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ABSTRACT 
 
The increasing use of wind power as a source of electricity poses new challenges with regard to 
both power production and load balance in the electricity grid. This new source of energy is 
volatile and highly variable. The only way to integrate such power into the grid is to develop 
reliable and accurate wind power forecasting systems. Electricity generated from wind power 
can be highly variable at several different timescales: sub-hourly, hourly, daily, and seasonally. 
Wind energy, like other electricity sources, must be scheduled. Although wind power forecasting 
methods are used, the ability to predict wind plant output remains relatively low for short-term 
operation. Because instantaneous electrical generation and consumption must remain in balance 
to maintain grid stability, wind power’s variability can present substantial challenges when large 
amounts of wind power are incorporated into a grid system. A critical issue is ramp events, 
which are sudden and large changes (increases or decreases) in wind power. This report presents 
an overview of current ramp definitions and state-of-the-art approaches in ramp event 
forecasting.  
 
 
1  INTRODUCTION 
 
One of the major issues in wind power generation is dealing with ramp events. These events are 
characterized by sudden and large changes (increases or decreases) in wind power. To address 
these events, wind power operators, utilities, and system operators have to develop procedures 
that satisfy the electricity demand, as well as maximize both economic and environmental 
benefits. The sooner these events can be predicted, the more effective the procedures will be. To 
deal with a ramp-up event, a wind power producer can shut down turbines to avoid producing an 
excess of energy that cannot be compensated for by a sudden decrease in thermal generation, or 
it can increase its generation in agreement with the system operator and utilities. In the latter 
case, utilities can trade fossil energy costs by buying cheaper and clean wind energy. In a ramp-
down event, the system operator can switch on fast hydro units or, if this procedure does not 
generate enough power to meet demand or is not available, the operator can use fossil energy 
turbines to meet the load (Parkes et al. 2006). If these measures are not sufficient, load 
curtailment must be adopted—a scenario that system operators obviously try to avoid. 
 
In recent years, with the large-scale expansion of wind farms and turbine technology, the 
percentage of energy obtained from wind sources relative to the peak load is rapidly increasing. 
Thus, the demand for a more reliable wind power energy is driving the critical need to detect and 
predict ramp events (Kamath 2010). For instance, Francis (2008) reported a rapid and large 
ramp-down event that occurred in the Electric Reliability Council of Texas (ERCOT) operations 
area on February 26, 2008, that forced ERCOT to declare system emergency—a high-cost 
system condition.  
 
Because this type of system condition can occur, both the accurate forecasting of ramp events 
and the quantification of ramp forecast accuracy are crucial to the large-scale integration of wind 
energy into electricity grids and to a better understanding of the risk involved in trades at times 
of high variability (Greaves et al. 2009). 
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One of the main problems in ramp forecasting is how to define a ramp. In fact, there is no 
standard formal definition (Kamath 2010; Focken and Lange 2008; Zheng and Kusiak 2009), and 
the existing literature reports different definitions, depending on, for instance, on the location and 
size of the wind farm. 
 
For wind power forecasts, the existing models might be grouped under two different approaches 
(Monteiro et al. 2009):  
 

1. Physics-based models are parametric models that are based on the physical characteristics 
of the weather and terrain. The main idea of these models is to translate and refine 
numerical weather prediction (NWP) forecasts into the wind power facilities’ sites and to 
model local wind profiles. Moreover, these models use the wind farm theoretical power 
curve, or an estimated power curve, to forecast wind farm power output. For example, 
Greaves et al. (2009) and Focken and Lange (2008) use NWPs to produce forecasts of the 
power curves of the wind generation facilities.  

 
2. Statistical models use historical wind power measurements, meteorological data, either 

NWPs or historical measurements, and machine learning algorithms to induce a 
predictive model. For example, Zheng and Kusiak (2009) use historical data collected by 
the supervisory control and data acquisition (SCADA) system as input for several 
regression models (e.g., regression trees) to predict power ramp rates.  

 
This report presents the results from our study of the existing definitions of ramp events and 
methodologies to forecast ramp events. It is structured as follows. Section 2, on ramp event 
definitions, presents formal and informal definitions identified in the literature, as well as their 
characteristics and defined parameters. Section 3 presents some useful models to forecast ramps 
for different time horizons (i.e., short-term and long-term predictions). Section 4 summarizes the 
conclusions obtained from the study. 
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2  RAMP EVENT DEFINITIONS 
 
Ramp forecasting is a relatively new research field. In order to study the ramp phenomena, it is 
important to define what could be considered a “ramp event.” According to the technical report 
for the Alberta Pilot Project (AWS Truewind 2008), a ramp occurs when there is a change in 
power output that has a large enough amplitude for a relatively short period of time. The same 
idea also appears in Greaves et al. (2009) and Cutler et al. (2007a). The expressions “swings,” 
“extreme events,” and “rapid changes” are also used synonymously with ramp events 
(Cutler et al. 2007b). These events can be detected locally at the wind farm level or in a wide 
geographical area that can include several wind farms. The events may cause severe grid 
management problems within the next few hours or days (Bradford et al. 2010).  
 
Figure 1 illustrates the ramp definition presented in Greaves et al. (2009), which is a change in 
the wind farm power output that is at least 50% of the installed capacity and occurs within a time 
span of 4 hours or less.  
 
 

 
Figure 1  Ramp event definition: Change in power of at least 50% 
of the capacity over a maximum duration of 4 hours (Figure 
inspired by Parkes 2009; Greaves et al. 2009). 

 
 
2.1  Characteristics for Ramp Definitions 
 
Grimit and Potter (2008), Greaves et al. (2009), and Potter et al. (2009) outline several relevant 
characteristics for defining, characterizing, and identifying ramps. They state that to define a 
ramp, we have to determine values for its three key characteristics: direction, duration, and 
magnitude. 
 
With respect to direction, there are two basic types of ramps: upward (or ramp-ups) and 
downward (or ramp-downs). Upward ramps are characterized by an increase of wind power, 
which might result from phenomena such as intense low-pressure systems (or cyclones), low-
level jets, thunderstorms, wind gusts, or similar weather phenomena. The downward ramps result 
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when there is a reduction in wind power (events that generally occur with the rapid slackening of 
a pressure gradient or the passage of a local pressure couplet) or when high-speed winds cause 
wind turbines to reach cut-out limits (typically 22 to 25 m/s) and shut down in order to protect 
the wind turbine from damage (Freedman et al. 2008). To be considered a ramp event, the 
minimum duration is assumed to be 1 hour in Potter et al. (2009); however, Kamath (2010) 
studies events in intervals of 5 to 60 minutes. The magnitude of a ramp event is typicallly 
represented by the percentage of the wind farm’s nominal power (i.e., its name plate rating). 
 
Duration and magnitude are usually related. For example, Potter et al. (2009) considers rapid 
ramp events to be when the change in power between two consecutive hours is greater than or 
equal to 10% of the nominal capacity of the wind farm. In addition, the AWS Truewind (2008) 
report suggests that: 
 

• An important downward ramp occurs only if the power change in 1 hour is at 
least 15% of total capacity, and  

 
• An important upward ramp occurs if the power change in 1 hour is at least 20% of 

total capacity.  
 
Some ramp event definitions using these characteristics are presented in Section 2.2. 
 
 
2.2  Ramp Definitions  
 
Although it is easy to identify ramps visually, there is no consensus on the accepted formal 
definition of a ramp event (Kamath 2010; Focken and Lange 2008; Zheng and Kusiak 2009). 
This section presents four ramp event definitions. As stated above, a ramp event can be 
characterized according to three features: direction, magnitude, and duration. However, if we 
consider that the ramp magnitude values range from positive to negative, we can characterize a 
ramp by using only magnitude and duration features. The sign of the magnitude value can give 
us the ramp direction: positive magnitude values correspond to upward ramps, and negative 
magnitude values correspond to downward ramps. 
 
In the definitions below, a ramp event can be identified according to the power signal P(t) and 
two user-defined parameters (one of the definitions requires only one parameter to identify a 
ramp). The first user-defined parameter Δ௧ is related to the ramp duration and defines the size of 
the time interval considered to identify a ramp; it is usually measured in minutes or hours. 
Potter et al. (2009) and Zack et al. (2010) present some results that relate this parameter to the 
type and magnitude of identified ramps. The second user-defined parameter ௩ܲ௔௟ is related to the 
ramp magnitude feature and provides a cut-off level on the power changes. The ௩ܲ௔௟ parameter is 
usually defined according to the specific features of the wind farm site, and this threshold value 
is usually defined according to the amount of wind power capacity installed and as a percentage 
of the wind power nominal capacity or a specified number of megawatts (MW). Kamath (2010) 
claims that defining the ௩ܲ௔௟ parameter according to the wind farm’s nominal capacity can 
produce unreliable results. They consider that the nominal capacity of a wind farm is always 
changing, because at each moment, one or several units can be turned off. Their results are based 
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on a simple analysis of historical measurements, in which the sensitivity of the two ramp 
definitions to each of the two parameters introduced above are studied: ௩ܲ௔௟, ranging from 150 to 
600 MW, and Δ௧ values, which varies between 5 and 60 minutes. 
 
The first definition, provided below, was formally presented in Kamath (2010). 
 
Definition 1: A ramp event is considered to occur at the start of an interval if the magnitude of 
the increase or decrease in the power signal at time Δ௧ ahead of the interval is greater than a 
predefined threshold value, ௩ܲ௔௟: 
 

 |Pሺt ൅ Δ୲ሻ െ Pሺtሻ| ൐ P୴ୟ୪  (2.1) 
 
This inequality considers only the values on the end points of the interval and ignores the ramps 
that occur in the middle. To address this issue, Kamath (2010) extends the previous definition. 
 
Definition 2: A ramp event is considered to occur in a time interval Δ௧ if the difference between 
the maximum and the minimum power output measured in that interval is greater than a 
threshold value, ௩ܲ௔௟: 
 

 maxሺPሾt, t ൅ Δ୲ሿሻ െ minሺPሾt, t ൅ Δ୲ሿሻ ൐ P୴ୟ୪ (2.2) 
 
This inequality considers the total magnitude of the power fluctuation through the interval. 
However, this definition does not consider the curve’s slope (i.e., how quickly the power output 
decreases or increases). In order to analyze this important factor, we cannot consider an absolute 
threshold like ௩ܲ௔௟; we need a time-relative threshold. 
 
A more elaborate definition considers the rate of change in power output over a period of time 
(Zheng and Kusiak 2009). To present this defnition, we define the “power ramp rate” or “slope” 
to be the rate of change of the power with respect to time. This measure is expressed in 
megawatts per minute (MWm–1).  
 
Definition 3: A ramp event is considered to occur if the ratio between the absolute difference of 
the power measured at two time points (the initial and final points of a time interval Δ௧) and the 
size of the time interval Δ௧ is greater than a predefined reference value (i.e., the power ramp rate 
value or ܴܴܲ௩௔௟): 
 

 |Pሺ୲ା୼౪ሻିPሺ୲ሻ|
୼౪

൐ ܴܴܲ୴ୟ୪   (2.3) 
 
In the definitions presented in equations 2.1 and 2.3, we can easily identify the type of ramp: if 
Pሺtሻ ൐ ܲሺt ൅ Δ୲ሻ, we are analyzing a downward ramp, otherwise, it is an upward one. In 
equation 2.2, on the other hand, this distinction is not so clear. In this latter case, we can identify 
the type of the ramp by using the relative position of the extreme time points within the interval. 
If the maximum power output occurs after the minimum power output, we get an upward ramp; 
otherwise, we get a downward ramp. 
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While the definitions above work directly with the wind power signal, other approaches 
transform the signal into a more appropriate representation. A usual transformation consists of 
considering ݇-order differences in the power amplitude. This strategy is used, for example, in 
Bossavy et al. (2010). In such a treatment, ݌௧ is the wind power time series and ݌௧

௙ is the 
associated transformed signal that was obtained according to the formula: 
 

 p୲୤ ൌ meanሼp୲ା୦ െ p୲ା୦ି୬౗ౣ; h ൌ 1,… , nୟ୫ሽ (2.4) 
 
In this formula, the parameter ݊௔௠ stands for the number of averaged power differences to 
consider. 
 
Definition 4: A ramp event is said to occur in an interval if the absolute value of the filtered 
signal ݌௧

௙ exceeds a given threshold value ௩ܲ௔௟: 
 
 |p୲୤| ൐ ௩ܲ௔௟ (2.5) 
 
If required, the ramp time is considered to be the interval point for which the filtered signal has 
its maximum magnitude.  
 
This last definition was introduced in Bossavy et al. (2010). Figure 2 presents a wind power time 
series and two filtered signals, one for each value of the ݊௔௠ parameter; that is, ݊௔௠ ൌ 2 and 
݊௔௠ ൌ 5. By setting the ௩ܲ௔௟ threshold to be 25% of the wind farm nominal capacity, the authors 
identify ramp events to be the points in the filtered signal that are above the threshold line. Ramp 
timing is identified as the point at which the filtered signal achieves a local maximum.  
 

 
Figure 2  Example of wind power output time series and two transformed 
signals. By setting the threshold value to be 25% of the nominal power, we 
can identify the occurrence time of two ramp events, one at t = 13 hours and 
the other at t = 32 hours (Figure inspired by Bossavy et al. 2010).  

 
In the following section, we analyze issues related to ramp forecasting and provide an overview 
of existing ramp forecasting models.   
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3  RAMP FORECASTING MODELS 
 
Usually ramp forecasts deliver predictions for the next hours or days to the end users. Such 
information is used to support informed decisions about wind farm management, how much 
energy to trade or sell (Greaves et al. 2009), generation scheduling, etc. We can consider two 
main strategies:   
 

• Event detection models use one of the previous ramp definitions over time series 
of wind power predictions or weather forecasts (Jørgensen and Mörlen 2008). In 
this case, the outputs of the forecast model are time-stamp series between 0 and 1, 
where 1 indicates the presence of a ramp, eventually paired with an associated 
probability. 

 
• Regression models use historical data to predict ramps by using data mining 

techniques. Data mining algorithms learn a function of the form y ൌ fሺxሬԦሻ where ݔԦ 
is a multivariate set of historical features and ݕ is an output variable related to 
ramp events (Zheng and Kusiak 2009). In this case, the forecaster predicts a real 
number that is a function of the ramp magnitude. 

 
 
3.1  Factors to Consider When Forecasting Ramps 
 
Potter et al. (2009) and Bossavy et al. (2010) identify some errors that must be considered before 
one can start to build a ramp forecasting model: 
 

• Timing error (or phase error.) Defined as an event whose magnitude is accurately 
predicted but that occurs at the “wrong” (unexpected) time.  

 
• Intensity error (or amplitude/magnitude error). Defined as an event that is 

forecasted to occur at the “right” (expected) time but with the wrong magnitude.    
 

• Location error. Defined as an error in the geographical location of the wind event. 
When forecasts for weather events are incorrectly located or when an event 
follows a different path than the one forecasted, the result might include timing 
and intensity errors.  

 
Figure 3 plots both a “24-hour-ahead” forecast for the power output and the real value observed, 
thereby illustrating a timing error of 2 hours, as well as a magnitude error and a rate of change 
error. 
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Figure 3  Plot illustrating three types of errors (timing, magnitude, and 
rate of change errors) between the 24-Hour-Ahead forecast and real 
values for the power output (Figure inspired by Potter et al. 2009). 

 
 
3.2  Evaluation Metrics 
 
We discuss two types of metrics: event detection metrics, which are used with event detection 
models, and predictive accuracy, which is used with regression models. 
 
 
3.2.1  Metrics for Ramp Event Detection 
 
This section presents metrics to evaluate event forecasters. First we present metrics to evaluate 
deterministic forecast systems, and then we present metrics used to evaluate probabilistic 
forecast systems.  
 
The kappa coefficient (Cohen 1960) is a statistical measure of inter-rater agreement for 
qualitative (categorical) events. It is computed as: 
 

 
P(e)1

P(e)P(a)k
−

−
=  (3.1) 

 
where P(a) is the relative observed agreement among forecasters and P(e) is the hypothetical 
probability of chance agreement. The observed data are used to calculate the probabilities that 
each observer will randomly identify each category. If the forecasters are in complete agreement, 
then k = 1. If there is no agreement among the forecasters (other than what would be expected by 
chance), then k is <0. 
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Two other statistics that are widely used to evaluate the quality of deterministic forecast systems 
are precision and recall. Precision is defined as the ratio between the number of true positive 
events and the number of positive forecasts. Recall is defined as the ratio between the number of 
true positives and the number of observed positives. These statistics do not take into account the 
true negatives, which are positive aspects in predicting rare events like ramps. 
 
To illustrate the computation of these metrics, Table 1 is a generic contingency table that 
summarizes the results of an event forecasting system. The four combinations of forecasts (yes 
or no) and observations (yes or no) are called the joint distribution; the total numbers of observed 
and forecasted occurrences and nonoccurences, which are shown on the lower and right sides of 
the contingency table, are called the marginal distribution. 
 

Table 1  Contingency Table Representing Event Observation and Event Forecast 

Event 
Forecast 

Event Observation 
Total Yes No 

Yes TP (hits) FP (false alarms) Forecast Yes 
No FN (misses) TN Forecast No 
Total Observed Yes Observed No N = TP + FP + FN + TN 

TP = true positive; FP = false positive; FN = false negative; TN = true negative. 
 
Formally, and using the illustrative table, we can write:   
 
 Precision ൌ TP

TPାFP
 (3.2) 

 
Precision answers the question: What fraction of the predicted “yes” events really occurred? 
 
 Recall ൌ TP

TPାFN
 (3.3) 

 
Recall answers the question: What fraction of the observed “yes” events were correctly 
forecasted? 
 
In order to assess the performance of a classification system, it can be useful to use a metric that 
combines precision and recall. The Fscore  is a weighted average combination (the harmonic 
mean) of precision and recall measures that gives equal weight to both measures, such that: 
 
 Fୱୡ୭୰ୣ ൌ 2 ൈ P୰ୣୡ୧ୱ୧୭୬ൈRୣୡୟ୪୪

P୰ୣୡ୧ୱ୧୭୬ାRୣୡୟ୪୪
 (3.4) 

 
An Fscore of 1 means that all events were detected, while a 0 score indicates that none of the 
events was detected. Other variants of this metric exist that can be used to consider unbalanced 
combinations of precision and recall. 
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In the context of ramp event detection, true negatives are irrelevant. Another useful metric is the 
critical success index (CSI), which is defined as: 
 
 CSI ൌ   TP

TPାFNାFP
 (3.5) 

 
As in the case with precision and recall, the CSI metric takes values in the interval [0,1], where 1 
means correct prediction. CSI measures the fraction of observed and/or forecasted events that 
were correctly predicted. It can be thought of as the accuracy when correct negatives have been 
removed from consideration; that is, CSI is only concerned with forecasts that count. Sensitive to 
hits, CSI penalizes both misses and false alarms. One of the projects that uses such a metric to 
evaluate ramp event forecast systems is described in Zack et al. (2010). 
 
The bias score answers the question: How did the number of forecasted “yes” events compare 
with the number of observed “yes” events? It is defined as: 
 

 Bias score ൌ   TPାFP
TPାFN

 (3.6) 
 
The bias score measures the ratio of the frequency of forecast events to the frequency of 
observed events. It indicates whether the forecast system has a tendency to underforecast 
(bias score of <1) or overforecast (bias score of  >1) events. The bias score does not measure 
how well the forecast corresponds to the observations; it only measures relative frequencies. 
 
The Hanssen & Kuipers skill score (KSS), also known as Peirce’s skill score or the true skill 
score (Hanssen and Kuipers 1965; Peirce 1884), is a widely used metric (see, for example, 
Bradford et al. 2010; Jørgensen and Mörlen 2008) that takes into account all of the elements of 
the contingency table. It measures the ability to separate the “yes” events from the “no” events. 
The KSS can be defined by means of both the hit rate ቀܪ ൌ ்௉

்௉ାிே
ቁ and the false alarm rate 

ቀܨ ൌ ி௉
ி௉ା்ே

ቁ as follows: 
 

 KSS ൌ H െ F ൌ TPכTNିFPכFN
ሺTPାFNሻሺFPାTNሻ

  (3.7) 
 

The KSS takes values in the interval [–1,1], where 0 indicates no skill and 1 is the perfect score. 
 
When predicting rare events having large TN values, the KSS approaches the value of the hit 
rate, thus becoming vulnerable to hedging, a strategy that consists of always forecasting event 
occurrence. This score is more appropriate to verify frequently occurring events.  
 
A special purpose score aimed at verifying predictions of rare events is the extreme dependency 
score (EDS) (Coles et al. 1999). This metric does not account for either the false positive alarms 
(FPs) or the nonoccurring events (TNs) but considers the sample size (݊) (i.e., the total number 
of cases), as follows:  
 

 EDS ൌ ଶ ୪୭୥ሺሺTPାFNሻ ୬⁄ ሻ
୪୭୥ሺTP ୬⁄ ሻ െ 1  (3.8) 
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While this metric has some helpful properties, it does not tend to zero for vanishing events, and it 
is not explicitly dependent on the bias, although it is sensitive to hedging. The EDS score range 
is [–1,1], where –1 is the worst score and 1 is the perfect score. The EDS takes a value of  
–1 when the base rate ቀܴܤ ൌ ்௉ାிே

௡
ቁ takes a value of 1, and it takes a value of 1 when the hit 

rate (H) takes a value of 1. It answers the question: What is the association between forecasted 
and observed rare events? 
 
In Ghelli and Primo (2009), the EDS is used to investigate the performance of NWP in 
predicting rare precipitation events. The EDS score prove to be effective in identifying rare 
events, although some care should be taken with regard to hedging. Our recommendation is that 
the EDS should not be the only score used to assess the performance of a forecasting model and 
that clear improvements could be achieved if the EDS could be combined with the false alarm 
rate and/or the bias score metrics. 
 
One other metric that is suitable for analyzing rare events and is less sensitive to hedging is the 
odds ratio (OR) (Jørgensen and Mörlen 2008; Stephenson 2000). This metric can easily be 
defined in terms of the hit rate (H) and false alarm rate (F), 
 
 OR ൌ H ሺଵିHሻ⁄

F ሺଵିFሻ⁄  (3.9) 
 
The OR formula presents the ratio between the odds of making a hit to the odds of making a 
false alarm. The score of OR ranges from 0 to ∞. The perfect OR score is ∞, and scores higher 
than 1 mean that the hit rate exceeds the false alarm rate. This measure answers the question: 
What is the ratio between the odds of making a good forecast and the odds of making a bad 
forecast? 
 
In Yule (1900), the odds ratio skill score (ORSS) is introduced in order to measure the 
association in contingency tables. The ORSS is a function of the odds ratio whose value ranges 
from –1 to 1. The value 1 corresponds to a perfect forecast skill, whereas the value 0 corresponds 
to a null skill. The ORSS can be defined in terms of the OR as: 
 
 ORSS ൌ ORିଵ

ORାଵ
 (3.10) 

 
The ORSS answers the question: How much gain was obtained by using the forecasting system 
compared with using a random prediction strategy? 
 
Some ORSS properties are presented in Stephenson (2000), including, among others, the 
nondependence of the marginals and therefore the difficulty of hedging the score. Moreover, the 
author shows that the combination of ORSS, KSS, and the bias score form a complete set to 
describe a 2×2 contingency table. 
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3.2.2  Probabilistic Forecast 
 
The metrics presented above are among those used to evaluate deterministic forecasts; however, 
by applying simple procedures, they could be used to evaluate probabilistic forecasting systems 
as well. A probabilistic forecast assigns a probability to the prediction. One evident advantage of 
probabilistic forecasts is the introduction of a degree of freedom, by, for example, using a 
threshold regarding the probability of whether to decide the ocurrence of events. One technique 
that can be used to choose the optimal threshold is the receiver operating characteristic (ROC) 
curve. 
 
 

3.2.2.1  ROC Space 
 
The ROC curve is a graphical plot of sensitivity versus specificity for a binary classifier system, 
when its discrimination threshold is varied. The ROC is obtained by plotting the fraction of true 
positives versus the fraction of false positives as the criterion threshold changes (Hand 2009). 
The best possible prediction method would yield a point in the upper left corner—or coordinate 
(0, 1) of the ROC space—representing 100% sensitivity (no false negatives) and 100% 
specificity (no false positives). The diagonal of the ROC space corresponds to a random guess. 
Points above the diagonal correspond to predictions better than does a random choice, while 
points below correspond to predictions worse than does a random guess. A deterministic forecast 
defines a point in the ROC space. A probabilistc forecast defines a trajectory in the ROC space, 
where each point in the trajectory corresponds to a different probability threshold. Moreover, in a 
classification problem, each ROC curve is independent of the class distribution and error cost, 
which is the cost of predicting the wrong class (Provost and Fawcett 1997). We can use the ROC 
curve to find the optimal operating point (i.e., a probability threshold) under varying costs of 
making incorrect predictions, FPs, and misses (FNs) (see Figure 4).  
 
 

3.2.2.2  Metrics for Probabilistic Forecasts 
 
For forecasts that assign a probabilty to each event, a more informed metric might be used. The 
Brier score (Brier 1950) is a score function that measures the accuracy of a set of probability 
assessments. It measures the average squared deviation between predicted probabilities for a set 
of events and their outcomes. It is computed as:  
 
 BS ൌ ଵ

N
∑ ሺF୲ െ O୲ሻଶN
୲ୀଵ  (3.11) 

 
where ܨ௧ is the probability that was forecasted, O௧ is the actual outcome of the event at instance ݐ 
(0 if it does not happen and 1 if it happens), and ܰ is the number of forecasting instances. A 
lower score represents higher accuracy. 
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Figure 4  Representation of ROC curves for two forecasting 
systems, and the diagonal of the ROC space (black line) which 
corresponds to a random guess. The small circle identifies the 
best operating point, based on user-defined error costs, of the 
forecasting system associated with the blue curve. 

 
 
Bossavy et al. (2010) compute BS and the Brier skill score (BSS) to compare the performance of 
the proposed forecast system against a reference methodology, a climatology model. The BSS is 
computed according to the formula: 
 
 BSS ൌ 1 െ BS

BS౨౛౜
 (3.12) 

 
where BS୰ୣ୤ and BS stand for the Brier score of the reference model and the Brier score of the 
proposed model, respectively. The BSS is a particular case of the ranked probability score (RPS) 
(Brier 1950; Murphy 1971).  
 
The RPS is a score used to assess the performance of multicategory probabilistic forecasting 
systems. The RPS compares the forecast cumulative density function (CDF) of the probabilistic 
forecast against the corresponding observed CDF. If we consider the discrete case, we can 
define:  
 
 RPS ൌ ଵ

Kିଵ
∑ ሺF୩ െ O୩ሻଶK
୩ୀଵ  (3.13) 

 
where ܭ is the number of forecasting categories and F୩ ൌ ∑ f୧୩

୧ୀଵ  and O୩ ൌ ∑ o୧୩
୧ୀଵ  are the ݇ 

components of the forecast and observed CDF, respectively. The ௜݂ is the forecast probability of 
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an event to occur in category ݅, and ݋௜ is a binary valued variable that takes a value of 1 if the 
event is observed in category i; otherwise, it takes a value of 0. 
 
Zack et al. (2010) compute the RPS and the ranked probability skill score (RPSS) (Weigel et al. 
2007) to evaluate the developed probabilistic ramp rate forecasts. The RPSS is computed in 
order to compare the forecasts against the reference model, a climatology model. The RPSS is 
defined as: 
 
 RPSS ൌ 1 െ RPS

RPS౨౛౜
 (3.14) 

 
where RPS୰ୣ୤ and RPS stand, respectively, for the ranked probability score of the reference 
model and the ranked probability score of the proposed model.  
 
By using each of the above metrics, we can now quantitatively assess the value of a forecast 
system. There are other techniques that might be used to visualize, and hence further analyze, the 
quality of probabilistic forecasts. Reliability diagrams, presented in Bröcker and Smith (2007), 
can be used to analyze the properties of a probabilistic forecasting system. The reliability 
diagrams plot the observed relative frequency against the forecasted relative frequency. We 
consider ௜ܻ the actual outcome of the event at instance ݅ (0 if it does not happen and 1 if it 
happens) and ௜ܺ the forecast probability that ௜ܻ will be equal to 1. If we partition the forecast 
probabilities into ݇ disjoint bins ܤ௞, we define I୩ ൌ ሼi; X୧ א B୩ሽ to be the set of events with a 
probability value in the ܤ௞ bin. In addition, we define the observed relative frequency  ௞݂ and the 
forecast relative frequency ݎ௞ to be, respectively: 
 
 f୩ ൌ

∑ Y౟౟אIౡ
#Iౡ

, (3.15) 
 
  r୩ ൌ

∑ X౟౟אIౡ
#Iౡ

 (3.16) 
 
where #Ik is the number of instances having a forecast probability value in the bin ܤ௞. 
 
The reliability diagram plots ௞݂ against ݎ௞. Figure 5 reproduces a reliabily diagram presented in 
Potter et al. (2009) to evaluate a probabilistic ramp rate event (RRE) forecast system. We can see 
that by not considering phase errors, the RRE performance (blue line) aligns closely in terms of 
forecast reliability to the climatology forecast. If we allow phase errors, by considering a time 
window of 3 hours, the probabilistic forecasting systems track more closely with the perfect 
reliability. 
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Figure 5  Reliability diagram from RRE forecast system showing the 
reliability of forecasts for ramps greater than or equal to 25% of 
nameplate capacity (Figure inspired by Potter et al. 2009). 

 
 
3.2.3  Metrics to Assess Forecast Accuracy 
 
Approaches based on data mining map the ramp prediction to a regression problem. The output 
is a real number, and the predictive accuracy is a function of the difference between the 
forecasted value  and the observed value . Potter et al. (2009) observe that metrics based on 
mean square error (MSE) are not appropriate for ramp forecasting assessment. The MSE, root 
mean square error (RMSE), and other MSE-based metrics tend to over-penalize large errors. 
This occurs as a result of the squaring of each term, which effectively weights large errors more 
heavily than small ones. This property, which is undesirable in many applications, such as in 
ramp detection (Jørgensen and Mörlen 2008), has led researchers to use such alternatives as the 
mean absolute error (MAE) or those based on the median. 
 
Two main metrics, the MAE and the standard deviation (Std) of the absolute error, AE, were 
used to measure the prediction accuracy of different regression algorithms in Zheng and 
Kusiak (2009). Small values of MAE and Std imply superior prediction performance. In fact, 
MAE and Std based on absolute error are widely used in the wind industry. These metrics are 
formally defined in the following formulas:  
 
 y(t)(t)ŷAE(t) −=  (3.17) 
 

 
N

AE(t)
1t

N

MAE
∑ =

=  (3.18) 
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1N

MAE)(AE(t)
1t

N

Std
−

−
=∑

=  (3.19) 

 
where ݕොሺݐሻ is the prediction value, y(t) is the observed value at instance ݐ, and ܰ is the number 
of prediction points. 
 
 
3.2.4  Forecasts and Economic Value 
 
The metrics presented in the previous two sections are used to quantify a forecasting system’s 
accuracy. This section considers the economic performance of different types of forecasting 
systems, focusing on the integration of ramp event forecasting systems into the operation of the 
electricity market. Considering that no forecasting system works as a standalone component, the 
development and integration of any system should take into account other components, such as 
electricity generation, reserves, electricity costs, and the like. 
 
In Grimit and Potter (2008) and Potter et al. (2009), a cost function is defined in order to 
compare the economic performance (i.e., the optimum application range) of different types of 
event forecasting systems. The comparison is made by estimating the total cost of ancillary 
services over time as a function of the ratio between the cost of pre-purchasing ancillary services 
and the cost of not protecting (the partial cost of advance purchase; PCAP), as follows: 
 
 CostሺPCAPሻ ൌ H ൅ F ൅ M

PCAP
  (3.20) 

 
The predictions of each system were cast into contingency table categories of hit or true positive 
H; a miss or false negative M; a false alarm or false positive F; and correct negatives, for ramp 
event sizes of at least 10% of installed capacity between two consecutive hours. Each of these 
forecast predictions has an associated cost. (Because the cost associated with the correct 
negatives is 0, these values do not appear in the above formula.)   
 
The goal is to find the PCAP intervals where each forecast system outperforms the others 
(i.e., where each event forecast system obtains the minimum expenditure(s) on ancillary 
services). Three forecasting systems were compared: a climatology-based forecast, the 
probabilistic rapid ramp event (RRE) forecast, and a deterministic system. Note that the hits, 
misses, and false positive counts themselves are also a function of the PCAP value for the 
probabilistic RRE forecast.  When using this procedure, the authors found four PCAP intervals, 
each of which is associated with a protection strategy, as shown in Figure 6. 
 
The figure reports two extreme cases. When the PCAP ratio is a small value, i.e. when the cost of 
purchasing ancillary services is much smaller than the cost of not protecting, then the strategy is 
always one of protecting. In contrast, if the PCAP ratio is high, then the strategy is never to 
protect against ramp events. In the middle of these two extreme cases, the minimum cost is 
achieved by using the RRE probabilistic forecast system or a deterministic forecast system. 
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Figure 6  Conceptual diagram showing the relative value of the 
RRE forecast compared with a deterministic forecast and 
climatological frequency (Figure inspired by Potter et al. 2009). 

 
 
3.3  Methodologies and Systems to Forecast Ramp Events 
 
To address the ramp event forecast problem, a set of issues needs to be considered. Of these, 
some of the most important are defining the forecast goal, the time scale, the aggregation 
methodology, and the forecasting techniques to be used. This section briefly introduces each of 
these issues and and presents relevant work in the literature that addresses the ramp event 
forecasting problem. We emphasize that ramp event forecasting is a new and evolving field, and 
that new ideas and approaches are proposed and tested at a rapid pace.  
 
 
3.3.1  Issues in Ramp Forecasting 
 
When addressing a ramp event forecasting problem, there are two major factors to be considered. 
The first is the goal of the forecast: to predict wind speed or to predict wind power output. In the 
latter, we directly obtain wind power output predictions, whereas in the former, we must use 
turbine models (power curves) to convert wind speed forecasts into wind power output 
(Negnevitsky and Johnson 2008). The other major factor is the time horizon of the predictions. It 
is well known that the reliability of forecasts decreases as the time horizon increases 
(Cutler et al. 2007b). Therefore, the stochastic nature of ramp events makes it almost impossible 
to generate reliable ramp event forecasts for horizons longer than 48 hours.  
 
Depending on the goal and the time horizon, we must carefully choose the most suitable data. 
We can use NWPs, meteorologial measurements, and/or power measurements, among others. 
Negnevitsky and Johnson (2008) argue that NWP-based models have proven to be unsuitable for 
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time horizon predictions shorter than 6 hours. Moreover, they state that for these short horizons, 
it is best to use historical measurements. We can combine different sources of data; for instance, 
we can use NWPs from different providers and individual or aggregated wind farm data. 
Zack et al. (2010) report that for very short-term predictions (i.e., mainly for ramp event 
detection), NWP provides little value. This issue results from the low frequency of updates 
(typically issued only every 6 hours) and from the low vertical and horizontal resolutions of the 
NWPs. Sørensen et al. (2008) model power fluctuations of a large, off-shore wind farm by using 
two models: one that models each individual turbine and another that models the wind farm by 
using an averaged representative turbine. By using the representative turbine, the authors obtain 
a good compromise between accuracy and simulation time. The effectivness of these aggregation 
strategies is also heavily dependent on a farm’s location. Kariniotakis et al. (2004) evaluate the 
performance of 11 forecasting systems on sites located in four different countries. The sites were 
chosen in order to cover a wide range of weather conditions and terrain complexity. The authors 
conclude that the performance of the models heavily depends on the resolution of the NWPs and 
the complexity of the terrain (e.g., orography). The higher the terrain complexity, the higher the 
resolution requirements.  
 
While there is a wide range of forecasting techniques—classification or regression, supervised or 
nonsupervised, linear or nonlinear, parametric or nonparametric—there is still no overall best 
technique for ramp forecasting. Zack et al. (2010) and Negnevitsky and Johnson (2008) observe 
that the forecasting technique should be selected according to the nature of the time series data. 
For example, for a time series that is steady or involves small random variations, a persistence 
model will be appropriate for very short-term prediction horizons. On the other hand, if the time 
series data have strong variations or high volatility, then it could be effective to use a nonlinear 
model, such as Adaptive Neuro-Fuzzy Inference System (ANFIS), even for very short-term 
predictions. Negnevitsky and Johnson (2008) also propose an online methodology that uses a 
prior performance analysis of the most interesting models. The online method identifies the 
concept drift in the time series and changes the forecasting technique accordingly.  
 
Another relevant issue is the type of predictions (either deterministic or probabilistic) produced 
by the forecasting system. Currently, most of the available forecasting systems provide 
deterministic forecasts, also known as spot or point forecasts. Juban et al. (2007) state that this 
approach removes any uncertainty concerning the predicted values. Hence, hard constraints are 
added to their decision-making applications. The authors propose a probabilistic prediction 
model, based on kernel density estimators, that provides a probability density function for each 
time horizon. Furthermore, it has been shown in Grimit and Potter (2008), Potter et al. (2009) 
and Pinson (2006) that by using probabilistic forecasting systems, higher economic benefits can 
be obtained. The economic benefits of using a special-purpose, probabilistic ramp event 
forecasting system are analyzed in Grimit and Potter (2008) and Potter et al. (2009). 
 
 
3.3.2  Ramp Event Forecasting Models 
 
In Greaves et al. (2009), researchers from Garrad Hassan (GH) present results of an investigation 
that studies methodologies to predict ramp events, including the temporal uncertainty associated 
with such events. 
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In this work, the authors define a ramp event to be a power output change that exceeds the 
nameplate capacity by more than 50% and that occurs over a period of 4 hours or less. Regarding 
the methodology used to compute forecast uncertainty, and despite the vagueness of the 
discussion, the authors combine multiple NWP inputs, statistical processing, and adaptive 
algorithms. In order to evaluate the methodologies developed, the authors define two metrics, 
forecast accuracy and ramp capture; these metrics correspond to the precision and recall metrics, 
respectively, defined in Section 3.2.1. These metrics do not consider the true negative events. 
Moreover, the authors include the phase error when identifying a ramp event. A true forecast is 
defined to be a forecast ramp with a measured ramp of the same direction within േ12 hours of 
the time of the forecast ramp. The authors stated that a range of േ12 hours is the maximum time 
difference to give sufficient data for temporal uncertainty analysis whilst maintaining a realistic 
connection between forecast and measured ramp events.  
  
To evaluate historical data of the proposed methodologies from GH services, they used data from 
individual wind farms in the United Kingdom (UK) and United States, as well as data from a 
portfolio of wind farms in Ireland. The data include GH power forecasts and data used by the GH 
forecaster to predict power output, including NWP and measured power. The proposed 
methodology was used to predict ramps in short and medium time horizons (i.e., 3- to 24-hour-
ahead predictions). As expected, in general, precision and recall take higher values for short-
time-ahead predictions. Moreover, in the portfolio of wind farms, recall takes higher values than 
those measured on individual farms, and, on the contrary, precision takes lower values on the 
portfolio. These results can be explained by the small number of large ramps that occur in a 
portfolio and by the fact that portfolio forecasts are more accurate. Furthermore, the same 
definition of a ramp event used to identify ramps in individual farms was applied to identify 
ramps in the portfolio of wind farms, which resulted in a much smoother signal. Greaves et al. 
(2009) observe that the performance of the methodology is sensitive to wind farm location and 
that ramp events occur more frequently in the wind farms located in the United States, all of 
which are located in one U.S. state.  
 
The authors also analyze the method’s sensitivity to the use of different sources of NWP data. 
The presented results show that the precision is higher when NWPs from different sources are 
combined. Moreover, the combination of NWPs from different sources always yields the best 
recall values when compared with using only a single NWP source. 
 
Zheng and Kusiak (2009) combine feature selection and five data-mining algorithms to study a 
10- to 60-minute-ahead prediction of power ramp rates. In this study, the authors use time-series 
power data obtained from a SCADA system that controls 100 turbines. The authors use the 
mean, standard deviation, maximum and the minimum wind speed of a turbine, and they also use 
the measured wind farm power and the power ramp rate of the wind farm. The power ramp rate 
is defined as the 10-min absolute difference in wind farm power (similar to definition 2.3 
presented in Section 2.2). The training examples correspond to one month’s worth of data, with a 
10-minute time step. Considering that the huge number of predictors can degrade the 
performance, a boosting tree algorithm is used to select the most interesting features. The 
selected features are used to train five data mining algorithms: Multilayer Perceptron, Support 
Vector Machines (SVM), Random Forest, Classification and Regression Trees, and Pace 
Regression. All of the algorithms were trained for predicting a power ramp rate at 10 and 
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20 minutes ahead. Within these time horizons, the SVM algorithm produced results with the 
highest accuracy. Moreover, the SVM algorithm was used to forecast 30, 40, 50, and 60 minutes 
ahead. The MAE of the SVM algorithm ranges from 243 kW/minute for the 10-minute forecast 
to 459 kW/minute for the 60-minute forecast. The quality of the results was assessed by 
computing the mean absolute error and standard deviation. An issue arising from this work is 
that the data used to train a model predictor are the same, despite the different ranges of 
prediction horizons. 
 
Bossavy et al. (2010) introduce a methodology that identifies ramps by mapping the initial wind 
power series into a signal that results from computing the average of time power differences (see 
equation 2.4). This methodology can be used to detect ramps with different resolutions and 
requires only the definition of a single parameter. The authors propose two probabilistic 
forecasting methods, grounded in this methodology, that aim to predict wind power output by 
using ramp information and to predict ramp timing. The first method that predicts wind power 
output uses information extracted from the translated space, ramp intensity, and ramp forecast 
time information. The other method that predicts ramp timing translates the signal of each of the 
members of an ensemble of wind power curves and then uses the ensemble votes to define a 
confidence interval for the ramp timing.  
 
The above methods were evaluated empirically. The first method was used to predict wind 
power 48 hours ahead in two European wind farms. In this experiment, Bossavy et al. (2010) 
map the hourly measured data from the two farms and use that data as input to a quantile 
regression forest algorithm. Comparison against a basic method that does not use ramp 
information is unable to clarify the contribution of the methodology presented. The proposed 
methodology offers better results in the higher quantiles but less accurate results in the lower 
quantiles. The second method was used to predict the time of ramp occurrence 80 hours ahead. 
This experiment uses power measurements from three wind farms located in France and 
51 meteorological forecasts of wind speed provided by the ensemble prediction system (EPS) 
model of the European Centre for Medium-Range Weather Forecasts. The performance of this 
method is compared against a climatology algorithm using the BSS. The quality of the results is 
related to the number of ensemble members predicting the interval time of ramp occurrence and 
the size of the time intervals. The larger the number of ensemble predictors and the wider the 
time interval, the more reliable the results. 
 
Zack et al. (2010) present the methodologies developed by AWS Truewind (2008) to predict 
wind ramps between 0 and 6 hours ahead. The system capabilities include: a probabilistic ramp 
rate forecasting module that can predict ramp rate probabilities for different time resolutions and 
a wide range of ramp rates; a hybrid deterministic-probabilistic ramp event forecasting module 
that has deterministic values as its output; a confidence interval for the events satisfying the ramp 
event definition; and the ability to predict the average power production for 15-minute intervals. 
For this last task, the system uses ramp event forecasts and a deterministic-probabilistic approach 
to provide a confidence band for the predictions.  
 
This system has four main components. The first is a high-resolution atmospheric analysis 
system that uses three-dimensional (3D) variational calculus analysis to create a 3D 
representation of the patterns of temperature, pressure, wind, and moisture atmospheric 
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variables. This component uses surface weather observations (on-land and off-shore), vertical 
data profiles from weather balloons (radiosondes), and radial wind estimates from Doppler 
radars, as well as satellite imagery (infrared and ultraviolet) information. The second component 
is the use of a special NWP model, originally developed to predict severe thunderstorms and 
tornados, to generate high-resolution atmospheric forecast simulations in a rapid cycle mode that 
produces a 13-hour ahead forecast every 2 hours. The third major component is a methodology 
that associates algorithms with ramp types. Using 1 year’s worth of data, the method identifies 
types of ramps and selects the algorithm having the better performance for each type of ramp. 
The fourth component is a set of regime-based statistical models that generate the deterministic 
or probabilistic forecasts by using data and information from the previous three components. The 
component learns models for significantly different weather conditions. At the forecasting time, 
the system identifies weather conditions and, according to the authors, selects the most suitable 
prediction model. The skills of this system were evaluated on an ERCOT area. The authors—by 
using (a) different metrics to assess the performance of probabilistic ramp rate forecasts, 
(b) MAE and RMSE to evaluate average power production, (c) CSI to evaluate ramp occurrence, 
and (d) RPSS to compare two forecast methodologies—proved that they could obtain better 
results (by 25%) than did the climatology reference model. Furthermore, it is reported that the 
quality of the ramp event forecasts is highly dependent on the size of the time interval considered 
to detect a ramp event. The longer the time interval, the higher the accuracy. 
 
WEPROG is a Danish company that provides real-time uncertainty weather forecasts (WEPROG 
undated). WEPROG developed a special-purpose tool that provides forecast for wind ramps. The 
tool uses data from its Multi-Scheme Ensemble Prediction System (MSEPS), a system that uses 
75 forecasts, from the application of a perturbation procedure over a single-kernel NWP model, 
to produce predictions with uncertainty, for several weather parameters. In a research project 
conducted in Alberta, Canada (Jørgensen and Mörlen 2008), MSEPS ensembles were used to 
identify extreme ramp events. In this project, the researchers define an extreme ramp event as a 
change in power of more than 80 MW over a 1-hour period and study important issues in ramp 
forecasting. Among others, the following important points were identified:  
 

1. Ensembles that are RMSE optimal are too smooth to be useful for predicting extreme 
ramp events.  

 
2. The higher the phase error allowed to identify an extreme ramp event, the higher the skill 

of the forecasting system. In this study, phase errors ranging between 0 and 4 hours were 
studied.  

 
3. The diversity in the ensemble forecast is an important measure for the uncertainty of 

amplitude and the phase of steep ramps.  
 

4. Approximately 90% of the extreme ramp events were forecasted, with the correct 
amplitude, by at least one ensemble member. Nevertheless, 20% of these events were 
detected with a timing error ranging from 1 to 3 hours.  

 
5. The spatial resolution of the NWPs is directly related to the performance of the system, 

with higher spatial resolutions resulting in better forecasting skills. In this study, metrics 
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such as accuracy, hit rate, false alarm rate, KSS, and OR were computed. More recent 
commercial versions of the MSEPS include a ramp rate prediction module. 

 
Recently, Pyle (2010) reported that Xcel Energy, a U.S. energy provider, along with Vaisala, a 
Finland-based company working on developing electronic measurement systems for 
environmental use, and the U.S.-based National Center for Atmospheric Research (NCAR) 
formed a joint collaboration to develop observation equipment that will capture high-resolution 
data and methodologies to provide advanced notification of wind ramps and decision support 
information. The high-resolution data, collected from a network of observation points, will be 
used as input to a mesoscale modeling system. These modeled data will then be used as input to 
a statistical and pattern recognition system that predicts wind ramp events. The final system, 
which was planned to be functional in 2010, is expected to predict wind ramps between 
15 minutes to 3 hours ahead and to have ramp features, such as ramp timing, magnitude, and 
type (ramp up or down), as its outputs.  
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4  CONCLUSIONS 
 
Accurate ramp event forecasting is an important and challenging topic. Ramp forecasting can 
become an important tool to help maintain the stability of the electrical grid. The research 
addressing this problem is rapidly increasing. This report focuses on recent literature concerning 
ramp event definitions, ramp event forecasting, and metrics to evaluate ramp event forecasting. 
Moreover, it identifies literature that reports on recent advances in ramp event forecasting. We 
should point out that many of the current breakthroughs and methodologies were developed in 
the context of commercial wind forecasting systems, which may explain the limited information 
available. 
 
Ramp event detection is a problem that has emerged fairly recently, as signified by the fact that it 
has no established standards, including definitions, forecasting methods, and evaluation metrics. 
Furthermore, the few existing methodologies report results that tend to be unreliable and of low 
accuracy. These observations indicate that the field is wide open to research that pushes beyond 
the current state of the art. More work is therefore needed to develop new methods for 
probabilistic ramp forecasting and to design evaluation strategies for such forecasts.  
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