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Abstract

The error or variability of machine learning
algorithms is often assessed by repeatedly re-
fitting a model with different weighted ver-
sions of the observed data. The ubiquitous
tools of cross-validation (CV) and the boot-
strap are examples of this technique. These
methods are powerful in large part due to
their model agnosticism but can be slow to
run on modern, large data sets due to the
need to repeatedly re-fit the model. In this
work, we use a linear approximation to the
dependence of the fitting procedure on the
weights, producing results that can be faster
than repeated re-fitting by an order of magni-
tude. This linear approximation is sometimes
known as the “infinitesimal jackknife” in the
statistics literature, where it is mostly used as
a theoretical tool to prove asymptotic results.
We provide explicit finite-sample error bounds
for the infinitesimal jackknife in terms of a
small number of simple, verifiable assump-
tions. Our results apply whether the weights
and data are stochastic or deterministic, and
so can be used as a tool for proving the accu-
racy of the infinitesimal jackknife on a wide
variety of problems. As a corollary, we state
mild regularity conditions under which our ap-
proximation consistently estimates true leave-
k-out cross-validation for any fixed k. These
theoretical results, together with modern au-
tomatic differentiation software, support the
application of the infinitesimal jackknife to a
wide variety of practical problems in machine
learning, providing a “Swiss Army infinitesi-
mal jackknife.” We demonstrate the accuracy
of our methods on a range of simulated and
real datasets.
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1 Introduction

Statistical machine learning methods are increasingly
deployed in real-world problem domains where they are
the basis of decisions affecting individuals’ employment,
savings, health, and safety. Unavoidable randomness
in data collection necessitates understanding how our
estimates, and resulting decisions, might have differed
had we observed different data. Both cross validation
(CV) and the bootstrap attempt to diagnose this varia-
tion and are widely used in classical data analysis. But
these methods are often prohibitively slow for modern,
massive datasets, as they require running a learning
algorithm on many slightly different datasets. In this
work, we propose to replace these many runs with
a single perturbative approximation. We show that
the computation of this approximation is far cheaper
than the classical methods, and we provide theoretical
conditions that establish its accuracy.

Many data analyses proceed by minimizing a loss func-
tion of exchangeable data. Examples include empirical
loss minimization and M-estimation based on product
likelihoods. Since we typically do not know the true
distribution generating the data, it is common to ap-
proximate the dependence of our estimator on the data
via the dependence of the estimator on the empirical
distribution. In particular, we often form a new, proxy
dataset using random or deterministic modifications of
the empirical distribution, such as randomly removing
k datapoints for leave-k-out CV. A proxy dataset ob-
tained in this way can be represented as a weighting of
the original data. From a set of such proxy datasets we
can obtain estimates of uncertainty, including estimates
of bias, variance, and prediction accuracy.

As data and models grow, the cost of repeatedly solving
a large optimization problem for a number of different
values of weights can become impractically large. Con-
versely, though, larger datasets often exhibit greater
regularity; in particular, under fairly general condi-
tions, limit laws based on independence imply that an
optimum exhibits diminishing dependence on any fixed
set of data points. We use this observation to derive a
linear approximation to resampling that needs to be
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calculated only once, but which nonetheless captures
the variability inherent in the repeated computations
of classical CV. Our method is an instance of the in-
finitesimal jackknife (IJ), a general methodology that
was historically a precursor to cross-validation and the
bootstrap (Jaeckel, 1972; Efron, 1982). Part of our
argument is that variants of the IJ should be reconsid-
ered for modern large-scale applications because, for
smooth optimization problems, the IJ can be calculated
automatically with modern automatic differentiation
tools (Baydin et al., 2017).

By using this linear approximation, we incur the cost
of forming and inverting a matrix of second derivatives
with size equal to the dimension of the parameter space,
but we avoid the cost of repeatedly re-optimizing the
objective. As we demonstrate empirically, this trade-
off can be extremely favorable in many problems of
interest.

Our approach aims to provide a felicitous union of two
schools of thought. In statistics, the IJ is typically
used to prove normality or consistency of other estima-
tors (Fernholz, 1983; Shao, 1993; Shao and Tu, 2012).
However, the conditions that are required for these
asymptotic analyses to hold are prohibitively restric-
tive for machine learning—specifically, they require
objectives with bounded gradients. A number of recent
papers in machine learning have provided related lin-
ear approximations for the special case of leave-one-out
cross-validation (Koh and Liang, 2017; Rad and Maleki,
2018; Beirami et al., 2017), though their analyses lack
the generality of the statistical perspective.

We combine these two approaches by modifying the
proof of the Fréchet differentiability of M-estimators
developed by Clarke (1983). Specifically, we adapt
the proof away from the question of Fréchet differen-
tiability within the class of all empirical distributions
to the narrower problem of approximating the exact
re-weighting on a particular dataset with a potentially
restricted set of weights. This limitation of what we
expect from the approximation is crucial; it allows us
to bound the error in terms of a complexity measure of
the set of derivatives of the observed objective function,
providing a basis for non-asymptotic applications in
large-scale machine learning, even for objectives with
unbounded derivatives. Together with modern auto-
matic differentiation tools, these results extend the use
of the IJ to a wider range of practical problems. Thus,
our “Swiss Army infinitesimal jackknife,” like the fa-
mous Swiss Army knife, is a single tool with many
different functions.

2 Methods and Results

2.1 Problem definition

We consider the problem of estimating an unknown
parameter θ ∈ Ωθ ⊆ RD, with a compact Ωθ and a
dataset of size N . Our analysis will proceed entirely
in terms of a fixed dataset, though we will be careful
to make assumptions that will plausibly hold for all
N under suitably well-behaved random sampling. We
define our estimate, θ̂ ∈ Ωθ, as the root of a weighted
estimating equation. For each n = 1, . . . , N , let gn (θ)
be a function from Ωθ to RD. Let wn be a real number,
and let w be the vector collecting the wn. Then θ̂ is
defined as the quantity that satisfies

θ̂(w) := θ such that
1

N

N∑

n=1

wngn (θ) = 0. (1)

We will impose assumptions below that imply at least
local uniqueness of θ̂(w); see the discussion following
Assumption 2 in Section 2.3.

As an example, consider a family of continuously
differentiable loss functions f (·, θ) parameterized by
θ and evaluated at data points xn, n = 1, . . . , N .
If we want to solve the optimization problem θ̂ =
argmin
θ∈Ωθ

1
N

∑N
n=1 f (xn, θ) , then we take gn (θ) =

∂f (xn, θ) /∂θ and wn ≡ 1. By keeping our notation
general, we will be able to analyze a more general class
of problems, such as multi-stage optimization (see Sec-
tion 6). However, to aid intuition, we will sometimes
refer to the gn (θ) as “gradients” and their derivatives
as “Hessians.”

When equation (1) is not degenerate (we articulate

precise conditions below), θ̂ is a function of the weights
through solving the estimating equation, and we write
θ̂(w) to emphasize this. We will focus on the case where
we have solved equation (1) for the weight vector of all

ones, 1w := (1, . . . , 1), which we denote θ̂1 := θ̂ (1w).

A re-sampling scheme can be specified by choosing
a set W ⊆ RN of weight vectors. For example, to
approximate leave-k-out CV, one repeatedly computes
θ̂(w) where w has k randomly chosen zeros and all ones
otherwise. Define Wk as the set of every possible leave-
k-out weight vector. Showing that our approximation
is good for all leave-k-out analyses with probability
one is equivalent to showing that the approximation is
good for all w ∈Wk.

In the case of the bootstrap, W contains a fixed

number B of randomly chosen weight vectors, w∗b
iid∼

Multinomial
(
N,N−1

)
for b = 1, . . . , B, so that∑N

n=1 w
∗
bn = N for each b. Note that while wn or w∗bn

are scalars, w∗b is a vector of length N . The distribution
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of θ̂ (w∗b )− θ̂ (1w) is then used to estimate the sampling

variation of θ̂1. Define this set W ∗B = {w∗1 , . . . , w∗B}.
Note that W ∗B is stochastic and is a subset of all weight
vectors that sum to N .

In general, W can be deterministic or stochastic, may
contain integer or non-integer values, and may be deter-
mined independently of the data or jointly with it. As
with the data, our results hold for a given W , but in a
way that will allow natural high-probability extensions
to stochastic W .

2.2 Linear approximation

The main problem we solve is the computational ex-
pense involved in evaluating θ̂(w) for all the w ∈ W .
Our contribution is to use only quantities calculated
from θ̂1 to approximate θ̂(w) for all w ∈ W , without
re-solving equation (1). Our approximation is based

on the derivative dθ̂(w)
dwT

, whose existence depends on
the derivatives of gn (θ), which we assume to exist, and

which we denote as hn (θ) := ∂gn(θ)
∂θT

. We use this nota-
tion because hn (θ) would be the Hessian of a term of
the objective in the case of an optimization problem.
We make the following definition for brevity.

Definition 1. The fixed point equation and its deriva-
tive are given respectively by

G (θ, w) :=
1

N

N∑

n=1

wngn (θ)

H (θ, w) :=
1

N

N∑

n=1

wnhn (θ) .

Note that G
(
θ̂(w), w

)
= 0 because θ̂(w) solves equa-

tion (1) for w. We define H1 := H
(
θ̂1, 1w

)
and define

the weight difference as ∆w = w−1w ∈ RN . When H1

is invertible, one can use the implicit function theorem
and the chain rule to show that the derivative of θ̂(w)
with respect to w is given by

dθ̂(w)

dwT
|1w∆w = −H−1

1

1

N

N∑

n=1

gn

(
θ̂1

)
∆w

= −H−1
1 G

(
θ̂1,∆w

)
.

This derivative allows us to form a first-order approxi-
mation to θ̂(w) at θ̂1.

Definition 2. Our linear approximation to θ̂(w) is
given by

θ̂IJ (w) := θ̂1 −H−1
1 G

(
θ̂1,∆w

)
.

We use the subscript “IJ” for “infinitesimal jackknife,”
which is the name for this estimate in the statistics
literature (Jaeckel, 1972; Shao, 1993). Because θ̂IJ de-

pends only on θ̂1 and ∆w, and not on solutions at
any other values of w, there is no need to re-solve
equation (1). Instead, to calculate θ̂IJ one must solve
a linear system involving H1. Recalling that θ is D-
dimensional, the calculation of H−1

1 (or a factorization
that supports efficient solution of linear systems) can
be O

(
D3
)
. However, once H−1

1 is calculated or H1 is

factorized, calculating our approximation θ̂IJ (w) for
each new weight costs only as much as a single matrix-
vector multiplication. Furthermore, H1 often has a
sparse structure allowing H−1

1 to be calculated more
efficiently than a worst-case scenario (see Section 6 for
an example). In more high-dimensional examples with
dense Hessian matrices, such as neural networks, one
may need to turn to approximations such as stochastic
second-order methods (Koh and Liang, 2017; Agarwal
et al., 2017) and conjugate gradient (Wright and No-
cedal, 1999). Indeed, even in relatively small or sparse
problems, the vast bulk of the computation required to
calculate θ̂IJ is in the computation of H−1

1 . We leave
the important question of approximate calculation of
H−1

1 for future work.

2.3 Assumptions and results

We now state our key assumptions and results, which
are sufficient conditions under which θ̂IJ(w) will be a

good approximation to θ̂(w). We defer most proofs
to Appendix A. We use ‖·‖op to denote the matrix
operator norm, ‖·‖2 to denote the L2 norm, and ‖·‖1
to denote the L1 norm. For quantities like g and
h, which have dimensions N × D and N × D × D
respectively, we apply the Lp norm to the vector-
ized version of arrays. For example, 1√

N
‖h (θ)‖2 =√

1
N

∑N
n=1

∑D
i=1

∑D
j=1 [hn (θ)]

2
ij which is the square

root of a sample average over n ∈ [N ].

We state all assumptions and results for a fixed N ,
a given estimating equation vector g (θ), and a fixed
class of weights W . Although our analysis proceeds
with these quantities fixed, we are careful to make only
assumptions that can plausibly hold for all N and/or
for randomly chosen W under appropriate regularity
conditions.

Assumption 1 (Smoothness). For all θ ∈ Ωθ, each
gn (θ) is continuously differentiable in θ.

The smoothness in Assumption 1 is necessary for a
local approximation like Definition 2 to have any hope
of being useful.

Assumption 2 (Non-degeneracy). For all
θ ∈ Ωθ, H (θ, 1w) is non-singular, with
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supθ∈Ωθ

∥∥∥H (θ, 1w)
−1
∥∥∥
op
≤ Cop <∞.

Without Assumption 2, the derivative in Definition 2
would not exist. For an optimization problem, Defini-
tion 2 amounts to assuming that the Hessian is strongly
positive definite, and, in general, assures that the solu-
tion θ̂1 is unique. Under our assumptions, we will show
later that, additionally, θ̂(w) is unique in a neighbor-

hood of θ̂1; see Lemma 5 of Appendix A. Furthermore,
by fixing Cop, if we want to apply Assumption 2 for
N → ∞, we will require that H1 remains strongly
positive definite.

Assumption 3 (Bounded averages). There exist finite
constants Cg and Ch such that supθ∈Ωθ

1√
N
‖g (θ)‖2 ≤

Cg <∞ and supθ∈Ωθ
1√
N
‖h (θ)‖2 ≤ Ch <∞.

Assumption 3 essentially states that the sample vari-
ances of the gradients and Hessians are uniformly
bounded. Note that it does not require that these quan-
tities are bounded term-wise. For example, we allow
supn ‖gn (θ)‖22 −→N→∞

∞, as long as supn
1
N ‖gn (θ)‖22

remains bounded. This is a key advantage of the
present work over many past applications of the IJ to
M-estimation, which require supn ‖gn(θ)‖22 to be uni-
formly bounded for all N (Shao and Tu, 2012; Beirami
et al., 2017).

In both machine learning and statistics, supn ‖gn(θ)‖22
is rarely bounded, though 1

N ‖g(θ)‖22 often is. As a
simple example, suppose that θ ∈ R1, xn ∼ N (0, 1),
and gn = θ− xn, as would arise from the squared error
loss fn (xn, θ) = 1

2 (θ − xn)
2
. Fix a θ and let N →∞.

Then supn ‖gn(θ)‖22 →∞ because supn |xn| → ∞, but
1
N ‖g(θ)‖22 → θ2 + 1 by the law of large numbers.

Assumption 4 (Local smoothness). There exists a

∆θ > 0 and a finite constant Lh such that,
∥∥∥θ − θ̂1

∥∥∥
2
≤

∆θ implies that
‖h(θ)−h(θ̂1)‖

2√
N

≤ Lh
∥∥∥θ − θ̂1

∥∥∥
2
.

The constants defined in Assumption 4 are needed to
calculate our error bounds explicitly.

Assumptions 1–4 are quite general and should be ex-
pected to hold for many reasonable problems, including
holding uniformly asymptotically with high probability
for many reasonable data-generating distributions, as
the following lemma shows.

Lemma 1 (The assumptions hold under uniform con-
vergence). Let Ωθ be a compact set, and let gn (θ) be
twice continuously differentiable IID random functions
for n ∈ [N ]. (The function is random but θ is not—
for example, E [gn(θ)] is still a function of θ.) Define

rn (θ) := ∂2gn(θ)
∂θ∂θ , so rn (θ) is a D ×D ×D tensor.

Assume that we can exchange integration and dif-

ferentiation, that E [hn (θ)] is non-singular for all

θ ∈ Ωθ, and that all of E
[
supθ∈Ωθ

‖gn (θ)‖22
]
,

E
[
supθ∈Ωθ

‖hn (θ)‖22
]
, and E

[
supθ∈Ωθ

‖rn (θ)‖22
]

are

finite.

Then limN→∞ P (Assumptions 1–4 hold) = 1.

Lemma 1 follows from the uniform convergence results
of Theorems 9.1 and 9.2 in Keener (2011). See Ap-
pendix A.4 for a detailed proof. A common example
to which Lemma 1 would apply is where xn are well-
behaved IID data and gn(θ) = γ(xn, θ) for an appropri-
ately smooth estimating function γ(·, θ). See Keener
(2011, Chapter 9) for more details and examples, in-
cluding applications to maximum likelihood estimators
on unbounded domains.

Assumptions 1–4 apply to the estimating equation. We
also require a boundedness condition for W .

Assumption 5 (Bounded weight averages). The quan-
tity 1√

N
‖w‖2 is uniformly bounded for w ∈ W by a

finite constant Cw.

Our final requirement is considerably more restrictive,
and contains the essence of whether or not θ̂IJ(w) will

be a good approximation to θ̂(w).

Condition 1 (Set complexity). There exists a δ ≥ 0
and a corresponding set Wδ ⊆W such that

sup
w∈Wδ

sup
θ∈Ωθ

∥∥∥∥∥
1

N

N∑

n=1

(wn − 1) gn (θ)

∥∥∥∥∥
1

≤ δ and

sup
w∈Wδ

sup
θ∈Ωθ

∥∥∥∥∥
1

N

N∑

n=1

(wn − 1)hn (θ)

∥∥∥∥∥
1

≤ δ.

Condition 1 is central to establishing when the approx-
imation θ̂IJ (w) is accurate. For a given δ, Wδ will be

the class of weight vectors for which θ̂IJ(w) is accurate
to within order δ. Trivially, 1w ∈ Wδ for δ = 0, so
Wδ is always non-empty, even for arbitrarily small δ.
The trick will be to choose a small δ that still admits
a large class Wδ of weight vectors. In Section 3 we will
discuss Condition 1 in more depth, but it will help to
first state our main theorem.

Definition 3. The following constants are given by
quantities in Assumptions 1–5 .

CIJ := 1 +DCwLhCop

∆δ := min

{
∆θC

−1
op ,

1

2
C−1

IJ C
−1
op

}
.

Note that, although the parameter dimension D occurs
explicitly only once in Definition 3, all of Cw, Cop, and
Lh in general might also contain dimension dependence.
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Additionally, the bound δ in Condition 1, a measure
of the set complexity of the parameters, will typically
depend on dimension. However, the particular place
where the parameter dimension enters will depend on
the problem and asymptotic regime, and our goal is
to provide an adaptable toolkit for a wide variety of
problems.

We are now ready to state our main result.

Theorem 1 (Error bound for the approximation). Un-
der Assumptions 1–5 and Condition 1,

δ ≤ ∆δ ⇒ max
w∈Wδ

∥∥∥θ̂IJ (w)− θ̂(w)
∥∥∥

2
≤ 2C2

opCIJδ
2.

We stress that Theorem 1 bounds only the difference
between θ̂IJ(w) and θ̂(w). Theorem 1 alone does not

guarantee that θ̂IJ(w) converges to any hypothetical
infinite population quantity. We see this as a strength,
not a weakness. To begin with, convergence to an
infinite population requires stronger assumptions. Con-
trast, for example, the Fréchet differentiability work
of Clarke (1983), on which our work is based, with
the stricter requirements in the proof of consistency in
Shao (1993). Second, machine learning problems may
not naturally admit a well-defined infinite population,
and the dataset at hand may be of primary interest.
Finally, by analyzing a particular sample rather than
a hypothetical infinite population, we can bound the
error in terms of the quantities CIJ and ∆δ, which can
actually be calculated from the data at hand.

Still, Theorem 1 is useful to prove asymptotic results

about the difference
∥∥∥θ̂IJ (w)− θ̂(w)

∥∥∥
2
. As an illus-

tration, we now show that the uniform consistency of
leave-k-out CV follows from Theorem 1 by a straight-
forward application of Hölder’s inequality.

Corollary 1 (Consistency for leave-k-out CV). As-
sume that Assumptions 1–5 hold uniformly for all N .
Fix an integer k, and let

Wk := {w : wn = 0 in k entries and 1 otherwise} .

Then, for all N , there exists a constant CK such that

sup
w∈Wk

∥∥∥θ̂IJ (w)− θ̂(w)
∥∥∥

2
≤ CK

‖g‖2∞
N2

≤ CK
max {Cg, Ch}2

N
.

Proof. For w ∈ Wk,
‖∆w‖2√

N
=
√

K
N . Define Cgh :=

max {Cg, Ch}. By Assumption 3, ‖g‖2 /
√
N ≤ Cgh

and ‖h‖2 /
√
N ≤ Cgh for all N . By Hölder’s inequality,

sup
w∈W

sup
θ∈Ωθ

∥∥∥∥∥
1

N

N∑

n=1

(wn − 1) gn (θ)

∥∥∥∥∥
1

≤ sup
w∈W

‖w − 1w‖1 sup
θ∈Ωθ

‖g‖∞
N

= K
‖g‖∞
N

≤ K Cgh√
N
,

with a similar bound for ‖h‖2. Consequently, for N
large enough, Condition 1 is satisfied with Wδ = Wk

and either δ = K
‖g‖∞
N or δ = K

Cgh√
N

. The result then

follows from Theorem 1.

3 Examples

The moral of Theorem 1 is that, under Assumptions 1–

5 and Condition 1,
∥∥∥θ̂IJ − θ̂ (w)

∥∥∥ = O
(
δ2
)

for w ∈Wδ.

That is, if we can make δ small enough, Wδ big enough,
and still satisfy Condition 1, then θ̂IJ (w) is a good

approximation to θ̂ (w) for “most” w, where “most”
is defined as the size of Wδ. So it is worth taking
a moment to develop some intuition for Condition
1. We have already seen in Corollary 1 that θ̂IJ is,
asymptotically, a good approximation for leave-k-out
CV uniformly in W . We now discuss some additional
cases: first, a worst-case example for which θ̂IJ is not
expected to work, second the bootstrap, and finally we
revisit leave-one-out cross validation in the context of
these other two methods.

First, consider a pathological example. Let Wfull be
the set of all weight vectors that sum to N . Let n∗ =

maxn∈[N ]

∥∥∥gn
(
θ̂1

)∥∥∥
1

be the index of the gradient term

with the largest L1 norm, and let wn∗ = N and wn = 0
for n 6= n∗. Then

sup
θ∈Ωθ

∥∥∥∥∥
1

N

N∑

n=1

(wn − 1) gn (θ)

∥∥∥∥∥
1

= sup
θ∈Ωθ

∥∥∥∥∥gn∗ (θ)− 1

N

N∑

n=1

gn (θ)

∥∥∥∥∥
1

≥
∥∥∥gn∗

(
θ̂1

)∥∥∥
1
.

(The last inequality uses the fact that G
(
θ̂1, 1w

)
= 0.)

In this case, unless the largest gradient,
∥∥∥gn∗

(
θ̂1

)∥∥∥
1
, is

small, Condition 1 will not be satisfied for small δ, and
we would not expect θ̂IJ to be a good estimate for θ̂ (w)
for all w ∈ Wfull. The class Wfull is too expressive.
In the language of Condition 1, for some small fixed
δ, Wδ will be some very restricted subset of Wfull in
most realistic situations.

Now, suppose that we are using B bootstrap weights,

w∗b
iid∼ Multinomial

(
N,N−1

)
for b = 1, ..., B, and ana-

lyzing an optimization problem as defined in Section 2.1.
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For a given w∗b , a dataset x∗1, ..., x
∗
N formed by taking

w∗b,n copies of datapoint xn is equivalent in distribution
to N IID samples with replacement from the empirical
distribution on (x1, ..., xN ). In this notation, we then
have

1

N

N∑

n=1

(w∗b − 1) gn (θ) =

1

N

N∑

n=1

∂f (θ, x∗n)

∂θ
− 1

N

N∑

n=1

∂f (θ, xn)

∂θ
.

In this case, Condition 1 is a uniform bound on a cen-
tered empirical process of derivatives of the objective
function. Note that estimating sample variances by
applying the IJ with bootstrap weights is equivalent
to the ordinary delta method based on an asymptotic
normal approximation (Efron, 1982, Chapter 21). In or-
der to provide an approximation to the bootstrap that
retains benefits (such as the faster-than-normal conver-
gence to the true sampling distribution described by
Hall (2013)), one must consider higher-ordered Taylor

expansions of θ̂(w). We leave this for future work.

Finally, let us return to leave-one-out CV. In this case,
wn − 1 is nonzero for exactly one entry. Again, we can
choose to leave out the adversarially-chosen n∗ as in
the first pathological example. However, unlike the
pathological example, the leave-one-out CV weights
are constrained to be closer to 1w—specifically, we set
wn∗ = 0, and let w be one elsewhere. Then Condition
1 requires supθ∈Ωθ

∥∥ 1
N gn∗ (θ)

∥∥
1
≤ δ. In contrast to the

pathological example, this supremum will get smaller
as N increases as long as ‖gn∗ (θ)‖1 grows more slowly
than N . For this reason, we expect leave-one-out (and,
indeed, leave-k-out for fixed k) to be accurately ap-

proximated by θ̂IJ in many cases of interest, as stated
in Corollary 1.

4 Related Work

Although the idea of forming a linear approximation to
the re-weighting of an M-estimator has a long history,
we nevertheless contribute in a number of ways. By
limiting ourselves to approximating the exact reweight-
ing on a particular dataset, we both loosen the strict
requirements from the statistical literature and gen-
eralize the existing results from the machine learning
literature.

The jackknife is often favored over the IJ in the statis-
tics literature because of the former’s simple compu-
tational approach, as well as perceived difficulties in
calculating the necessary derivatives when some of
the parameters are implicitly defined via optimization
(Shao and Tu, 2012, Chapter 2.1) (though exceptions

exist; see, e.g., Wager et al. (2014)). The brute-force
approach of the jackknife is, however, a liability in
large-scale machine learning problems, which are gener-
ally extremely expensive to re-optimize. Furthermore,
and critically, the complexity and tedium of calculat-
ing the necessary derivatives is entirely eliminated by
modern automatic differentiation (Baydin et al., 2017;
Maclaurin et al., 2015).

Our work is based on the proof of the Fréchet differen-
tiability of M-estimators of Clarke (1983). In classical
statistics, Fréchet differentiability is typically used to
describe the asymptotic behavior of functionals of the
empirical distribution in terms of a functional (Mises,
1947; Fernholz, 1983). Since Clarke (1983) was mo-
tivated by such asymptotic questions, he studied the
Fréchet derivative evaluated at a continuous proba-
bility distribution for function classes that included
delta functions. This focus led to the requirement of
a bounded gradient. However, unbounded gradients
are ubiquitous in both statistics and machine learning,
and an essential contribution of the current paper is to
remove the need for bounded gradients.

There exist proofs of the consistency of the (non-
infinitesimal) jackknife that allow for unbounded gra-
dients. For example, it is possible that the proofs of
Reeds (1978), which require a smoothness assumption
similar to our Assumption 4, could be adapted to the
IJ. However, the results of Reeds (1978)—as well as
those of Clarke (1983) and subsequent applications
such as those of Shao and Tu (2012)—are asymptotic
and applicable only to IID data. By providing finite
sample results for a fixed dataset and weight set, we
are able to provide a template for proving accuracy
bounds for more generic probability distributions and
re-weighting schemes.

A number of recent machine learning papers have de-
rived approximate linear versions of leave-one-out esti-
mators. Koh and Liang (2017) consider approximating
the effect of leaving out one observation at a time to
discover influential observations and construct adver-
sarial examples, but provide little supporting theory.
Beirami et al. (2017) provide rigorous proofs for an ap-
proximate leave-one-out CV estimator; however, their
estimator requires computing a new inverse Hessian
for each new weight at the cost of a considerable in-
crease in computational complexity. Like the classical
statistics literature, Beirami et al. (2017) assume that

the gradients are bounded for all N . When ‖g‖2∞ in
Corollary 1 is finite for all N , we achieve the same N−2

rate claimed by Beirami et al. (2017) for leave-one-out
CV although we use only a single matrix inverse. Rad
and Maleki (2018) also approximate leave-one-out CV,
and prove tighter bounds for the error of their approx-
imation than we do, but their work is customized to
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leave-one-out CV and makes much more restrictive
assumptions (e.g., Gaussianity).

5 Simulated Experiments

We begin the empirical demonstration of our method
on two simple generalized linear models: logistic and
Poisson regression.1 In each case, we generate a syn-
thetic dataset Z = {(xn, yn)}Nn=1 from parameters
(θ, b), where θ ∈ R100 is a vector of regression coef-
ficients and b ∈ R is a bias term. In each experiment,
xn ∈ R100 is drawn from a multivariate Gaussian, and
yn is a scalar drawn from a Bernoulli distribution with
the logit link or from a Poisson distribution with the
exponential link.

Figure 1: Simulated data: accuracy results.

For a ground truth, we generate a large test set with
N = 100,000 datapoints to measure the true general-
ization error. We show in Fig. 1 that, over 50 randomly
generated datasets, our approximation consistently un-
derestimates the actual error predicted by exact leave-
one-out CV; however, the difference is small relative
to the improvements they both make over the error
evaluated on the training set.

Fig. 2 shows the relative timings of our approximation
and exact leave-one-out CV on logistic regression with
datasets of increasing size. The time to run our ap-
proximation is roughly an order of magnitude smaller.

1Leave-one-out CV may not be the most appropriate
estimator of generalization error in this setting (Rosset
and Tibshirani, 2018), but this section is intended only to
provide simple illustrative examples.

Figure 2: Simulated data: timing results.

6 Genomics Experiments

We now consider a genomics application in which we
use CV to choose the degree of a spline smoother when
clustering time series of gene expression data. Code and
instructions to reproduce our results can be found in
the git repository rgiordan/AISTATS2019SwissArmyIJ.
The application is also described in detail in Ap-
pendix B.

We use a publicly available data set of mice gene ex-
pression (Shoemaker et al., 2015) in which mice were in-
fected with influenza virus, and gene expression was as-
sessed several times after infection. The observed data
consists of expression levels ygt for genes g = 1, . . . , ng
and time points t = 1, . . . , nt. In our case ng = 1000
and nt = 14. Many genes behave the same way; thus,
clustering the genes by the pattern of their behavior
over time allows dimensionality reduction that can fa-
cilitate interpretation. Consequently, we wish to first
fit a smoothed regression line to each gene and then
cluster the results. Following Luan and Li (2003), we
model the time series as a gene-specific constant ad-
ditive offset plus a B-spline basis of degree 3, and the
task is to choose the B-spline basis degrees of freedom
using cross-validation on the time points.

Our analysis runs in two stages—first, we regress the
genes on the spline basis, and then we cluster a trans-
formed version of the regression fits. By modeling in
two stages, we both speed up the clustering and allow
for the use of flexible transforms of the fits. We are
interested in choosing the smoothing parameter using
CV on the time points. Both the time points and the
smoothing parameter enter the regression objective
directly, but they affect the clustering objective only
through the optimal regression parameters. Because
the optimization proceeds in two stages, the fit is not
the optimum of any single objective function. How-
ever, it can still be represented as an M-estimator (see
Appendix B).

We implemented the model in scipy (Jones et al., 2001)

https://github.com/rgiordan/AISTATS2019SwissArmyIJ
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and computed all derivatives with autograd (Maclau-
rin et al., 2015). We note that the match between
“exact” cross-validation (removing time points and re-
optimizing) and the IJ was considerably improved by
using a high-quality second-order optimization method.
In particular, for these experiments, we employed
the Newton conjugate-gradient trust region method
(Wright and Nocedal, 1999, Chapter 7.1) as imple-
mented by the method trust-ncg in scipy.optimize,
preconditioned by the Cholesky decomposition of an
inverse Hessian calculated at an initial approximate
optimum. The Hessian used for the preconditioner
was with respect to the clustering parameters only and
so could be calculated quickly, in contrast to the H1

matrix used for the IJ, which includes the regression
parameters as well. We found that first-order or quasi-
Newton methods (such as BFGS) often got stuck or
terminated at points with fairly large gradients. At
such points our method does not apply in theory nor,
we found, very well in practice.

Figure 3: Genomics data: accuracy results.

Fig. 3 shows that the IJ is a reasonably good approxi-
mation to the test set error.2 In particular, both the
IJ and exact CV capture the increase in test error for
df = 8, which is not present in the training error. Thus
we see that, like exact CV, the IJ is able to prevent
overfitting. Though the IJ underestimates exact CV,
we note that it differs from exact CV by no more than
exact CV itself differs from the true quantity of iterest,
the test error.

The timing results for the genomics experiment are
shown in Fig. 4. For this particular problem with
approximately 39, 000 parameters (the precise number

2In fact, in this case, the IJ is a better predictor of test
set error than exact CV. However, the authors have no
reason at present to believe that the IJ is a better predictor
of test error than exact CV in general.

Figure 4: Genomics data: timing results.

depends on the degrees of freedom), finding the initial
optimum takes about 42 seconds. The cost of finding
the initial optimum is shared by exact CV and the IJ,
and, as shown in Fig. 4, is a small proportion of both.

The principle time cost of the IJ is the computation
of H1. Computing and inverting a dense matrix of
size 39, 000 would be computationally prohibitive. But,
for the regression objective, H1 is extremely sparse
and block diagonal, so computing H1 in this case took
only around 360 seconds. Inverting H1 took negligible
time. Once we have H−1

1 , obtaining the subsequent IJ
approximations is nearly instantaneous.

The cost of refitting the model for exact CV varies
by degrees of freedom (increasing degrees of freedom
increases the number of parameters) and the number
of left-out points (an increasing number of left-out
datapoints increases the number of refits). As can be
seen in Fig. 4, for low degrees of freedom and few left-
out points, the cost of re-optimizing is approximately
the same as the cost of computing H1. However, as
the degrees of freedom and number of left-out points
grow, the cost of exact CV increases to as much as an
order of magnitude more than that of the IJ.

7 Conclusion

We recommend consideration of the Swiss Army in-
finitesimal jackknife for modern machine learning prob-
lems. The large size of modern data both increases
the need for fast approximations and renders such ap-
proximations more accurate. Furthermore, modern
automatic differentiation renders many past practical
difficulties obsolete. By stepping back from the strict
requirements of classical statistical theory, we can see
that the value of the infinitesimal jackknife extends
beyond its traditional application areas, while retaining
desirable generality in other respects.
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