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Abstract--This paper provides a comprehensive survey on the 

state-of-the-art condition monitoring and fault diagnostic 
technologies for wind turbines. The Part II of this survey focuses 
on the signals and signal processing methods used for wind 
turbine condition monitoring and fault diagnosis. 

 
Index Terms—Condition monitoring, fault diagnosis, survey, 

wind turbine (WT) 

I. INTRODUCTION 

This paper is the continuation of the Part I of the survey on 
condition monitoring and fault diagnosis (CMFD) for 
horizontal-axis wind turbines (WTs). Fig. 1 illustrates a 
typical WT CMFD system, which consists of several 
functional modules, including a sensing and data acquisition 
module, a signal processing module for signal conditioning, 
fault feature extraction and fault diagnosis, an alarm 
management module, an equipment management module, and 
a diagnostic record management module. The most important 
components of the WT CMFD system are the signals and the 
signal processing methods. Therefore, the Part II of this 
survey will focus on signals and signal processing methods for 
WT CMFD. The functions, capabilities, and limitations of the 
major signals and signal processing methods that have been 
applied or studied for WT CMFD will reviewed and compared. 

II. SIGNALS FOR WT CMFD 

The signals used for WT CMFD mainly include vibration, 
acoustic emission (AE), strain, torque, temperature, 
lubrication oil parameter, electrical, and supervisory control 
and data acquisition (SCADA) system signals. They are 
acquired using appropriate sensors installed in various WT 
components. Table I provides a comprehensive comparison of 
using these signals for WT CMFD, where Std, Temp and Com 
stand for Standardized, Temperature and commercial, 
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respectively. 

A. Vibration  

Many WT faults induce vibrations of the corresponding WT 
subsystems, which can be detected by using the signals 
acquired from vibration sensors. Vibration monitoring is the 
dominant technique used in almost all commercially available 
WT condition monitoring systems (CMSs), in which the 
vibration sensors are usually installed on the casing of the 
gearbox, generator, main shaft and bearing, and blade surface. 

The major types of vibration sensors include 
accelerometers, velocity sensors, and displacement sensors. 
Accelerometers have the widest working frequency range 
from 1Hz to 30 kHz, In contrast, velocity sensors have a 
working frequency range from 10 Hz to 1 kHz and 
displacement sensors have a working frequency range of 1-
100 Hz. Accelerometers are the most widely used vibration 
sensors in CMFD of WTs for their wide working frequency 
range. The signals acquired from accelerometers contain the 
information of accelerations of WT components caused by 
faults [1]. Displacement sensors have also been used in WT 
CMFD systems for diagnosing the faults leading to low-
frequency vibrations of WT components. Vibration 
monitoring has been used for CMFD of WT gearbox [2], [3], 
bearing [4], rotor and blade [5], generator, tower, main shaft, 
etc. The amplitude of the vibration signal can indicate the 
severity of a fault [6]. For example, the amplitude of the 1P 
frequency components in vibration signals provides a measure 
of rotor asymmetries [5]. 

Through years of applications, the vibration-based CMFD 
technologies have been mature and standardized by 
ISO10816. However, this approach requires the installation of 
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Fig. 1. A typical CMFD system for WTs. 
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vibration sensors and data acquisition devices, which increases 
the capital cost and wiring complexity of the WT system. The 
vibration sensors are usually mounted on the surface or are 
buried in the body of WT components, making them difficult 
to access during WT operation. Moreover, the sensors and 
data acquisition devices are also inevitably subject to failure. 
Sensor failure may further cause the failure of WT control, 
mechanical, and electrical subsystems. These could cause 
additional problems with system reliability and additional 
operation and maintenance (O&M) costs. In addition, 
vibration signals usually have a low signal-to-noise ratio 
(SNR) when used to diagnose an incipient fault.  

B. AE 

Materials that are subjected to stress or strain may emit 
sound waves, which is called AE [7]. The sources of AE can 
be located to detect possible defects of a structure using one or 
more AE sensors. The AE monitoring technology has been 
used for CMFD of WT blades [1], gearboxes [8], [9], and 
bearings [10]. As a blade is usually made of various materials 
and components, damages often grow over critical areas and 
the interfaces of different internal components inside the 
blade. Therefore, AE sensors were usually mounted on the 
critical areas and interfaces of the blade surface [1]. 

Since AE signals can be excited by tiny structural changes, 
they can be used to detect an incipient structure defect or 
damage and monitor its development to a failure [10]. The 
work of Bonno [7] Schulz [11] showed that the changes of the 
AE waveforms obtained from AE sensors installed on WT 
blades could be used to detect the incipient blade faults, such 
as fatigue, reduced stiffness, crack, and increased surface 
roughness. Moreover, it was effective to use AE waveform 
characteristics (e.g., amplitude, rise-time, etc.) of the detected 
AE events to predict when and where a damage would occur, 
identify the location of the damage, and monitor and predict 
how the damage would develop and result in a failure [12]. 

AE signals have high SNRs for CMFD and, therefore, can 
be used in high-noise environments. Compared to vibration 
signals, AE signals have much higher frequencies and, 
therefore, are more effective for the diagnosis of incipient 
defects or faults before damages or failures occur. A 
shortcoming of this technique is that it usually requires the 
installation of a large number of AE sensors, which are 
difficult to access during WT operation. Moreover, each AE 
sensor needs a dedicated data acquisition system for signal 
sensing, processing and transfer, which are more complicated 
than other sensing technologies. For example, high sampling 
rates are needed to process AE signals for CMFD, which 
makes the signal processing complex and expensive. These 
requirements could significantly increase the capital cost and 
wiring complexity of the WT system.  

C. Strain 

Fiber optic strain sensors have been used in several 
commercially available CMSs for condition monitoring of WT 
blades [13]. The strain sensors are usually mounted on the 
surface or embedded in the layers of a blade. The measured 
strain signals can be used to detect structural defects or 

damages in the blade [1], [14]-[17], blade icing, mass 
unbalance, or lighting strikes [13]. 

There are several advantages of using strain measurements 
for WT CMFD. First, strain measurements are sensitive to 
small structural changes and, therefore, are effective for 
incipient fault detection of WT blades [16]. Second, compared 
to vibration-, AE-, and electrical signals-based monitoring 
techniques, the strain-based CMSs can be operated at lower 
sampling rates as they are looking to observe changes in the 
time domain [13]. Third, the measurements from fiber optic 
strain sensors do not degrade with time or long transmitting 
distance [15], [16]. Fourth, fiber optic strain sensors are 
passive sensors, which do not require external power sources. 
However, there are still challenges in using fiber optic strain 
sensors for CMFD of WT blades. First, strain sensors should 
always be attached to the materials being monitored (i.e., 
intrusive); otherwise, the measurements are not accurate [17]. 
However, the deformation of the materials may lead to the 
separation of the sensors and the materials. Moreover, the 
deformation level of the materials should not exceed the 
physical limitation of the sensors; otherwise, the sensors will 
not provide accurate measurements or even be damaged [1]. 
Furthermore, similar to the vibration and AE monitoring, the 
implementation of the strain monitoring requires additional 
capital costs, increases WT system complexity, and is subject 
to problems of sensor reliability. 

D. Torque and Bending Moment 

Generally, torque tends to be used when there is an axle or 
pivot to be turned around; while bending moment tends to be 
used in nonrotational situations, such as stress on a beam. 
Torque measurements can be obtained using rotary torque 
sensors, while bending moment measurements can be obtained 
using reaction torque sensors. Torque sensors are usually 
installed on the mechanical components of a WT, such as 
rotor, gearbox, generator, etc. Torque can be also calculated 
from the electrical outputs of a generator. Thus, it is possible 
to perform torque signal-based WT CMFD without using 
torque transducers, which is an advantage of this method. 

The defects in WT mechanical components usually have 
signatures in torque signals and, therefore, can be diagnosed 
by using torque signals. Different forms of aerodynamic 
asymmetries can be distinguished by analyzing the torque 
experienced by the tower of a WT [18]. For example, the 
surface roughness of one blade of a WT operating in skew 
wind can lead to changes at the 1P and 2P frequencies of the 
tower’s torque spectra. Therefore, the P-amplitudes can be 
used as an indicator of rotor defects. Torque can also be used 
to detect faults in drivetrains. Based on Wilkinson’s 
experiments [19], variations in wind speed excited an array of 
harmonics in the signal acquired from a torque sensor installed 
on the drivetrain, which could be used to detect generator 
faults in a WT. Moreover, Caselitz found that rotor imbalance 
and aerodynamic asymmetries could lead to a significant 
increase of the 2P amplitude in the frequency spectrum of the 
edgewise bending moment of the tower of a WT [18]. 

The limitations and shortcomings of torque and bending 
moment signals-based CMFD techniques are similar to those 
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of the vibration signal-based methods, e.g., requiring 
additional space to mount sensors (intruding to the systems 
being monitored), needing additional capital and O&M costs, 
increasing WT system complexity, problems of sensor 
reliability. Compared to vibration sensors which measure the 
displacement, velocity, or acceleration of a component, torque 
sensors measure the strain within a component for CMFD. 
Moreover, when a fault occurs, a relevant torque signal is a 
fault information modulated signal with the dominant 
components related to load. In this case, using torque signals 
for fault diagnosis will require more complicated signal 
processing techniques than using vibration signals. Thus, 
torque sensors are not used as commonly as vibration sensors 
in WTs for the purpose of fault diagnosis. 

E. Temperature 

The temperatures of all components or subsystems in a WT 
should not exceed certain values during normal operating 
conditions. An abnormal temperature can be caused by a 
degradation of gearing, generator winding short circuits, rotor 
over speed, etc. Therefore, temperature measurements can 
provide useful information on the WT health condition. 

Temperature-based techniques have mainly been applied for 
fault diagnosis of gearboxes, generators, bearings, and power 
converters. Zaher and McArthur [20] proposed a FDS for 
CMFD of gearboxes and generators through temperature 
anomaly detection using the temperature data of gearbox oil, 
gearbox bearings, and generator windings with the aid of 
electrical power and wind data. In [21], a WT generator 
thermal model was constructed using a nonlinear state 
estimation technique, from which generator incipient failures 
could be detected when the residuals between model-
estimated and measured generator temperatures become 
significant. In addition to vibration signals, Lekou [22] used 
temperature signals of a gearbox to help with condition 
monitoring of the gearbox and bearings. Power converters are 
usually monitored by using coolant temperature, case and 
junction temperatures of semiconductor modules, etc.  

As a mature technique, the temperature-based CMFD is 
considered cost effective and reliable. Particularly, the IEEE 
Standards 1310-2012 [23] and 1718-2012 [24] and the ISO 
Standard 17359-2006 [25] have standardized the use of 
temperature for CMFD. However, a temperature rise in a WT 
can be caused by many factors. It may be difficult to identify 
the source and root cause of the temperature variation. For 
example, if a thermal sensor is mounted on a WT component, 
a fault in a nearby component may also cause a temperature 
rise in that component. Therefore, a temperature rise can only 
indicate a possible fault within the WT but may not indicate 
which component has the fault. In addition, the temperature-
based methods require the installation of embedded thermal 
sensors, which are intrusive to the system being monitored and 
are quite fragile in a harsh environment. 

F. Lubrication Oil Parameters 

Lubrication oil condition monitoring has been commonly 
used for WT rotating subsystems and components, such as 
gearbox, generator, and bearing. The current practice in the 

wind industry is to monitor oil parameters, such as viscosity, 
water content, level, particle counting and identification, 
temperature, and pressure [26]. By analyzing these 
parameters, the oil contamination and degradation process can 
be monitored to reveal the health condition of the WT 
components containing the oil and detect defects of the 
components at an early stage. 

The available lubrication oil condition monitoring 
techniques for WTs can be classified into offline and online 
techniques [26]. The offline oil condition monitoring, which is 
currently the dominant approach in the wind industry, is based 
on offline oil sample analysis using the parameters measured 
by instruments, such as viscometer and optical emission 
spectrometer. Since the oil is usually sampled periodically, 
e.g., every 6 months [27], the faults that occurred between two 
sampling operations cannot be detected timely. Moreover, it is 
difficult to access the WT components to take oil samples 
when the WT is in operation. 

The online oil condition monitoring overcame the 
drawbacks of the offline monitoring by using oil sensors, such 
as viscometer, level sensor, particle counter, and thermometer, 
to monitor the oil condition in real time [27], [28]. However, 
the use of additional sensors increased the costs of the WTs. In 
addition, not all of the oil parameters can be monitored in real 
time using the oil sensors [26]. Moreover, it is not easy to 
correctly interpret the real-time measurements for online oil 
condition monitoring, as the operational condition of the WT 
has various impacts on the oil conditions.  

G. Electrical Signals 

Voltage and current are electrical signals acquired from the 
terminals of the generator and motors in a WT. Electrical 
signal-based methods have been widely applied for diagnosis 
of generator electrical faults [2]. For example, the amplitudes 
of certain harmonics in electrical signals can be used to detect 
electrical faults at an early stage. Popa [29] used stator and 
rotor currents and stator voltages to monitor the induction 
generator in a WT. Three failure modes, i.e., stator phase 
unbalance, rotor phase unbalance, and stator turn-to-turn 
faults, were detected by using stator and rotor currents. It was 
also found that the rotor line current spectrum offered more 
information of the rotor phase unbalance than the stator line 
current spectrum. To verify whether a fault has occurred in a 
doubly-fed induction generator (DFIG) WT, Bennouna et al. 
[30] proposed a stator and rotor current-based data recondition 
technique using the equations of a model representing the 
DFIG WT. The detection of rotor electrical imbalance of an 
induction generator using power signals (calculated using 
voltage and current signals) was studied in [31]. The detection 
of stator open-circuit faults of DFIGs using current and power 
spectra was studied in [32]. 

A mechanical fault or structural defect in a WT component 
usually induces vibration of the component. Due to 
electromechanical coupling between the generator and the 
faulty component, the fault-induced vibration will modulate 
generator electrical signals. Consequently, the electrical 
signals will contain fault-related information and, therefore, 
are effective for diagnosis of the mechanical fault or structural 
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defect of the WT [33]-[38]. For example, the mechanical 
faults in WT generators, such as rotor mass imbalance of a 
synchronous generator [31], [39], could be detected by 
monitoring the changes in the harmonics of electrical signals. 
It was proven that generator electrical power signals carried 
the information of surface condition of WT blades [5]. The P-
amplitudes of generator electrical signals were indicators of 
rotor imbalance caused by the increased surface roughness of 
one blade or yaw misalignment [18], [40]. Moreover, both a 
reduction in the stiffness of one blade and an equal reduction 
in the stiffness of all blades can be detected through 
monitoring the changes of the power spectral density of the 
WT electrical power [41]. 

Another typical mechanical fault in a WT is bearing failure, 
whose feature can be extracted from the WT generator current 
signals for fault diagnosis. Analyzing the amplitude and phase 
spectra of generator current signals can reveal the 
development of bearing failures from an early stage [37], [38], 
[42]. Electrical signals can also be used for CMFD of WT 
gearboxes [33]-[36]. CMFD of power electronics mainly used 
electrical signals [43]. 

Electrical signal-based WT CMFD has gained more and 
more attention in the last decade owing to its distinctive 
advantages. First, electrical signals are already used in existing 
WT control and protection systems, no additional sensors or 
data acquisition devices are needed. Therefore, the electrical 
signal-based WT CMFD requires almost no additional capital 
expenditure and is easy to implement. Moreover, electrical 
signals are reliable and easily accessible without intruding the 
WTs. Therefore, compared to CMFD based on other signals, 
such as vibration and AE, the electrical signal-based CMFD 
has significant advantages in terms of cost, hardware 
complexity, implementation, and reliability and will have 
great potential for the wind industry. 

The downsides of electrical signals include the following. 
First, they have low SNRs for WT CMFD. Moreover, the 

fault-related components in an electrical signal are modulated 
with its fundamental and harmonic components, which are 
proportional to the nonstationary WT shaft rotating speeds. 
Therefore, the signatures of WT faults in electrical signals are 
usually nonstationary and identification of the fault signatures 
for CMFD will require complex signal processing algorithms.  

I. SCADA Signals 

SCADA systems have been installed in many WTs 
produced by major manufacturers, such as Vestas, GE, and 
Siemens, to monitor the operational performance of the WTs. 
A typical SCADA system keeps a record of data with an 
interval of a few seconds to 10 minutes. The SCADA data are 
typically statistical features (e.g., mean, maximum and 
minimum values, and standard deviation) of the signals (e.g., 
temperature, current, voltage, power, rotor speed, wind speed, 
etc.) collected from various sensors in the WT during each 
interval [44], [45]. SCADA signals provide rich information 
on WT performance. With appropriate algorithms, SCADA 
signals can be used effectively for CMFD, prognostics, and 
remaining useful life (RUL) prediction of WTs [45]. Since no 
additional sensors or data acquisition devices are needed [46], 
it is cost-effective to use SCADA signals for WT CMFD. 

However, since SCADA signals are recorded with a long 
interval, which was initially not for the purpose of CMFD 
[44], most dynamical features of WT faults which are useful 
for CMFD are lost. Therefore, the detailed information (e.g., 
location and mode) of most WT faults cannot be diagnosed by 
using SCADA signals via frequency or time-frequency 
analysis. Currently, SCADA signals have been mainly used by 
model-based methods and prediction methods for WT CMFD 
and prognosis [44], [47]-[51]. 

J. Nondestructive Testing (NDT) Techniques 

The NDT techniques, such as ultrasonic scanning, infrared 
thermography, X-ray inspection, and tap test, are useful for 
detecting hidden damages in composite materials. Thus, they 

TABLE I 
COMPARISON OF DIFFERENT SIGNALS FOR WT CMFD. 

Signal 
Monitored 
components 

Intrusive 

Complexity Capability 
SNR/ 
Sampling 
frequency

Cost Std

Used 
in 
Com 
CMS

Install 
Signal 
process

Online/
Offline 

Incipient 
fault 
detection

Fault 
detection

Fault 
location 

Fault 
identify 

Vibration 
Bearing, blade, gearbox, 
generator, shaft, tower 

Yes High Medium Online Yes Yes Yes Yes 
High/ 
Medium 

High Yes Yes 

AE Bearing, blade, gearbox Yes High High Online Yes Yes Yes Yes High/High High Yes Yes 

Strain Blade Yes High Medium Online Yes Yes Yes Yes High/low High No Yes 

Torque 
Blade, gearbox, generator, 
shaft 

Yes High Medium Online Yes Yes Yes Yes 
High/ 
Medium 

High No No 

Temp 
Gearbox, generator, bearing, 
power converter 

Yes Medium Low Online Possible Yes Possible No High/Low Medium Yes Yes 

Oil 
parameters 

Bearing, gearbox, generator Yes Medium Low Both Possible Yes Possible Possible High/Low
Medium 
or high 

No Yes 

Electrical 
signals 

Bearing, blade, gearbox, 
generator, motor, power 
converter, sensor, shaft, tower 

No Low 
High/ 
medium 

Online Possible Yes Yes Yes 
Low/ 
Medium 

Low No Yes 

SCADA 
signals 

Blade pitch, control system, 
generator, hydraulic system, 
power converter, sensor, 
overall system 

No − Medium Online Possible Yes Possible Possible Low/Low Low No No 

NDTs Blade Yes Low Low Both Possible Yes Yes Yes High/− High No No 
H.  
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have been mainly used for fault diagnosis of WT blades [15]. 
Ultrasonic scanning is the most frequently used NDT 

technique in industry [14]. It can be carried out to investigate 
whether damages (e.g., delamination) are present in the inner 
structures of a WT blade [1], [17]. Infrared thermography is 
the measurement of heat distribution of a surface. It can be 
used to examine the condition of a blade by monitoring the 
temperature difference in different areas caused by material 
changes in the laminate and adhesive joints which are critical 
points in blade structures [52]. X-rays can penetrate a large 
number of materials including composite materials [1], [16], 
[17]. The shadows of X-ray images can reveal structural 
variations of the materials and, therefore, can be used to detect 
faults in the structures of WT components. A radiographic 
system based on the X-ray technique was demonstrated to be 
effective for fault diagnosis of WT blades [1]. The tap test is 
based on the fact that sonic waves will emit when a blade is 
tapped. It can be used to diagnose a disbond between the skin 
laminate and the main spar of a blade [53]. 

The NDT techniques have the capability of detecting 
incipient faults and monitoring the propagation of the faults. 
However, their implementation usually requires expensive 
instruments. Moreover, most NDTs are intrusive and offline 
techniques which require interrupting the operation of the WT 
and need specialists to operate the instruments to take 
measurements. 

III. SIGNAL PROCESSING METHODS FOR WT CMFD 

The signal processing methods used for WT CMFD mainly 
include classical time-domain analysis methods (e.g., 
statistical analysis, Hilbert transform, and envelope analysis), 
classical frequency analysis methods (e.g., fast Fourier 
transform (FFT)), classical time-frequency analysis methods 
(e.g., short-term Fourier transform (STFT) and wavelet 
transform), model-based methods, probability-based methods 
(e.g., Bayesian methods), artificial intelligence (AI) methods, 
etc. Fig. 2 illustrates the logic flow on how these methods are 
used to perform different functions (i.e., signal conditioning, 
feature extraction, fault diagnosis, and fault prognosis) for WT 
CMFD. Signal conditioning is usually applied to raw signals 
to facilitate the extraction of fault-related features in the 
signals. Then the faults can be detected via threshold 
comparison or probability analysis, e.g., analyzing the 
probability of failure (PoF) using various features extracted. In 
the threshold comparison, if the values of the extracted fault 
features exceed their thresholds, it indicates that some fault(s) 
occurs. The fault mode and location can then be identified by 
a classification method, such as artificial neural networks 
(ANNs), support vector machines (SVMs), etc. Table II 
compares different methods. 

A. Synchronous Sampling 

Since most WTs usually operate with varying rotating 
speeds, the signals (e.g., vibration and electrical signals) 
collected from the WTs are nonstationary. Therefore, the 
information of a WT fault hidden in a nonstationary signal 
acquired from the WT cannot be revealed by using the classic 

frequency analysis for the signal. To solve this problem, 
several synchronous sampling algorithms were developed in 
[33]-[38], [40], [54], [55] to process the nonstationary 
electrical signals collected from WT generator terminals in a 
way such that the varying characteristic frequencies of WT 
faults in the frequency spectra of the signals were converted to 
constant values. Then, the classic FFT could be applied to the 
processed signals to obtain their frequency spectra for WT 
CMFD. The synchronous sampling-based frequency analysis 
methods have higher frequency-domain resolutions than the 
time-frequency analysis methods, such as STFT and wavelet 
transform, for processing nonstationary signals and are 
computational efficient. Therefore, they are promising for 
signal conditioning in online CMFD of variable-speed WTs. 

B. Hilbert Transform 

The Hilbert transform is a classical method to compute the 
instantaneous amplitude (ݐ)ܥ and phase ߶(ݐ) of a signal (ݐ)ݔ 
by (1) and (2), respectively: (ݐ)ܥ = ඥ(ݐ)ݔଶ + (ݐ)߶ ଶ (1)((ݐ)ݔ)ܪ = −arctan  (2) ((ݐ)ݔ)ܪ(ݐ)ݔ

where ܪ(∙) represent the Hilbert transform of the signal: ((ݐ)ݔ)ܪ = න ߬(߬)ݔ − ݐ ݀߬∞

ି∞  (3) 

If a fault in a WT component induces a vibration of the 
component, the vibration will modulate the signals (e.g., 
vibration, electrical or torque signals) acquired from the 
sensors installed on the faulty component or other components 
of the WT. Although the modulated signals contain fault-
related information, it is difficult to extract fault signatures 
from the signals directly for fault diagnosis due to the 
modulation. To solve the problem, demodulation is usually 
performed for the signals to facilitate the fault signature 
extraction. The Hilbert transform has been primarily used for 
the signal demodulation in the fault diagnosis of important 
WT mechanical components, such as bearings and gearboxes 

 
 

Fig. 2. Signal processing methods for WT CMFD and prognosis. 
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[33]-[35], [55]. For example, (1) is amplitude demodulation of 
the signal. 

The Hilbert transform is also usually combined with other 
methods, such as empirical mode decomposition (EMD) and 
Fourier transform, to generate spectra in the frequency or 
time-frequency domain for WT fault diagnosis. For example, 
in [56], the EMD was firstly applied to decompose a vibration 
signal into components in different frequency ranges. The 
Hilbert spectra were then generated for the obtained signal 
components in different frequency ranges to reveal the 
characteristic frequencies of a bearing pedestal looseness fault 
in a WT. 

C. Envelope Analysis 

The envelope of a signal is a smooth function outlining the 
extremes of the signal, such as (ݐ)ܥ in (1), which is also called 
the amplitude modulating component of the signal. In addition 
to the Hilbert transform, the envelope of a signal can be 
obtained by other amplitude demodulation methods, such as a 
band-pass filter. 

The envelope of a signal usually contains the signatures of 
WT faults explicitly. For example, the envelopes of the 
vibration signals collected from a WT contain valuable 
information for most bearing-related fault detection [57]. 
From the envelope of a signal, fault signatures can be 
extracted directly using appropriate feature extraction 
methods. For example, the characteristic frequencies of 
bearing faults can be revealed from the frequency spectrum of 
the envelope of a vibration signal for bearing fault diagnosis. 
This method is valid for detecting not only inner and outer 
race bearing faults but also fretting corrosion and assembly 
damage of bearings. It was reported that the envelopes of 
vibration signals can reveal bearing faults in their early stages 
of development before detectable by other methods [58]. A 
wavelet-envelope method has also been developed for bearing 
outer race fault diagnosis of a gearbox, where vibration signals 

were interfered by gear meshing frequencies and had low 
SNRs. The envelope analysis is a simple and efficient method 
and has been used in many commercial WT CMSs. The 
envelope of a signal is a time-domain signal and usually needs 
to be further processed by other signal processing methods, 
such as FFT, for WT CMFD. 

D.  Statistical Analysis 

In the statistical analysis methods [4], [5], [59]-[63], 
appropriate statistical features, such as mean value, root-
mean-square (RMS) value, variance, crest factor, kurtosis, 
skewness, etc., of time-domain signals acquired from a 
healthy WT were first recorded as the base values for various 
operating conditions. Then, the same statistical features of the 
signals were monitored online during the WT operation. If the 
deviations of some monitored features from their base values 
exceeded predetermined thresholds, it would indicate that a 
fault occurred in the WT. For example, in [5], the mean output 
active power of a WT in the healthy condition as well as the 
upper and lower alarm limits of the WT output active power 
as functions of mean wind speed were established according 
to the requirements of the CMS. A fault alarm will be 
triggered when more than a certain number of the mean output 
active power samples exceed the alarm limits during the WT 
operation. The advantage of using statistical mean values is 
that random influences of incoherent wind fields are damped 
in the calculated mean wind speed and power signals. RMS 
values have been proven a better choice than mean values for 
WT CMFD [4] and are especially useful when the signal is 
alternating, e.g., a sinusoidal signal. Other statistical features, 
such as crest factor, kurtosis, and skewness, represent 
statistical variances of a signal and have also been used for 
WT CMFD [59]-[63]. 

The statistical analysis methods are mature techniques and 
easy to implement. They have been widely used in 
commercial WT CMSs. However, these methods usually can 

TABLE II 
COMPARISON OF SIGNAL PROCESSING METHODS FOR WT CMFD AND PROGNOSIS. 

Signal processing 
method 

Domain Function 
Resolution Complexity/ 

computational 
cost 

Handling 
nonstationary 
signal 

Signal 
sampling rate 

Used in 
Com 
CMS Time domain 

Frequency 
domain 

Synchronous sampling Time Signal conditioning High − Low/medium Yes High/medium No 

Hilbert transform Time Signal conditioning High − Medium Yes High/medium  Yes 

Envelope analysis Time Feature extraction High − Low/medium Possible High/medium Yes 

Statistical analysis Time/frequency Feature extraction Rely on input Rely on input Low Possible Any Yes 

FFT Frequency Feature extraction − High Medium No High/medium Yes 

STFT Time-frequency Feature extraction Medium Medium High Yes High/medium No 

Wavelet transform Time-frequency Signal conditioning Medium Medium Low/medium Yes High/medium Yes 

Model-based methods Time/frequency Feature extraction Rely on input Rely on input Medium/high Possible Medium/low Yes 

ANN Time/frequency 
Feature extraction, 
diagnosis, prognosis 

Rely on input Rely on input Medium/high Possible Medium/low No 

SVM Time/frequency 
Feature extraction, 
diagnosis, prognosis 

Rely on input Rely on input Medium/high Possible Medium/low No 

Expert system Time/frequency Diagnosis Rely on input Rely on input Medium Possible Medium/low No 

Fuzzy logic Time/frequency Diagnosis Rely on input Rely on input Medium Possible Medium/low No 

Bayesian methods Time/frequency Prognosis Rely on input Rely on input High Possible Medium/low No 
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only indicate the occurrence of a fault in a WT or a WT 
subsystem, but can rarely reveal the detailed information of 
the fault, such as fault location or mode. This is because many 
faults in the WT will cause similar changes in the same 
statistical features. Moreover, the statistical methods are 
sensitive to noise and, therefore, are not effective in high-
noise environments. Furthermore, the application of statistical 
methods for WT CMFD may require large data sets. 

E. FFT 

Fourier analysis is probably the most frequently used 
frequency analysis techniques. In real-world applications, the 
FFT is usually applied in a digital system to obtain the 
frequency spectrum of a signal. The variations of certain 
harmonic components in the frequency spectrum of a signal 
acquired from a WT can be related to a specific fault and, 
therefore, can be used as the fault signature for fault diagnosis 
of the WT [7], [22], [29], [32], [41]. For example, in [7], the 
changes of the frequency spectrum of an AE signal in a 
specific frequency range were used as a fiduciary point for 
diagnosis of blade failures. It was found that the harmonic 
contents in the frequency spectra of the current and power 
signals of a WT generator were directly related to winding 
unbalance of the generator [32]. The FFT analysis showed that 
there was a correlation between the recorded AE levels and 
health conditions of WT gearboxes [22]. 

The classic FFT is capable of frequency analysis for 
stationary signals but cannot indicate how the frequency 
content of a nonstationary signal changes over time [38]. 
Therefore, the information of a WT fault hidden in a 
nonstationary signal acquired from the WT cannot be revealed 
by the FFT spectrum of the signal. Several techniques have 
been developed to overcome this challenge [5], [42]. Caselitz 
and Giebhardt [5] proposed an order spectrum analysis 
method based on the samples recorded at equidistant rotational 
angles of the WT rotor. The frequency components in the 
resultant order spectrum of the recorded vibration signal have 
constant frequencies and, therefore, are usable for fault 
diagnosis of WTs operating in variable-speed conditions. In 
[42], the nonstationary power signal was first processed using 
a continuous wavelet transform (CWT); the resulting wavelet 
coefficients were then analyzed by using the FFT. The spectra 
of the wavelet coefficients in specific frequency ranges 
contain the features closely related to certain faults. This 
method has been used successfully to detect generator 
misalignments and bearing failures in WTs. In [33]-[38], [40], 
[54], [55], synchronous resampling were first performed to 
process the nonstationary electrical signals collected from WT 
generator terminals. The classic FFT were then applied to the 
synchronously resampled signals to generate their frequency 
spectra, from which the fault features could be extracted by 
the impulse detection method [55] for effective WT CMFD. 

F. STFT 

The STFT provides a means for analyzing the time-varying 
frequency response of a nonstationary signal. The STFT of a 
signal offers a three-dimensional representation (i.e., time, 
frequency, and amplitude) of the frequency response of the 

signal [19]. This method has been successfully applied to 
detect a variety of faults in variable-speed WTs, such as rotor 
unbalance, open-circuit and short-circuit faults in generators 
[19], [32], gear tooth defects in gearboxes [64], [65], and 
structure damage in blades [66]. 

However, since the STFT is a window-base method, both 
the time and frequency resolutions are limited. In fact, high 
time resolution and high frequency resolution are 
complementary in the STFT and cannot be achieved 
simultaneously. Therefore, this method cannot be applied to 
the frequency analysis of nonstationary signals which requires 
high frequency resolutions. 

G. Wavelet Transform 

The basic principle of the wavelet transform is 
hierarchically decomposing a signal into a set of frequency 
channels having the same bandwidth on a logarithmic scale 
[3]. In this way, the wavelet transform is capably of grasping 
both the time and frequency information of a signal [42], [67], 
[68] and resolving signal denoising problems effectively [6]. 
Therefore, wavelet transform is a useful technique for 
analyzing a nonstationary signal to extract the features in the 
signal that vary in time [69]. Wavelet transform has been 
widely used in CMFD of WTs. For example, it has been 
applied to AE signals to detect bearing [69] and blade faults 
[67], to vibration signals to detect mechanical faults in 
gearboxes [2], [3], [6], and to electrical signals for diagnosing 
generator electrical and mechanical faults [2], [31], [39], [42]. 

Two forms of wavelet transform have been used for WT 
CMFD: CWT and discrete wavelet transform (DWT). In [2], 
the features charactering electrical faults in a WT generator 
were correctly identified from current and power signals using 
a CWT, even though the electrical signals are harmonic-rich 
due to the variable-speed operation and stochastic 
aerodynamic load of the WT. The CWT was also proven to be 
a promising and effective technique for diagnosing drivetrain 
bearing faults in WTs [37], [70]. Unlike the CWT, the DWT 
uses a discrete scale factor and a discrete time shift, which 
yields a faster computation than the CWT. The DWT has been 
applied to vibration signals to detect gear faults in WTs [71] 
and to generator stator/rotor currents to detect unbalance stator 
winding fault and load anomaly of WTs [72], [73]. Another 
application of the DWT is for noise cancellation. The noise in 
low SNR signals is rich and difficult to be removed using 
conventional filters with fixed cut-off frequencies [2]. The use 
of the DWT can reduce the noise in nonstationary signals and 
to facilitate the use of the signals for WT CMFD. However, 
wavelet transform suffers from the same problems of the 
STFT, such as limited time and frequency resolutions. 

H. Model-Based Methods 

In the model-based CMFD, accurate mathematical models 
were constructed to simulate the dynamic behaviors of a WT 
and its critical subsystems and components [30], [74]-[76] or 
extract the trend of a signal acquired from the WT [21] using 
physical principles or data-driven approaches. For example, in 
[77], [78], WT models were built based on the stochastic 
recordings of the structural responses of the WTs in the 



0278-0046 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TIE.2015.2422394, IEEE Transactions on Industrial Electronics

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS 

healthy conditions described by vibration, AE, and other 
signals. Once an accurate model was built for a healthy WT, 
possible failures in the WT could be diagnosed by analyzing 
the residual between the actual WT output and the model 
estimated output for the same input [1], as shown in Fig. 3, 
where the input and output of the WT are signals acquired 
from the WT. By predicting the trend of the residual signal 
using an appropriate trend analysis method, the development 
of the fault and the RUL of the WT component having the 
fault could be predicted. The trend analysis method has been 
used in some commercial WT CMSs. 

Compared to the aforementioned signal processing 
methods for WT CMFD, the model-based methods do not 
need high-resolution signals (e.g., signals with high sampling 
rates). For example, the low-resolution, low-sampling-rate 
SCADA signals of a WT can be used effectively by model-
based methods for WT CMFD [44]-[48]. This removes the 
need of installing additional sensors and data acquisition 
hardware to obtain high-resolution signals, such as vibration 
and AE signals. In addition, the complex and costly 
computations in the aforementioned methods to extract fault 
features from signals are not needed in the model-based 
methods. Moreover, in many cases a relatively small damage 
in a WT component can cause nonnegligible changes in the 
model output or parameters. Therefore, the model-based 
methods are often effective for diagnosis of faults in an early 
stage and monitoring or even predicting the development of 
the faults. However, the effectiveness of model-based methods 
critically depends on the accuracy of the models, which is 
usually difficult to obtain in real-world applications. 
Moreover, the model-based methods usually can only indicate 
the occurrence of a fault in a WT or a WT subsystem, but have 
a limited capability in revealing the detailed information of the 
fault, such as fault location and mode. 

I. AI Methods 

AI techniques, including ANNs, SVMs, expert systems, and 
fuzzy logic systems, have been applied for fault diagnosis of 
WTs. ANNs have been used for fault diagnosis of different 
WT components, such as gearboxes [3], [6], [79], bearings 
[22], generators [77], and power electronics [43], [80], 
primarily for two functions: behavior prediction and 
classification. In the behavior prediction, an ANN learns the 
dynamics of a WT or a WT subsystem from the patterns of 
input and output collected from a dataset. The trained ANN is 
then used to predict the behavior of the WT or its subsystem 
from new input data. By comparing the ANN-predicated 
behavior and the measured actual behavior of the WT [77], 
possible faults can be detected from the changes in the WT 
behaviors. In this case, the function of the ANN is similar to 
that of the model in Fig. 3. In the classification, an ANN is 
trained to recognize the patterns (e.g., mode, location, and 
severity) of different WT faults from the input signals 
containing the information of the faults, which can be raw 
signals [77], [80], [81], conditioned signals [6], [82], or 
features extracted from raw and conditioned signals [3], [83]. 
The trained ANN is then able to diagnose the faults (i.e., 
identify fault modes, locations, and severities) according to the 

new input features collected during the WT operation, as 
illustrated in Fig. 4. 

The ANN-based methods are data-driven techniques which 
require little or even no knowledge of the dynamics of the 
WTs being monitored. Another advantage of the ANN-based 
methods is that they are robust to signal noise, making them 
useful in noisy environments. However, training ANNs can be 
time consuming and requires a large amount of data that cover 
all possible conditions of the WT, which may be difficult to 
obtain in practice. In addition, since ANNs are a heuristic 
technique, it is often difficult to prove the convergence and 
reliability of the ANN-based methods. 

SVMs have been be used for fault diagnosis of WTs and 
their components, such as rotor [84], gearbox [36], [85], [86], 
bearing [85], generator [85], and sensors [76]. Similar to 
ANNs, SVMs have two main functions in WT fault diagnosis: 
behavior prediction [84] and fault classification [85]. SVMs 
have better generalization performance than ANNs. Therefore, 
training SVMs requires fewer data samples than training 
ANNs and the trained SVMs can have higher accuracy and 
reliability in fault diagnosis of WTs [87]. However, SVMs are 
also a data-driven heuristic technique and, therefore, have 
similar shortcomings of ANNs. 

The expert systems are rule-based techniques and have been 
used for fault diagnosis of WTs, such as gearbox [78], [88]. 
Based on the operational history of a WT, an expert system 
constructs a mapping that correlates the measurements to the 
corresponding health conditions of the WT. The expert system 
constructed can then diagnose faults by reasoning with new 
measurements. In addition to having the same shortcomings of 
other heuristic methods, a main shortcoming of an expert 
system is that its size will increase exponentially with the 
number of the fault modes in a WT, making the expert system 
computationally expensive. 

Fuzzy logic systems have been used for fault diagnosis of 
WT generator [89] and pitch system [90], [91]. A fuzzy logic 
system is designed to perform certain rules to deal with 
reasoning based on fuzzy sets of linguistic variables. Fuzzified 
features of faults are fed into the fuzzy logic system designed, 

 
 

Fig. 3. Model-based CMFD by analyzing the residual signal. 

 

 
 

Fig. 4. Illustration of an ANN- or SVM-based WT fault diagnostic method.
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which diagnoses the faults based on the predesigned rules. 
Obviously, designing the rules requires the full knowledge of 
the failure mechanisms of the WT being monitored, which is 
usually unavailable in practice. If the rules are not robust, it 
can cause false diagnostic results. Moreover, similar to expert 
systems, the size of a fuzzy logic system will increase 
exponentially with the number of the fault modes in the WT, 
making it computationally expensive. 

J. Bayesian Methods 

Bayesian methods are probability-based techniques suitable 
for solving real-time state prediction problems. A Bayesian 
prediction is achieved with two operations recursively: 
propagation and update, as illustrated in Fig. 5. In the 
propagation operation, the prior probability density function 
(PDF) of the state is obtained through the Chapman 
Kolmogorov equation: 

1: 1 1 1 1: 1 1( | ) ( | ) ( | )k k k k k k kp x z p x x p x z dx− − − − −=               (4) 

where k is the time index, z is the measurement, p(xk | z1:k−1) is 
the prior conditional PDF of the state xk at time k given that 
the measurements in the previous k−1 time steps are known, 
p(xk | xk−1) is the probability of the system state transition, 
which can be modeled as a Markov process of order one, 
p(xk−1 | z1:k−1) is the posterior state PDF at time k−1. When a 
new measurement becomes available, the update operation is 
carried out, in which the posterior state PDF is calculated by 

1: 1: 1
1: 1
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( | )
k k
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k k
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p z z −
−

=                   (5) 

where 

1: 1 1: 1( | ) ( | ) ( | )k k k k k k kp z z p z x p x z dx− −=                 (6) 

and the PDF p(zk | xk) is defined upon the following function hk 
that models the nonlinear relationship between the state and 
the noisy measurement. 

( , )k k k kz h x v=                                     (7) 

where vk is the measurement noise. In the fault diagnosis and 
prognosis, (7) is commonly in the following form: 

k k kz x v= +                                     (8) 

Based on the concept of sequential importance sampling 
and the Bayesian theorem, a recursive Bayesian algorithm 
called particle filtering was proposed. It is suitable for the 
system observed with non-Gaussian noise [92]. This feature 
makes the particle filtering a promising technique for CMFD 
and RUL prediction of WTs. The Bayesian method or particle 
filtering technique has been used for blade fault diagnosis 
[93], [94], bearing fault diagnosis and RUL prediction [95], 
condition monitoring and RUL prediction of lubrication oil 
[27], [28], and reliability evaluation [96] of WTs. 

The accuracy of Bayesian methods highly depends on the 
number of prior tests and the size of data samples. This limits 

their capability in real-world applications due to the lack of 
prior data samples. Compared to the traditional Bayesian 
methods, the particle filtering technique avoids the problem of 
massive data storage and recalculation, but has a high 
computational complexity since it is a recursive algorithm.  

IV. SUMMARY AND DISCUSSION 

This paper has surveyed the signals and signal processing 
methods used for WT CMFD. The functions, capabilities, and 
limitations of these signals and signal processing techniques 
for WT CMFD have been discussed and compared. Table III 
summarizes the survey, where Syn. stands for Synchronous. 

WT CMFD has received more and more attention in the 
past decade. Most major WT manufacturers and many CMS 
original equipment manufacturers (OEMs) have developed 
commercial WT CMSs, such as the ADAPT Wind of GE 
Company, the TCM Turbine Condition Monitoring System of 
Siemens, and the WindCon System of SKF [13]. Therefore, 
most modern WTs are equipped with some integrated CMSs 
interfaced with the operators via SCADA systems. The 
majority of the commercially available CMSs mainly use 
vibration signals measured from WT rotor blades and key 
drivetrain components, such as gearbox, main bearing, and 
generator. Several CMSs solely use oil debris monitoring. The 
vibration signals are usually processed with the envelope 
analysis, FFT frequency analysis, and time-domain analysis 
methods for WT CMFD. Other methods, such as wavelet 
analysis and Hilbert transform, are also used some 
commercially available CMSs. Furthermore, all of the 
commercially available CMSs have either very limited or no 
fault prognosis capability. In fact, with appropriate 
modification or improvement, many CMFD and prognostic 
techniques used in other industries [97], [98] can be adopted 
in the wind industry. In addition, the use of no- or low-
additional-cost signals, such as electrical signals and SCADA 
signals, for WT CMFD and prognosis has attracted more and 
more attention and has great potential to be adopted by the 
wind industry. Furthermore, a fault in a WT may have 
signatures in multiple signals of the same or different types 
available in the WT and may have different signatures in a 
signal processed by different signal processing methods. 
Therefore, it will be beneficial to use different signals and 
different signal processing methods jointly to improve the 
fault diagnostic and prognostic accuracy and reliability and 
reduce the false alarm rate. However, significant effort is still 
needed to develop these technologies to achieve cost-effective, 
reliable CMFD and prognosis for WTs [20] particularly for 
the high-risk components, to improve WT reliability.  
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