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§ Introduction 

In 1929, 0. Zariski published a paper entitled "On the Problem of 

Existence of Algebraic Functions of Two Variables Possessing a Given 

Branch Curve" [130] where the following question was considered: 

Does an algebraic function z of x and y exist, possessing a preas

signed curve f as branch curve? 

As Zariski pointed out in the Introduction of [130], this question was 

first considered by Enriques and the problem is reduced to finding the 

fundamental group of the complement of the given curve (the word com

plement is understood and often omitted for short). Zariski considered 

some explicit cases and proved important results. Here we detail some 

of the most relevant: 

(Z1) If two curves lie in a connected family of equisingular curves, 

then they have isomorphic fundamental groups. 

(Z2) If a continuous family {CthE[O,l] is equisingular fort E (0, 1] 

and Co is reduced, then there is a natural epimorphism 1r1 (JP>2 \ 

Co, Po) -» 1r1(lP'2 \ Ct,Pt), where the base point Pt (t E [0, 1]) 

depends on t continuously. 

(Z3) The fundamental group of an irreducible curve of order n, pos

sessing ordinary double points only, is cyclic of order n ([130, 

Theorem 7]), see Remark 1. 
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(1) 

(Z4) Consider the projection from the general cubic surface in JP>3 

onto JP>2, centered at a general point outside the surface. Its 

branch locus is a sextic c6 with six cusps whose fundamental 

group is isomorphic to Z/2Z * Z/3Z. 
(Z5) He noted that the six cusps of any sextic described in (Z4) sat

isfy the extra condition of lying on a conic -without decreasing 

the dimension of their family. Moreover, if C6 is a sextic with 
six cusps and its fundamental group has a representation onto 

the symmetric group of three letters, then c6 is the branch 
curve of a cubic surface and its six cusps lie on a conic. In 

particular if a sextic C6 with six cusps not on a conic exists, 

then 1r1(JP>2 \ C6,Po) ~ 1r1(JP>2 \ C6,p~). 
(Z6) If Q is a three-cuspidal quartic, then 11"1 (JP>2\Q, p0 ) is isomorphic 

to the binary 3-dihedral group, which is a non-abelian finite 

group of order 12 presented by 

(a, b I aba = bab, a2b2 = 1). 

Remark 1. Zariski's proof of (Z3) depended on the following claim 
of Severi: The family of irreducible curves of degree n possessing a given 

number of ordinary double points is irreducible [104]. Severi's proof was 

not correct, and the first rigorous proof of his claim was given in 1986 by 

J. Harris [54]. In the meantime (Z3) was known as the Zariski conjecture 

until the 70's, when it was proved by Deligne and Fulton in [40] and [48]. 

Zariski proved the commutativity of the fundamental group for cer

tain smooth curves and then he used (Z1) for general smooth curves. 

He was also able to prove the commutativity for nodal arrangements of 

lines. He found degenerations of nodal curves into nodal arrangements 
of lines, thus proving the commutativity of the fundamental group for 

certain nodal curves. A combination of (Z1) with Severi's claim allowed 

him to complete a proof of (Z3). 
In [131], Zariski proved another result regarding (Z5): in modern 

language, the Alexander polynomial of C6 equals t 2 - t + 1 and the 

Alexander polynomial of C6 is 1 (provided C6 exists); the key point for 

both claims is the position of the cusps. The story (almost) ends in [132] 

where Zariski shows the existence of curves C6 using deformation argu
ments that allow him to prove that their fundamental group is abelian; 

explicit examples were found much later [2, 90]. He also claims that 

there are only two irreducible families of sextics with six cusps. It is not 
hard to prove that the family of sextics with six cusps on a conic is irre

ducible, and an analogue for the other family is announced by Degtyarev 

in [39, Theorem 5.3.2]. 
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Another important result of [130] is (Z6); for a long time the three

cuspidal quartic (the only quartic with a non-abelian fundamental group) 
was the only example of a curve whose complement has a non-abelian 

finite fundamental group. In the early nineties, several such examples 

have been found by A. Degtyarev [38], M. Oka [91] and I. Shimada [106]. 
Fundamental groups of curves up to degree five are well known 

(see [36, 38]), but for now little is known about their structure in the 

general case. In this sense, questions like the one raised by Zariski ([134, 
Chapter VIII, § 1]) on the residual finiteness of such groups are still open. 

These results and open questions motivated many mathematicians 

to study the topology of the complements of plane curves. One of the 

most surprising phenomena in this field was the one found by Zariski and 

stated in (Z5), where two irreducible curves with the same singularities 
have non-isomorphic fundamental groups. This leads us to the definition 
of Zariski pairs which are, roughly speaking, two curves that have the 

same local topology but do not have the same embedded topology. Let 

us give a more precise definition of a Zariski pair. 

Definition 2 ([2]). A pair (CI. C2) of reduced plane curves in JID2 is 
called a Zariski pair if it satisfies the following conditions: 

(1) There exist tubular neighborhoods T(Ci) (i = 1, 2) and a home
omorphism h: T(Ci)-+ T(C2) such that h(Ci) = C2. 

(2) There exists no homeomorphism f : JID2 -+ JID2 with f(Ci) = C2. 

Analogously (C1 , ... , Ck) is a Zariski k-plet if (Ci, Cj) is a Zariski pair for 

any i =f. j. 

Remark 3. The first condition in Definition 2 is replaced by the 

one about the combinatorial data on Ci (i = 1, 2). More precisely, the 

combinatorial type of a curve C is given by a 7-tuple 

(Irr(C), deg, Sing( C), Etop(C), O"top, {C(P)}PESing(C)• {,Bp }PESing(C)), 

where: 

• Irr( C) is the set of irreducible components of C and deg : 

Irr( C) -+ Z assigns to each irreducible component its degree. 

• Sing( C) is the set of singular points of C, Etop(C) is the set 
of topological types of Sing( C), and O"top : Sing( C) -+ Etop(C) 
assigns to each singular point its topological type. 

• C(P) is the set of local branches of C at P E Sing( C), (a local 
branch can be seen as an arrow in the dual graph of the minimal 

resolution of C at P, see [42, Chapter II.8] for details) and 

.BP : C(P) -+ Irr(C) assigns to each local branch the global 
irreducible component containing it. 
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We say that two curves C1 and C2 have the same combinatorial 

data (or simply the same combinatorics) if their combinatorial data 

are equivalent, that is, if Etop(CI) = Etop(Cz), and there exist bijec

tions tpsing : Sing(CI) ---> Sing(Cz), rpp : C1(P) ---> Cz(rpsing(P)) (restric

tion of a bijection of dual graphs) for each P E Sing(C1), and rprrr : 

Irr(CI)---> Irr(Cz) such that deg2 orprrr = deg1, O"topz orpsing = O"top 1, and 

f3z,<psing(P) 0 rp P = lpirr 0 f3I,P· 

In the irreducible case, two curves have the same local topology 

if they have the same degree and the same topological types for local 

singularities. On the other extreme, for line arrangements, combinatorial 

type is just the set of incidence relations. 

The fact that two curves have the same combinatorial data if and 

only if they satisfy Definition 2(1) is a consequence of Waldhausen graph 

manifold theory [125, 126]. The dual graph of the minimal resolution of 

the singularities of C is a plumbing graph. Waldhausen theory was de

veloped in terms of plumbing graphs by Neumann [89]. His main result 

states that minimal normalized graphs are determined by the manifold. 

It is not hard to see that the topological type of (lP'2 , C) determines the 

combinatorial data. Since the graph coming from the minimal reso

lution may be not minimal, it is possible to find curves C1, C2 whose 

complements lP'2 \ ci, i = 1, 2 are homeomorphic but such that they do 

not have the same combinatorics using, for example, Cremona trans

formations. Jiang and Yau [60] proved that the homeomorphism type 

of the complement of a line arrangement determines its combinatorics. 

The connection between homeomorphism type of complements to curves 

and combinatorics was studied by Di Pasquale in [100], but not much is 

known about it. 

Also, curves with the same combinatorics form a quasi-projective 

variety in a certain projective space lP' d of dimension d(di 3), where d is 

the total degree of the curves. We will refer to such a variety as the 

combinatorial stratum of curves. A rigid isotopy between curves is a 

smooth path in a combinatorial stratum. 

A connected family of equisingular curves is contained in the con

nected component of the combinatorial stratum of curves determined by 

any curve of that family. Therefore, the topology of the pair (lP'2 , C) is 

an invariant of such a component. In particular 1r1 (lP'2 \ C, Po) is also an 

invariant and hence (Z5) provides the first example of a Zariski pair. In 

the early nineties, some new examples were found ([2, 37]). Since then, 

the variety of such examples has been very broad and subtle. 

In what follows we will give an insight on the different nature of each 

of these phenomena, the techniques used, and some open questions on 

the general study. The study of Zariski pairs may consist of two parts: 
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(I) To locate curves Ct. C2 in different irreducible components of a 

combinatorial stratum, that is, two non rigidly-isotopic curves. 

(II) To find an effective invariant P of the topology of the embed

ding, so that, if P(Ct) =/:- P(C2) then (JP>2,C1 ) -;ft (JP>2,C2), that 

is, there is no homeomorphism J : JP>2 ~ JP>2 with f(C1) = C2. 

As for (I), different strategies have been used, for instance: 

(Il) Certain geometrical properties such as position of singularities 

(e.g. sextics whose six cusps belong to a conic), or in more 

generality the existence of non-zero global sections for an ideal 

sheaf I on JP>2 twisted by a certain CJ(d). The expected di

mension of such vector space of global sections is 0 (like the 

six cusps on a sextic, which in principle are not supposed to 

belong to a conic). This method is often used in combination 

with birational transformations in order to lower the degrees 

of the curves. In that case, the geometrical properties have 

to be translated into new properties on the transformation 

([12, 91]). Also geometrical properties of flex points play an 

important role in finding irreducible components of the combi

natorial strata ([95, 96]). 

(I2) Arithmetical properties of the components. Such is the typical 

case with line arrangements, when built up by pasting together 

smaller arrangements whose combinatorial strata are discon

nected ([102, 11, 10]). Also, in the special case of sextics, many 

of these arithmetical properties come from the existence of a 

double covering ramified along the curve. Classification of K3-
surfaces with a given Picard group and some computer work 

finish the task in the case of simple singularities ([127]). Hi

rational transformations of the covering and appropriate blow

downs can be used to produce equations ([6]). 

(I3) Direct computation of strata. This can be used either in the 

negative sense (proving the irreducibility of a stratum) which 

tells us where there are no Zariski pairs ([61, 109]), or actually 

finding equations of the strata. This method often requires big 

Milnor numbers, so that the dimension of the strata is small 

and the problem becomes computationally feasible ([9, 98]). 

As for (II), several methods have been developed: 

(Ill) Zariski-van Kampen Theorem. This is the classical method to 

find the fundamental group of the complement to a given curve 

from its braid monodromy ([130, 59, 28]). This technique will 

be treated in detail in §1. Though a very rich invariant, the fun

damental group of a curve contains the topological information 
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of the embedding in· an intricate manner. The undecidability 

of the isomorphism problem in group theory justifies the need 

to construct new invariants that are effectively computable, 

simple to compare, and fine enough to keep the essential data. 

(II2) Alexander invariants such as the Alexander module, Alexander 

polynomials, and characteristic varieties. This type of invari

ant shows the connection between algebraic curves and knot 

theory, since many of these invariants have been adopted from 

knot theory. Conversely, much of the original interest and tech

niques of knot theory had the study of algebraic curves at their 

root. This technique will be developed in §2. 

(II3) Braid monodromy equivalence, also referred to as braid mon

odromy factorization. It is a much stronger invariant of the 

topology of the embedding than the monodromy group. Braid 

monodromy factorization was only recently proved to be an 

invariant of the (not-necessarily-rigid) isotopy class ([70] for 

cuspidal curves and [25] for any plane curve). This technique 

has been proved to be specially useful to study conjugated 

curves [9, 10], branch curves of surfaces of general type and the 

Chisini conjecture ([85, 70, 69]), as well as symplectic isotopies 

of curves and the realization problem ([99, 62, 64]). Definition 

and more details will be given in § 1. 

(II4) Branched Galois coverings. Based on geometric versions of 

the inverse Galois problem for certain elementary non-abelian 

groups. This technique will be treated in detail in §3. 

(II5) Nikulin theory of integral lattices. Recently developed by Degt

yarev [39] and Shimada [107, 108]. Let C be a sextic curve 

with at worst simple singularities (see [20] for simple singular

ities). Let X be the double covering of IP'2 ramified along C, 

and X its minimal resolution. Degtyarev obtains a quadru

ple Q := (L, h, a, w) where L = H2(X), which is isomorphic 

to the integral lattice of the singularities of C, h C L is the 

pull-back of the hyperplane section class [IP'1] E H 2 (1P'2), a C L 
is the set of classes of exceptional divisors appearing in the 

resolution X ~ X, and w C L ® lR denotes the oriented 2-

subspace spanned by the real and imaginary parts of the class 

of a holomorphic 2-form on X. He proves that Qc1 ~ Qc2 if 

and only if cl and c2 are rigidly isotopy and the pairs (IP'2, cl), 
(IP'2, C2) are regularly diffeomorphic, that is, there is a diffeo

morphism between (IP'2, Cl) and (IP'2, C2) that can be extended 

to a homeomorphism between the K3-surfaces X1 and X2 . Shi

mada proves that the isomorphism class of L is an invariant 
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of the r -equivalence of the pair (IP'2 , C). This implies that L 

is an invariant of the homeomorphism class of (IP'2 , C) (for a 

discussion on r -equivalence see below). 

In light of the previous list of strategies, one can also describe more 

precisely different examples of Zariski pairs according to which invariants 

are equal and which are different for each curve. 

• Alexander polynomial. It is associated with a group and 

a homomorphism onto Z and with cyclic coverings ramified 

along each component with the same ramification index. A 

Zariski pair that can be distinguished using this invariant is a 

classical Zariski pair, otherwise it will be called an Alexander

equivalent Zariski pair. Examples of classical Zariski pairs are 

abundant in the literature ([131, 37, 2, 95] among many others). 

Alexander-equivalent Zariski pairs can be found in ([5, 92, 93]). 

• Characteristic varieties and Oka polynomials. The first 

ones (introduced by A. Lib gober in [75] for curves) are asso

ciated with a group and its abelianization morphism whereas 

the second ones (introduced by Oka in [94]) are associated with 

a group and any homomorphism onto Z. They are both asso

ciated with Alexander modules and abelian coverings ramified 

(or not) along each component with any ramification index and 

basically provide the same information. The existence of cer

tain irreducible components of characteristic varieties can be 

described in terms of algebraic conditions of the singular locus. 

Analogously we have Libgober-Oka-equivalent Zariski pairs. 

• Non-abelian coverings and twisted Alexander polyno

mials. The first one is given by the existence or not of certain 

non-abelian coverings ramified along components. Algebraic 

conditions can be given for the existence of such coverings. 

Twisted Alexander polynomials are associated with a group 

and a representation. Zariski pairs whose algebraic fundamen

tal groups are isomorphic are called algebraically-equivalent 

Zariski pairs. The main source of examples of algebraically

equivalent Zariski pairs is found among conjugated curves ([9, 

10, 107, 108]) in a number field; we will call them arithmetic 

Zariski pairs. There are still open questions whether or not 

some pairs of conjugate, non rigidly-isotopic curves are Zariski 

pairs ([44]). Also, a famous example of a Zariski pair of line 

arrangements was produced by G. Rybnikov [102]. A proof 

was published in [11] using arguments of homological rigidity 
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(see Definition 2.30), and a final argument of Alexander mod

ules. Such Zariski pair is distinguished by the fundamental 

group of the complement, and it is an Alexander-equivalent, 

but it is not known whether it is a Libgober-Oka-equivalent or 

algebraically-equivalent Zariski pair. 

• Fundamental group of the complement n1(1P'2 \ C,p0 ). A 

presentation of it can be obtained via the Zariski-van Kampen 

Theorem from the action of generic (and sometimes even non

generic) braid monodromy groups of the curve C. Sometimes 

groups can be compared directly ([45, 92, 93]), but oftentimes 

this is too hard of a task. Zariski pairs whose fundamental 

groups are isomorphic will be called 1r1 -equivalent Zariski pairs. 

Note that fundamental groups of algebraic-equivalent Zariski 

pairs have the same profinite completion. Finitely presented 

groups of infinite order with the same profinite completion are 

hard to distinguish. In fact, it is not known whether or not any 

of the algebraic-equivalent Zariski pairs is also a 1r1-equivalent 

Zariski pair. Examples of 1r1 -equivalent Zariski pairs can be 

obtained from the list of arithmetic Zariski pairs given by Shi

mada [108]. For example, sextics with singularities A18 + A1, 

A16 + A3, and Al6 + A2 + A1 have abelian fundamental groups 

isomorphic to 7L.j67L. (see [6, Remark 5.9]). 

• The homotopy type of the complement IP'2 \C. It can 

be described as the homotopy type of the CW-complex asso

ciated with a presentation of n1 (IP'2 \ C, Po) obtained from a 

very particular braid monodromy of C that will be referred to 

as the Puiseux-braid monodromy of C (see [73]). Analogously 

we have homotopy type-equivalent Zariski pairs. Known ex

amples of homotopy type-equivalent Zariski pairs are related 

to Cremona transformations and conjugated curves. In fact, 

it would be very interesting to see whether or not any of the 

non-regular-diffeomorphic examples mentioned above are ho

motopy type-equivalent. 

• The topology of the complement IP'2 \ C. Any example 

of this sort will be called complement-equivalent Zariski pairs. 

The main information lost between the embedding and the 

complement is the peripheral information, that is the informa

tion on the location of meridians of the irreducible components. 

A complement-equivalent Zariski pair can be obtained from the 

problem proposed by Eyral-Oka in [44]. Also, in Example 1.39 

we show in detail a complement-equivalent Zariski pair. 
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• r -equivalence. This equivalence relation, introduced by Shi

mada [107], has to do with the peripheral information men

tioned above. Two curves C1 and C2 with the same combina

torics and homeomorphic complements are called r -equivalent, 

if the homeomorphism induces an isomorphism of fundamen

tal groups preserving meridians. Examples of this sort will be 

called r -equivalent Zariski pairs. 

• The topology of (JP>2, C). Since it is determined by any generic 

braid monodromy factorization of C (as mentioned above), the 

ultimate tool to check for a Zariski pair is its generic braid 

monodromy. These techniques have been used in ([9, 10]). 

The main purpose of this article is to review these different methods 

and to explain how they are used in the study of Zariski pairs. 
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§1. Fundamental group and braid monodromy 

As indicated in the Introduction, the main goal of Zariski's founda

tional paper [130] is to study the fundamental group of the complement 

of a projective plane curve. A method for its computation is outlined 

in [130]. In [59], E.R. van Kampen gave a more rigorous presentation 

of this method which is now known as the Zariski-van Kampen method. 

Roughly speaking, Zariski showed that such a group is generated by 

meridians of a generic line and then described some relations by mov

ing this generic line around non-generic lines in a pencil; van Kam

pen stated and proved his well-known theorem on fundamental groups 

(now known as the Seifert-vanKampen Theorem) and used it to prove 

that Zariski's relations define a system of relations for the fundamental 
group. D. CMniot gave a modern approach to this method in [28]. In 

[29], 0. Chisini realized that this method contains a finer invariant of the 
curve if one interprets the motions of the generic line in terms of a repre

sentation of a free group in a braid group. Much later, B. Moishezon [84] 
called this invariant braid monodromy and used it to study projective 

complex surfaces via ramification curves of projections. 

1.1. Preliminaries 

Before explaining the Zariski-van Kampen method and the braid 

monodromy invariant, let us introduce some settings and notations. 

Let G be a group. Let a, b E G. For simplicity, we introduce the 
following notations: 

[a,b] 

ab = 

We denote the free group with n generators X1, •.• , Xn by IFn and 

the braid group on n strings by En given by the following presentation: 

(3) 

En naturally acts on IF n on the right as follows: 

if i = j 
ifi=j+1 

ifi=tfj+l. 
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for i = 1, ... , n- 1, and j = 1, ... , n. 

We call the above right action of lan on IF n the Hurwitz action .. In 

particular, the actions of the generators ai (i = 1, ... , n-1) on xi, ... , Xn 

are called Hurwitz moves. Clearly <I> induces an antihomomorphism 

lan ---t Aut(IFn), a Elan ~ <I>( •, a). This homomorphism is injective and 
its image, identified with lan, is characterized by the following result: 

Proposition 1.1 ([22, Theorem 1.9.]). Let T E Aut(IFn)· Then 

T E lan if and only if 

T(Xn ·.·.·xi) = Xn · ... ·XI 

and there exists a permutation a of n-letters such that 

r(xi) = YiXu(i)Yii, Yi E 1Fn, i = 1, ... , n. 

We will now present a geometric interpretation of lan and its action 

1Fn. For details in the following, we refer to [7] and [22]. 
Let us fix a subset, Y = { h, ... , tn}, of C consisting of n distinct 

elements. Let b. C C be a sufficiently big closed disk, i.e., {z E C llzl ~ 
R} R :» 0, such that Y is contained in its interior. Choose a point* on 

ab. = {z E b. llzl = R}. 

Definition 1.2. We define some special elements of the fundamen

tal group 7i"I(C \ Y,*), called meridians. Meridians are obtained as 
follows: 

• Take a small disk S centered at t E Y containing no other 
elements of Y and choose a point* E as. 

• Consider a path a inC\ Y joining* and *• and denote by rJ;,,s 

the closed path based at* that runs counterclockwise along as. 
• The homotopy class of the loop a-I·'fl;,,s·a is called a meridian 

of t in 7i"I ( C \ Y, *). If the base point is understood, then we 
will simply speak of a meridian of t in C \ Y. 

• It is easily checked that the set of meridians of t E Y coincides 

with a conjugacy class in 7i"I(C \ Y,*) completely determined 
byt. 

• It is also well known that suitable collections of n meridians in 

C \ Y (one for each point of Y) define bases of 7i"I ( C \ Y, *). 
• This construction of meridians also applies to the fundamental 

group of the complement of a divisor in a surface, see Figure 1. 

Definition 1.3. Let b. and * be as above. A geometric basis of 

7i"I ( C \ Y, *) is an ordered basis ('"y1, ... , 'Yn) of 7i"I ( C \ Y, *) consisting of 
meridians such that 'Yn · ... · 'YI is homotopic to the loop ')'*, the closed 

path based at* that runs counterclockwise along ab.. 
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Fig. 1. A meridian 

Definition 1.4. A pseudo-geometric basis of 1r1 ( C \ Y, *) is an or

dered basis ( ')'1, ... , 'Yn) of meridians such that 'Yn · ... · 1'1 is homotopic 

to the inverse of a meridian of { oo} in C \ D.. The product 'Yn · ... · 1'1 
is called the pseudo- Coxeter element of the basis. 

Note that a geometric basis r := {1'~, ... , 'Yn} is a free basis of 

1r1(C \ Y,*) ~ IFn. Given any element u E IB\n, the Hurwitz action of u 

on r produces another geometric basis. By Proposition 1.1, one has the 

following: 

Proposition 1.5 (Artin). The Hurwitz action of the group IB\n on 

the set of all geometric bases of 1r1 ( C \ Y, *) is free and transitive. 

Definition 1.6. A Y -special homeomorphism is an orientation

preserving homeomorphism f : C -+ C such that 

(i) Y is fixed as a set, not necessarily pointwise, and 

(ii) f is the identity on C \ D.. 

A Y-special isotopy is an isotopy H: C x [0, 1]-+ C such that H(•,t) 

is a Y-special homeomorphism for all t E [0, 1]. We denote the set of 

classes of Y -special homeomorphisms up to Y -special isotopy by By. 

Let !I and h be Y -special homeomorphisms. We denote their 

classes in By by [/i] (i = 1, 2), respectively. The product [!I][h] := 

[!I o h] endows By with a group structure that acts on 1r1(C \Y, *)on 
the left. 

Let Mn := the set of ordered n-distinct points in en. The symmetric 
group of n letters acts on Mn freely via permutation of coordinates. Let 

Sn(M) be the quotient space of Mn with respect to this action. One can 
regard Sn(M) as the set of unordered n-distinct points; andY E Sn(M). 

Consider By := 1r1(Sn(M), Y), and note that any 'Y E By is the ho-
motopy class, relative to {0, 1}, of a set of n-paths {'Y1(t), ... ,')'n(t)}, 

'Yi: [0,1]-+ C such that Y = {'Y1(0), ... ,')'n(O)} = {'Y1(1), ... ,')'n(1)}, 

'Y1(t), ... ,')'n(t) are all distinct fortE [0, 1]. An element of By is called 
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a braid based at Y. It is known that By S:! l!lln (see [22] for details). For 

technical purposes, it is oftentimes convenient to consider open braids 

starting at Y1 and ending at Y2, where Y 1, Y2 E Sn(M) as the homo

topy class, relative to {0,1}, as before where Y1 = {"n(O), ... ,/'n(O)}, 

and Y 2 = {1'1(1), ... ,/'n(1)}. The obvious composition operations en

dow the class of open braids with a groupoid structure (see [7] for de

tails). 
Our purpose next is to describe natural identifications between By 

and By. 

Lemma 1. 7. By and By are naturally anti-isomorphic. 

Proof. Note that any orientation-preserving homeomorphism of C 

is isotopic to the identity (for a proof, see [53, Lemma 5.6.]). Also, let 
[h] E By be an arbitrary element of By and let H : C x [0, 1] ---> 

C be an isotopy such that H(•,O) = h and H(•, 1) = ide. Then, 
H(t1, t), ... , H(tn, t), t E [0, 1], are paths such that: 

(i) {H(t1. 0), ... , H(tn, 0)} = {H(h, 1), ... , H(tn, 1)} = Y, and 
(ii) {H(t1 , t), ... , H(tn, t)} (t E [0, 1]) is a set of n distinct points for 

all t E [0, 1], i.e., /'h := {H(tl> t), ... , H(tn, t)} gives an element of By. 

This correspondence [h] f---> /'h gives the announced anti-isomorphism 
(for more details, see [53, Theorem 5.4.]). Q.E.D. 

Lemma 1.7 assures the existence of a right action of By on 7r1 (C \ 

Y, *), which coincides with the Hurwitz action for a proper choice of the 

base point and the geometric basis (see for instance [7, Example 1.8]). 

In particular, any homomorphism from a group G to l!lln induces a right 

action of G on 11"1(C \ Y,*). 

1.2. Zariski-van Kampen method and braid monodromy 

Let C c IP'2 be a reduced projective plane curve of degree d. Choose 

a line L rh C and a point PEL\ C, and consider the projection centered 

at P. Let us take homogeneous coordinates [X : Y : Z] in IP'2 such 

that L : Z = 0 and P = [0 : 1 : 0]. In what follows we will focus 

on C2 := IP'2 \ L with affine coordinates x := f, y := ~' and whose 

projection may be written as II: C2 ---> C, II(x, y) := x. The affine curve 
caff := C n C2 = C \ L can be defined by a reduced monic polynomial 

f(x, y) in the variable y such that degy f = deg f =d. 

Let Vf := {x E C I discy f(x) = 0} and let L be the union of the 
lines Lt : X = t, t E vf. The main point of the Zariski-van Kampen 

method is the following: 
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Lemma 1.8. The restriction 1f := rrfiC2\(CaffuL) : <C2 \ (caff u L) ____, 

<C \ D f is a locally trivial fibration whose fiber is isomorphic to <C with d 

punctures. 

This follows from Ehresmann's Fibration Theorem (see [41, p.15]), 

since the vertical lines having less than d distinct intersection points 

with caff have been removed. 

Since 1r is a locally trivial fibration whose fiber is diffeomorphic to 

<C with d punctures, the polynomial f induces an algebraic mapping 

J: <C \ Dt ____, Sn(M) given by xo f---t {y E <C I f(xo, y) = 0} E Sn(M). 

In order to define braid monodromy we need to consider * E <C \ D f a 

regular value on the boundary of a disk b..t containing Dt in its interior 

and denote by Y* the set of roots of the polynomial f(*,Y) = 0. 

Definition 1.9. 

{i) The homomorphism \7 *: n 1 (<C\DJ, *)____,By:= nl(Sn(M), Y*) 

induced by f is called a braid monodromy. 

{ii) Fix an isomorphism Ly• : BY* ~ lBd (Note that the isomor

phism depends on the choice of Y*, i.e. *) and define \7 *,Y• := 

Ly• o \7 *. Given any geometric basis /'1, ... , f'r of 1r1 ( <C \ D f, *), 

where r := #(DJ), the r-tuple (V'*,Y•bl), ... ,V'*,Y*br)) E 
(JBdt is called a factorization of the braid monodromy of (C, L, P) 

or simply a braid monodromy factorization of (C, L, P). 

{iii) The image by \7 *,Y• of a pseudo-Coxeter element (Definition 1.4) 

will be referred to as a pseudo-Coxeter braid. 

Note that a braid monodromy factorization depends on the choice 

of the geometric basis of n 1 (<C \ DJ, *) and Ly. By Proposition 1.5, any 

change of geometric basis is given by a Hurwitz move. We will expound 

upon this in section §1.3. 

Now we are in the position to state the results obtained by Zariski

van Kampen in [130, 59] with the purpose of describing a presentation 

of the fundamental group of an affine curve. In order to do so consider 

b..J as above and b..y a closed disc such that caff n rr- 1(b..J) C /j.f X b..y, 

and caff n (ab..J) X (ab..y) = 0. Let r := {1'1, ... 'l'r} be a geometric 

basis of nl(<C \ Df, *) and choose a base point (*, *) (* E ab..y)· Since 

n- 1 (D..1) n (D..1 x b..y) ____, D..1 has a section, there exists a lifting at for 

each l't· Note that 1r1 (<C \ Df, *) ~ n 1 (b..J \ Dt, *) and at is a meridian 

of Lt. Under these conditions, and using the long exact sequence of 

homotopy, one has the following: 

Proposition 1.10. Let (p1, ... ,pr) E (JBdt be a braid monodromy 

factorization of (C, L, P) and let {g1 , ... , gd} be a geometric basis of 
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1r1(<C \ Y*, *). Then 1r1(<C2 \ (Caff U L), (*,*))has the following presen
tation: 

(4) (gi, ... ,gd,ai, ... ,ar I g1j' =g't, i = 1, ... ,r, j = 1, ... ,d). 

As a corollary to Proposition 1.10, one obtains the celebrated Zariski

van Kampen Theorem: 

Corollary 1.11 (Zariski-van Kampen Theorem). Under the 

previous hypotheses, 11"1 (<C2 \ caff) has the following presentation: 

(5) (gb···,gdlgji=gj, i=1, ... ,r, j=1, ... ,d). 

A presentation of 1r1 (IP'2 \ C) is given by 

(6) (gb···,gd 1Yd· ... ·g1=1, gj;=g3, i=1, ... ,r, j=1, ... ,d). 

The main tool of the proof of Corollary 1.11 is in [47, Lemma 4.18]. 

Lemma 1.12 ([47]). Let A C X be a divisor in a smooth quasi

projective variety X, and let B C X be an irreducible divisor not con

tained in A. Then, the inclusion induces an epimorphism 1r1 (X \ (AU 
B)) ...... 1r1(X \A) whose kernel is generated by the meridians of B. 

Proof of Corollary 1.11. It is an iterated application of Lemma 1.12. 

For ( 5), we use that the loops a 1, ... , ar in ( 4) are meridians of the lines 

Lt, t E ~- For (6), note that (gd · ... · gl)-1 is a meridian of the pro-

jection point P in L* = L* U { P} C IP'2 , i.e. a meridian of the line at 
infinity L in IP'2 • Q.E.D. 

Since we are mostly interested in the isomorphism class of the fun

damental group, and since the spaces studied are connected, unless nec

essary for technical reasons, the base point of the fundamental group of 

a curve complement will be omitted. 

Remark 1.13. We can decrease the number of relations in (4), (5) 
and (6). 

(a) 

(b) 

Since the Hurwitz action fixes the product gd · ... · g1, it is 
enough to consider j = 1, ... , d - 1. 

Since Lis transversal to Cit is well known that Pr·· . . ·p1 = ~~, 

that is the full twist, where~~= (ad-1 · ... · a1)d, which is a 

generator of the center of lffid. Thus its Hurwitz action coincides 

with the conjugation by 9d·· . . ·g1. Therefore, in (5) it is enough 

to consider i = 1, ... , r -1, j = 1, ... , d -1, and add relations 

to make gd · ... · g1 into a central element. Analogously, in (6) 

it is enough to consider i = 1, ... , r- 1, j = 1, ... , d- 1, and 

gd ..... 91 = 1. 
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(7) 

(c) There is another possible reduction in the number of relations 

which was already indicated in [130]. Let us explain it in mod

ern terms. 

One can identify rr1(Sd(M), d) (where d := { -1, ... , -d}) 
and IBid as follows: each generator ai ( i = 1, ... , d-1) represents 

a positive half-twist interchanging -i and -(i + 1). Note that 

any open braid T starting at Y* and ending at d defines an 

isomorphism from rr1 (Sd(M), Y*) onto IBid by conjugation. 

Any meridian 'Y oft E ~can be decomposed as a- 1 ·ru,,s·a 
as in Definition 1.2. On the other hand, any open braid T 1 

starting at the set of roots off(*, y) and ending at d, can be 

decomposed as 'V('Y) = p-1 · f3 · p, where p, f3 E IBid satisfying: 

• pis obtained by the juxtaposition of T 1- 1 , j*(a) and T; 

• f3 is obtained by the juxtaposition of T1- 1, j* ( "l*,S) and T1 • 

The braid f3 reflects the local structure of the singularities of 

the projection TI with respect to C at t. Let us use the following 

notation: 

• Lt n C := {Pt, ... ,ps}, 

• (Lt · C)Pi = fi + 1. 
Note that s + E:=l fi =d. Moreover, for generic projections 
one can assume that fi > 0 <=? i = 1, also if p 1 is smooth then 

£1 = 1, and finally if p 1 is singular then £1 + 1 is the multiplicity 

of Cat Pl· 

The braid f3 is obtained as the unlinked union of s braids 

f3i E IBiti+l, i = 1, ... , s. Note that each f3i is the local algebraic 

braid obtained via the Puiseux expansion of the branches of C 

at Pi with respect to the variable x. Also note that each f3i is 
a positive braid (i.e., represented as a word in positive powers 

of ai's). A braid f3 obtained as an unlinked union of local 

algebraic braids is called a Puiseux braid. In this scenario, the 

following relations suffice: 

g~;~k = g~i+k' k = 1, ... ,fi, i = 1, ... ' s, 

where ni := E~~~(fi + 1). Each point Pi produces fi relations 

which are transported via p. Regular points for the projection 

give no relations. 

Example 1.14. Examples of braids f3 for several arrangements of 

{pt, ... , Ps} are presented below: 

(a) (C,p1) has a local equation y2 - x = 0 and C rhPi Lt, i = 
2, ... , d- 1. This means that Lt is a simple tangent to C. 

Thus f3 = a1. 
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(b) (C,pi) has local equations y2 - x = 0, i = 1, 2, and C rhp; Lt, 

i = 3, ... , d - 2. This means that Lt is a simple bitangent to 

C. Thus {3 = a1a3. 

(c) (C,pl) has a local equation y3 - x = 0 and C rhp, Lt, i = 
2, ... , d - 2. This means that Lt is a tangent at an ordinary 

inflection point of C. Thus {3 = a 2a 1. 

(d) (C,p1) has local a equation yk - x = 0 and C rhp, Lt, i = 
2, ... , d- k + 1. This means that Lt is a tangent at a higher 

order flex of C. Thus {3 = O"k-1 • ••• • a1. 

(e) (C,p1) has a local equation y 2 - xk+l = 0 and C rhp, Lt, i = 
2, ... , d- 1. This means that Lt intersects C transversally at 

an Ak-point. Thus {3 = a~+l. 

(f) (C,p1) has a local equation y3 - x 2 = 0 and C rhp, Lt, i = 
2, ... , d- 2. This means that Lt is tangent to C at an ordinary 

cusp. Thus {3 = ( a 2a1) 2 . 

(g) (C,p1) has a local equation y3 - x 4 = 0 and C rhp, Lt, i = 
2, ... , d - 2. This means that Lt is transversal to C at an E6 -

point. Thus {3 = (a2a1)4 . One can check that local equation 

y3 + x 4 = 0 provides a different braid, namely, {3 = (a1a 2 ) 4 • 

(h) (C,p1) has a local equation yk- xk = 0 and C rhp, Lt, i = 
2, ... , d- k + 1. This means that Lt intersects C transversally 

at a k-fold ordinary point. Thus {3 = (ak_ 1 · ... · a 1)k = ~~
A general algorithm to obtain a positive braid from Puiseux factoriza

tions has been developed by S. Martinez Juste. 

In general, the computation of a braid monodromy factorization is 

a hard numerical task. Computer-based algorithms have been produced 

by D. Bessis and J. Michel [21], and J. Carmona [25]. There are some 

particular cases where a more or less direct computation is possible: 

(C1) Arrangements of lines by Arvola [18] via wiring diagrams. 

(C2) Strongly real curves [3, 4, 5, 123, 12, 9, 88], i.e., curves with a 

real equation such that the real picture and the topological type 

of the singular points contain all the topological information of 

the embedding of the curve. 

(C3) A combination of (C1) and (C2) was considered by M. Salvetti 

in [103]. Explicit constructions can be found in [10]. 

The computation of the fundamental group allows us to compute 

the first homology group. 

Proposition 1.15. Let d1, ... , dr be the degrees of the irreducible 

components ojC, d := degC = L:;;=1 di, and do:= gcd(d1. ... , dr)· Then 

(8) H1 (1P'2 \C, Z) = (xi. ... ' Xr I d1X1 + ... +d~Xr = 0) ~ zr-1 X Z/doZ. 
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There is a natural mapping Mer : n1 (lP'2 \C) ---> Z/ d7L sending any merid

ian to 1 mod d. 

Proof. It is enough to abelianize (6) and recall that two meridians 

are in the same conjugacy class if and only if they are meridians of the 

same irreducible component (Definition 1.2). Q.E.D. 

In some sense n1 (lP'2 \C) and n1 ( C2 \ caff) determine each other (it 

is important to recall that we assume in this subsection that L rh C). 

Proposition 1.16. The fundamental group n1 (C2 \ caff) is the pull

back of 

(9) 

where the horizontal arrow is the homomorphism Mer in Proposition 1.15 

and the vertical one is the standard projection. In particular, if a presen

tation of n 1 (lP'2 \C) is given whose generators g1, ... , 915 are meridians of 

C h l t . 1 t Wi (g) d Tid Zj (g) 1 h , w ose re a zons are o ype 9£, = 9m;, an )=1 9nj = , w ere 

Ri, mi, n1 E {1, ... , 15}, and wi(g), Zj(g) are words in 91, ... , 915, then 

(10) 

~k (C'\C"") ~ (h, ... , h, I h~'(h) ~ hm,. lr! h:i, (h), hk] ~ 1, 1 $ k $ J) , 
where wi(h) and Zj(h) are words in h1, ... , h15 obtained from wi(g), Zj(g) 

replacing 9i 's by hi's, respectively. 

Proof. The pull-back of (9) is given by 

G := {(9, n) E n1(1P'2 \C) x 7L I Mer(9) = n mod d}. 

Note that n1(C2 \ caff) induces a commutative diagram in (9) using as 

a vertical arrow the mapping coming from inclusion and as a horizontal 

arrow the mapping that sends any meridian to 1 E 7L. Hence there is a 

natural mapping n1 (C2 \ caff) ~ G. Using Reidemeister-Schreier, it is 

easily seen that (10) is a presentation of G. 

For the first part, one may assume that the presentations of n1 (lP'2 \ 

C) and n1(C2 \ caff) are those of (6) and (5), respectively. Since Lis 

transversal to C, Remark 1.13(b) implies that presentation (5) can also 

be obtained from (6). For convenience, the generators of n1(1P'2 \C) 

will be denoted by 9i· Note that 'I/J(9i) = (jji, 1) and 'I/J(9d · ... · 91) = 
(1, d). Since G and n1(C2 \ caff) have the same presentations, '1/J is an 

isomorphism. Q.E.D. 
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Presentations of fundamental groups of affine plane curves rr1(C2 \ 

caff) have special properties. For instance, rr1 (C2 \ caff) can be generated 

by meridians and any two meridians of the same irreducible component 

are in the same conjugacy class (Definition 1.2). A useful type of pre

sentations of rr1 (C2 \ caff) is the following: 

Let C1, ... , Cr be the irreducible components of caff and let us fix a 

meridian xi of Ci. Note that, as mentioned above, any other meridian 

xi of Ci is in the conjugacy class of xi, in particular, it can be written as 

Xi. y, y E 11"1 (C2 \ caff)'' 11"1 (C2 \ caff)' being the commutator subgroup of 

rr1 ( C2 \ caff). We call a presentation of a group satisfying these properties 

a Zariski presentation, whose precise definition is as follows: 

Definition 1.17. Let G be group. We denote its commutator 

group by G'. A presentation (xt, ... , Xn Y1, ... , Yu I wi(x, y) = 1), 
x := (xt, ... , Xr ), y := (yt, ... , Yu), of a group G is called a Zariski 

presentation if 

The Abelian group G/G' ~ 'llqffi'll/p1Zffi· · ·ffi'll/p8 7l (q+s = r) 

is generated by the classes of x1, ... , Xn where x~+i E G' for 

i = 1, ... ,s. 

The classes of Y1, ... , Yu in G / G' vanish. 

The words wi(x, I) are products of commutators in x and x~+i· 

To be more precise, we have just proved the following. 

Proposition 1.18. Under the conditions above, rr1 (C2 \Caff) admits 

a Zariski presentation, where s ~ d- r, and d := degCaff. 

1.3. Braid monodromy and topology 

In this section we want to examine in more detail the type of objects 

presented in Definition 1.9 in the previous subsection. They have been 

used to obtain presentations of fundamental groups, but they actually 

contain much more information. 

Consider ( T1, •.. , Tr) E (.Iadt a braid monodromy factorization of the 

triple (C, L, P) obtained from the geometric basis /'1, ... , l'r· As men

tioned after Definition 1.9, any change of geometric basis produces a new 

braid monodromy factorization, which is given by a Hurwitz move. Since 

the family of possible geometric bases is parametrized by .lar (Proposi

tion 1.5), the braid group induces a Hurwitz action on (Tt, ... , Tr ). Also, 

a change of the base point ty• produces a new braid monodromy factor

ization, which is given by conjugation ( Tf, ... , Tj!), where f3 is a certain 

braid in .lad. 
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The different factorizations derived from all the different choices 

can be described as naturallBr and JBd actions on (1Br r on the right as 

follows: 

1Br: Let ( 7I. ... , 7r) E (JBd)T and let O'i ( i = 1, ... , r -1) be canonical 

generators. Then the action is given by 

(11) 

if i = j 

ifi=j+1 

ifi~j+l. 

fori= 1, ... , n- 1,j = 1, ... , n. 

lBd: Let ( 71, ... , 7r) E (JBdY and let (3 E JBd. Then the action is given 

by 

(71 1 ... ,7r),6 := (7f, ... ,7~) 

These actions of 1Br and JBd commute; and hence they define a 1Br x JBd 

action on (JBdY. 

For more details, see [7]. Summing up, we have the following: 

Proposition 1.19. Let (71, ... , 7r) be a braid monodromy factoriza

tion of(C,L,P). Then (1\, ... ,fr) E (lBdY is another braid monodromy 

factorization of (C,L,P) if and only if (f1, ... ,Tr) is in the orbit of 

( 71, ... , 7r) with respect to the 1Br x JBd action as above. 

Remarks 1.20. 

(1) The definitions and results in §3.1 and §1.2 where geomet

ric bases are required can be substituted by pseudo-geometric 

bases. In particular, the concept of braid monodromy factor

ization can also be obtained from a pseudo-geometric basis and 

Proposition 1.10, and Corollary 1.11 remain true. 

(2) Note that a continuous change of the generic line L and the pro

jection P produces a situation similar to the change of the base 

point in the following sense. A continuous change of the generic 

line L and fixing P (that is, in the pencil of lines through P) 

only produces a new pseudo-geometric basis, whose associated 

factorization is the same as the original one. On the other 

hand, a continuous change of P on L also defines a new pseudo

geometric basis, whose associated factorization is conjugated of 

the original one by the braid defined by the motion of P on the 

generic fiber. Combinations of these two motions allow one to 

move from (C, L, P) to any other triple (C, L', P'). 

This motivates the following: 
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Definition 1.21. Two triplets (C, L, P) and (C, L', P') as above are 

said to have equivalent braid monodromies if their braid monodromy fac

torizations are in the same orbit. We will refer to the class of equivalent 

braid monodromies as the braid monodromy of the curve C. 

A special -and very useful- type of braid monodromy factoriza

tion can be obtained as follows. Let us fix a pseudo-geometric basis 

(/'I, ... , l'r) of 7ri ( C \ ~; *) and decompose each /'i in the form of a con

jugation as in Definition 1.2. Following the ideas in Remark 1.13(c), one 

obtains a braid monodromy factorization of the form (PI· /3I · P!I, ... , Pr · 
/3r · p; I), where /3I, ... , /3r are Puiseux braids. These are not difficult to 

obtain from a Puiseux expansion of each local singularity. The difficult 

numerical part comes from the computation of the braids Pi· 

Definition 1.22. We say that ((PI, /31), ... , (Pn /3r )) is a Puiseux

braid monodromy factorization of C if (p1I · /3I · PI, ... , p; I · /3r · Pr) is 

a braid monodromy factorization of C and the braids Pi, /3i are obtained 

from the decomposition of a meridian (in a pseudo-geometric basis) as 

in Remark 1.13(c). 

Remark 1.23. Note that if ((PI, f3I), ... , (Pn /3r)) is a Puiseux-braid 

monodromy factorization of C, then in particular f3I, ... , f3r are Puiseux 

braids. Also, if (CI,C2 ) is a Zariski pair one can obtain Puiseux-braid 

monodromy factorizations ( (p}, /3i)) i= I and ( (PT, /3i)) i= I such that the 
Puiseux braids coincide. 

Remark 1.24. Note that Definition 1.22 is very restrictive. Let 

((PI, /31), ... , (Pn /3r)) be a r-tuple of pairs of braids such that (P1I · f3I · 
PI, ... , p; I. /3r · Pr) is a braid monodromy factorization of C and /3I, ... , /3r 
are Puiseux braids. This is a necessary condition for ((PI, /3I), ... , (Pr, /3r)) 
to be a Puiseux-braid monodromy. Since Definition 1.22 imposes that 

the factorization Pi I. /3r ·Pi must come from a very particular geometrical 

decomposition of a meridian, one cannot ensure that ((pi, /31), ... , (Pr, /3r)) 
is a Puiseux-braid monodromy factorization of C. 

The construction leading to the Zariski-van Kampen method is closer 

to Puiseux-braid than to general braid monodromy, but it is not easy 

to define good equivalence relations between Puiseux-braid monodromy 

factorizations. From Corollary 1.11 one deduces that braid monodromy 

factorizations determine 7ri (IP'2 \C) and 7ri (C2 \ caff). 
In [73], Libgober showed the relationship between Puiseux-braid 

monodromy factorizations and homotopy type as follows. 

Theorem 1.25 (Libgober [73]). The CW-complex associated with 

the finite presentation of 7ri(C2 \ caff) obtained from (5), with the re

duction in the number of relations described in Remark 1.13(c), has the 
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homotopy type of C2 \ caff. In particular, a Puiseux-braid monodromy 

factorization of c determines the homotopy type of C2 \ caff_ 

The following results show the strength of Theorem 1.25 and are 

evidence of the importance of braid monodromy. 

Theorem 1.26 (Kulikov-Teicher [70]). lfC has only ordinary nodes 

and cusps, then a braid monodromy factorization of C determines the 

diffeomorphism type of (IP'2 , C). 

Theorem 1.27 (Carmona [25]). A braid monodromy factorization 

of c determines the oriented homeomorphism types of the pairs ( C2 , caff) 

and (IP'2 , C). 

Carmona uses the local results of M. Namba and M. Takai [87] to 

prove that one can produce a topological model of the pairs (C2 , caff) 
and (IP'2 , C) from any decomposition as in Remark 1.24. With this model 

one can apply Libgober's techniques in [73] to prove that C2 \ caff has the 

homotopy type of the CW-complex associated with a presentation ob

tained from a Puiseux-braid factorization, after the reduction explained 

in Remark 1.13(c). 

1.4. Generic and non-generic braid monodromies 

Up to now, all the statements in §1 assume a generic projection, i.e., 

P '{. C and L rh C. We also assume that the lines Lt, t E ~, satisfy the 

following: 

• Either Lt passes through a singular point of C and Lt does not 

belong to its tangent cone, or 

• Lt is an ordinary tangent to a smooth point of C (i.e., not a 

flex). 

Also, all other intersections of Lt are transversal, i.e., in the notation 

of Remark 1.13(c), one has £i = 0 if i > 1. The braid monodromy ob

tained under these hypotheses does not depend on the particular choice 

of Land P, PEL (Remark 1.20(2)). Moreover, it is an invariant of the 

connected components of the combinatorial strata of curves. 

Oftentimes, non-generic braid monodromies arise in a natural way, 

and in general they are very useful. Let us explain different situations 

where a braid monodromy is non-generic. 

(NG1) We can choose a non-generic line L and P generic in L; in 

particular, P '{. C and L 1/1 C. In this case Proposition 1.10 

and Corollary 1.11 are still true, because Libgober's proof of 
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Theorem 1.25 also applies here and so does Carmona's The

orem 1.27. One can eliminate relations for the fundamental 

group using Remark 1.13(c), but not (b). 

(NG2) The line Lis generic but Pis non-generic and P tj. C, i.e., for 

some t E Ll either we have several non-transversal intersections 

or Lt is tangent to C at a flex. All the results of §1.2 and §1.3 are 

true word-for-word. In general, this braid monodromy is not 

an invariant of connected components of combinatorial strata 

of curves. 

(NG3) P is a smooth (non-flex) point of C and L is the tangent line. 

In this case the affine parts of §1.2 and §1.3 remain true. This 

is due to the fact that caff admits an equation f(x, y) = 0, 

where f is monic in y. In general we cannot eliminate the 

relations as in Remark 1.13(b ). This braid monodromy defines 

an invariant of connected components of combinatorial strata 

of curves. 

(NG4) The point P E C is either a flex or a singularity whose tangent 

cone is irreducible. In either case we choose L to be the tangent 

line. The braid monodromy in this case behaves as in (NG3) 

(because C admits a monic equation in y) though in general it 

will not be an invariant of the connected component of com

binatorial strata of curves. In this case, as well as in (NG3), 

one can also compute ;r1 (J!D2 \C), but some additional informa

tion about the behavior of the strings of the braid at infinity 

is needed, see [5, 9, 12] for examples. 

(NG5) Choose P, L in order to have vertical asymptotes, i.e., P E C 

and at least one tangent line to C at P is not L. This case 

has been deeply studied in [25]. Braid monodromy and some 

additional data allow one to apply a modified version of the 

Zariski-van Kampen Theorem and to codify the embedding of 

C in J!D2 . 

Why are non-generic braid monodromies interesting? There are at 

least two reasons. The first one comes from effectiveness of computation. 

For a curve C, generic braid monodromy factorizations are orbits in 

(lllld t, where r is the sum of the degree of the dual curve and the number 

of singular points of C. This number could be reduced significantly by 

considering non-generic projections. Also, under certain circumstances, 

a generic braid monodromy factorization can be recovered from a non

generic one. The second reason has to do with a partial converse of 

Theorem 1.27 and will be developed in page 26. 
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Proposition 1.28. Let us assume that Lt, t E ~' is as in (NG2). 

LetT be the braid associated with Lt. If Lt, t E ~' hash non-transversal 

intersections, then T is the product of h pairwise commuting braids. 

Let us assume now that any Lt has only one non-transversal inter

section P1 E Lt n C. Then: 

(1) If Lt is tangent to C at a smooth point P1 with (C · Lt)p1 = n, 

then r decreases by n- 2. Moreover, T decomposes into n- 1 

braids conjugated to 0"1 when P is slightly moved in L. 

(2) If Lt, t E ~' passes through P1 E Sing( C) of multiplicity m and 

(C · Lt)p1 = n, then r decreases by n- m and T decomposes 

into n- m + 1 braids, n - m of them conjugated to a 1 when P 

is slightly moved in L. 

Proof The situation becomes generic by slightly moving the point 

P in L, which implies a change in the projection direction. In this case, 

if Lt intersects non-transversally at h points, then after changing the 

projection direction, Lt splits into h non-transversal lines in a small 

neighborhood of Lt, which correspond to disjoint and unlinked strings. 

Thus the first statement follows. For instance, in the case of a bitangent 

(Figure 2) as in Example 1.14(b), T = p · (a3 · a 1 ) · p-1 decomposes into 

the commuting braids p · a3 · p-1 and p. a 1 . p-1 . 

' 
' 

' 
' 
' ' ' ' 

Fig. 2. Bitangent 

Let us prove (1). Note that, in this situation T = p·(an_ 1 • •.. ·at)·p- 1 

as in Example 1.14(d), and hence T decomposes into n-1 braids p·ai·p- 1 , 

i = 1, ... ,n -1 -see Figure 3. 

If P1 is a singular point of multiplicity m and (C · Lt)p1 = n, then a 
perturbation of the projection produces m- n + 1 non-transversal lines 

close to Lt: one of them passing through P1 (not in the tangent cone) 

and the other ones ordinary tangents. This gives the statement of (2). 

Let us see what happens if P1 is a cusp as in Example 1.14(f), where 
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Fig. 3. Flex 

r = p · ( a 2 · a1 ) 2 • p- 1. The decomposition is given by p · a~ · p- 1 and 
-1 -1 QED p 0 0"2 0 0"1 0 0"2 0 p 0 0 0 0 

Fig. 4. Cusp 

Also, for projections.as in (NG1) one can prove the following. 

Proposition 1.29. For each non-transversal point p E C n £, with 

multp C = m and ( C · L )p = n, the decreasing of r is given by: 

(1) n - 1 if L is tangent to C at a smooth point p. 

(2) n- m + 1 if L passes through p E Sing( C). 

In this case the line at infinity can be deformed into a generic line 

through P. The new braid factorization is of type (NG2) and has an 

extra term, which is obtained as the product of~~ by the inverse of the 

product of the original braid factorization. 

Therefore a combination of Propositions 1.28 and 1.29 allows one to 

obtain a generic braid monodromy factorization. 
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Remark 1.30. If P E C and multp C = m, then not only r decreases 

but also its braid monodromy takes values in lBld-m· As for the funda

mental group, one needs additional data in order to recover the generic 

braid monodromy but the complete description of these additional data 

and the recovering process has not been developed yet. 

The second reason stands on this partial converse of Theorem 1.27. 

Let us introduce some notation. Let L cJ. C be a line and P E L. Let 

us also assume that the tangent cone of C at P is contained in L (the 

tangent cone is empty if P tJ. C). In other words, keeping the notations 

of §1.2, we are assuming that f is monic in y. For t E ~ let Lt be the 

projective closure of Lt (recall that P E Lt)· 

Definition 1.31. A triple (C, L, P) as above is called a horizontal 

triple. The braid monodromy obtained choosing P as projection point 

and L as line at infinity is called the braid monodromy of the horizontal 

triple. The fibered curve C'P associated with the horizontal triple is C U 

L u UtE6. Lt. 

We recall the following results by the first two authors and Carmona. 

Theorem 1.32 ([7]). Let (C1 , L, P) and (C2 , L, P) be two horizontal 

triples. Let F : IP'2 --> IP'2 be an orientation-preserving homeomorphism 

such that: 

(i) F(P) = P, i.e, F respects the base point of the fibration. 

(ii) F(L) = L preserving orientations. 

(iii) F(Ci) = Cf preserving orientations. 

Then (C1, L, P) and (C2, L, P) have the same braid monodromy. 

For the special case of line arrangements this result has an ordered 

version. 

Definition 1.33. An ordered arrangement of lines .C is an ordered 

list of lines in IP'2 • A triple (£, L, P) is called a horizontal triple arrange

ment if it defines a horizontal triple and the lines { Lt}tE6. are ordered. 

The fibered arrangement £'P associated with the horizontal triple ar

rangement is the ordered arrangement .C + ( L) + ( Lt )tEl>.. 

Let us consider a braid monodromy factorization of(£, L, P). Since 

.Cis an arrangement of lines, this representative belongs to (IP'lBldt, where 

IP'lBld is the pure braid group. Moreover, by the choice of an order in .C 

only conjugations by elements of IP'lBld are allowed (otherwise meridians 

of different components are interchanged). Moreover, since { Lt}tE6. is 

also ordered by the incidence relations, only pure Hurwitz moves are 

allowed. 
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Definition 1.34. A pure braid monodromy is an orbit of (IP'lffidt by 

the action of IP'lffid x IP'lffir· A horizontal triple arrangement (£, L, P) has 
associated with it a pure braid monodromy. 

Theorem 1.35 ([10]). Let (£1, L, P) and (£2, L, P) be two horizon

tal triple arrangements. Let F : IP'2 ---+ IP'2 be an orientation-preserving 

homeomorphism such that: 

(i) F(P) = P. 
(ii) F(L) = L preserving orientations. 

(iii) F(£j') = £~ preserving orientations and orders. 

Then (£~, L, P) and (£2, L, P) have the same pure braid monodromy. 

1.5. Fundamental group, braid monodromy and Zariski 
pairs 

Fundamental groups are a primary tool in the problem of finding 

Zariski pairs. In the example mentioned in the Introduction (Z5), Zariski 

proved that the combinatorially-equivalent curves had different funda

mental groups (Z/2Z * Z/3Z and Z/2Z x Z/3Z). In fact, before com
pleting all the computations, Zariski had found other weaker invariants 

that also served to distinguish the members of the pair. The first one is 
the study of branched Galois coverings ramified along the curve: in only 

one case do D6-coverings exist -a proof in modern terms can be found 
in §3.3. In §3, we present how the algebraic study of Galois coverings is a 

powerful tool to study Zariski pairs, obtaining information about funda

mental groups without having to compute them. The second invariant 
is the Alexander polynomial which, along with some generalizations, is 

studied in §2. 

These two kinds of invariants are useful for several reasons. As we 
have seen in this section, computation of fundamental groups can be a 

very tricky task. On one hand, some algebraic properties of the curves 
can give rise to invariants of the fundamental group, and thus a difference 

in such invariants means a difference in fundamental groups. On the 

other hand, even if the fundamental group is computed, what one obtains 
is a finite presentation of it. The undecidability of the isomorphism 
problem makes this task feasible only in the simplest examples. 

As explained in the Introduction note that, even though 1r1 (IP'2 \C) 
is an invariant of the embedded topology of a curve C, any homeomor

phism of pairs (IP'2, C) should send meridians to meridians. Therefore, 

1r1 (IP'2 \ C) with a peripheral structure given by the conjugacy class of 
meridians of the irreducible components of C is sometimes a more useful 

invariant. For example, if we are counting the number of irreducible 
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representations of 1r1 (JPl2 \ C) onto a given finite group, the peripheral 

structure introduces some restrictions on the images of the meridians. 

Analogously, if we are considering Betti numbers of abelian coverings, 

the peripheral structure allows us to describe such coverings canonically 

and thus point out possible differences. In general they will not be 

invariants of the sole fundamental group, but they will be useful for de

tecting Zariski pairs. These techniques fail when we look for arithmetic 

Zariski pairs, since in this case most invariants of finite coverings are of 

an arithmetic nature. 

We end up this section with referring examples for various kinds of 

Zariski pairs. For details, see the cited references 

Example 1.36. Once one has an example of a Zariski pair which 

is distinguished by the fundamental group, it is possible to give infinite 

families of Zariski pairs using Cremona transformations and covering 

maps. These techniques have been used by Oka [91], Shimada [105, 106] 

and A.M. Uludag [123]. 

Example 1.37 ([62]). In their paper Kharlamov-Kulikov use braid 

monodromy factorizations to find a special kind of Zariski pair, called 

oriented Zariski pair. An oriented Zariski pair is characterized by the 

non-existence of orientation-preserving homeomorphisms. Note that 

complex conjugation preserves the orientation of JPl2 , but reverses the 

orientations of the curves. In [63], they also find examples of complex

conjugated surfaces such that the complex conjugation does not pre

serve canonical divisors, thus they do not admit orientation-preserving 

homeomorphisms. If we apply Chisini's conjecture, the branch curves of 

generic coverings give oriented Zariski pairs. For each m the produced 

Zariski pair involves curves of degree 333m2 . 

Example 1.38 ([9]). Let us consider the combinatorial stratum of 

curves with the following combinatorics: sextics with two irreducible 

components of degrees 5 and 1. The quintic curve has three singular 

points of types JE6, A3 and A2 and the line intersects the quintic at two 

smooth points with intersection multiplicities 4 and 1. 

It is not hard to prove that this space has two connected components 

(each one is isomorphic to PGL(3; C)). For one component there is a 

representative C+ with equation in Q( J2)[X, Y, Z]. Its conjugate C_ be

longs to the other connected component. Let us denote by (C±, L±, P±) 

the horizontal triples, where P± is the JE6 point of C± and L± is the 

tangent line. 
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Using techniques for strongly real curves one can compute a non

generic braid monodromy factorization of type (NG4) of (C+, L+, P+): 

( 8 4 2 -4 3 3 -3 4 -1 -3 3) 
a2,a2a1a2 ,a2a1a2 ,a2a1a2 ,a1 0"20"1' 

and one of (C_,L_,P_): 

( 3 ( -1 ) ( -1 )-1 8 -1 -2 4 2 -3 2 3) 
a2, a2a1 a2 a1 a2a1 a2 ,a2a1a2 ,a1 a2a1,a1 a2a1 • 

In fact, these are Puiseux-braid monodromy factorizations. Since the 

additional data at infinity are easy to obtain, one can compute rr1 (JP>2 \ 

C±)· It turns out that both groups are isomorphic to Z x GL(2; IF7 ). 

The main point is that these two braid monodromy factorizations 

are non-equivalent. Taking representations of the braid group onto 

GL(2, Z/32/£), the image of the braid monodromies becomes a finite 

set. One can simply check using GAP [49] that both images are dis

joint. By Theorem 1.32, (C~, C~) is an arithmetic Zariski pair. Similar 

examples in [9] also provide examples of oriented Zariski pairs. 

Example 1.39. Let us consider the combinatorial stratum of sextic 

curves with 4 singular points of types IE7, IE6, A4, and A2. As in the 

previous example, this space consists of two irreducible components, 

each one isomorphic to PGL(3; C). Representatives can be taken in 

each component with equations in Q( v's)[x, y, z] as follows: 

j 8 (x, y, z) :=- (200 +90s) x 6 - (1575 + 705 s) x 5y- (552 + 254 s) zx5 

- (3963 + 1779 s) zx4y - ( 456 + 222 s) z 2x 4 

- (63 + 27 s) zx3y2 - (2817 + 1251 s) z 2x 3y 

-(56+ 21 s) z3x3 + (666 +324 s) z2x2y2 

+ ( -45 + 15 s) z 3x 2y + (48 + 16 s) z 4x 2 + (1737 + 783 s) z 3xy2 

+ (384 + 192 s) z 4xy + 54z3y3 + (1008 + 432 s) z 4y2 , 

where s2 = 5. Let us consider the triples associated with the IE7-point 

P = [0 : 1 : OJ and the tangent line L = {z = 0} at P. First we will 

compute their braid monodromy factorization based on the real picture, 

since both curves are strongly real (see ( C2)). 

Figure 5 shows the real picture of C v'5 : = {! v'5 = 0}, the choice 

of the generic line L*, and the choice of the generators of the braid 

group based on L* \ Cvg. We recall that the way the ai are chosen in 

general corresponds to the lexicographic order in C where a1 + b1 A < 
a2 + b2H if and only if a1 < a2, or a1 = a2 and b1 < b2. 
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Fig. 5. Real graph of Cv15. 

The only singular fibers occur at x = - 3l (where the A2-point 

(- 3l, - 15r -144v'5) lies), at x = -1 (where the JE6-point ( -1, 0) lies), 

and at x = 0 (where the A4-point (0, 0) lies). This can be checked by 

factorizing the discriminant of f V5 with respect to y. 

The dotted curve in Figure 5 represents the real parts of the complex 

conjugated branches. When at most two branches are complex conju

gated per fiber of the projection (as is our case) this picture plus the 

local braids contain all the necessary information to compute the braid 

monodromy factorization. 

In our case, the local braids around the A4 and the A2 are obvious 

because the branches involved are real. Therefore the first factor of the 

factorization should be o-f and the last one should be a conjugated of 

o-~ (Example 1.14(e)). In this case note that half a turn around the A4 

point corresponds to o-r. Therefore the factorization this far looks like 

(o-f, o-f* {3, (o-r fJ1 a)* o-~), where {3 is the local braid around the JE6-point, 
{31 is half the braid around the lE6-point, and a is the braid from JE6 to A2. 

To obtain a it is enough to note that a local crossing of type Q as 

in Figure 5 corresponds to o-2 1o-1 (always according to our lexicographic 

order in C) as shown in Figure 6. Since there are no more crossings 

between lE6 and A2 one has that a= o-2 1o-1. 
For the lE6-point one has to work a little bit more. One first considers 

a parametrization for the local branches of fs at this point: something 

of the form y = w1x + w 2 ~kxt, k = 0, 1, 2, where ~ 2 + ~ + 1 = 1. 

Basically the sign of the real part of w2 determines the local braid as 
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Fig. 6. Description of the crossing at Q. 

shown in Example 1.14(g). In our case one obtains f3 = (a1a2)4 and 

hence /31 = (a1a2)2. 
Therefore the braid monodromy factorization in this example is 

(ar,a~ * (a1a2)4, (a~(a1a2) 2 (a; 1 al)) *a~). 

Using the relation a1 *a~ = a21 *at and the obvious a[* af = af, 
the last term can be reduced to a 1 * a~, obtaining Table 1. 

I ar I a~ * ( al a2)4 I al * a~ I 
Table 1. 

Claim 1.40. The {non-generic) braid monodromy factorizations of 

(C,;g, L, P) and (C_,;g, L, P) coincide. 

Proof For C_,;g one has an analogous situation as shown in Fig-
ure 7, which has the same local and global information of the strongly 

real picture. Therefore, their braid monodromy factorizations coin
cide. Q.E.D. 

Moreover, note that, even though the combinatorial stratum consists 

of two irreducible components, the associated affine curves are isomor

phic. In particular 

j ,;g(w(x, y)) = ( 51841 + 23184v'5) f_,;g(f(x, y)), 
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Fig. 7. Real graph of C_y-g. 

where is, denote the affine equation of fs, 

w(x, y) := ( x, -y + ( 1620 + 648v's) x- ( 2; + 35;) x2) 

is a Jung automorphism, and 

is a linear automorphism of C2 • Note that this does not give another 

proof of Claim 1.40 via Theorem 1.27 since the latter can only be applied 

in principle to generic projections. But it does tell us that the generic 

braid monodromies of Cv'fi u Land C_v'fi u L are equivalent. 
A geometrical interpretation of the J ung automorphism can be given 

as follows. In Figure 8, we show the dual graph of the total transform 

of L after an embedded resolution of the lE7-point. The successive ex

ceptional divisors are denoted by Ei, i = 1, 2, 3. The branch B 1 denotes 

the strict transform of the cusp of JE7 , the branch B2 denotes the strict 

transform of the smooth branch of the lE7 and the branch B 3 denotes 

the branch at the smooth point of Con L n C8 • 
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B1 B2 B3 

-3 -1 -2 1 -11 • 
E1 E3 E2 L 

Fig. 8. 

Note that, contracting the strict transform of L one achieves a 

combinatorially-symmetric situation where B 2 and B 3 cannot be dis

tinguished. Note that, by the Jung automorphism, B 2 and B 3 are in

terchanged. 

We can still recuperate valuable information to add to equivalent 

braid monodromies that can distinguish the different behavior at infinity. 

The idea is to color the different branches at infinity. This idea will be 

developed in what follows. 

Remark 1.41. Let (C, L, P) be a horizontal triple of degree d and let 

us choose L*, a generic member of1lp, as the base line of the pencil. Let 

us also fix a continuous uniparametric family of lines Lt ( t E [0, 1]) in the 

pencil such that Lo = L* and L1 = L. The continuity of Lt allows us to 

associate a branch of C at L to each point of C n L*. The combinatorics of 

C at L defines a partition on the set of such branches and hence induces 

a partition 9* on C n L* (which turns out to be independent of the 

chosen path Lt). Ordering the points of C n L* induces a partition 9 in 

{ -1, ... , -d}. Let E.g;> be the subgroup of Ed preserving the partition 

and let lB,g;> be the preimage of E.g;> in JBd. By restriction to lB,g;> one 

can define the 9-braid monodromy of (C, L, P). The same proof of 

Theorem 1.32 can be applied to this particular scenario to obtain the 

following. 

Theorem 1.42. The statement of Theorem 1.32 also holds if we 

replace braid monodromy by 9-braid monodromy, where 9 has the same 

combinatorial meaning at infinity for both triples. 

Now we can show that ( JPl2 , CJs U L) and ( JPl2 , C~ V5 U L) form an 

arithmetic-Zariski pair. 
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Proposition 1.43. Let us consider the curves C¥5 and C_¥5 in 

Example 1.39. There is no homeomorphism between the pairs (1P' 2 ,C~U 

L) and (1P'2 , C~ V5 U L), but their complements are homeomorphic, that 

is JP>2 \ ( c~ u L) ~ JP>2 \ ( c~¥5 u L). 
Proof Let us prove the last statement first. Note that the home

omorphism between lP'2 \ ( C V5 U L) and lP'2 \ ( C _ V5 U L) preserves the 
pencil of lines through P, therefore, it induces a homeomorphism be-

tween lP'2 \ ( C~ U L) and lP'2 \ ( C~ V5 U L) . 
Let us prove now that the pairs are not homeomorphic. In order 

to do so we will consider the partitions of Remark 1.41. We order the 

points of C n L* as in Figure 6. One has the following situation: 

for C¥5: (1, 2, 3) f-+ (B1. B2, B3). 

for C_¥5: (1, 2, 3) f-+ (B1. B3, B2). 

Hence, the group B9 is simply the pure braid group. Let us de

note by n¥5 the braid monodromy in Table 1. It defines a &'-braid 
monodromy for C¥5. In order to have a representative of the &'-braid 

monodromy for C~¥5 we have to permute the second and third strings, 

for instance n_¥5 := a2 * n¥5. 

Let H 8 , s2 = 5, be the monodromy groups in B3. If these curves 

have the same &'-braid monodromy, then H¥5 and H_¥5 are conjugated 

by an element in B9. Using GAP4 [49], it is easily seen that this is the 

case and that H¥5 # H_¥5· 

Let c8 be the pseudo-Coxeter braid of n 8 , s2 = 5, (see Defini
tion 1.9{iii)). Note that 

where ~~ = (a1a2)3 = (a1a2a1)2 is the generator of the center of B3 
(see Remark 1.13(b)). 

If n_¥5 and n¥5 are &'-equivalent, there exists a pure braid T such 

that T * H¥5 = H_¥5 and [c, r] = 1. It can be easily computed (for 
innstance, via the standard representation in the special linear group 

SL(2, Z)) that the intersection of the pure braid group and the commu

tator of cis the subgroup generated by c and~~. This group is contained 

in the normalizer of H¥5 and hence, such a r cannot exist. Q.E.D. 

Example 1.44 ([10]). This is the first example of arithmetic Zariski 

pairs of lines. It consists of two arrangements .4± of eleven lines having 
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conjugate equations in with coefficients in Ql( J2). In particular, their 

fundamental groups have isomorphic profinite completions. 

The real pictures of .4'± are shown in Figure 9 (lines at infinity 

included). In order to prove that they provide an arithmetic Zariski 

pair, one can proceed by contradiction as follows. 

+ 

Fig. 9. Zariski pair of real line arrangements L_ 

Let us assume that a homeomorphism 'lj; : (IP'2 , .4'+) ----> (IP'2 , ,4'_) 
exists. This homeomorphism must preserve the orientation of!P'2 . Using 

standard intersection theory, one can assume that it either preserves 

the orientations of all the lines in .4'± or it reverses them. Taking 

complex conjugation into account, one can assume that 'lj; preserves the 

orientations of the lines in .4'±. For combinatorial reasons 'lj;(L+) = L_ 

in Figure 9. Let us consider the arrangements Y± obtained by removing 

both the vertical lines and L± from .4'±. Since .4'± has a unique point 

of multiplicity five, it is easy to see that 'lj;(Y+) = Y_. Thus, one can 

order these arrangements in such a way that the ith line of Y+ and 

Y_ are conjugate in Ql( J2). The choice of the lines L± implies that 'lj; 

preserves the order. Moreover, the vertical lines can be ordered so as to 

fulfill the same property. 

Let P be the point of intersection of the vertical lines and let £ 00 be 

the line at infinity. Then (Y±, £ 00 , P) are horizontal triple arrangements 

such that Y'f_ = .4'± \{£±}·By Theorem 1.35, (Y±,L00 ,P) have the 
same pure braid monodromy, but this contradicts [10, Theorem 4.19]. 

Note that no ordered homeomorphism exists from Y+ to Y'!., but 

it is not hard to prove that there exists a projective transformation in 

PGL(3, q sending Y+ toY'!. (thus not respecting orders). 

Whether or not this is an example of a 1r1-equivalent Zariski pair 

(that is, if the groups are actually isomorphic) or a complement-equivalent 
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Zariski pair (that is, if the complements are homeomorphic) remains an 

open problem. 

Example 1.45. [88] Example 1.44 and Rybnikov's example are 

particularly interesting cases of Zariski pairs, since they come from line 

arrangements. What happens with conic arrangements? A nice example 

of a Zariski pair of conic arrangements has been provided by N amba 

and Tsuchihashi [88]. An elementary and exhaustive approach to it 

occupies §4. 

§2. Alexander invariants 

2.1. Alexander polynomials 

Alexander polynomials have been largely used for knots and links in 

connection with cyclic branched coverings of their complement (see [50] 

for a survey on the matter). The first application of cyclic coverings 

to complements of plane curves was already proposed by Zariski (as 

mentioned in the Introduction), and later formalized by Libgober [71]. 

Since then the bibliography on the subject has become extensive. In 

what follows, we will give the basic definitions and present the main 

results on this invariant. 

Consider Xc := lP'2 \ C, where C = Co u C1 u · · · u Cr, Ci is an 

irreducible curve of degree di with equation { ci = 0}, and do = 1 (this 

last condition is purely technical to simplify notation). Note that, under 

these conditions, 

where '/i is the homology class of a meridian of Ci. Let c : H 1 ( Xc; Z) ----> Z 
be an epimorphism. This epimorphism is defined by ( Cl' ... 'Cr) E zr' 

where ci := c("fi)· 
The kernel Kc: of the composition G := n 1 (Xc)~H 1 (Xc;Z)-=-.z de

fines a covering of Xc, say 11'6 : Xc,c: ----> Xc, whose group of deck trans

formations is G / K 6 = Z. 

Remark 2.1. Given n EN the composition of co ab with the natu

ral quotient Z ----> Z/nZ produces an n-fold cyclic finite covering 1fc:,n : 

Xc,c: ----> Xc whose group of deck transformations is Z/nZ. Note that 

if n divides Ei then 1fc:,n could be extended above Ci \ U#i Cj as an 

unramified covering. 
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The group G/K" = Z acts on K"/K~ = H1(Xc,e; Z) by conjugation 
as follows 

*: GjKE: X KE:/K~ 

(c:(g), k) 

Note that if g' = gh1 (h1 E K") and k' = kh2 (h2 E K~), then 

(g'. k'. g'-1) (g. k-1. g-1) = ((ghl). (kh2). (h11g-1)) (g. k-1. g-1) 

=g. (h1kh2h1 1k- 1). g-1 

=g. ((h1k). h2. (h1k)- 1 h1kh1 1k- 1) g-1 

E K~. 

Hence "*" does not depend on the choice of g mod K" or k mod K~. 

This action endows M~,e := HI(Xc,e; Z) with a Ae-module struc

ture, where A" := Z[G / K"] :::::: Z[t±1]. One can tensor such a module 

by a field lK = Q, C,lFP, ... to obtain a module M'%'," over A~= JK[t± 1]. 

Since G is finitely presented, M'%'," is finitely generated as a A~-module 

(by as many 1-cells as generators of G). The rings A~ are principal ideal 

domains and hence one can define ~~'"(t) as the order of M'%',". We 
recall that, if R is a principal ideal domain, the order of an R-module 

M, is defined as 

(12) 

if M has a free summand, 

if M = 0, 

"fM R R 
1 :::::: (X";) EB · · · EB (>-m). 

Such a polynomial can be assumed to be unique by adding the extra 

condition >.i(O) = 1. This is known as the Alexander polynomial of C 

associated with c:. In general, if lK = Q or C, then the reference to the 

field will be omitted. 

The classical Alexander polynomial (denoted ~c ( t)) corresponds to 

the special case when lK = Q, Co is transversal to Ci for any i = 1, ... , r, 

and c: is the epimorphism that sends any meridian '"Yi around Ci to 1, 

except for i = 0, where c:('"Y0 ) = -d, where d := 2:::~= 1 di. We will 

refer to this morphism as the trivial morphism. If c:('"Yi) =/:: ±1 for any 

i = 0, 1, ... , r we will call c: a non-coordinate epimorphism. The Oka 

polynomials (denoted ~C,e ( t)) correspond to lK = Q, and a transversal 

Co ([94]). 
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Remark 2.2. 

(1) 

(2) 

(3) 

Note that M~,e is not necessarily a torsion module in general. 

For example, if C is a union of r + 1 lines passing through a 

common point and c is the trivial morphism, then 7rl(Xc) = 
Z * · · · * Z a free product of rank r, and it is easy to see that 

M~e = {A~)r-1. 
Also note that M~ e depends only on G = 7rl(Xc) and c. Hence 

one can associate' an Alexander polynomial ~G,e(t) to any 

finitely presented group G and epimorphism c : GIG' ~ Z. 

In fact, such a polynomial corresponds to the Alexander poly

nomial of the CW-complex Xc associated with any finite pre

sentation of G, and c: H 1(Xc; Z) ~ Z. 

Assume that 

is a free resolution of M~,e' where A is ann x m matrix with 

coefficients in A~. Then ~c,e(t) can also be defined as 0 if 

m < n, or as the greatest common divisor of all the minors 

of maximal order of A if n :::; m. From (2) above, n can be 

considered as the number of generators in a presentation of G. 

A very useful remark on Alexander polynomials is the following: 

Lemma 2.3. [71, Proposition 2.1] Let G ~ H be an epimor

phism of finitely presented groups and consider c H : HI H' --+-+ Z an

other epimorphism. Then ~~,eH divides ~~,ea' where cc = €H o 'l/J1 
and 'l/J1: GIG'~ HIH' is induced by 1/J. 

Proof A presentation of H can be given from one of G just by 

adding a finite number of relations. Therefore from Remark 2.2(3), a 

presentation matrix for M~,eH is the result of adding a finite number 

of columns to the presentation matrix of M~,ea. Therefore the ideal 

generated by the minors of maximal order of M~,ea is contained in the 

one of M~,eH. Q.E.D. 

This situation appears in a natural way when an equisingular family 

of curves { Ct}tE(O,oJ degenerates into a reduced curve Co. 

Proposition 2.4. Under the above conditions there is an epimor

phism of fundamental groups 

7rl(Xca) ~ 7rl(Xc6 ). 

Hence ~Kc ~ divides ~cK ~ , where c2 = c1 o J.l as in Lemma 2.3. 
6,~1 Q,c;;.2 
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Proof A proof of the first part can be found in [41, Corollary §3 

(3.2)]. The second part is an immediate consequence of Lemma 2.3. 

(13) 

(14) 

Q.E.D. 

Example 2.5. 

(1) Consider a family of r + 1 lines Ct := Ct,o U · · · U Ct,n t E (0, 1] in 

general position degenerating into r + 1 lines Co := C0 U · · · U Cr 

passing through a common point. If c is the trivial morphism 

c('yi) = 1, i = 1, ... , r and c('y0 ) = -r, then one has the 

following 

(2) Consider the three-cuspidal quartic C1 presented in (Z6) and 

a generic line C0 . In order to give a presentation for the fun

damental group of C := Co u C1 one can simply apply Proposi

tion 1.16 to the presentation (1) and obtain 

(a, b I aba = bab, [a, a2b2 ] = [b, a2b2 ] = 1). 

Note that there is basically only one possible morphism c, the 

abelianization morphism, which we will omit in the notation. 

An easy computation produces 

and hence 

if char(IK) = 3 

otherwise. 

Since the three-cuspidal quartic is dual to a nodal cubic, we 

know it has a bitangent, say C0 . The fundamental group of 

C' := Co u C1 has the following presentation (see [97, Example 

4.5(3)]) 

which produces 

IK IK[t±1] IK[t±1] 

Me, = ( t2 - t + 1) EEl ( t2 - t + 1) 
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and hence 

~~~(t) = (t2 - t + 1)2 . 

Note that if char(OC) = 3, then (t2 - t + 1) = ( t + 1 )2 , and hence 

~~~(t) = (t + 1)4 . 

All computations in Example 2.5 above have been performed directly 

from a presentation of the fundamental group. We refer the reader to 

Section §2.5 for more details on this. 

Remark 2.6. Very often the Alexander polynomial is defined as the 

torsion of H1(Xc,e:, 'll'; 1 (p); Q) for some p E Xc. This definition comes 
handy for computational purposes, since it can be obtained as the de

terminantal variety of corank 1 of the Fox derivative matrix associated 

with the group G, as in the case of knots ([35]). 

The geometrical interpretation of the classical Alexander polynomial 

is given as follows (see [101]). The polynomial C1 · ... · Cr defines a non

isolated singularity at the origin of C3 . The monodromy of the Milnor 

fiber defines an automorphism on the H 1 and the classical Alexander 

polynomial is the characteristic polynomial of the monodromy of the 

Milnor fiber. 

Theorem 2.7. [94, Theorem 43] The Alexander polynomial of C 

with respect to the epimorphism c: H1(Xc)--+-* Z (ci :::=: 0, i = 1, ... , r) 

is equal to the characteristic polynomial of the monodromy h* : H 1 (F) --t 

H1 (F) where F is the Milnor fiber of the polynomial Cf1 • ••• • c;.r. 
Since the monodromy has a finite order, this implies the following. 

Corollary 2.8. All the zeroes of the Alexander polynomial ~c,e(t) 

of a curve C with respect to an epimorphism c are roots of unity. 

Alexander polynomials depend on the local type of singularities of 

C. To describe this dependency we will consider L~, ... , L 8 the local 

links of the singularities of the affine part calf := C1 u · · · u Cr and Loo 
the link at infinity, that is, the intersection of calf with the boundary 

of a tubular neighborhood of the line at infinity C0• The inclusion § 3 \ 

Lk '---" Xc induces a map 'll'l (§3 \ Lk) --t 'll'1 (Xc). Therefore c also induces 

epimorphisms 'll'l (§3 \ Lk)--+-* Z. The Alexander polynomials associated 

with such maps will be called local Alexander polynomials and denoted 

by ~Lk,e: for simplicity. 

This dependency can be described for classical Alexander polyno

mials. 

Theorem 2.9 ([71]). The classical Alexander polynomial of C di

vides both the product of the local Alexander polynomials fl~=l ~Lk (t) 
and ~Loc (t). 
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This dependency also has an expression for general Alexander poly

nomials. 

Theorem 2.10. Under the above conditions 

r 

(II (1 - tt:; )s;-x(C;)) II ~Lk,t:(t) = ~2,t:(t) · det tl(C), 

i=l k=l, ... ,s,oo 

where si := # Sing(Caff) n Ci, X is the Euler characteristic and tpt(C) is 

an intersection form on H2(Xc,t:, Ql[t±l]) with twisted coefficients. 

Proof It is an immediate consequence of [31, Theorem 5.6] and 

the fact that ~~,t:(r 1 ) = ~~,t:(t) (by Corollary 2.8). Q.E.D. 

The fact that Alexander polynomials are not combinatorial invari

ants was already known (with a different language) by Zariski as men

tioned in the Introduction with the first example of a classical Zariski 

pair. 

A topological interpretation of classical Alexander polynomials can 

be given as follows: an n-th root of unity ( n > 1) is a root of the classical 

Alexander polynomial of a curve C if and only if the cyclic covering of the 

complement Xc ramified along each irreducible component of caff with 

order n has a bigger first Betti number than h1(Xc; q ([71, Corollary 

3.2]). Moreover the difference between the two Betti numbers is exactly 

the sum of the multiplicities of such roots. The reason for this is that 

the Alexander invariant Me is semisimple in this case, that is, it is a 

direct sum of modules with no proper submodules (also called simple 

modules). 

Analogously, for general Alexander polynomials one has the follow-

ing: 

Theorem 2.11. Let C be a curve and c: H1(Xc;Z)--> Zan epi

morphism. If an n-th primitive root of unity {n > 1} is a root of the 

Alexander polynomial ~c,t:(t) then the covering Xc,t: has a bigger first 

Betti number than h1(Xc; q. 
Moreover, 

m 

(16) hl(X'C,t:;C) = h1(Xc;C) + I:C~i, 
i=l 

where ai is the number of common roots between t;~ 1 1 and Ai(t) from (12). 
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Remark 2.12. 

(1) A similar formula for homology with coefficients in other fields 

exists [83, Theorem 4.6]. The field needs to contain all the n-th 

roots of unity. 

(2) Note that in general one cannot just count multiplicities in or

der to compute the first Betti number of cyclic (or abelian) 

coverings since the Alexander invariant need not be semisim

ple. For instance, consider the Example 2.5(2) of the three cus

pidal quartic and the bitangent line C'. According to Matei

Suciu [83] if E is the trivial morphism and n = 2, then the 

formula (16) is still valid 

2 

h1(x2,,"';JF3) = h1(Xc,;JF3) + L::ar, 
i=1 

but in this case h1(X2',c:;JF3)- h1(XC';JF3) = 2 even though 

t = -1 has multiplicity 4 in ~~~(t). 

2.2. Characteristic varieties 

Characteristic varieties were introduced by Hillman [55] for links, 

then systematically studied by Arapura [1] for Kahler manifolds, and 

first applied to algebraic curves by Lib gober [7 4]. They can be defined 

analogously to Alexander polynomials as follows. 

Let C := C1 u · · · u Cr similarly as at the beginning of this section, 

except that we are not asking any component to be a line. Let T := 

gcd(d1, ... , dr ). Then 

(17) H1(Xc· Z) = EB~-1 'Yiz ~ zr-1 E9 _.!_ 
' (dn1 + · · · + dr"fr) TZ' 

where 'Yi is the homology class of a meridian of ci. 

We can study the projective plane curve C as follows; let ab: G := 

11"1 (Xc) ---+ H 1 (Xc; Z) be the abelianization epimorphism. The kernel 

G' of ab defines the universal abelian covering of Xc, say Xc,ab ---+ Xc, 

whose group of deck transformations is G/G' = H 1(Xc;Z). Such a 

group acts on G' /G" = H 1(Xc,ab; Z) by conjugation as before endow

ing M~,ab := H1(Xc,ab; Z) with a Ac-module structure, where Ac := 

Z[G/G'] ~ Z[tr1, ... , t;= 1 ]/(t~ 1 ••••• t~r -1). 
One can tensor M~ ab by a field OC = Q, CC, JF P' •.. to obtain a module 

M~ab over A~= IK[trt'. ... , t;= 1 ]/(t~ 1 • •• • ·t~r -1) (in general we only ask 

A~ to be integrally closed and Noetherian). Since G is finitely presented, 
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M~ ab is again a finitely generated A~- module (by as many 1-cells as 

gen~rators of G). If r 2: 2, then A~ is not a Principal Ideal Domain 

and hence one has to study the module invariants of M~ab' that is, the 

Fitting ideals of M~ab· 
Let us briefly recall the notion of Fitting ideals. Let R be a commu

tative Noetherian ring with unity and M a finitely generated R-module. 

One has a finite free presentation for M, say <P : Rm ____, Rn, where 

M = coker ¢. The homomorphism <P has an associated ( n x m) matrix 

A,p with coefficients in R such that ¢(x) = A,pxt. 

Definition 2.13. The k-th Fitting ideal Fk(M) of M is defined as 

the ideal generated by 

if k :::; max{O, n- m} 

if k > n 

otherwise. 

It will be denoted Fk if no ambiguity seems likely to arise. 

Definition 2.'!4. [74] Under the above conditions the k-th charac

teristic variety of M can be defined as 

The subindex k is also known as the depth of a characteristic variety. 

Similarly, the k-th projective characteristic variety Char~IP'(C) of a 

curve C is the k-th characteristic variety of M~ ab as a A~- module. 

If L is a line not contained in C then A ~u~ is naturally isomorphic 

to JK[tt\ ... , t;= 1]. Moreover, if L m C then the A~uc-module M~uc ab 

does not depend on L by Proposition 1.16 and Char~IP'(L U C) is called 

the k-th affine characteristic variety and denoted simply by Char~(C). 

One can also define the k-th characteristic variety Char~(G) of a 

finitely presented group G as the k-th characteristic variety of the mod

ule MfJ obtained by considering the CW-complex associated with a given 

presentation (of course, such invariant is independent of the finite pre

sentation of G). 

In the particular case when lK = C and M = M~ab one has: 

• Spec ALuC = 'II'r = (C*t, for the affine case, and 

• SpecAc = 'II'c = {wi}[~l X (er-l = V(tf1 • •• • ·t~r -1) c r, 
where w is a T-th primitive root of unity for the projective case. 
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In the case of a finitely presented group G where GIG' zr EB 

Z/T1Z EB · · · EB Z/T8 Z we obtain 

SpecAa = 'll'a = {(w11 , ..• ,w!·) I ik = o, .. . ,Tk-1, k = 1, ... ,s}x(er, 

where Aa = <C[G/G'] and Wi is a TAh primitive root of unity. 

One might want to keep the non-reduced structure of the Fitting 

ideal. In that case we define the projective (resp. affine} k-th Fitting 

ideal of the curve C over the field IK and denote it as F"f;IP'(C) (resp. 

Fr(c)). 

Remarks 2.15. 

(1) Note that any isomorphism between two finitely presented groups 

G1 and G2 produces an automorphism of the ambient torus 

1!' a 1 = 1!' a 2 such that Chark ( G1) and Chark ( G2 ) are isomor

phic. 

Note however, that in some particular cases, like funda

mental groups of link complements (which will not be con

sidered here) or curve complements, the ambient torus has a 

natural system of coordinates. For instance in the latter case, 

a natural system of coordinates for 'll'c is given by the pre

ferred basis of H1(Xc;Z) described in (17). In that respect, 

the characteristic varieties of C as subspaces of the torus 'll'c 

are not directly an invariant of the group G, rather they are 

invariant of the embedding of C in JID2 , which is the group G 

with some peripheral information about the homology classes 

of the meridians of the irreducible components of C. 

(2) In the particular case of plane algebraic curves, due to the 

Hodge decomposition of H1 (Xc:,c; C) for appropriate branched 

coverings, the ring homomorphism A~ ---> A~ given by ti ---> 

r;1 induces an automorphism of the components of Chark(C) 

containing E (see [75, Theorem 3.1.c]). 

Proposition 2.16. If (J!D2 ,C) and (JID2 , V) are homeomorphic, then 

A IC := A~ = A~ in a natural way, and Mtf,ab :::::: M15,ab are isomorphic 

as A1C-modules. In particular Charf(C) = Charf(V). 

Proof. Let us denote by f : (JID2 , C) ---> (JID2 , V) the homeomorphism 

of pairs. Note that the image by f of any disk transversal to a component 

ci of c will be sent to a disk transversal to a component, say vi, of v. 
Since irreducible components intersect pairwise and always positively, it 

is possible to prove that f must either respect or reverse orientations on 

all the irreducible components of the curves. Therefore meridians will be 
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sent to meridians (up to sign) and the induced homomorphism of groups 

!*: H1(Xc;Z) ~ H1(Xv;Z) has the expected property f*('yc;) = 8"(v;, 

i = 1, ... , r (8 = ±1). By Remark 2.22 below, one can assume that 

8 = 1. Finally note that di := degCi = degVi is preserved, since it 
is a topological invariant and hence the first part follows and A C = 
C[tr1 , ... , t;=1JI(tt1 • ••• • t~r - 1). The fundamental groups of Xc and 

X v are isomorphic and the action of each ti on both M~ab = A c ®A 

1r1(Xc)' l1r1(Xc)" and M45 ab = Ac ®A 1r1(Xv)' l1r1(Xv)" is preserved 
by f. Therefore the second part follows. Q.E.D. 

Remark 2.17. 

(1) Note that the isomorphism of NK-modules exhibited in Propo

sition 2.16 is of a very special kind, since it comes from an 

isomorphism of fundamental groups inducing the identity on 

the abelianization. Since. the. Alexander invariant GIG" of a 
group G can be seen as an extension of GIG' by G' I G", this 
type of isomorphisms of NK-modules will be called extension 

isomorphisms. 

(2) Closely related to Remark 2.15.(1), if one wants to say some
thing about whether or not the fundamental groups of two 

curves are isomorphic, verifying that M~ab ~ M~,ab as mod

ules over an abstract A or Chark(C) i= Chark(V) is not enough. 
Instead, invariants of the isomorphism class of Chark(C) and 

Chark(V) should be used such as their total number of irre
ducible components of a certain dimension (see Section §4), or 

their combinatorial structure (see §2.3). 

Example 2.18. 

(1) Let G = zq *Zip1Z* · · · *Zip8 Z. According to Proposition 2.39 

where 

• A~ = IK[tr1, ... , ti~sl/(t~+ 1 - 1, ... , t~+s - 1), 
Pi 

• Tis the submodule generated by !:!:=~, i = 1, ... , s, and 

• .:1 is the Jacobian submodule. 
In this situation it is easy to see that 

][( (t~+l -1 t~+s -1) F1 (G)= , ... , . 
tq+l - 1 tq+s - 1 
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And hence, 

(2) Consider the Hopf link of d components. For convenience we 

denote its components as Li,j(i), j(i) = 1, ... , di, i = 1, ... , r, 

where I:~=l di = d. A natural presentation of its fundamental 

group G is given by meridians '"Yi,j(i) for each component and 

an extra generator a, and whose relations are [a, "fi,j(i)] = 1 

and 
r d; 

a II II '"Yi,j(i) = 1, 
i=l j(i)=l 

i.e, G is the direct product of .Z and the free group in d - 1 

generators. Then, A~ is a ring of Laurent polynomials in the 

variables sand ti,j(i)• j(i) = 1, ... ,di, i = 1, ... ,r, where the 

product of all variables equals 1. Applying Proposition 2.39 

one obtains 

Moc _ ffil<i<i<d A~xi,j 
a- wd + .:1 ' 

where wd is the submodule generated by s- 1, and .:J is the 

Jacobian submodule. Hence 

r d; 

Ff(G) = (s- 1) = (II II ti,j(i) - 1). 
i=l j(i)=l 

Remark 2.19. Note that if 0 ~ M' ~ M ~ M" ~ 0 is an exact se

quence of R-modules, then Charf(M) = Charf(M') U Charf(M"). Let 

L be a line transversal to C, and consider T(L) a tubular neighborhood 

of L. In this situation there is a surjection 

Following the notations of Example 2.18(2), we assume that the image 

of '"Yi,j(i) by this surjection is a meridian of ci. 

Since A~L = JK[tr1, ... ,t;!=1], the above morphism induces a ring 

morphism A~""--+-+ A~L given by ti,j(i) f--4 ti and s f--4 {tt1 • ••• • t~r)- 1 . 

Therefore, the surjection Mcoc,GL :=Me""® A~L ~ MLuC,ab induces 
an inclusion 

Charf(C) = Charf(GL) C Charf(Mcoo ® A~J = V(t~ 1 • ••• • t~r -1), 
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where the last equality can be computed from Example 2.18(2) above. 

In other words, even though the affine Char1 (C) seems to sit in the 

bigger torus 'Jl'T than the projective Char1,1P'(C), the fact is that both 
are contained in 'K'c. Moreover, they coincide as subtori of 'K'c ([75, 

Proposition 1.2.3]). In what follows we will use either one indistinctly. 

D. Arapura, in [1, Theorem 1.6] gives the following description of 

the structure of first characteristic varieties for certain Kahler varieties. 
We adapt the original statement for our particular case of curve com

plements. In order to do that we need the following concept. 

Definition 2.20. A (fixed component free) pencil of curves in JP'2 

is said to completely contain a curve C, if the induced morphism j : 
W2 -4 JP'1 (after blowing-up the corresponding base points) satisfies that 

C C j- 1(P), where Pis a finite subset oflP'1, and Cis the strict transform 

of C in W2 • Note that, if a pencil completely contains C, then f restricts 

to a well-defined holomorphic map f : JP'2 \ C = Xc -4 JP'1 \ P. A pencil is 
said to contain a curve C, if it completely contains at least one irreducible 

component of C. In addition, a pencil is called primitive if the fibers of 

j are connected. 

Theorem 2.21 ([1]). There exist a finite number of torsion points 

ci E 'K'c, unitary points t 3 E 'K'c, and primitive pencils containing C, 

fi : Xc -4 Vi = IP'1 \ Pi such that 

An analogous result follows for the affine case Char1(C). 

Note that any element of H 1 (Vi;C*) = Hom(H1(Vi;C),C*), i.e. 

any character on H 1 (Vi; C) can be seen as a point of Spec(A~J = 
Spec(C[H1(Vi; C)]) = '['h1 (V;;IC) and vice versa. Therefore ft H 1(1Ji; C*) 

is a subset of'K'c. Also note that edt H 1 (Vi; C*) refers to coordinatewise 
multiplication in 'K'c. Finally, Ci is a torsion point if ci' = (1, ... , 1) =: nr 
for some n E Z and t 3 is unitary if t 3 E (§1 t c 'K'c. 

Remark 2.22. According to a recent work by Libgober [78] unitary 

non-torsion isolated points cannot exist in Chark,IP'(C). Therefore, ac

cording to Remark 2.15(2), the ring automorphism A~ -4 A~ given by 

ti -4 ti 1 induces a skew automorphism of the corresponding modules 

M~ab· 

Certain components ofChark,IP'(C) can be inherited from subarrange

ments of C. More specifically, let us assume that V C Chark,IP'(C(i)) 
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is a non-empty component of the k-th characteristic variety of c(i) 

C1 u · · · u Ci-1 u Ci+l u · · · u Cr. Then the natural surjection 

Ae 

if j =I i 

if i = j 

induces an inclusion 

Spec(Ae<'l) = 1l'e<'l C 11'~ 

where 1!'~ = {(c:1, ... ,c:r) E 1l'e I Ei = 1}. 
This allows us to see both Me,ab and Me<'l,ab as Ae-modules and 

consider the natural surjection Me ,ab--+-+ Me< 'l ,ab, as a surjection of mod

ules. Remark 2.19 and the previous discussion imply that Chark,lP'(C(i)) C 

Chark,lP'(C) n 1!'(;. 

Definition 2.23. We call a component V of Chark,lP'(C) essential 

if it is not contained in any Chark,lP'(C(i))· Otherwise we say V is non

essential. We call V a coordinate component if it is contained in a 

coordinate torus 1!'~. Otherwise we say V is non-coordinate. 

Note that non-coordinate components are necessarily essential by 

the discussion above. 

Libgober proved in [75] that any positive dimensional coordinate 

component is necessarily non-essential. In [75] he also introduced ideal 

sheaves called ideals of quasi-adjunction denoted by A§", where X E 

(0, 1Y and X is determined by the configuration of singularities of C, 

and showed that points in Char~:P(C) (the non-coordinate components of 

Char1,lP'(C)) can be detected by studying the superabundance (see below 

for its definition) of a finite family of ideal sheaves A§ ( d- 3-eX), where 

Ex:= L~=l diXiE N (see [75] for details). 

(18) 

It is known that, for a given C, A§" satisfies the following properties. 

• The number of points X E (0, 1Y determined by the configu

ration of singularities of C is finite. 

• OJP'2 /A§" is supported on the singularities of C. 

• Let ~ : = ( 6, ... , ~r) E 1l' e be a torsion point such that ~f 1 • •.• • 

~~r = 1, and ~i =fcl. We define Xi := 2 ~~ E (0, 1). Under 

these notations, ~ E Char1,lP'(C) if the homomorphism CJx is 
not surjective. 

0 --> H 0 (IF2 , A§" ( d - 3 - £ x)) --> 

--> H 0 (IF2 , O(d- 3- Ex))~ EBPESinge OlP'2 ,P/(A§")p, 
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We say that there is a supembundance of dimension dim coker ax. 
In Example 2.24 below, we describe (A§")P in the case when 

P E Sing(C) is a double point. 

Moreover, in that case the exponential of the irreducible system 

of equations given by the local and global conditions provides an irre

ducible component of Char1,ll'(C) (by an irreducible system of equations 

with integer coefficients we mean an equivalent system where the integer 

coefficients of the variables are relatively prime). 

Example 2.24. 

(1) One of the simplest examples of positive dimensional non

coordinate characteristic varieties is the case of two conics 

C = C1 u C2 intersecting at two tacnodes. It is not hard to 

see that the pencil generated by cl and 02 induces an epi

morphism G := 1r1(Xc)---+-+ Z * Z/2Z =: G2 , where a meridian 

of C1 is sent to (1, 0) and a meridian of C2 is sent to ( -1, 1) 
(see [14, §4] for more details on this). By Example 2.18(1) 

Charf(C) C Charf(G2) = V(f2 + 1), where the embedding 
comes from the following morphism of rings: 

A~:= OC[tf 1 , t~ 1 ]/(t~t~- 1) 
tl 

--+ A~ 2 := OC[tf 1 , f~ 1 l/m- 1) 
~ fl 

t2 ~ t1 1f2 

Since the classical Alexander polynomial of C is trivial, Char1 (C) 

-1- 1!' c, and hence {( t, -r 1) I t E <C*} C 1!' c is an irreducible 

component of Char1(C). 

(2) Let us describe the local quasiadjunction ideals of the Ak

singularities (locally described as y 2 - xk+ 1 ). 

(a) If k = 2s, then there is only one local branch. In this case, 

r = 1. Given x1 E (0, 1) we associate 

if there exists 8 E N such that 

2s - 28 - 1 < 2(2s + 1 )x1 :::; 2s - 28 + 1 

if 2s- 1 < 2(2s + 1)xl. 

(b) If k = 2s - 1, then there are two local branches. In this 

case, r = 2. Given (x 11 x2) E (0, 1)2 we associate 

if there exists 8 E N such that 

s- 8- 1 < s(x1 + x2) :::; s- 8 

if s- 1 < s(x1 + x2), 
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Finally note that the description of ideals given here is 

local, analytical and not global, algebraic. In other words, 

if C has an Ak singularity at P, then the equation D of 

a curve 1J belongs to the local ideal m0 := (y, x 8 ) at P if 

the multiplicity of intersection of 1J with each branch of 

C at the singular point P is at least 8. 

The role of essential coordinate components is oftentimes important. 

For instance, in [8] an example of an Alexander equivalent Zariski pair 

was exhibited by computing the characteristic varieties. It turns out that 

they only differ in essential coordinate components. The problem with 

such components is that up to now, no algebra-geometrical condition 

has been found for their existence, so one needs to compute them via a 

presentation of the fundamental group. 

As we mentioned above, non-coordinate components can be detected 

by considering the singularities of C both locally and globally. To be 

more specific, all singularities seem to play a role, except for nodes, as 

the following result claims. 

Proposition 2.25. [31, Proposition 6.1] Let C;.., >. E (0, 1] be an eq

uisingular continuous family of curves degenerating into a curve C0 with 

the same non-nodal singularities as C;... Consider also a continuous fam

ily of non-coordinate epimorphisms E;.. : H 1 (Xc>..; Z) ----+ Z degenerating 

into Eo : H1 (Xc 0 ; Z) ----+ Z, then 

~C>..,C>.. (t) = ~Co,eo (t). 

Moreover, if Co has the same number of irreducible components as C;.., 

then one also has 

Char~c(C;..) = Char~c(Co) C 1l'c0 , 

where Char~c(C) denotes the union of the non-coordinate components of 

Char1(C). 

Note that the definition of non-coordinate epimorphisms is given in 

the paragraph preceding Remark 2.2. 

Finally we want to compare Fitting ideals, characteristic varieties, 
and Oka-polynomials. 

Theorem 2.26. Let C = Co u C1 u · · · u Cr be a curve where Co 

is a transversal line, denote by G its fundamental group, consider c = 
(cl, ... ,cr) E Hom(G,Z) an epimorphism, and the evaluation morphism 

ifJe : A~ = IK[tr\ ... , t;= 1] ----+ A~ = IK[t±1] 

ti f---+ t"'' 0 
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Then (t -1)qrpc:(Ff(C)) is a principal ideal generated by the Oka-polyno

mial ~~ c:(t). 

In p~rticular, Char~ n{ W1 ' ••• ' tcr) I t E ][{*} = Supp( A~ I ~~.g ( t)) . 

Proof Let Mif:ab be the Alexander invariant. Let 

Using for example the identity 

MJK. _ ker(81: Cl(Xc,ab) ~ Co(Xc,ab)) 

C,ab- Im(82 : C2(Xc,ab) ~ Cl(Xc,ab))' 

and the fact that gcd( c1, ... , cr) = 1 it is easy to check that 

-oc 
ker(81 : C1(Xc,ab) ~ Co(Xc,ab)) ®A 

= ker(81: Cl(Xc,c:) ~ Co(Xc,c:)) ® (t -1)A~ 

and Im(82 : C2(Xc,ab) ~ C1(Xc,ab)) ® A_IK = Im(82 : C2(Xc,c:) ~ 
Cl(Xc,c:)). Hence 

as A~-modules. The results follows from the exact sequence 

Moc ( Aoc )q JK. JK. JK. C,c: c: 
o~Mc,c:®(t-1)Ac: ~Mc,c:~ oc ( _ )AIK = -( _) ~o 

Mc,c: ® t 1 c: t 1 

and from [55, Lemma III.6]. Q.E.D. 

In other words, varying the epimorphisms c E Hom(G, zr) and com
puting their corresponding Oka-polynomials, one is able to recuperate 

Char1(C). 

2.3. The special case of line arrangements 

Characteristic varieties and Alexander polynomials of line arrange

ments have been largely studied in the recent years by Cohen-Orlik [32], 

Cohen-Suciu [33, 34], M. Falk [46], E. Hironaka [56, 57], Libgober [75], 

Libgober-Yuzvinsky [76, 77], M. Marco [81], and S. Yuzvinsky [129] 
among others. It turns out that the set of positive dimensional com~ 

ponents passing through the origin n of the characteristic variety of a 
line arrangement is combinatorially determined (this is also the case for 
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rational arrangements [30]). Components not passing through the origin 

sometimes exist [110, Example 10.6], but it is not known whether or not 

they are combinatorially determined. 

The example we want to describe in more detail was proposed by 

G.Rybnikov in the mid 90's ([102]). He presented a Zariski pair of line 

arrangements (in particular, both arrangements had the same combi

natorics). His final purpose was to prove that both arrangements had 

non-isomorphic fundamental groups. An alternative proof was proposed 

in [11] using the Alexander invariants plus an extra property that made 

the Alexander invariant an invariant of the fundamental group (this is 

usually not the case as mentioned in Remark 2.17(2)). 

We will briefly recall the concept of combinatorial type or (abstract) 

line combinatorics: 

Definition 2.27. A combinatorial type (or simply a (line) combi

natorics) is a couple 'f! := (£, P), where L is a finite set and P is a 

family of subsets of £, satisfying that: 

(1) For all PEP, #P ~ 2; 

(2) For any t\,£2 E £, £1 -=1- £z, there exists a unique PEP such 

that £1,£2 E P. 

An ordered combinatorial type 'i&'ord is a combinatorial type where L is 

an ordered set. 

In what follows we will present a typical technique that allows one 

to find Zariski pairs of line arrangements. It is directly related to 

the Alexander invariant and extension isomorphisms (Remark 2.17(1)). 

Other possible techniques related to Massey products have also been 

explored [82]. First we will describe some combinatorial types. 

Example 2.28 (Rybnikov's combinatorics). For details on this ex

ample see [11]. Let us consider V := Jlf~ \ {(0,0)}, where Jlf§ is the 

2-dimensional affine space on the field Jlf 3 of three elements. We define 

'i&'ML := (L'lfm, P'lf"J, where L'll'ML is the set of points in V and P'll'ML is 
the set of affine lines in V. Note that any affine line in V contains either 

two or three points of V (which implies property (1) in Definition 2.27). 

Also note that any two points in V define exactly one line in V (which 

implies property (2) in Definition 2.27). Thus 'i&'ML is a combinatorial 

type that will be referred to as MacLane 's combinatorial type. 

Recall that a combinatorics is called real if it admits a realization 

in CJP'2 whose global equation has real coefficients, whereas it is called 

strongly real if each line admits a real equation. Note that strongly 

real combinatorics admit strongly real curves as equations in the sense 

of (C2). 
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It is well known that the MacLane combinatorics is real but not 

strongly real and that its combinatorial stratum is connected, however 

its ordered combinatorial stratum has two connected components whose 

representatives have eight complex conjugated lines. Moreover, five of 

them are real and the remaining three have coefficients in Q[w], where 

w := exp( 2 7r~). 
We will refer to such ordered realizations as 

Let us decompose Lw = LoU L+ and Lw = LoU L_, where Lo := 

{£0 ,£\,£2 } and consider a projective transformation p fixing the initial 

ordered set L 0 (that is, p(Ci) = Ci i = 0, 1, 2) and such that pL+ and 

pL_ intersect both L+ and L_ only in double points. Note that p can 

be chosen with real coefficients. Let us consider the following ordered 

arrangements of thirteen lines: Ra,/3 = Lo U La U p£13, where a, f3 E 

{ +,-}. They produce a combinatorics 'i&'Rya with 13 lines, 33 double 

points, and 15 triple points. 

Using complex conjugation one can see that (IP'2 , R+,+) ;:::::: (IP'2 , R-,-) 

and that (IP'2 , R+, _) ;:::::: (IP'2 , R_ ,+). Hence, we will only deal with the 

Alexander invariants M+ (resp. M_) of R+,+ (resp. R+,-). 

One can prove ([11, Theorem 3.8]) that there is no extension iso

morphism (see Remark 2.17(1)) from M+ to M_ as A-modules, where 

A = Z[t1 , ... , tl2] and each ti represents a meridian around each affine 

line of R±,± in IP'2 \ £0 . 

Let C =Co u C1 u · · · u Cr be a line arrangement. We will denote by 

Iz the submodule of A~ ab generated by (t1 - 1, ... , tr- 1) and it will 

be referred to as the augmentation ideal. 

Proposition 2.29. The truncation Ml ab0A~/Iz of the Alexander 

invariant of C is completely determined by the combinatorics of C. 

Proof. A Zariski presentation of G := 1r1 (Xc) can be given as in 

Definition 1.17, where the set of relations of the presentation are com

binatorial up to conjugation. For instance, at each ordinary multiple 

point P of multiplicity k one obtains the following relations [x~ 1 , X] = 1 
J 

where X:= TI~=l x~j, ab = b- 1 . a. b, Xi is a meridian of the line ci, and 

i 1 , ... , ik are subindices of the k lines intersecting at P. The result is an 

immediate consequence of [11, Proposition 2.15] which assures that the 

class of [x~j, X] in Ml,ab 0 A~/Iz only depends on the abelian class of 

each x~i, that is Xi., and hence it is combinatorial. Q.E.D. 
J J 
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Let £ denote the combinatorial type of a line arrangement C. Since 

H 1 (Xc) only depends on £, it will be denoted it by He. Consider 

Aut(Hc) the set of automorphisms of He. Any h E Aut(He) induces a 

transformation of M'f ab ® A~j'P as follows h([xi, Xj]) = [h(xi), h(xj)] 

(since the elements [~i, Xj] generate G' this defines a transformation, 

but not necessarily an automorphism). The set of those elements in 

Aut(Hc) that induce automorphisms of M'f ab ® A~/Iz (as a group) 

will be denoted by Aut1(Hc). Let r(£) c Aut(Hc) denote the set of 

automorphisms that preserve the combinatorics. Note that if r.p E r(£), 
then ±r.p E Aut1(Hc). Thus {±1} X r(£) c Aut1(He). 

Definition 2.30. A line combinatorics £ is called homologically 

rigid if Aut1(Hc) = {±1} X r(£). 

Proposition 2.31. IJC is a line arrangement whose combinatorics, 

say £, is homologically rigid, then the Alexander invariant M'f ab as 

a A~-module is an invariant of the fundamental group 7ri(Xc) {up to 

extension isomorphisms). 

Example 2.32. Rybnikov's combinatorics 'ifRvs is homologically 

rigid ([11, Proposition 4.22]). We have mentioned above that no exten

sion isomorphism exists from M+ toM_. Therefore one concludes that 

7ri(XR+,+) ~ 7ri(XR+.-). 

2.4. Twisted Alexander polynomials 

Twisted Alexander polynomials have been developed and exten

sively studied in the mid 90's for knots. In many instances where abelian 

invariants were not able to identify a certain property of knots, non

abelian invariants such as these, were able to do it -see [67, 79, 124]. 
Later P. Kirk and C. Livingston [65, 66] were able to give partial answers 

to questions of mutation and concordance for general OW-complexes. 

Our purpose here is to define and briefly describe twisted Alexander 

polynomials for curves and some of their recent applications . follow

ing [31]. 
Let us consider the general setting of §2.1, that is, a curve C, its 

complement Xc, the epimorphism c : G := 7ri(Xc) -4 Z, Ke := kerc, 

and the infinite cyclic covering Xc,e· In addition let us consider a OC

vector space V of finite dimension and an (anti)representation 

p: G---* GL(V). 

Note that V inherits a right OC[G]-module structure denoted by VP' Let 

Xc,ab -4 Xc denote the universal abelian covering of Xc. Analogously 
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as mentioned in Remark 2.1 and the subsequent discussion, the cellu

lar chain complex C* (Xc,abi JK) also becomes a finitely generated (left) 

JK[G]-module generated by the lifts of the cells of X c. Hence, one defines 

c:·P(Xc; JK[t±1]) := Vp 0rrqK,] C*(Xc,ab) 

as a JK[t± 1]-module, where JK[t± 1] is a triviallK[G]-module, as follows: 

tn · (v 0 c) = V')'-n 0 ')'nC 

where 'Y E G verifies c:('Y) = t. 

Definition 2.33. The homology of (Xc,c:, p) is defined as the JK[t± 1]

module 

H!•P(Xc; JK[t± 1]) = H*(C"'·P(Xc, JK[t± 1])). 

Definition 2.34. The k-th twisted Alexander polynomial fl~,e:,p(t) 

of (Xc,c:,p) is the order of H~'P(Xc;lK[t± 1 ]). For short, we denote by 

flc,e:,p(t) = ~k::~:; the element of lK(t). 

See (12) for a definition of order of a module over a principal ideal 

domain. 

Remark 2.35. 

(1) Note that even if c:: G ____, 7Ljm7L was an epimorphism onto the 

finite cyclic group 7Ljm7L, all the definitions can be modified 

accordingly to suit this case. 

(2) Note that flc,e:,p(t) does not have to be a polynomial. For 

example, we can consider the projective three-cuspidal quartic 

Q, whose fundamental group G is shown in (1). Since G is finite 

we can consider the regular representation p : G ____, GL(12, JK) 

and the trivial morphism c: : G ____, 7L/ 47L. In this situation 

flQ (t) = { t~l ,e,p 1 

t2-l 

if charlK = 3 

otherwise. 

Under certain very general conditions, however, flc,e:,p(t) 

is a polynomial [31, Proposition 5.4]. 

(3) An alternative definition of flc,e:,p(t) can be given by means of 

Fox calculus -see [124]. 

Twisted Alexander polynomials can also be seen ([120, 121]) as the 

Reidemeister torsion of the complex of vector spaces obtained by ten

soring the usual CW-complex C* describing the homotopy type of Xc 
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by Vp and by JK(t). Since the Reidemeister torsion behaves well with re

spect to surgery of complexes, a division formula for twisted Alexander 

polynomials that generalizes Theorem 2.10 can be obtained. In order to 

do so, one needs the following construction: 

Suppose that we are given a curve C, an epimorphism c: H1(Xc) --+ 

Z, and a representation p : 1r1 (Xc) --+ GL(V). Let §~, ... , §~ be suf-

ficiently small 3-spheres around the singular points { P1, ... , P8 } of C. 

Denote by Lk = C n §~ the link of the singularity at Pk. Also choose a 

base point Qk E §~ \ Lk and denote by 1rk = 1r1(§~ \ Lk; Qk) the local 

fundamental groups at Pk. The inclusion maps ik : 7rk --+ 1r1 (X c) and 

(c, p) induce morphisms 

and Pk : 1rk --+ GL(V), 

for any k = 1, ... , s. Analogously, one can consider§= a sufficiently large 

3-sphere, L= = C n §= the link at infinity and define accordingly 1r=, 

c=, and P=· 

Theorem 2.36. [31, Theorem 5.6] Let C be a curve, c an epimor

phism, and p a unitary representation. Suppose also that the induced 

triples (Xc n §~, ck, Pk), k = 1, ... , s, oo are acyclic. Then 

r 

(II det(Id -p(vt)tqt)st-x(Ct)) · II D.Lk,Pk 

l=l k=l, ... ,s,CXJ 

= D.c,e,p · D.c,e,p · det ip8 'P(C), 

where V£ is the homology class of a meridian of the irreducible compo

nent Ct, S£ = #Sing( C) n Ct, and cp8 'P(C) is an intersection form on 

H~'P(Xc, Q[t±1]) with twisted coefficients. 

Remark 2.37. The condition of acyclicity is purely technical and can 

be expressed as follows. A triple (X, c, p) is acyclic if the chain complex 

C!'P(X;JK(t)) is acyclic over JK(t). 

In the irreducible case, something is known about the roots of the 

twisted Alexander polynomial of unitary representations. 

Theorem 2.38. [78, Theorem 5.3.] Let C be an irreducible curve 

and L is a line at infinity. Let p be a unitary representation of the 

fundamental group and let lK be the extension of Q generated by the 

eigenvalues of p('y) where "f is a meridian of C. Then the roots of D.p(C) 
belong to a cyclotomic extension of JK. 
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Note that in this case the morphism c is uniquely determined up to 

orientation. 

Finally, let us point out that twisted Alexander polynomials are sen

sitive to nodal degenerations, that is, Proposition 2.25 is no longer true 

for twisted Alexander polynomials as the following example illustrates. 

We say a plane projective curve V of degree, say d, is a type-! curve 

ifV is irreducible and has an ordinary (d-2)-ple point at some point, say 

P. Consider V a type-! curve and let £ 1 and £ 2 be lines through P such 

that either Li is tangent to a smooth point Pi E V or Li passes through 

a double point Pi =/= P of type A2r· Let us denote C = £ 1 + L2 + V. 

Assume that V has only nodes as singular points apart from P. We 

recall the following properties of such curves: 

• There exist nodal degenerations V>, ---> V 0 of non-rational type

! curves V>, (A > 0) into a rational type-! curve V 0 ([13, 

Corollary 3]). 

• Let V>, ---> Vo be a nodal degeneration as above. This produces 

a degeneration C>, --->Co, where C>, = £ 1 + £2 + V>,, A 2:: 0. If 

G>, denotes 1r1(Xv,J, then G>,, A > 0 is Abelian, whereas G0 

is not ([13, Proposition 6.1]). Moreover, a presentation of G0 

can be given as follows: 

Go=( C,x1,x2l [x1,x2] = 1,c-1x1C = x2,C- 1x2C = x1 ), 

where C is a meridian around a line and x 1 , x2 are meridians 

around Vo. 

Consider C>, ---> Co a degeneration as above. Let us denote by v1, 

v2 and ve the homology classes of the corresponding generators of Go. 

Since x 1 and x 2 are meridians of the same irreducible component, one 

has that v = v1 = v2 . Our purpose is to find a suitable representation 

that produces a sensitive twisted Alexander polynomial. Let us consider 

c the usual morphism c(vt) = c(v) = 1, and the rank 2 representation 

Using c and pone obtains 

(19) ~C 0 ,e,p(t) = (t2 - 1). 

Note that p(G0 ) ~ Z/2Z * Z/2Z. 
Finally note that, by Proposition 2.25, the classical Alexander poly

nomial ~c" (t) and the torsion non-coordinate characteristic varieties 

are invariant for A E [0, 1]. Since G>, is abelian, this implies that 

~c 1 ,e = ~Co,e = (t- 1) and Chari(Cl) = Chari(Co) = 0. 
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On the other hand, formula (19) shows that C0 has a non-trivial 

twisted Alexander polynomial, whereas any twisted Alexander polyno

mial of C>., >. E (0, 1] is trivial since G>. is abelian. 

2.5. Computational methods 

We have used the following result which is a straightforward gener

alization of [11, Proposition 2.8]. 

Proposition 2.39. Let (x, fj; W) be a presentation of G such that 

(1) x be the free group generated the words XI> .•. , Xr whose abelian 

classes generate GjG' = zq EB 7l../p17l.. EB • • • EB 7l./ps7l., q + s = r, 

(2) fi = (y1, ... , Yu) C G', 

(3) Vw(x, fi) E W, one has that w(x, 1) is a product of commutators 

in x and x:~H. 

Then the module M'fj admits a presentation f' j(T + .7 + W), where 

(1) Az=7l.[tt 1 , ... ,t;1]/(t:+1 -1, ... ,t~· -1), 

(2) T is the submodule of f' generated by the torsion relations 
p; 

ti+q- 1 . 
----'-'---, ~ = 1, ... 's, 
ti+q -1 

(3) .7 is the Jacobian submodule off' generated by the relations 

J(i,j, k) := (ti-1)Xjk-(tj-1)xik+(tk-1)Xij, 1::::; i < j < k::::; r, and 

( 4) W is the submodule of f' generated by subset of f' obtained by 

rewriting the relations W in terms off'. 

Proof. The same proof used in [11, Proposition 2.8] can be ap
plied using the Reidemeister-Schreier method to obtain a presentation 

of G' /G" (which is not finitely presented in general) and then apply the 
module structure to give the finite presentation as a module. Q.E.D. 

By Proposition 1.18, the fundamental group of the complement of 

any plane curve admits a presentation as in Proposition 2.39. In order 

to obtain the submodule W the following properties are very useful. 

Proposition 2.40. The following equalities hold in M'fj: 

(1) [x, x] = 0, 
(2) [x, y] = -[y, x], 
(3) [x-1, y] = -t;1 [x, y], 
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(4) [x,p] = (tx -1)p Vp E G', 

(5) [xy, z] = [x, z] + tx[Y, z], 

(6) [x * y, z] = [y, z] + (tz- 1)[y, x], where x * y = xyx- 1, 
n m i-1 

59 

(7) [x1· ... ·Xn,Y1'····Ym] = LLTij[Xi,yj], whereTij =II txk· 

i=1j=1 k=1 
j-1 

II tYt' 

£=1 

(8) Jacobi relations: 

J(x, y, z) := (tx- 1)[y, z] + (ty- 1)[z, x] + (tz--'- 1)[x, y] = 0, 

where tx represents the image of x E G in A~. 

Proof Property (1) is obvious (it is even true in G). For (2) note 

that xyx-1y-1 = (yxy- 1x-1) - 1. Property (3) follows from x-1yxy- 1 = 
x-1 (xyx- 1y-1) - 1 x. To prove (4) note that xpx-1 p- 1 = txp-p. Prop

erty (5) follows from [xy, z] = x (yzy- 1z- 1) x- 1 (xzx- 1z- 1). For (6), 

[x * y, z] = [[x, y]y, z] ~ [[x, y], z] + [y, z] ~ [y, z]- (tz- 1)[x, y] 
(2) 
= [y, z] + (tz- 1)[y, x]. 

Property (7) follows by induction and using property (2). Finally, for 

the Jacobi relations, note that on the one hand, by (5) 

(20) [xy, z] = [x, z] + tx[Y, z]. 

On the other hand, [xy,z] = [(x*y)x,z], then by properties (5) and (6), 
one has 

(21) (5) 

[xy, z] = [(x*y)x, z] = [(x*y), z]+ty[x, z] = [y, z]-(tz-1)[x, y]+ty[x, z]. 

The difference between (20) and (21) equals zero and the result follows. 
Q.E.D. 

§3. Non-abelian branched coverings and Zariski pairs 

In §2 we have mainly dealt with invariants associated with different 

sorts of abelian coverings. In this section we will give an approach to 

invariants related to non-abelian coverings. A more group-theoretical 

approach is given by the Hall invariants studied by Matei-Suciu [83] in 

relation with the Alexander invariant. The Hall invariant 8r (G) of a 
group G associated with a finite group r is defined as the number of 
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epimorphisms from G tor up to automorphisms of r. Matei-Suciu [83] 

prOVe that in the CaSe of metabelian groUpS f = (7L/q7L) 8 )<l 7Ljp7L, where 

p and q are distinct primes and sis the order of q mod pin (7L/p7L)x, 

the Hall invariant 8r (G) can be computed in terms of the characteristic 

varieties ChariF qs (G). 

Our approach here is more algebraic, in the sense that we ask our

selves whether or not there are any algebraic conditions on the singu

lar points of a curve C that can characterize the existence of certain 

metabelian coverings (in this case dihedral coverings). A posteriori tor

sion points in ChariFqs (C) have an algebraic interpretation in terms of 

position of singularities. 

3.1. Preliminaries 

Let X andY be normal varieties. We call X a (branched) covering of 

Y if there exists a finite surjective morphism n : X ---+ Y. When needed, 

the covering morphism will be specified as a covering n : X ---+ Y. 

Let n : X ---+ Y be a covering. The corresponding rational function 

fields will be denoted by <C(X) and C(Y), respectively. Note that <C(X) 

is an algebraic extension of <C(Y) and degn = [<C(X) : <C(Y)] (see e.g. 

[86, p. 46, Proposition 3.17]). 

Definition 3.1. Let X, Y and n: X---+ Y be as above. 

( i) We call X a Galois covering of Y if the field extension is Galois. 

( ii) Let G be a finite group. We call X a G-covering if X is a 

Galois covering of Y with Gal(<C(X)/<C(Y)) ~G. 

We say that x E X is a ramification point of 71" if n*mY,f(x)Ox,x~ 

mx,x , where mx,x and mY,f(x) are the maximal ideals of Ox,x and 
OY,f(x)' respectively. Geometrically, this means that n is not a local 

isomorphism around x. The set of all ramification points will be denoted 

by R"'. Its image n(R"') is the branch locus of n and will be denoted by 

Ll"' or il(X/Y). By the purity of the branch locus [133], if Y is smooth 

then Ll"' is an algebraic subset of pure codimension 1. 

When we apply the algebraic theory of branched coverings to the 

study of Zariski pairs, we consider their associated analytic spaces. Here 

we summarize some results from algebraic geometry and analytic geom

etry which will be needed later. 

Let Y be a normal algebraic variety over C. We denote by yan its 

associated analytic space. The following statements are key in relating 

branched coverings of Y with those of yan. 

Theorem 3.2. Let Y be a proper normal variety over C. Let X 

be a normal complex analytic space and let f : X ---+ yan be a proper 
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morphism with finite fiber. Then there exists a unique normal variety 

X (up to isomorphism over Y) and a finite morphism 1r : X --+ Y such 

xan ~X and 1ran = f (up to isomorphism between xan and X). 

For a proof, see [52, EXPOSE XII, Corollaire 4.6]. The following 

theorem can also be found in [52, EXPOSE XII] or [51, Theorem 5.4]. 

Theorem of Grauert-Remmert 3.3. Let Y be a normal analytic 

space and let B be a closed analytic subset of codimension 1. Let 7r0 : 

U --+ Y \ B be an etale finite covering of Y \ B. Then there exist a 

normal analytic space X containing U and a finite surjective morphism 

1r : X --+ Y such that 1r-1(Y \B) = U and rrlu = 7r0 • Moreover X is 

unique up to isomorphism over Y. 

Notation 3.4. Let 1r : X --+ Y be a G-covering of a smooth pro

jective variety Y. Let B be a reduced divisor on Y whose irreducible 

decomposition will be denoted by B = B1 + · · · + Br. Given a morphism 

O" : X --+ Y between smooth projective varieties and a divisor D in Y, 
a*(D) (resp. a-1(D)) will denote its inverse image as a divisor (resp. 

as a set). Its strict transform will be denoted by a;;1(D). 

Definition 3.5. A covering 1r is said to be branched at e1B1 + · · · + 
erBr (ei ;::: 2) if 

• ~71" =Band 
• the ramification index along the smooth part of B':n is ei. 

Namely, for any smooth point y E Bfn and x E (rran)-1(y), 

there exist neighborhoods Ux and Vy, respectively, such that 
1ran is locally given by 

where ( z1, ... , Zn) and ( w1, ... , Wn) denote local coordinates on 

Ux and Uy, respectively, such that x = (0, ... , 0), y = (0, ... , 0) 
and Bfn n Vy is given by Wl = 0. 

Let 'Yi be a meridian around Bi as in Figure 1, and ['Yi] denote its 
class in 1r1(yan \ Ban,p0 ). 

Proposition 3.6. Let Y be a smooth projective variety and let B = 

B 1 + · · · + Br be the decomposition into irreducible components of a 

reduced divisor B on Y. If there exists a G-covering 1r : X --+ Y branched 

at e1B1 +· · ·+erBr, then there exists a normal subgroup H11" ofrrl(yan \ 
Ban,p0 ) such that: 

(i) ['Yi]e; E H71", ['Yi]k ~ H11", (1:::; k:::; ei -1), and 

(ii) 7rl(yan \ Ban,Po)/H11" ~G. 
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Conversely, if there exists a normal subgroup H of 1r1 (Yan \Ban, p0 ) 

satisfying the above two conditions for Hrr, then there exists a G-covering 

1l'H: XH ____, Y branched at e1B1 + · · · + erBr. 

Proof Since G acts on X such that Y = X/G ([114]), G also acts 
on xan ([52, §3]) transitively on each fiber (7ran)- 1 (y), y E Y. Hence 
xan /G = yan. Since xan \ (7ran)- 1 (Ban) ____, yan \Ban is etale, our 

statement easily follows from the standard theory of covering spaces. 

Conversely, let H be the normal subgroup in the statement. Let X~ 
be an etale covering of yan \Ban corresponding to H. By Theorem 3.3, 

there exists a normal analytic space XH and a finite morphism 7rfF : 
XH ____, yan extending the covering morphism X~ ____, yan \ Ban. Since 

G ~ 1ri(Yan \ Ban,p0 )/H acts on X~ so that X~/G = yan \Ban, G 

also acts on XH ([52, Proposition 5.3]). Hence one has a morphism 

XH /G ____, Y, which is finite and an isomorphism on yan \Ban. By 

Zariski's main theorem (e.g., see [122, Theorem 1.11]), XH/G ~ Y. 

By Theorem 3.2, there exists a normal variety XH and a finite mor

phism 1l'H : XH ____, Y. Since G acts on XH, it also acts on XH over 

Y. This implies that G C Autqy)(<C(X)). Since deg1rH = #G, XH 

is a G-covering of Y and thus the statement on the ramification index 

follows from how we extend X~ to XH along Bi. Q.E.D. 

Remark 3.7. We recall some facts on Galois theory of Galois cover

ings. Let Y be a normal algebraic variety. Let K be a finite extension 

of <C(Y) and let XK be the normalization of Y in K called the "K

normalization ofY ". There exists a canonical finite surjective morphism 

1l'K : XK ____, Y. Hence XK is a covering of Y with <C(XK) = K. If K is 

a Galois extension, then 1l'K : XK ____, Y is a Galois covering. Conversely, 

note that any covering 7r : X ____, Y defines a finite field extension C(X) 

of <C(Y). 

Let G be a finite group and let H be a normal subgroup. Consider 

a Galois extension K of <C(Y) with Gal(K/<C(Y)) ~G. 

Let 7r: X____, Y beaG-covering corresponding the extension K/<C(Y). 

Let K H be the fixed field by H. The field K H is also a Galois exten

sion of <C(Y) with Gal(KH j<C(Y)) ~ G/H. Let DH(X/Y) be the KH

normalization of <C(Y). Since K/ KH is an H-extension and KH j<C(Y) 

is a G/H-extension, XK is an H-covering of DH(X/Y) and DH(X/Y) 

is a G / H -covering of Y. The corresponding covering morphisms will be 

denoted by 

(22) f3I,H(7r) : DH(X/Y) ____, Y, and f32,H(7r) :X____, DH(X/Y). 

Note that 7r = f3I,H(7r) o f32,H(7r). 
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3.2. Dihedral coverings 

Let D2n denote the dihedral group of order 2n. The following 
presentation of D2n will be extensively used throughout this section 

(a,T I a 2 = Tn = (ar)2 = 1). 

Remark 3.8. Since we consider non-abelian branched coverings, we 

will always assume that #D2n ~ 6. 

Following the notation introduced in §3.1, we will study the case 

G = D2n and H = (r). Since there is no ambiguity for H, we will 

use notations D(X/Y), f31(1r) and /32(1r) for simplicity. The notion of 

generic and non-generic D2n-coverings will be key in our arguments. 

Definition 3.9. A D2n-covering 7r: X~ Y of a smooth variety Y is 

said to be generic if Ll'/l" = Ll,a1 (7r)' otherwise 1r is said to be non-generic. 

Note that, if 7r : X ~ Y is a D2n-covering, then D(X/Y) is a 

double covering of Y and X is ann-cyclic covering of D(X/Y), whose 
morphisms will be denoted by /31 (1r) and /32(1r) respectively, as in (22). 

Remark 3.10. In what follows, Y will be assumed to be smooth and 

simply connected. Also note that "' will denote linear equivalence of 
divisors. 

Let us start with a sufficient condition for the existence of D 2n

coverings. 

Proposition 3.11. Let Z be a smooth double covering of Y with 

covering morphism f : Z ~ Y and D be an effective divisor on Z such 

that: 

(i) 

( ii) 

(iii) 

D and a* D have no common component, where a denotes the 

covering transformation, 

if D = L~=l aiDi is the irreducible decomposition, then for all 

i = 1, ... , h, 0 < ai and gcd{a1, ... ,ah,n} = 1, and 

there exists a line bundle £ on Z such that D - a* D "' n£. 

Then there exists a D2n -covering X of Y such that 

(a) D(X/Y) = Z, 

(b) the branch locus Ll,a2 (7r) of f32(1r) is contained in Supp(D + 
a* D), i.e., Ll(X/Y) C Ll,a1 (7r) U f(Supp(D)) and 

(c) if D i c Ll,a2 ( 71"), then the ramification index along D i is 
n 

gcd(n, ai) · 

Proof. For n odd, our statement is a special case of [117, Propo

sition 1.1], except for part (c), which follows from the proof of [117, 
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Proposition 0.4]. For n even, a similar proof to that of [117, Proposition 

1.1] also works by [117, Remark 3.1, Proposition 0.6]. Q.E.D. 

As for a necessary condition for the existence of D 2n-coverings, one 

has the following: 

Proposition 3.12 ([112, §2, §3]). Let 7f: X --7 Y be a D 2n -covering 

such that D(X/Y) is smooth. Let us denote by u the covering transfor

mation of j31 ( n). Then there exist (possibly empty) effective divisors, 

D 1 and D 2 , and a line bundle £ on D(X/Y) satisfying the following 

conditions: 

(i) D 1 and u* D 1 have no common components. Moreover, if we 

denote its irreducible decomposition by I:;1 a1 D 1,1 , then 0 :::; 

a1 < n. 

( ii) If D2 -=f. 0, then n is even and D2 is a reduced divisor such that 

there exists a divisor B2 on Y satisfying D2 = f* B2. 

(iii) D 1 + iD2 - u* D 1 ""'n£. 

(iv) !:::..(X/ D(X/Y)) = Supp(D1 + u* D 1 + D 2). The ramification 

index along D1,j (resp. an irreducible component of D2) is 
n 

d( ) (resp. 2 ). 
gc ai, n 

Corollary 3.13. Let D be an irreducible component of !31 (n)(l:::..;32 (1r))· 

If the ramification index of /32 ( n) along /31 ( 7f) - 1 (D) is > 2, then the di

visor /31 ( 7f) * D is of the form D' + u* D' for some irreducible divisor D' 

on D(X/Y) such that D' -=f. u* D'. 

3.3. Zariski's example and D 6-coverings 

Let us review Zariski's example of sextics with six cusps using D6 -

coverings as in Zariski's original proof. Our purpose is to give a de

tailed proof in modern language of (Z5). Let us start with the following 

Lemma. 

Lemma 3.14. Let B be a sextic with 6 cusps such that a D6 -

covering 7f : S --7 lP'2 with I:::..(S/IP'2) = B exists. Then the following 

statements hold: 

(i) j31 (n): D(S/IP'2) -?JID2 is a double covering branched at 2B. 

(ii) The branch locus of j32(n) : S --7 D(S/IP'2) is contained in 

Sing(D(S/IP'2)) and Sis smooth. 

Proof. For (i), since lP'2 is simply connected one has !:::..;3,(1r) -=f. 

0. This means l:::..;31 (1r) = B. For (ii), we first show that t::.. 132 (1r) c 
Sing(D(S/IP'2)) and !:::..132 (1r) -=f. 0. Since D 6 has no element of order 6, 
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/32(1r) cannot be branched along j31(7r)-1(B). This means that ~,8 2 (1r) C 

Sing(D(S/JID2)). Let JL: Z ~ D(SjJID2 ) be the minimal resolution. Since 

Kz ,...., 0 and the irregularity q = 0 by a general theory of double coverings 

(see [58, §2]) one has that Z is a K3-surface. In particular, Z is simply 

connected. If /32(1r) : S ~ D(SjJID2 ) is unramified, then Z Xv(Sf'i'2) S 

gives an etale cyclic triple covering of Z, but this is impossible. Hence 

~,8 2 (1r) =F 0. By [118, Lemma 8.8], ~,a 2 (1r) = Sing(D(S/JID2 )). Finally, the 
local structure of 1r around a cusp of B (described in [111, §2, Example 

3]) forces S to be smooth. Q.E.D. 

Lemma 3.15. Let B be a sextic with 6 cusps. If a D6 -covering 

1r : S ~ JID2 branched at 2B exists, then 

(i) the quotient surface X:= S/(a) is smooth for any element of 

a E D6 of order 2, 
(ii) Kx,...., -1f*l, where 1f: X~ JID2 denotes the induced non-Galois 

triple covering and l denotes a line of JID2 , and 

(iii) X is a del-Pezzo surface of degree 3. 

Proof. For ( i), due to the local structure of 1r : S ~ JID2 around each 

cusp of B ([112, Example 3, §2]), 7r* B is of the form 2(Rl + R2 + R3), 

where Ri is a smooth divisor such that T acts on the set {Rb R2, R3} 

transitively. One may assume that the fixed locus of a is R 1, and this 

implies that X is smooth. 

For ( ii) and (iii), note that S is a K3-surface. Let us assume that the 

ramification locus of the quotient morphism a : S ~ X is R1. Since 

R~ = 6 and R1 is smooth, R 1 is numerically effective by [19, Proposition 

VIII 13]. Also note that 0,...., Ks,...., a* Kx+Ri> and hence a* Kx,...., -R1. 

Thus -Kx is numerically effective and Kl = 3. This implies that X is 

a rational surface. 

Now choose a general point x of JID2 . Let p : X ~ X be the composition 

of the blowing-ups at the three points of w-1(x). The pencil of lines 

through x on JID2 induces an elliptic fibration 'Px : X ~ JID1 and the three 

exceptional curves of p give sections of 'Px. 

In order to complete the proof, we need the following result. 

Claim 3.16. 'Px : X ~ JID1 is relatively minimal. 

Proof of Claim. Since Ki = 0 and X is a rational surface, the 

topological Euler number of X is 12. This implies that 'Px is relatively 

minimal. Q.E.D. 

By this Claim, K x ,...., - F, F being a fiber of 'Px. By our construction 

of X, p*(1f*l) ,...., F + E1 + E2 + E3, where Ei (i = 1, 2, 3) denote the 
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exceptional curves of p. Hence 

Therefore 1f*l rv -Kx. In particular, -Kx is ample and thus X is a 

del-Pezzo surface of degree 3. Q.E.D. 

We are now in a position to prove the following: 

Proposition 3.17. Let B be a sextic with 6 cusps. Then there exists 

a D 6 -covering branched at 2B if and only if B is given by an equation 

of the form F 3 + G2 = 0, where F(X0 , X1, X2) and G(Xo, X1, X2) are 

homogeneous polynomials of degree 2 and 3, respectively. 

Proof. Suppose that B is given by the equation F 3 + G2 = 0 as 

above. Consider the cubic surface X in Jlll3 given by 

X: Xr + 3F(Xo, X1, X2)X3 + 2G(Xo, X1, X2) = 0, 

where [Xo : X1 : X2 : X3] denotes a homogeneous coordinate system 

of Jlll3. Let P = [0 : 0 : 0 : 1] and let prp : Jlll3 --+ Jlll2 be the projec

tion centered at P. The restriction prp to X gives a non-Galois triple 

covering prp1x : X ---+ Jlll2. By its defining equation, 1'1(X/Jlll2) = B. 

The Galois closure K of C(X) is a D6-extension of C(Jlll2) and the K

normalization S of Jlll2 is a D 6-covering 1r : S ---+ Jlll2. By [111, Lemma 

1.4], 1'1(S/Jlll2) = 1'1(X/Jlll2) = B and by Lemma 3.14, 1r is branched at 

2B. These arguments follow Zariski's original idea. 

The converse is the less detailed part in [130]. Suppose that there 

exists a D6-covering 1r : S ---+ Jlll2 branched at 2B. Let 1f : X ---+ Jlll2 be 

a non-Galois triple covering as in Lemma 3.15. By [111, Lemma 1.4], 
1'1(S/Jlll2) = £1(X/Jlll2 ) = B and X is a del-Pezzo surface of degree 3 
according to Lemma 3.15. Hence X is embedded as a cubic surface in 

Jlll3 and its embedding is given by ¢1-Kxl· Moreover, since Kx rv -1f*l 

by Lemma 3.15, one has the following commutative diagram: 

X <PI-Kxl 
Jlll3 \{Po} 

lpr 

where pr denotes the projection centered at a suitable point Po E Jlll3 \ 

¢1-Kxi(X). By choosing homogeneous coordinates [Xo : X1 : X2 : X3] 
appropriately, one may assume that Po = [0 : 0 : 0 : 1]. This implies 

that pr is given by 
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and that ¢1-Kxi(X) is given by the equation 

Xi+ g1(Xo, X1, X2)X~ + g2(Xo, X1. X2)X3 + g3(Xo, X1, X2) = 0, 

where gi(Xo, X1. X2) are homogeneous polynomials of degree i. Now the 

defining equation of B is given by the discriminant of the above cubic 
equation which is 

Q.E.D. 

Remark 3.18. Any sextic given by an equation of the form F 3 + 

G2 = 0, where F and G are homogeneous polynomials of degrees 2 and 
3, respectively, is called a (2, 3)-torus sextic. Zariski pairs of sextics 

given by (2, 3)-torus and non-torus sextics are extensively studied by 

Oka [95, 96]. He uses Alexander polynomials to distinguish the topology 
of the complements. It may be interesting to revisit his proofs using the 

geometry of cubic surfaces. 

3.4. Generic D2n-coverings and Zariski pairs 

In this section, an application of generic D2n-coverings for the study 
of Zariski pairs will be shown. This method was used in [12, 15, 113, 

115, 116]. Let 'E be a smooth projective surface and let B be a reduced 

divisor on 'E. 

Remark 3.19. Thoughout this section, 'E is assumed to be simply 

connected. 

Our purpose is to answer the following question: 

Question 3.20. Are there necessary and sufficient algebraic condi

tions on B for the existence of generic D2n -coverings with ~11" = B '? 

Suppose that Question 3.20 has a positive answer and let (P) be 

such a condition. The existence of a pair (B1, B2) ofreduced divisors on 

'E such that B1 satisfies (P), while B2 does not, implies that ('E, B1) ';fi 
('E, B2). Hence if 'E = JP>2 and the combinatorial data of B1 and B2 are 

the same, (B1. B2) is a Zariski pair. 
Now let us consider Question 3.20 in the case of n odd. The existence 

of a double covering f' : Z' ---+ 'E with ~ !' = B will always be assumed. 
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Z' +------ Z 
1-' 

I: +------ w. 
p 

denote the canonical resolution of Z' (see [58] for a definition). 

Lemma 3.21. Let 1r : S ---+ I: be a generic D2n -covering with fl.,. = 

B (n is not necessarily odd in this lemma). Then 

(i) D(SjE) ~ Z' over I: and 

(ii) fl,a2 (.,.) c Sing(D(S/E)). 

Proof By hypothesis, the branch locus of j31 (1r) : D(SjE)---+ I: is 

B. Since I: is simply connected, any double covering of I: is determined 

by its branch locus up to isomorphism over E. This implies (i). The 

statement ( ii) is immediate by hypothesis. Q.E.D. 

Suppose that a generic D 2n-covering 1r : S ---+ I: with fl.,. = B exists. 

Let S be the C(S)-normalization of W and let P, : S---+ S be an induced 

morphism. The induced covering morphism from S to W will be denoted 

by ir. Note that S is again a D 2n-covering and one may assume that 

D(SjW) = Z, since C(Z') = C(Z) and the C(S)-normalization of Z is 

also S. Thus one has the following commutative diagram: 

s +------ s 
ji, 

,62(7r) 1 1,62(;!-) 

Z' +------ z 
1-' 

!'=,61(7r) 1 lf=,6l(TI-) 

I: +------ w. 
p 

By Lemma 3.21(ii), j32 (ir) : S ---+ Z is ann-cyclic covering whose 

branch locus is contained in the exceptional locus of f.-L· 

Conversely, suppose that there exists an n-cyclic covering g : X ---+ Z 

such that: 

(Dl) fl9 is contained in the exceptional locus of J.-L and 

(D2) the composition fog : X ---+ W gives rise to a D 2n-covering. 

The Stein factorization of p of o g : X ---+ I: gives a generic D 2n-covering 

of I: with fl(X/E) =B. Thus Question 3.20 is reduced to the following: 
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Question 3.22. Find a sufficient and necessary condition for the 

existence of ann-cyclic covering g : X ~ Z satisfying (D1) and (D2) 

above. 

As usual, let us denote by a the covering transformation of the 

double covering f. Propositions 3.11 and 3.12 provide a partial answer 
to Question 3.22 as follows: 

Proposition 3.23. Assume that Z is simply connected. A generic 

D2p-covering (p odd prime) 1r : S ~ E with ~11" = B exists if and only 

if there exist a non-empty effective divisor D and a line bundle £ on Z 

satisfying the following conditions: 

(i) D and a* D have no common components. Moreover, if D = 

Li aiDi denotes its irreducible decomposition, then gcd( ai, p) = 

1. 

( ii) Supp(D +a* D) is contained in the exceptional set of p,. 

(iii) D - a* D "' p£. 

Proof As noted above, a generic D2n-covering 1r : S ~ E with 
~11" = B exists if and only if there exists another D2n-covering 7i': S ~ 
W satisfying conditions (D1)-(D2) above. Applying Propositions 3.11 

and 3.12 to /32(1i') = f: Z ~ W the statement follows, since the branch 

locus of /32 ( 7i') is non-empty and is contained in the exceptional set of p,. 

Q.E.D. 

From now on, we assume that singularities of B are at most simple 
singularities (see [20] for simple singularities). In this case, another 

version of Proposition 3.23 can be stated. In order to explain it, we 

need some preparation. 
Let us keep the assumption in Proposition 3.23. Since Z is simply 

connected, H 2 (Z, Z) is a unimodular lattice with respect to the inter
section pairing. Let NS(Z) be the Neron-Severi group of Z. It is a 

sublattice of H 2 (Z,Z) such that H 2(Z,Z)/NS(Z) is torsion-free. Since 
Z is simply connected, the Picard group Pic(Z) coincides with NS(Z). 

For x E Sing(Z'), Rx denotes the subgroup of NS(Z) generated by the 
irreducible components of the exceptional set arising from x. The lat

tice Rx is a negative definite sublattice of NS(Z). One can define the 
following sublattice of NS(Z): 

T:= EB Rx. 

xESing(Z') 

Given a lattice L, its dual lattice will be denoted by Lv and its quo

tient modulo L by G L := L v / L. Associated with T one has GT ~ 
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The type of x QRx 

An Zj(n + 1)Z 

][j)n n = 1 mod 2 Z/ 4Z 

][j)n n = 0 mod 2 (Z/2Z)ffi~ 

IE6 Z/ 3Z 

IE7 Z/2Z 

IEs {0} 
Table 2. 

EBxESing(Z') GRx· For a rational double point x, the results of Table 2 

are well known. 

One can consider both Rx and R'j, as subgroups of Rx ®Q and give a 

Q-divisor which produces a generator of G Rx in the cases of x = IE6 and 

An. This will come in handy for later use. For this purpose, let us label 

the irreducible components of the exceptional divisors for singularities 

of type An and IE6 as in Figure 10. Note that u*8k = 8n+l-k if x is of 

type An, and u*81 = 86, u*82 = 85 if x is of type IE6. 

Fig. 10. 

D 
Lemma 3.24. G R is generated by the class of Q-divisors __ x_ 

x n+1 

( resp. ~x) for x of type An ( resp. x of type IE6), where 

l ':j-:~:)n + 1- k)(8k- 8n+l-k) 
D _ k=l 

x - L;~~ (n + 1- k)(8k- 8n+l-k)+ 

n+l8 !!±! 
2 2 

if x is of type An, n even 

if x is of type An, n odd, 
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and 

Proof Our statement easily follows by considering the inverse of 

the intersection matrix of Rx. Q.E.D. 

Let us now concentrate on the torsion part (NS(Z)/T)tor ofNS(Z)/T. 

Lemma 3.25. 

(NS(Z)/T)tor ~ T.l.l /T, 

where •.l denotes the orthogonal complement in H 2 ( Z, Z). 

Proof Since H 2 (Z, Z)/ NS(Z) is torsion free, one has NS(Z).l.l = 
NS(Z). This implies that T.l.l c NS(Z). Since (NS(Z)/T))tor c 
T.l.l /T, the result follows. Q.E.D. 

Let v be the homomorphism T.l.l ____, Tv ____, Gr. Let L be an 

element in T.l.l such that its image in Gr has order p (p odd prime). 

Since Gr ~ ffixESing(Z') G Rx, one has 

v(L) = ('/'x)xESing(Z') E E9 GRx· 

xESing(Z') 

Note that 'Yx = 0 unless x is a singular point of type An ( n+ 1 = 0 mod p) 
or type JE6 (the latter case happens only when p = 3). 

Lemma 3.26. Assume that 'Yx =/= 0. If x is a singular point of type 

An (n + 1 = 0 mod p), then 

"fx = the class of';- Dx 0 < kx :S: p - 1, 

and if x is a singular point of type lE6, then p = 3 and 

"fx = the class of k3 Dx kx = 1, 2, 

where Dx denotes the divisor in Lemma 3.24. 

Proof Since Rx is a cyclic group generated by the class described 

in Lemma 3.24, the result follows. Q.E.D. 

Now we are in a position to state another version of Proposition 3.23. 

Theorem 3.27. A generic D2p-covering (p odd prime) of~ with 

~11" = B exists if and only if NS(Z)/T has a p-torsion element. 
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Proof. Suppose that there exists a generic D2p-covering with branch 

locus B. Then by Proposition 3.23, there exists a non-empty divisor D 

and a line bundle £ satisfying the three conditions. One can show that 

£gives rise to a p-torsion element of NS(Z)jT. By the condition (iii) 
of Proposition 3.23, p£ E T. Hence it is enough to show that £ ~ T. 

Suppose that £ E T. Hence £ f'V LxESing(Z') Li mi,xei,x, where ei,x 
denotes the irreducible components of the exceptional set arising from 

x. By plugging this relation into the one given in condition (iii), one 

obtains a non-trivial linear relation among ei,x 's. This leads to contra

diction. 

For the converse, let us suppose that NS(Z)/T has a p-torsion el

ement. By Lemma 3.25, there exists an element L1 in T.L.L such that 

whose class in T.L.L jT has torsion p. By Lemma 3.26, 

" kx L1 "'IQI ~ - Dx mod T, 

xESing(Z') p 

where "'IQI denotes Q-linear equivalence of divisors. This implies that 

there exists an element L 2 in T such that 

Let us define a divisor D on Z as follows: 

D= L D't, 
xESing(Z') 

where D;% is defined as: 

• D;% = 0, if 'Yx = 0. 

• D;% = kx ( 2:::!1 ( n + 1 - i)8i) , if 'Yx f:. 0 and x is of type An 

(n even). 

• D;% = kx (L:;l11 
(n + 1- i)8i), if 'Yx f:. 0 and xis of type An 

(n odd). 

• D;% = kx(81 + 282), if "fx f:. 0 and X is of type !Efi. 

By the definition of D, 

D -a* D ,...., p(L1 + L2 - La), 

where 
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Moreover, the greatest common divisor of the coefficients of the ir

reducible components of D and p is 1. Thus the pair (D, £), £ = 
L 1 + L 2 - L 3 , satisfies the conditions in Proposition 3.23. Q.E.D. 

Example 3.28. Let us consider Zariski's example from the view

point of Theorem 3.27, where ~ = IP'2 and B is a sextic with 6 cusps. 

In this case, the double covering f' : Z' --+ IP'2 with ~ f' = B has 6 

A2-singularities Xi (i = 1, ... , 6) and its canonical resolution Z is a 

K3-surface. Hence Z is simply connected. Let us denote by 8i,J the ex

ceptional curves arising at Xi (j = 1, 2). By Proposition 3.17, a generic 

D 6-covering 1T : S --+ IP'2 of IP'2 with ~71' = B exists if and only if B is a 

(2, 3)-torus curve. 

If B is a (2, 3)-torus curve, there exists a conic Q passing through 

the 6 cusps. One can show that Q gives rise to a 3-torsion element 

in NS(Z)/T. Let p;; 1 Q be the proper transform of Q in W. Then 

f*(p;; 1 Q) is of the form Q+ + Q-. After relabeling 8i,J if necessary, we 

may assume that Q+. ei,l = 1, Q- . ei,2 = 0 (i = 1, ... '6). 

Claim 3.29. 3Q+ ,...., 3]*1- L~=l (28i,l + ei,2), where l denotes a 

generic line in IP'2 and j = p o f. 

Proof of Claim. Let us consider 

6 

D := 3Q+- 3]*l + 2::)2ei,l + ei,2)· 

i=l 

One can see that (]* l) · D = 0 and D 2 = 0. By the Hodge index theorem, 

one has that D ~ 0. Since Z is simply connected, D ,...., 0. Q.E.D. 

By the Claim, note that the class of Q+ - ]*l in NS(Z)/T gives a 

3-torsion element. On the other hand, if B is not a (2, 3)-torus curve, no 

D 6-covering branched at 2B exists. Hence, NS(Z)/T has no 3-torsion. 

Remark 3.30. 

( i) When using Theorem 3.27, we often replace T by M ffiT, where 

M is a sublattice of NS(Z) orthogonal to T and such that 

p ~ disc M, disc • being the discriminant of a lattice •. For 

example, M = ]* NS(~) in case p l disc NS(~). 
( ii) By Theorem 3.27, the problem of the existence of generic D 2p

coverings of~ with ~71' = B is reduced to that of primitive and 

non-primitive embeddings ofT into NS(Z). In the case when 

~ = IP'2 and B is a sextic with at most simple singularities, Z 

is a K3-surface. In this case, using Nikulin's lattice theory and 
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the surjectivity of the period map, more detailed results than 

the existence of generic D 2v-coverings are obtained in [39]. 

3.5. Non-generic D 2n-coverings and Zariski k-plets 

In this section, we will consider non-generic D 2n-coverings and their 

application to Zariski k-plets. 

Let B = B 1 + B 2 be a reduced divisor such that: 

(i) there exists a double covering f': Z' ___...I: with tl.t' = B1, and 

( ii) B 2 is irreducible. 

Let 
Z' +------- Z 

It 

I; +------- w 
p 

be the canonical resolution of Z'. 

Proposition 3.31. Suppose that I: is simply connected and the di

visor f* (p-;; 1 B 2 ) consists of two distinct irreducible components Bt and 

B2. Assume also that there exist both an effective divisor D and a line 

bundle .C on Z satisfying: 

(i) D = Bt + D'. D' and a* D' have no common components, 

( ii) Supp(D' +a* D') is contained in the exceptional set of J.L, and 

(iii) D - a* D "' n.C. 

Then there exists a D2n -covering 1r : S ___... I: branched at 2B1 + nB2 

such that tl. 131(1r) = B1. 

Proof. By Proposition 3.11, there exists a D2n-covering 7r : S ___... W 

such that !11(ir) = f, D(S/W) = Z, Btu B2 c tl.132 (7r) c Supp(D + 
a* D) and whose ramification index along B~ is n. Since the irreducible 

components of D' are in the exceptional set of J.L, the Stein factorization 

of p o 7r gives the desired D 2n-covering. Q.E.D. 

Proposition 3.32. Under the notation above, if a D2n -covering 

branched at 2B 1 + nB2 with tl.131 (1r) = B 1 exists, then the following 

holds: 

(i) j*(p-;; 1B2) consists of two irreducible components, B~, 

( ii) there exist effective divisors D 1 and D2, and a line bundle .C 

on Z such that 

• Supp(D1 +a* D1 + D2) is contained in the exceptional set 

of J.l, 
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• D1 and a* D1 have no common components, 

• if D2 =f. 0, then n is even, D2 is reduced, and D' =a* D' 

for each irreducible component D' of D2, and 

• (Bt + D1 + ~D2)- (B2 +a* DI) "'n£. 

Proof. Let us denote by 1r : S ---. 'E the D2n-covering given by 

hypothesis. Let S be the <C(S)-normalization of W. The induced mor

phism if: S---. W is a D2n-covering with D(S/W) = Z and ~,a 2 (7r) is 

contained in the union of Supp(f*(pq-1B2)) with the exceptional subset 

of J.L. Since j*(pq-1B2) is a part of ~,a 2 (;r), by Corollary 3.13, j*(pq-1B2) 

is of the form Bt + B2, which implies part ( i). For part ( ii) let fYt, ih 
and l be the two effective divisors and the line bundle on Z respectively, 

given by Proposition 3.12 applied to if : S ---. W. Then by hypothesis, 

fh is of the form aBt + D~. Moreover, Supp(D~ +a* D~ + D2) is con
tained in the exceptional set of J.L. By the assumption on the ramification 

index along B 2 , one has that gcd(a, n) = 1 and there exists an integer 

a' (0 <a< n) such that aa' = 1 mod n. Note that a' is odd if n is even, 

therefore 

a' a* D1 = B2 +a' a* D~ + nM' 

for some effective divisors M and M'. Hence, 

The result follows by considering D1 := a' D~, D2 := D2 and £ .

a'£+ M'- M. Q.E.D. 

As an application of Propositions 3.31 and 3.32 one has the follow-

ing: 

Theorem 3.33. Let B1 + B 2,j (j = 1, ... , k) be reduced divisors on 

'E satisfying: 

• B 1 is smooth, 
• B 2,j (j = 1, ... , k) are irreducible and not homeomorphic to 

B1, 

• B 1 + B2,j (j = 1, ... , k) have the same combinatorial data, 

• there exists a double covering f : Z ---. 'E with ~~ = B1 such 

that 

Z is simply connected and 

!* B2,j is of the form Bt,i + B2,i' Bt,i =f. B2,i' 
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• there exist distinct positive integers n1 (j = 1, ... , k) and non-

trivial line bundles .C1 , ... , .Ck such that 

Bi,1 - B2,1 '""n1.C1, and 

no line bundle M 1 satisfies Lj '"" djMj for any j and 

dj ~ 2. 

Then (~, B1 + B2,i) ¢ (~, B1 + B2,1). 

Proof By Proposition 3.31, there exists a non-generic D 2n 1-covering 

1rj : Sj ---> ~ branched at 2B1 + njB2,j with ~,a,("'"Jl = B1 for each j. 

Since B2,j (j = 1, ... , k) are not homeomorphic to B1, there does not 

exist any homeomorphism f : lP'2 ---> lP'2 such that f(B 1 ) = B2,j and 

f(B 2 ,1,) = B1 for any j,j'. Hence, in order to prove this statement, 

it is enough to show that there exists no D 2n 1-covering 1r{ : S[ ---> ~ 

branched at 2B1 + n1B 2,j with ~,6I{7rfl = B 1 if l =f. j. If such a covering 

existed, then by Proposition 3.32, there should exist a line bundle .C' 

such that B:j: - B:; '"" nz.C'. On the other hand, B:j: - B:; '"" nj.Cj. 

Let d = gcd(nz, n1) and set nj = njd, nz = nfd. Thus nf.C' "' nj.C1, 

as Z is simply connected. Choose an integer b so that njb = mnf + 1. 

Thus .Cj '""nf(b.C'- m.Cj) and nf > 1, which contradicts the hypothe

Slli. Q.E.D. 

Theorem 3.33 serves as the main tool to find the Zariski k-plet given 

in [16], where Zariski k-plets are explicitly obtained for any k. We recall 

that Zariski k-plets for any k were also obtained by V.S Kulikov in [68] 

in a more theoretical way. He proves the Chisini conjecture in many 

cases, i.e., if a curve C is the branch locus of a generic projection, then 

C determines the monodromy of the associated covering. In that case, 

C is an irreducible curve having only ordinary nodes and cusps as sin

gularities, and its numerical invariants are determined by the numerical 

invariants of the surface. F. Catanese [26, 27] had shown that there exist 

moduli spaces of surfaces with given numerical invariants but different 

topologies and that is how the theoretical existence of Zariski k-plets 

was proved. 

In what follows we will sketch an explicit construction of a Zariski 

k-plet. 

Example 3.34. Let Co be a smooth conic on lP'2 and let f : Z---> JP'2 

be a double covering with ~~ = C0 . It is well known that Z = JP'1 x 

lP'1 , the covering transformation 17 exchanges the two rulings on Z, and 

Pic(Z) ~ Z EB Z. Hence a class in Pic(Z) can be described by a pair of 

integers. Note that 17*(a, b) = (b, a) and Do := (f*Co)red"' (1, 1). 
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Let 9n(t) E <C(t) be a rational function of degree n. Given any 

(a, b) E Pic(Z) one can define a morphism 'T/a,b from lP'1 to lP'1 x JID1 by 

t r-> (ga(t), 9b(t)), 

where t denotes a non-homogeneous coordinate of lP'1. If 9a(t) and 9b(t) 

are generic, then the image Da,b := 'T/a,b(lP'1) satisfies the following prop

erties: 

• Da,b("' (a, b)) is a rational curve with ab- (a+ b) + 1 distinct 

nodes. 

• Da,b and IJ* Da,b meet at a2 + b2 distinct points, a+ b of which 

are on Do. 

These two properties imply that f(Da,b) is a rational curve of degree 

a+ b tangent to C0 at a+ b distinct points and with (a+~- 1 ) distinct 

nodes. 

Let us fix an integer m 2': 4. Take l ~ J distinct pairs of inte

gers: (m- j,j), j = 1, ... , l~J, where l•J denotes the greatest in

teger not exceeding •, and consider a nodal rational curve Dm-j,j as 

above. Consider B1 =Co, B2,j = f(Dm-j,j) (j = 1, ... , l~J). Since 

Dm-j,j- IJ* Dm-j,j "' (m- 2j, 2j- m) = (m- 2j)(1, -1) and m- 2j 

(j = 1, ... , l ~ J) are all different, (Bt +B2,1, ... , B1 + B2,L "¥' J) is a Zariski 

l ~ J-plet by Theorem 3.33. 

In Example 3.34, when m is odd, one has a stronger statement. In 

this case, the fundamental groups themselves (disregarding the periph

eral information) distinguish the Zariski pair. 

Proposition 3.35. Let (Bt +B2,1, ... ,B1 +B2,L"¥'J) be as in Ex

ample 3.34. If m is odd, then 

foranyi<j. 

Let us start by proving the following lemma. 

Lemma 3.36. Let B1 + B2,j be as in Proposition 3.35. If a D2n

covering (n odd) 1r : S _____. lP'2 with ~71" c B1 + B 2,1 exists, then 

(i) ~71" = B1 + B2,j, D(S/lP'2) = Z and f3t(7r) = f, and 

( ii) 1r is branched at 2Bt + nB2,j. 

Proof. Since lP'2 is simply connected, ~lh(7r) -f= 0. Also note that 

the branch locus of a double covering is a reduced curve of even degree, 

~,a 1 (7r) = B1. This implies that D(S/lP'2) = Z and f3t(7r) =f. Since Z 
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is also simply connected, il112 (7r) =f 0 and thus Ll~J 2 (7r) = J*(B2,j), which 

proves (i). 

In order to prove ( ii) it is enough to show that the ramification 

index along B 2 ,j is n. Since n is odd, by [119], there exists a rational 

function () E C(S) such that: 

• C(S) = C(IP'2)(B) and 
• the action of D2n = (u, T I u2 = Tn = (uT)2 = 1) on() is given 

by 

()" = ~ 
()' 

Considering r.p := ()n, one has that t.p E C(Z). Since C(S) 

C( Z) ( :;:j(P), one may assume that the divisor ( r.p) of r.p is of the form 

(r.p) = (aDm-j,j + nD')- (au* Dm-j,j + nD") 

for some effective divisors D' and D". We claim that gcd( a, n) = 1. If 

gcd(a, n) = d > 1, then one has 

(~Dm-j,j + ~D') - (~u* Dm-j,j + ~D") rv 0, 

for Z is simply connected. Hence there exists '¢ E C(Z) such that 

r.p = 'lj;d. This means that the polynomial xn- r.p = xn- 'lj;d is reducible in 

C(Z)[x], which contradicts C(Z) = C(Z)( :;:j(P). Therefore gcd(a, n) = 1 

and hence fh(n) is branched at n(Dm-j,j + u* Dm-j,J)· Q.E.D. 

Proof of Proposition 3.35. Choose any i < j. Since a D2cm-2w 
covering branched at 2B1 + (m - 2i)B2,i exists, there is a surjective 

homomorphism n1(IP'2 \ (B1 + B2,i),po) -> D2(m-2i)· If 7ri(IP'2 \ (B1 + 
B2,j ), Po) ~ n1 (IP'2 \ (B1 + B2,j ), p 0 ), then there also exists a surjective ho

momorphism 1r1 (IP'2 \ (B1 + B2,j ), Po) -> D2(m-2i). Therefore a D2(m-2W 

covering 1r : S -> IP'2 with .Ll7l" C B 1 + B 2 ,1 has to exist. By Lemma 3.36, 

D(S/IP'2) = Z, j31(n) = f, and 1r is branched at 2B1 + (m- 2i)B2,1. 

Hence 

Dm-J,J- u* Dm-J,J rv (m- 2j, -m + 2j) rv (m- 2i).C 

for some .C E Pic(Z), which is not possible. Therefore 

for any i < j. Q.E.D. 
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§4. The Zariski pair of Namba and Tsuchihashi 

4.1. Description of the combinatorial stratum 

In this section, an elementary construction of the first Zariski pair of 

an arrangement of conics ([88]) will be given. In their paper Namba and 

Tsuchihashi show the existence of two arrangements of smooth conics 

both having the following combinatorics: if c1' c2' c3' c4 denote four . 
smooth conics, then C1 rh C2, C3 rh C4, and Ci, Ci are bitangent if i = 

1, 2, j = 3, 4. They computed the fundamental groups of two such 
arrangements and proved that they are not isomorphic. 

From a more geometrical point of view, our interest is to describe 
the irreducible components of the combinatorial strata of such curves in 

terms of position of singularities. In order to do so, other combinatorial 

strata of curves will be defined along the way. 

Let M c JP>s be the combinatorial stratum described above. The 

ordered version of M will be denoted by M C (JP>2)4. Following the 
notations in [88], A C JP>6 will be the family of all curves which decompose 
in three smooth conics C1, C2, C3 whose combinatorics results from M c 
JP>s by removing any conic. Finally, A C (JP>2)3 will denote the ordered 

stratum associated with A c JP>6, that is, triples (C1, C2, C3) such that 

c1 rh c2 and ci, c3 are bitangent ( i = 1, 2). 

Notation 4.1. Given a projective space JP> and A C JP> we will denote 
E(A) the smallest projective subspace of JP> containing A. 

Lemma 4.2. The families A and A are irreducible as algebraic 

varieties (and thus, connected). 

Proof By a natural mapping A- A given by (C!,C2,C3) f--+ c1 + 
c2 + c3, it is enough to prove the statement for .A. 

Let A1 be the subset of (JP>1) 2 x JP>2 such that (£1, £2, C3) E A1 if 
and only if C3 is smooth and £ 1 + £2 + C3 has only ordinary double 

points. Given (C1. C2, C3) E A, one can consider the lines Li joining the 
bitangent intersection points of Ci and C3 , i = 1, 2. This defines a natural 

mapping A-+ A1. It is straightforward to show that A1 is irreducible. 
Therefore, it only remains to show that this mapping is surjective with 

irreducible fibers. Note that given (£1, £2, C3) E A1, its fiber is a Zariski 

open subset of E(C3, 2£1) x E(C3, 2£2) x {C3}. Q.E.D. 

Definition 4.3. Let S c JP>2 be a pencil of conics. A point P E JP>2 

is said to be associated with S if P is a singular point of a member of S 

(recall that a multiple curve is singular). 
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Lemma 4.4. Let C1,C2,C3 be conics {not in a pencil) such that 

P tJ_ Ci, i = 1, 2, 3, is associated with both ~(C1, C2) and ~(C2, C3). Then, 

P is associated with ~ ( C1, C3). Moreover, if V12 and V23 are singular 

conics in ~(C 1 ,C 2 ) and ~(C 2 ,C 3 ), respectively, such that Pis a double 

point of both, then there is a singular conic V13 E ~(C 1 ,C3), containing 

P as a double point, such that V13 E ~(V12, V23). 

Proof If Ci (resp. D1k) denotes an equation for Ci (resp. VJk), 

then there exist constants such that 

a1 C1 + a2C2 =D12 

f32C2 + f33C3 =D23· 

Since P tJ_ Ci we have a1a2f31f32 =f 0. Then f32a1 C1- a2f33C3 = f32D12-
a 2D23 . Since P is a double point of V12 and V23 , the result follows. 

Q.E.D. 

Let B C lP' 4 be the family of curves which decompose into two 

transversal smooth conics and B C (IP'2 ) 2 its ordered version. The pencil 

spanned by each element in B has exactly three associated points, which 

according to Lemma 4.4 are the double points of the three singular con

ics in the pencil generated by the two transversal smooth conics. Let us 

define the following combinatorial stratum 

and denote by P C (IP'2)2 x !P'2 its ordered version. 

Proposition 4.5. Let (Cl, c2, C3) E A and consider Li the line 

joining the tangency points ofCi and C3 , i = 1, 2. Then, P := L1 nL2 is 

associated with ~(C 1 ,C 2 ). Also, ifV12 is the reducible conic of~(C 1 ,C 2 ) 

containing P, then V12 E ~(2L1,2L2). 

Moreover, given (Cl, c2, P) E P, there exists an irreducible quasipro

jective subvariety u oflP'2 such that c3 E u if and only if (Cl, c2, C3) E A 
and P is obtained as above. 

Proof. Let us fix (Cl, c2, C3) E A and let us consider Ll, L2, p as 

in the statement. Note that Pis associated with ~(C 1 , 2Ll) = ~(C 1 , C3) 

and also with ~(C2, 2L2) = ~(C2, C3). Then, by Lemma 4.4, Pis associ

ated with ~(C1, C2). Note also that 2L1 and 2L2 are the reducible conics 

of the Moreover part of Lemma 4.4. 

For the last statement, let V 12 be the reducible conic of ~(C 1 , C2 ) 

containing P and fix a line L 1 through P transversal to C1 . In the 
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pencil E(2L1, D12) there is another double line 2L2. For generic Lb L2 
is transversal to C2 . The projective subspace 

is of dimension 2 and contains the pencils E(2Li, Ci) which are lines in 

S and thus intersect at a conic C3. Q.E.D. 

Definition 4.6. The point P in Proposition 4.5 is said to be asso

ciated with (C1,C2,C3). 

Corollary 4.7. The spaces f5 and P are irreducible. 

Note that the natural projection M --» M is 4:1. For simplicity if 

C := (C1, C2, C3, C4) E M, then C = C1 U C2 U C3 U C4 will denote its 
projection. Conversely, we will add a tilde for any element in the fiber 

of C. 

Corollary 4.8. The spaces M (resp. M) have two irreducible (and 

connected) components M+,M- (resp. M+,M-). 
Moreover, curves in M+ and M_ can be distinguished as follows: 

given C EM, C := (C1, C2, C3, C4) EM, and Pi the point associated with 

(C1,C2,Ci), i = 3,4, thenCE M+ (resp. M_) if and only if P3 = P4 

(resp. P3 =/= P4). 

There is another geometrical property which distinguishes the com

ponent M+ from M_. 

Theorem 4.9. Let C E M. Then C E M+ if and only if there 

exists a conic passing through its eight tacnodes. 

Proof. Let us fix some notation. Given i E {1,2}, j E {3,4}, we 

will consider Ci n C1 := {Pi1, Qi1} and denote by Lij the line joining 

Pij and Qij· Let us also define P1 := L11 n L21, j = 3, 4, which are 

both points associated with E(C1, C2) according to Proposition 4.5. Let 

us denote by V 1 the conic in E(C1, C2) containing P1 as a double point. 

Note that V1 E E(2Llj, 2L2j) by Proposition 4.5. 

Let us consider the pencils of conics Ai := E(Ci, Li3 + Li4), i = 1, 2, 
and let S := E(A1, A2). The desired conic should belong to A1 n A2, 
and it exists (uniquely) if and only if dimS = 2. Also note that S = 
E(C1, V3, L13 + L14, L23 + L24). Since P := P3 ~ C1 and P E V3 n L13 n 
L23, one has: 

Sp := {C E sIp EC} = E(V3,L13 + L14,L23 + L24) ~ S. 

Let us suppose that the conic exists, i.e., dim S = 2 and dimS p = 1. 

Since P is a base point of the pencil Sp and a double point for one 
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element in Sp, either it is a double point for any element of the pencil, 

or the tangent line at P of the general member is constant. The second 

possibility cannot happen since £13 =/= £23· Since P is a double point, 

P3 E £14 n £24, i.e. P3 = P4. 

Let us assume now that P = P3 = P4, in particular V3 = V4. Let 
us choose coordinates such that P := [0 : 0 : 1], V 3 : xy = 0, and 

£13 : X - y = 0. Since v3 E E(2L13, 2£23), it is easily seen that £23 : 

x + y = 0. Analogously, one can prove that there exists a E C \ {0, ±1} 
such that £ 14 : x - ay = 0 and £24 : x + ay = 0. An easy computation 

concludes that V3 E E(£13 + £14,£23 + £24), i.e., dim Sp = 1 and 

dimS = 2. Q.E.D. 

For the computation of Alexander polynomials and characteristic 

varieties it is useful to calculate the space of curves of a given degree 

passing through some points. Let C E M and let P1, ... , Ps be the eight 

tacnodes in C. Let us consider 

ICk,B := {V E lP'k I P1, ... , Ps E V}, 
1Ck,6 := {V E lP'k I pl> ... , p6 E V}. 

In principle there are several choices for /Ck,6, but the kind of results we 

will obtain for 1Ck,6 do not depend on the choice of such points. Let us 

consider the mappings 

ak,B : H 0 (lP'2; O(k)) --+ C8 

ak,6: H 0 (lP'2; O(k)) ....... C6 

defined as in the exact sequence (18) in §2.2. Then /Ck,8 (resp. 1Ck,6) is 

the projective space of kerak,s (resp. kerak,6)· 

Proposition 4.10. If C E M+ then dim IC3,8 = 2, whereas if C E 

M_ then dim /C3,s = 1. 

Proof Assume first that C EM+· Since there is a conic Q passing 

through the eight points, Q is a base component of IC3,8, i.e., any element 

of IC3,8 is of the form Q + L, L E lP'1. This is trivial if Q is smooth. If it is 

singular, then Q = L1 +L2. It is easily seen that no line can contain five 

of these points; then both L1 and L2 are also base components. On the 

other hand, Q+L E /C3,s, for all L E lP'1. Then, dim/C3,8 = dimlP'1 = 2. 

By Theorem 4.9, it is enough to prove that dim IC3,8 :=::: 2 forces the 

eight points to be on a conic. Two cases will be considered: 

Case. No three points among P1, ... , Ps are aligned. 

Let us consider a conic Q passing through P1, ... , P5 • The hypoth

esis added for this case implies that Q is irreducible. Take P9 , P10 E Q 
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different from the other eight points. Since dim K3 ,8 2': 2, the elements 

of K3 ,8 passing through the two extra points P9 and P10 form a subspace 

of dimension at least 0. Hence this space is not empty and Q is a base 

component. Since the other three points cannot be aligned, one may 

suppose that, say P6 E Q. One can now repeat the above argument 

on the elements of K3 ,8 passing through one extra point P9 E Q. The 

given subspace has dimension at least 1 and Q as a base component. 

Therefore, say P7 E Q, and thus, Q is a base component of K3 ,8 . Since 

the space of lines passing through P8 is of dimension 1 and dim K3 ,8 2': 2, 

Q passes through the eight points P1 , ... , P8 . 

Case. P1, P2, P3 are aligned. 

We will first prove that this case forces four points to be aligned. 

Let L be the line through P1, P2, P3 and suppose that no other Pi is in L. 

Choosing a generic extra point in L as above, one can deduce that L is a 

base component of a subspace of K3 ,8 of dimension at least 1. Therefore 

there exists a pencil of conics passing through P4 , ... , P8 , which can only 

happen if at least four of these points are aligned. 

After reordering, one can assume that P1 , ... , P4 E L. Then L is 

a base component of K 3 ,8 and hence there is a linear family of conics 

through four points of dimension at least 2. Choosing an extra generic 

point on IP'2 one obtains as a subspace a pencil of conics through five 

points, hence four points are aligned. Note that the extra point can 

be chosen in an open Zariski set of IP'2 , thus the four aligned points 

must be P5 , ... , Ps. Therefore there is also a conic passing through 

P1, ... , Ps. Q.E.D. 

Proposition 4.11. IJC EM then dimK3 ,6 = 3. 

Proof. It is enough to show that dim K3 ,6 > 3 leads to contradic

tion. As in Proposition 4.10 two cases will also be considered: 

Case. No three points among P1 , ... , P6 are aligned. 

Let us consider the irreducible conic Q passing through P1 , ... , P5 . 

Consider two extra points P9 , Pw E Q and two extra points P11 , P12 rf:_ 

Q. The subspace of cubics in K 3 ,6 passing through P9 , P10 , P11 , P12 is 

not empty and contains Q as a base component. Since P11 , P12 can be 

chosen in such a way that P6, P11 , P12 are not on a line, this implies 

that P6 E Q. Repeating the argument with P9 E Q and three extra 

points P10 , P11 , H 2 rf:- Q one obtains again a non-empty subspace of 

K 3 ,6 containing Q as a base component. Since P10 , Pn, P12 need not be 

on a line, a contradiction results. 

Case. P1, P2, P3 are aligned. 
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Let L 1 be the line joining P 1 , P 2 , P3 and assume that no other point 

Pi (i = 4, 5, 6) belongs to L 1 . Considering P9 E L and Pw, P 11 tJ Lone 

obtains a pencil in K3 ,6 having L 1 as a base component. Hence the five 

points P4, P5 , P6, P10 , P11 belong to a pencil of conics. Since Pw, Pu can 

be chosen so that the line joining them does not contain any other Pi, one 

concludes that P4, P5 , P6 are also aligned. Let L 2 be such a line. Since we 

assumed that no four points are aligned, P9 E L 1 n L 2 is an extra point. 

The subspace of curves in K3,6 passing through P1, P2, P3, P4, Ps, P6, Pg 

has dimension at least 3 and has L 1 U L 2 as a base component. This 

leads to contradiction since dim IP'1 = 2. 

Therefore four points, say P 1 , P2 , P3 , P4 , belong to a line L, which 

automatically becomes a base component of K3,6· Note that neither 

P5 nor P6 can belong to L since multp, (L, C) ;::: 2 and deg C = 8. 
One can now choose four extra points P9 , Pw, Pu, P 12 tJ L such that 

Ps, P6, Pg, Pw, Pu, P12 do not belong to a conic. Since dimK3,6 > 3, 

the subspace of curves in K3,6 passing through P1, ... , P6, P9 , ... , Pt2 is 

not empty and has Las base component. This contradicts the choice of 

Pg, Pw, Pu, P12· Q.E.D. 

Proposition 4.12. IJC EM then dimK4,8 = 6. 

Proof. It is enough to prove that a 4,8 is surjective. If C E M_, 

since 0"3,8 is surjective, so is 0"4,8· If C E M+, then let L~=l aixi = 

0 be the equation of the image of 0"3,8 and let us suppose that a8 =/= 

0. It is enough to find a quartic curve passing through P 1 , ... , P7 and 

not through P8; we can order this points such that P8 is not in the 

line through P5 , P6 . In order to do so, one can choose a conic through 

P 1 , ... , P4, the line through P5 , P6, and a generic line through P7 . 

Q.E.D. 

4.2. Computation of characteristic varieties 

We will first describe the geometrical method to compute some com

ponents of the characteristic varieties of a curve C E M as proposed by 

Libgober in [75] -see also a brief sketch of it on page 48. After that, a 

similar geometrical argument allows for a computation of its Alexander 

polynomial as proposed in [80, 43, 2]. 

According to Example 2.24(2), a tacnode (that is, an A3-singularity) 

has the sequence of ideals of quasiadjunction associated with it shown 

in Figure 11. 

We follow the notation introduced on page 48. Let~:= (6, 6, 6, ~4) 
E (CC*) 4 be a torsion point such that £g = 2(Xl + X2 + X3 + X4) E .N, 
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................... 

(~, 0) 

••• 

Fig. 11. Quasiadjunction ideals for tacnodes 

where Xi= 2 :~ E (0, 1). Then ( E Chari(C) if and only if 

ax: H 0 (Jil'2 , 0(5- t'x))---+ E9 0p2,P/(A2)P =: Vx 
PESingC 

is not surjective. Let P be a tacnode of Ci + C1. Following Exam

ple 2.24(2), (A2)P ¥- Op2,p if and only if 2(Xi + X 1) :::; 1, in which case 

( A2) p = m the maximal ideal. 

Note that we can restrict ourselves to the case t'x :::; 5. Also note 

that, using [75], at least one of these equations is satisfied: 

(23) 2(Xi +Xj) = 1, i = 1,2, j = 3,4. 

Without loss of generality, it can be assumed that 2(X1 + X3) = 1. 

In that case 2(X2 + X4) = t'x - 1. The case t'x = 5 is not possible 

since x2, x4 < 1. If t'x = 1, then x2 = x4 = 0, which corresponds to 
coordinate components. 

For t'x = 4, one has 2(X2 + X4) = 3 and dimH0 (Jil'2, 0(1)) = 3. 
Since only non-surjective ax matter, an extra equation 2(Xi + X 1) :::; 1 
must be satisfied for some appropriate indices (i, j). Without loss of 

generality, it can be assumed that 2(Xl +X4):::; 1, and 2(X2+X3);:::: 3, 
which has no solution in the open hypercube (0, 1)4 . 

The same arguments apply to £ x = 3 but in this case one has 

dimH0 (Jil'2, 0(2)) = 6, X2 +X4 = 1, 2(Xl +X4):::; 1, and X2 + X3;:::: 1. 

There are solutions of the system in (0, 1)4 . In this case dim Vx = 4 and 

it is easily seen that ax is surjective. 
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We finish with the case fx = 2, where 2(X2 + X4) = 1. In this 

situation 2(X1 +X4) = 1+2(X4-X3) and 2(X2+X3) = 1-2(X4-X3), 
hence, either X3 = X4, or say 2(X1 + X4) > 1 and 2(X2 + X3) < 1. 

In the latter case dim Vx = 6 and, by Proposition 4.11, CTJ,6 = cr:x is 

surjective. 

Therefore all of the equations in (23) are satisfied, in which case, 

cr:x = cr3,8 and its cokernel has dimension 1 (resp. 0) for curves in M+ 
(resp. M_) by Proposition 4.10. 

Thus for M+ there is superabundance for solutions X E (0, 1)4 of 

x1 + x2 + x3 + x4 = 1 and (23) i.e. for 

{(X1, X1, 1/2- X1, 1/2- X1) 1 x1 E (o, 1)}, 

whose exponential is {(t, t, -t- 1 , -r 1) I t E C*}. We have proved the 

following. 

Proposition 4.13. 

ifC EM+ 

ifC EM-· 

Remark 4.14. As mentioned in Remark 2.17(2), since the number of 

positive dimensional components of Chari (C) is different in these cases, 

the fundamental groups are non-isomorphic. 

Note that, according to Theorem 2.26 one can calculate the roots of 

the Alexander polynomial of C as follows 

Z(~c(t)) \ {1} ={±A ~f C EM+. 
0 1fC EM_ 

el-k 1-kl 
We will consider Ak := Ac-d-, ... ,-d- (according to the definition of 

ideal sheaf of quasi-adjunction) and referred to this ideal as an Alexander 

ideal sheaf of C. One can also obtain ~c(t) geometrically using the 

exponents of the singularities as follows. 

Theorem 4.15 ([72, 2]). The Alexander polynomial of C can be 

written as the product 

d-1 

~c(t) = (t- 1r-1 II ~tk (t), 

k=l 

where ~k = ( t - exp( 21rkF)) ( t - exp( - 2 1r~v'=I)) and bk is the defect 

of the Alexander ideal sheaf Ak(k- 3). 
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Each exponent ~, k = 4, 5, 6, 7 has an Alexander ideal Ak(k- 3) 

associated with it. The quotient sheaf O(k- 3)/Ak(k- 3) is supported 
at the eight tacnodes of C as follows 

if k = 4, 5 

if k = 6, 7, 

where mp is the maximal ideal at P -we refer to [43, 80, 2] for the 

details. Hence h1(A4(1)) = h1 (A5 (2)) = 0, and thus the only two 
interesting cases are the exponents ~ and ~- For the first exponent, by 

Proposition 4.10, h0 (At,(3)) = dimkera3,8 = { 3 ~f C EM+, hence 
2 1fC EM_ 

ifC EM+ 

ifC EM-

Forthesecondexponent, byProposition4.12, h0 (A7 (4)) = dimkera4,s = 
7, hence h1 (A7 (4)) = h0 (A7 (4))- 7 = 0. By Theorem 4.15 one has 

~ (t) = {(t- 1)3 (t2 + 1) 
c (t- 1)3 

4.3. A tower of D2n-coverings 

ifC EM+ 

ifC EM-

In this subsection, we will explain another way to study this example 

by using D2n-coverings. Let us start by introducing the notion of a tower 
of dihedral coverings. 

Definition 4.16. Let Y be a normal projective variety. A sequence 

{1ri: Xi--+ YhEI of Galois coverings is called a tower of dihedml cover

ings if it satisfies the following conditions: 

(i) 1ri: Xi--+ Y is a D2n,-coverings (ni 2: 3) for each i. 
( ii) Ifni ln1, then there exists a morphism T/ji : X1 --+ Xi such that 

'lrj = 'lri 0 T/ji· 

Here is an example of a tower of dihedral coverings, which we need 
later. 

Example 4.17. Let 'Pn : IP'1 --+ IP'1 (n 2: 3) be the family of mor
phisms given by 
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where s, t are non-homogeneous coordinates. It is easy to see that 'Pn 

is a D2n-covering branched at 2[1 : ±1] + n[O : 1], where [so : s1] are 

homogeneous coordinates with s = ll. In fact, D 2n acts on the source 
so 

JP>1 in such a way that tu = rl, t 7 = (nt, (n = exp( 211"';(3). The set of 

dihedral coverings { 'Pn : JP> 1 ---7 JP>1 }n~3 is a tower of dihedral coverings. 

Proposition 4.18. Let C = C1 U C2 U C3 U C4 E M. Then the 

following two statements are equivalent: 

(1) There exists a tower of dihedral coverings { 11"n : Xn ---7 JP>2}nEN 

such that: 

(a) Gal(Xn/1P'2) ~ D2Pn> Pn odd prime, 

(b) 11"n is branched at 2(Cl + C2) + Pn(C3 + C4), and 

(c) Pn-/- Pm for any n-/- m. 
(2) There exists a conic through the 8 tacnodes ofC, i.e., C EM+· 

Note that Proposition 4.18 implies that a pair (C+,C-) (C+ EM+, 
C_ E M-) is a Zariski pair. We need several steps to prove Proposi

tion 4.18. 

Lemma 4.19. Let D1 and D2 be reduced plane curves of degree 

2m such that all intersection points between D 1 and D2 give rise to 

tacnodes in D1 + D2 (i.e., D1 is tangent to D2 at 2m2 distinct points). 

Let A = {>qD1 + >.2D2}[>.1 ,>.2]EJI'l be the pencil of curves spanned by 

D1 and D2. If there exists a unique reduced plane curve, E, of degree 

m passing through all the 2m2 intersection points of D 1 and D2, then 

2E EA. 

Proof. Since E meets D 1 at 2m2 distinct points, E is smooth at 

each intersection point and meets D 1 transversely. Choose a general 

point x on E. Let Cx be a member of A passing through x. Then 

Cx meets E at 2m2 + 1 points. Hence E is contained in Cx. Write 

Cx = E + E'. Then E' is a curve of degree m. Since the base points 

of A consists of D1 n D2 with multiplicity 2 at each base point, E' 

also passes through all the intersection points of D 1 n D2. This implies 

E'=E. 

Lemma 4.20. Let C = C1 U C2 U C3 u C4 E M. If there exists a 

conic passing through 8 tacnodes, then there exists a D 2m -covering of JP>2 

branched at 2(Cl + C2) + m(C3 + C4) for any m 2: 3. 

Proof. Let A := E(C1 + C2, C3 + C4) be the pencil of plane curves 

spanned by C1 + C2 and C3 + C4. Since the conic Q in the assumption 

passes through the eight (double) base points of A, we have 2Q E A by 

Lemma 4.19. Let Ci (resp. Q) be defining homogeneous polynomials 
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for Ci (resp. Q). Hence we may assume that C3C4 = C1C2- Q2. Let 
<I> : IP'2 --+ IP'1 be the rational function given by 

Let 'Pm : IP'1 ----> IP'1 be the D2m-covering described in Example 4.17. Let 

p: JP2 ----> IP'2 be the resolution of indeterminacy of <I> and put <i> = p o <I>. 

Let X' be the fibered product JP2 XlP'1 IP'1 by <i> and 'Pm· Also let Xm be 

the C(X')-normalization of IP'2. Then Xm is a D 2m-covering branched 

at 2(Cl + C2) + m(C3 + C4). Q.E.D. 

Proof of Proposition 4.18 (~). Let 7rm : Xm ----> IP'2 be the D2m

covering as in Lemma 4.20. Then {7rm : Xm ----> IP'2}m>J is a tower of 

dihedral coverings such that Gal(Xm/1P'2 ) ~ D2m· Also -7rm is branched 

at 2(Cl + C2) + m(C3 + C4). In particular, one obtains the desired D2Pn

coverings for odd primes Pn (n = 1, 2, 3, ... ). Q.E.D. 

Finally, our purpose until the end of this section is to prove the 

converse. Let f' : Z' ----> IP'2 be a double covering branched at C1 + C2, 

and let J.L : Z----> Z' be the canonical resolution of Z'. Let 

Z' -.!!.--- Z 

denote the diagram for the canonical resolution. In our case, the mor

phism p : JP2 ----> IP'2 is a composition of 4 blowing-ups at the 4 nodes of 

C1 + C2 • Let f : Z----> JP2 be the induced double covering. Note that Z is 

simply connected, as it is a rational surface. Suppose that there exists a 

D2Pn-covering 'lrn: Xn----> IP'2 branched at 2(Cl +C2) +Pn(C3 +C4). Then 

D(Xn/1P'2 ) = Z' and f31(7rn) = f'. Let Xn be the C(Xn)-normalization 

of JP2. Xn is a D2Pn -covering of lP2 such that D(Xn/lP2) = Z and 
!h(irn) = f, ifn being the covering morphism. Summing up, one ob

tains the following commutative diagram: 

Xn - Xn 

1 1 
Z' J.L z -
1 1 

IP'2 p '2 - IP'. 
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Since the irreducible components of the exceptional divisor J.L are invari

ant under the covering transform off, they are not contained in af32 (7rn) 

(Corollary 3.13). Hence af = p;1(C1 +C2), and af32 (7rn) = (po f)*(C3 + 

C4). Let us denote (p o f)*C3 = ct + C3 and (p o f)*C4 = ct + Ci. One 

has the following. 

Lemma 4.21. There exists an integer k with 0 < k :S: Pn2-
1 such 

that either (Ct + kCt) - (C3 + kCi) or (Ct + kCi) - (Ct + kCt) is 

Pn -divisible in Pic( Z). 

Proof. By Proposition 3.12, either (a3Ct + a4Ct)- (a3C3 + a4Ci) 

or (a3Ct + a4Ci)- (a3C3 + a4Ct), where ai (i = 3, 4) are integers with 

0 < ai < Pn ( i ~ 3, 4), is Pn-divisible. The latter case is reduced to the 

first case by considering 

(a3Ct + (Pn- a4)Ct)- (a3C3 + (Pn- a4)Ci) + Pn(Ci- Ct). 

So one may assume that 

(a3Ct + a4Ct) - (a3C3 + a4Ci) ""'PnL 

for some L E Pic(Z). Choose an integer b (0 < b < Pn) so that a3b = 
1 mod Pn. Let us define 

D1 .- b(a3ct + a4Ct) - Pn ( l :~ J ct + l :~ J ct) , 

ct + ( a4b - Pn l :~ J ct) · 

If 0 < a4b -l ~ J :S: p.,.2-
1 , then define k = a4b -l ~ J so that the 

divisor (Ct + kCt)- (C3 + kCi) is Pn-divisible. 

If a4b -l ~ J > p.,.2-
1 , then define k = Pn + l ~ J - a4b so that the 

divisor (Ct + kCi) - (C3 + kCt) is Pn-divisible. Q.E.D. 

Lemma 4.22. The self-intersection numbers of (Ct + kCt)- (C3 + 
kCi) and (Ct + kCi)- (C3 + kCt) are either -8(k- 1)2 , -8(k + 1)2 

or -8(k2 + 1). 

Proof. Since 

8 = ((pof)*C3)2 = (Ct)2+(C3)2+2Ct·C3, Ct·Ci = 4, (Ct)2 = (C3)2, 

one has (Ct)2 = (C3)2 = 0. Similarly (Ct) 2 = (Ci)2 = 0. Hence 

(Ct- cn2 = -8 (i = 3, 4). Also, since 

8 = ((p o f)*C3) · ((p o f)*C4) = ct · ct + ct · Ci + C3 · ct + C3 · Ci 
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and 

ct · ct = c3 · Ci, ct · Ci = c3 · ct, 

one concludes that either 

(a) ctct = C;3Ci = 4, CtCi = CiCt = 0, or 

(b) ctct = CiCi = 4, CtCi = C3Ct = 0, or 

(c) ctct = c3c4 = 2, ctci = c3ct = 2 

holds. Thus 

{
-8(k =t= 1)2 for the case (a), 

{ (C;t- C3) ± k(Ct- C4)} 2 = -8(k ± 1)2 for the case (b), 

-8(k2 + 1) for the case (c). 
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Q.E.D. 

Lemma 4.23. Let k be as above. Then k = 1. 

Proof We will only consider the case when (C;t -C3) + k(Ct -Ci) 
is Pn-divisible (the other case is analogous). Suppose that 

(C;t - C3) + k(Ct- Ci) "'PnL, 

for some L E Pic(Z). After computing the self-intersection numbers of 

both sides, one deduces that either -8(k- 1 )2 = p~L 2 , or -8(k + 1 )2 = 

p~L 2 , or -8(k2 + 1) = p~L 2 holds. Since Pn is odd, £ 2 is an integer and 

0 < k :::; Pn2-
1 , which leads to k = 1 and £ 2 = 0. Q.E.D. 

Lemma 4.24. Either 

(C;t + Ct)- (C3 + Ci) "'0, or (C;t + Ci)- (C3 + Ct) "'0 

holds. 

Proof. By Lemma 4.23, either (C;t +Ct)-(C3 +Ci), or (C;t +C4)
(C3 +Ct) is Pn-divisible. By the assumption in Proposition 4.18, at least 

one of them is Pn-divisible for infinitely many odd prime numbers Pn· 

Since Z is simply connected, Pic(Z) is a finitely generated free Z-module. 

Therefore, either (C;t +Ct)-(C3 +Ci) "'0, or (C;t +C4)-(C3 +Ct) "'0 
holds. Q.E.D. 

Proof of Proposition 4.18 ( '*). In what follows, only the case ( ct
C3) + (Ct - Ci) "' 0 will be considered (the other case is analogous). 

Let t.p be a rational function on Z such that 

(t.p) = (C;t + Ct)- (C3 + C4). 
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Note that one can choose 'P in such a way that 'Pat = 1/l.fJ, where Of 

denote the involution of the double covering f : Z ----> JlD2. Let Kn := 

C(Z)( Po/(P) and let Sn be the Kn-normalization of IP'2. 

One can easily see that Pn : Sn ----> IP'2 is a DzPn -covering such that 

D(Snf1P'2) = Z' and Pn is branched at 2(Cl + Cz) + Pn(C3 + C4). In fact, 
Sn is isomorphic to Xn, but we do not need it here. Set 

1 
'P+

u ·= __ 'P_ 
. 2 . 

Since u is a Of-invariant rational function, u E C(IP'2). Let <I>n : Sn --+ 

IP'1 and ~n : IP'2 --+ IP'1 be the rational maps given by Po/(P and u. Note 

that <I>n is DzPn -equivariant and the following diagram 

<I>n 

Sn --+ IP'l 

(24) Pn l l 'PPn 
IP'2 --+ JPll 

' 
~n 

is commutative, where 'PPn : IP'1 ----> IP'1 is the DzPn -covering in Exam

ple 4.17. Note that Sn is birational to the fibered product IP'2 XJI'l IP'1 

over IP'2. 

Write u = j;::,, where F0 and F00 are homogeneous polynomials. 

The polar divisor of u is ct +C3 +Ct +Ci. This implies that the plane 

curve given by F00 = 0 is C3+C4 and deg F00 = 4. Using the commutative 

diagram (24) and since 'PPn is branched at 2[1 : ±1] + Pn[O : 1], the 

curves D1 and D2 given by the equations F0 - F 00 = 0 and Fo + F 00 = 0, 

respectively, satisfy either ( i) or ( ii) below: 

(i) D1 = C1 +C2 and D2 is of the form 2Q for some conic (or vice 

versa). 

( ii) D1 = C1 + 2L1 for some line L1 and Dz = Cz + 2Lz for some 

line Lz. 

If (ii) occurs, it implies that C3 + C4 E E(C1 + 2L1,C2 + 2Lz). This 

means that C3 + C4 passes through C1 n C2 , but this is impossible by the 

combinatorics of C E M. Hence (i) must occur and Q is the unique 

conic passing through all the tacnodes of C. Q.E.D. 

Remark 4.25. The proof above shows that there exists a tower of 

dihedral coverings {irn : Xn ----> IP' 2 }n~l such that Gal(Xn/1P'2) ~ D2Pn 

(Pn odd prime), where Kn is branched at 2(Cl + Cz) + Pn(C3 + C4), if 
and only if there exists another tower of dihedral coverings { 1r m : X m ----> 
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IP'2}m2:3 such that Gal(Xm/1P'2) ~ D2m, where 7rm is branched at 2(C1 + 
C2) + m(C3 + C4). 
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