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Abstract. Developing swarm robotics systems for real-time applica-
tions is a challenging mission. Task deadlines are among the kind of
constraints which characterize a large set of real applications. This paper
focuses on devising and analyzing a task allocation strategy that allows
swarm robotics systems to execute tasks characterized by soft deadlines
and to minimize the costs associated with missing the task deadlines.

Keywords: Soft deadlines, Time-constrained tasks, Swarm robotics,
Multi-agent systems.

1 Introduction

Considering the large number of real-world applications where swarm robotics
represents an efficient system to be investigated, real-time tasks represent a
remarkable category of these applications. Deadlines are often enough associated
with real-world tasks, such as data gathering in large sensor networks (data-
mules), recycling systems and pollution cleaning. A task is referred to as real-
time task, when the correctness of the task results is not related only to the
logical correctness, but also to the time at which these results are delivered.
The point in time before which the real-time task should be executed is referred
to as the task deadline. There are two main types of deadlines, as categorized
in traditional real-time systems [20]. Hard deadlines are deadlines, that when
missed, can lead to catastrophic consequences. Soft deadlines are deadlines, that
affect the quality of the results, if not met. Thus, missing this type of deadlines is
associated with specific costs. This paper focuses on soft-deadline tasks which can
be considered as suitable tasks to be executed by a stochastic system such as a
swarm of robots. Also natural systems need to cope with related task allocation
problems but rather based on priorities than explicit deadlines. For example
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feeding the larvae of honey bees requires appropriate task allocation. Larvae
have different hunger levels and stimulate nurse bees that react with different
visiting rates [10]. In the following, a task allocation strategy is developed to
allow the robots to assign themselves autonomously to tasks and to execute
them in parallel under the considerations of their soft deadlines. The developed
strategy is tested using the biologically inspired foraging task. To the best of our
knowledge, there are only few works which did concentrate on task allocation in
swarm robotics under time constrains. The auction strategy is one of the most
frequently used, see [7,6]. In addition to the well established auction strategy,
heuristics are introduced in the context of robot allocation to tasks with time
constraints as in [1]. In [19] and [11], market-based task allocation strategies
are introduced, where time is the main critical constraint. This is considered
together with a reward mechanism associated to tasks which are successfully
completed. Mathematical modeling is not intensively investigated in the context
of swarm robotics, still some examples can be found in [16,8,15,2,14].

In this paper we present a novel approach based on mathematical modeling to
analyze the performance of swarm robotics and the behavior of individual robots.
The goal is to develop an appropriate task allocation under the constraints of the
different tasks. The rest of the paper is organized as follows: Section 2 describes
the problem on which we are focusing. Section 3 presents the mathematical
models used in analyzing the swarm performance in addition to the behavior
of individual robots. The developed allocation strategy is presented in details
and verified using Monte-Carlo simulations in Section 4. In Section 5 a physics-
based simulation is established using the robot simulator ARGoS to verify the
allocation strategy and the paper is concluded in Section 6.

2 Problem Description

In this paper we focus on the problem of assigning a swarm of N homogeneous
robots to a set of tasks which are characterized by their soft deadlines. A task
deadline is the point in time up to which the task should be executed and it
is referred to as soft when missing it is not catastrophic, but associated with
specific costs.

Consider a set of M soft-deadline tasks {T1, T2, . . . , TM} which need to be
executed in parallel. Each of these tasks consists of discrete sub-tasks referred to
as the task parts, where a single part requires one robot to execute it. Executing
task Ti is achieved when a specific number Si of its parts is accomplished. The
robots’ cooperation is necessary for any task execution, as the number of parts
required to be accomplished within the task deadline, is not achievable using
one robot. The parts of the different tasks are regenerated periodically, therefore
after the execution of a part, a new part will replace it. The switching costs
among the tasks, which represent the costs associated with the time required
by a robot to stop the execution of one task and to start to work on another
one, are assumed to be negligible. This condition is verified when the tasks are
located on the same physical area or when the time required to travel among the
different tasks is negligible in comparison to the task execution times, see [12].
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Let us denote the number of parts that has been accomplished on task Ti up
to the deadline Di by ρi(Di). The costs associated with missing the deadline of
task Ti are directly related to the part of the task which remains unprocessed
at its deadline. Therefore, we can define the cost function ζi as the difference
between the number of parts required to be achieved Si and the number of parts
ρi(Di) executed up to the deadline Di

ζi = Si − ρi(Di). (1)

The goal, as mentioned above, is to design an allocation strategy that allows the
robots to assign themselves autonomously to the different tasks under their time
constraints (deadlines). This technique is efficient when switching costs between
tasks are negligible. Robots select their tasks autonomously using a decision
matrix, that defines the robots’ behaviors probabilistically. It holds the transition
probabilities pi,j to switch from task Ti to task Tj . Controlling the behavior of the
individual robots probabilistically is a common approach in stochastic systems
such as swarm robotics. The decision matrices are designed to minimize the costs
associated with missing the task deadlines.

3 System Modeling

In this section we present the techniques used to model both the performance
of the robots swarm and the behavior of the individual robot. These techniques
are exploited later for the development of the allocation strategy.

3.1 Swarm Performance Modeling

We define the swarm performance as the amount of work (task parts) accom-
plished by the swarm within the deadline of the task. Based on our task spec-
ification, the amount of work accomplished on any task within a specific time
duration represents a discrete random variable. The swarm performance, as de-
fined, is the sum of the individual contributions of all robots that worked on the
task up to its deadline. The total number of completed parts increases over time
as the robots succeed in accomplishing their individual parts.

The process associated with the evolution of the amount of work accom-
plished on task Ti over time up to its deadline Di represents a time-continuous
stochastic process X(t). This process is modeled as a Poisson process [18] with a
task-specific rate λi for task Ti. The Poisson process is, by definition, a stochas-
tic process that counts the events within a specific time period. By mapping the
occurrence of an event to the completion of an individual task part, the Pois-
son process represents an appropriate modeling technique for the work progress
on any of the considered tasks over time. When the amount of work that is
accomplished on any task over time is modeled using a Poisson process, the
swarm performance ρi obtained within the deadline Di will follow the Poisson
distribution with the parameter λiDi

ρi ∼ Poisson(λiDi). (2)
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In general, when the robots finish executing some task, they become available
to be assigned to other tasks. As the tasks we are focusing on in this paper are
time-constrained tasks, the deadline of the task represents the point in time at
which the task should be accomplished and the assigned robots become available
again. Therefore, we divide the execution time of the tasks into periods called
activation periods. The task stays active over all the periods which are included
in its deadline. The i-th period is defined as

ηi = Di −Di−1 ∀i ∈ {2, . . . ,M} (3)

where η1 = D1.

Fig. 1. The Poisson processes modeling the progress of the accomplished amount of
work on different tasks over their different activation periods

As the number of robots working on a task may change during its activation
periods, the rate of accomplishing work of that task may change consequently.
Therefore, individual Poisson processes are used to model the work progress
on a specific task over its different activation periods. The evolution of work
accomplished on task Ti during the jth activation period is modeled as a Poisson
process with the rate λij . This random amount of work follows the Poisson
distribution with the parameter λijηj .

Furthermore, it is well-known that the sum of Poisson processes is a Poisson
process with the rate equal to the sum of the rates associated with the summed
up processes. Therefore, the Poisson process modeling the evolution of work
accomplished on task Ti until its deadline Di has the rate λi =

∑i
j=1 λij . The

random amount of work that was achieved until the deadline Di of task Ti is
distributed following the Poisson distribution with the parameter

∑i
j=1 λijηj

Hence we have

ρi ∼ Poisson(
i∑

j=1

λijηj) ∀i ∈ {1, . . . ,M}. (4)
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The expected value of a random variable which follows a Poisson distribution
with the parameter λ is equal to λ. Hence based on Eq.(4), the expected value
of the performance that was achieved until the deadline Di is given by

E(ρi(Di)) =

i∑

j=1

λijηj .

However, the performance required to be achieved at the deadline Di is Si parts.
Consequently, the expected value of the cost function defined in Eq.(1) can be
written as

E(ζi) = Si − E(ρi(Di))

= Si −
i∑

j=1

λijηj

=

{
Si −

∑i
j=1 λijηj when

∑i
j=1 λijηj < Si

0 when
∑i

j=1 λijηj � Si.
(5)

As we can notice in Eq.(5), no costs are associated with tasks on which more
parts than their sizes are accomplished.

3.2 Individual Robot Modeling

The behavior of the individual robots can be described as follows. Each robot
selects one of the tasks to work on and each time it finishes executing one part,
it has the possibility to switch to another task or to continue on the same task.

The tasks are mapped to the states of a Markov chain and each robot is
modeled as an individual process with the above described behavior over the
M states of the chain. The robot continues to work on the task it has selected
for a random time, namely, the time required to accomplish one part of the
current task. This represents a random time with a task-specific mean denoted
by μ̂i, which is assumed to be easily estimated over short-term experiments as
it is performed in Section 5. After executing one part of the current task, the
robot chooses its next task to visit where the choice is made among the available
tasks including its current one. A specific probability matrix referred to as the
decision matrix is used by the robots to select autonomously their next tasks.
The described process associated with each robot, represents by definition a
semi-Markov process [18], which has an invariant (limiting) probability measure,
πi, that can be obtained by solving the following system

πi =
M∑

j=1

πjpj,i where
M∑

i=1

πi = 1. (6)

πi represents the proportion of transitions that take the robots into task Ti. The
proportion of the time that the robot spends working on task Ti in comparison
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to its total working time is given by Eq.(7). For time-constrained tasks, we are
interested in the time spent by the robot on task Ti within the deadline Di.
Let us denote this time by τi(Di). Based on Eq.(7), τi(Di) can be obtained by
Eq.(8).

τi =
πiμ̂i

∑M
j=1 πj μ̂j

(7) τi(Di) =
πiμ̂i

∑M
j=1 πj μ̂j

Di (8)

When a swarm of N robots is used to execute M tasks and each single robot
is modeled as a semi-Markov process with the above described behavior, the
total time spent on task Ti up to its deadline Di can be calculated using Eq.(9).
Consequently, the number of times ni(N,Di) that Ti is expected to be visited
by a swarm of N robots within its deadline Di, is calculated using Eq.(10).

τi(N,Di) =
πiμ̂i

∑M
j=1 πj μ̂j

DiN (9) ni(N,Di) =
πi

∑M
j=1 πj μ̂j

DiN (10)

The rate of the visits to task Ti within its deadline Di by the swarm of N
robots, which represents the number of the parts expected to be processed within
the task deadline, is obtained by dividing Eq.(10) by the task deadline yielding

λi =
πi

∑M
j=1 πj μ̂j

N. (11)

4 Task Allocation Strategy

The expected value of the cost function associated with the swarm performance
was calculated in Section 3.1 using Eq.(5)

E(ζi) =

{
Si −

∑i
j=1 λijηj for

∑i
j=1 λijηj < Si

0 for
∑i

j=1 λijηj � Si.

The rate λij of the Poisson process in the j-th activation period of task Ti, can
be written in terms of the transition probabilities based on Eq.(11)

λij =
πij

∑M
k=j πkj μ̂k

N ∀i ∈ {1, . . . ,M},∀j ∈ {1, . . . ,M}.

So the expected value of the cost function associated with task Ti can be written
in terms of the transition probabilities, as

E(ζi) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Si −∑i
j=1

πij
∑M

k=j πkjμ̂k

Nηj for
∑i

j=1

πij
∑M

k=j πkj μ̂k

Nηj < Si

0 for
∑i

j=1

πij
∑M

k=j πkj μ̂k

Nηj � Si

(12)

where i ∈ {1, . . . ,M}.
The developed allocation strategy aims to minimize the costs associated with

the part left unprocessed at the task deadline. Minimizing the costs is required
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for all tasks based on their priorities. The task priority is related, in our case, to
the tightness of the task deadline. Therefore, the task with an earlier deadline
or a larger size has a higher priority. A simple way to define the priority of task
Ti is given by

βi =
Si/Di

∑M
j=1 Sj/Dj

. (13)

The sum of the task priorities is always 1.
The minimization problem, that we consider, represents a multi-objective op-

timization problem with M objective functions.

minimize
πij

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

E(ζ1) = f(π11)
E(ζ2) = f(π21, π22)
...
E(ζM ) = f(πM1, πM2, . . . , πMM )

(14)

It is solved using the well-known methodology of scalarizing the multi-objective
optimization problem and formulating a single-objective optimization problem.
We sum the M objective functions, where each is weighted by the priority of its
task and the obtained objective function is

minimize
πij

M∑

i=1

βiE(ζi). (15)

The described optimization problem is solved off-line and the robots are provided
with the resulting decision matrices (one per activation period) which hold the
transition probabilities between tasks. After that, each robot can start to use the
decision matrix of the current period, independently, to assign itself and switch
among the different tasks.

Let us consider an example of 3 tasks which are characterized by their soft
deadlines {500, 750, 1000} time units and their sizes {1500, 1000, 500} parts. The
size of the swarm, used to execute these tasks, varies over the range N ∈ [5, 50]
robots with an increment step of 2 robots. The task priorities are calculated
using Eq.(13). The optimization problem is solved for the different swarm sizes.
Hence, the decision matrices are obtained and then used to predict and simulate
the costs of missing the deadlines. Figure 2 shows the value of the cost function
over all examined sizes of the swarm. The cost is estimated using Eq.(12), after
that it is averaged over 100 runs of Monte-Carlo simulation. The figure shows a
high level of consistency between the calculated cost and the simulated one.

5 Physics-based Simulation

In this section we consider the task of multi-foraging to verify the developed
allocation strategy through performing physics-based simulations. Foraging be-
havior, in its simple form, is the behavior of exploring the environment searching
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Fig. 2. Cost function theoretically calculated based on Eq.(12) and compared with its
value averaged over 100 runs of Monte-Carlo simulation

for food items and retrieving them to a safe area referred to as the nest. It can
be observed in a large number of social insect colonies and animal societies
[5]. Foraging was intensively investigated in swarm robotics systems [13,4,15,9].
Multi-foraging refers to the task of retrieving different types of items.

For our simulations we use the robot simulator ARGoS 1, where a homoge-
neous swarm of foot-bot2 robots is simulated. We consider three types of items
500 red parts, 300 black parts and 150 white parts, which are uniformly scat-
tered. The nest is marked with a set of lights which can be sensed by the working
robots. The robots apply the diffusion behavior [3] combined with obstacle avoid-
ance to maximize the exploration of the arena. The robot’s motion is governed
by a light-repulsion behavior to move out of the nest towards the arena. As soon
as it finds some part to retrieve, it starts to apply a light-attraction behavior to
move towards the nest. Both light-attraction and light-repulsion behaviors are
combined with obstacle avoidance. As the three types of items are uniformly
scattered on the arena, the switching costs among the tasks can be considered
as negligible. We use a homogeneous swarm with a varying size between [5, 50]
robots, with an increment step of 5 robots. The time required by a single robot
to retrieve one part of each of the three types is averaged over 10 runs of AR-
GoS simulations each for a duration of 500 seconds. In our scenario, the average
of this time differs for the different types of items due to the different number
of parts available of each type. The average of the time required by a single
robot to retrieve one part increases by increasing the swarm size due to the
spatial interferences among the robots. We use the average measured when the
largest swarm is used (50 robots). This design decision is based on performing
a worst case estimation of the swarm performance and consequently of the cost
function. The average time of retrieving one part of each of the three items is
respectively {98.5, 130, 197}. The soft deadlines associated with the tasks are:
{500, 1500, 3000} seconds and the task sizes are {150, 300, 500} parts. The de-

1 ARGoS is a state-of-the-art, open source 3D robot simulator. Its design allows for
the simulation of large homogeneous and heterogeneous swarms of robots [17].

2 Foot-bot is a wheeled robot with 17 cm diameter × 29 cm hight and weights 1.8 kg.
It is equipped with a set of sensors and actuators in addition to an on-board CPU.
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cision matrices are calculated, as described in Section 4, to minimize the cost
associated with missing any of the task deadlines. Figure 3 shows how the cost
calculated using Eq.(12) agrees with the one averaged over 20 runs of ARGoS
simulations, when the designed decision matrices are applied in both cases. In
addition it shows how both calculated and simulated costs decrease while in-
creasing the size of the swarm.
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Fig. 3. Cost function theoretically calculated based on Eq.(12) and compared with its
value averaged over 20 runs of ARGoS simulation

6 Conclusion

This paper focuses on developing a task allocation approach that allows a swarm
of robots to execute a set of tasks under the consideration of soft deadlines. The
resulting behavior of the robots can adapt itself efficiently to dynamic changes
such as changes in the swarm size (e.g. robots failures). The probabilistic design
of this behavior allows for a higher level of self-adaptivity than for example the
one obtained by assigning fixed-size groups of robots to the tasks. Addressing
robot-to-robot communication as a part of our future work may increase signifi-
cantly the self-adaptivity of the system, as exchanging knowledge about dynamic
changes in the environment, tasks or swarm, will be possible. In addition, a part
of our future work is the estimation of the mean time μ̂i as a function of the
number of robots working on task Ti.
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