurements by setting up the experiment in a noisy 

environment, etc. As research in this area progresses, more 

attention must be given to implementing real time processing 

on these (near) practical scenarios. This can be done by 

introducing novel methods and algorithms for signal extraction 

on dedicated and powerful processing devices.  
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