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Abstract

Data center switches need to satisfy stringent low-delay and high-capacity requirements. To do so, they rely on small switch buffers.

However, in case of congestion, data center switches may suffer from throughput collapse for short TCP flows as well as temporary

starvation for long TCP flows.

In this paper, we introduce a lightweight hash-based algorithm called HCF (Hashed Credits Fair) to solve these problems at the

switch level while being transparent to the end users. We show that it can be readily implemented in data center switches with O(1)

complexity and negligible overhead. We illustrate using simulations how HCF mitigates the throughput collapse of short flows. We

also show how HCF reduces unfairness and starvation for long-lived TCP flows as well as for short TCP flows, yet maximizes the

utilization on the congested link. Last, HCF also prevents packet reordering.
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1. Introduction

1.1. Motivation

The recent emergence of the data center switch market has

required switch vendors to answer new stringent requirements

and rethink their switch architectures. This is because switch

vendors of both Ethernet switches and Internet routers want

to enter the data center switch market, ideally by using vari-

ants of their next-generation switch architecture. However,

while Ethernet switches typically require extremely low de-

lay with reasonable capacity, and Internet backbone routers re-

quire extremely high capacity with reasonable delay, data center

switches require both extremely low delay and extremely high

capacity. As a result, the data center switch stringent require-

ments on delay and capacity are now becoming generalized re-

quirements on most high-end next-generation switch designs as

well.

Data center switch vendors need to address two crucial prob-

lems that result from the low-delay requirements. First, they

need to address the TCP incast problem, i.e., the throughput

collapse of short flows [1, 2, 3, 4, 5]. The throughput of TCP-

based applications drastically reduces when multiple senders
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communicate with a single receiver in high-capacity low-delay

networks. Fast and highly bursty data transmissions overfill the

switch buffers, causing intense packet loss that leads to TCP

timeouts as modeled in [6]. These timeouts last hundreds of

milliseconds on a network whose round-trip-time (RTT) is hun-

dreds of microseconds, i.e. three orders of magnitude lower.

Protocols that have some form of synchronization requirement,

such as filesystem reads and writes or highly parallel data-

intensive queries found in large memory-cached clusters, keep

waiting for timed-out connections to finish before issuing new

requests. These timeouts and the resulting delay can reduce ap-

plication throughput by up to 90% [2, 5].

The second crucial problem is the starvation of long TCP

flows. As we will further show in this paper, during congestion,

long TCP flows can be temporarily starved during tens of sec-

onds, even though the total switch throughput stays high. These

high delays are unacceptable for latency-sensitive data center

applications. For instance, an algorithmic trading application

needs a guarantee that its information will most probably not

be delayed beyond a millisecond, or even a few microseconds.

Small delays also play a crucial factor in switch benchmarks.

For instance, a recent benchmark study favored two switches

over a third because they essentially achieved lower delays for

large Ethernet frames, reaching 750 ns vs. 3.4 µs [7].

The throughput collapse of short flows and the starvation

of long flows actually have shared reasons, stemming from

the high-capacity and low-delay requirements of data center

switches. The high-capacity requirement, needed to deal with a

large number of flows, would require significant buffer sizes to

prevent a high loss rate for the TCP flows, as in Internet high-
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speed links [8, 9, 10, 11]. However, the low-delay requirement

imposes the use of small switch buffer sizes, and as a result typ-

ically incurs a large loss rate and many timeouts for TCP flows

in case of congestion. These timeouts cause unfairness among

flows, resulting in high delay variability.

This paper is about reducing the short-flow throughput col-

lapse and long-flow starvation by reducing the delay unfairness

among flows. To do so, we want to use a lightweight switch-

based mechanism that does not significantly impact the switch

architecture or require any meaningful additional buffering. In

contrast to previous papers on TCP incast [1, 2, 3, 4, 5], we as-

sume that it is forbidden to change the TCP protocol implemen-

tations both at the sources and destinations. Thus, the switch-

based mechanism should be transparent to the end hosts.

1.2. Contributions

In this paper, we introduce a simple switch-based algorithm

to reduce the TCP unfairness in data centers. To our knowledge,

this paper is unique in that it is the first to point out the funda-

mental starvation properties of long TCP flows in data center

networks, even when there is no throughput collapse. It is also

the first to suggest a specific switch-based mechanism to ad-

dress this starvation.

We propose to use the HCF (Hashed Credits Fair) algorithm,

a novel lightweight algorithm for data center switches that is

transparent to TCP-based applications. HCF relies on hash-

ing to aggregate flows into bins, and therefore needs to main-

tain only a limited number of bins credits using a few bits of

information. In addition, HCF regularly updates the hashing

functions to prevent persistent hash collisions between the same

flows. Last, HCF combines the credit hashing mechanism with

a queueing mechanism that provides a higher priority to flow

aggregates that have not been recently served.

We demonstrate that HCF prevents reordering by using a spe-

cial updating mechanism. We also prove that HCF has an O(1)

time complexity, and that it requires significantly less resources

than competing fairness algorithms. In addition, we explain

why HCF does not require any change at the end stations, and

in particular does not require any change to the standard TCP

protocol.

Later, through simulations, we show the short-flow through-

put collapse in the TCP incast problem. We also point out the

long-flow starvation problem. We show how HCF can help

solve these problems by providing an increased fairness among

flows.

The rest of the work is organized as follows. We first survey

the related work in Section 2. Then we present our proposed

algorithm in Section 3. Next, we show alternative implementa-

tion parameters in Section 4. Last, we present simulation results

in Section 5, before concluding.

2. Related Work

Preventing unfairness among TCP flows is a well-known

problem, and therefore we describe below several solutions

from the literature. We also explain why they are not adapted

to data center networks.

2.1. TCP Incast Solutions

To solve the TCP incast problem, former papers typically

suggest changing the TCP protocol in data centers, e.g., by re-

ducing the value of the minimal retransmission time-out (RTO)

from 200 ms to 1 ms or less [1, 2, 5]. Additional suggested

changes affect the application itself, such as increasing the re-

quest sizes, limiting the number of servers, throttling data trans-

fers, using global scheduling , or controlling the sending rate

from the receiver side [12, 3]. However, all these solutions

require changing the protocols at the end users, and therefore

cannot be implemented at the switch level in a transparent way.

These solutions can be combined with our switch-level algo-

rithm to achieve even better performance.

2.2. Increasing the Buffer Size

While the rule-of-thumb for buffer sizes in the Internet is typ-

ically too large [11], in data center networks it is actually too

small. A possible solution is to increase the buffer size. This

is suggested in [8], which mentions the unfairness problem of

TCP flows in oversubscribed links and proposes to increase the

buffer size proportionally to the total number of active TCP

flows as a solution. This would of course require off-chip mem-

ory, and therefore can cause a major hardware change with sig-

nificant issues of power consumption, chip in/out pin SERDES

implementation, buffer area and cost, as well as a high buffer

latency.

2.3. ACK Buffering

An alternative solution that would require less buffering

would be to buffer only ACK packets instead of buffering all

packets. In other words, the buffer mechanism would be

changed to sort between ACKs and data packets, and send

ACKs to a special larger buffer. Since ACKs are significantly

smaller than data packets, the solution would require much less

buffering than the previous solution while keeping the same to-

tal RTT. Again, within a switch, this typically requires off-chip

memory, and therefore causes a major hardware change with

the same issues as mentioned in the previous solution. In ad-

dition, note that these large ACK buffers, as well as alterna-

tive ACK-based solutions [13, 14, 15], would be hard to im-

plement when some of the TCP connections are duplex TCP

connections, in which the ACK returns within the reverse data

packet.They might also not fit when the reverse path is not nec-

essarily the same as the forward path, and therefore does not

necessarily meet the same points of congestion.

2.4. Queue Control and Fairness Algorithms

There are many fairness and AQM algorithms in the lit-

erature to provide increased fairness among flows, such as

WFQ (Weighted Fair Queueing) [16] or DRR (Deficit Round

Robin) [17], GPS (Generalized Processor Sharing) [18], SFQ

(Stochastic Fair Queueing) [19], RED (Random Early Detec-

tion) [20], FRED [21], BLUE [22] or SFB (Stochastic Fair

Blue) [23].

However, most of the fairness algorithms rely on buffer sizes

that typically need to grow with the number of active flows.
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To prevent such detrimental scaling effects, some of the fair-

ness algorithms use hashing to aggregate flows, thus providing

an approximate fairness, and most importantly, reducing com-

plexity. However, while they fit Internet requirements, these

algorithms do not work well with the shallow buffers in data

centers, because in order to provide fairness, they need to divide

these small buffers among the many flow aggregates. Thus, they

can barely keep some buffering for each flow aggregate. More-

over, they cannot deal with bursts from a same flow, since the

buffer per aggregate is not large enough. In addition, to avoid

reordering, the hash functions often cannot change, thus incur-

ring permanent hash conflicts between flows.

More particularly, algorithms that are based on per-flow

queueing, like GPS, FQ and WFQ, typically need to adapt the

buffer size to the number of active flows, and therefore can

hardly scale given a small buffer size. Algorithms that react

according to the queue length, like RED, are not suitable to

the highly-congested and relatively shallow buffers, where the

queue length changes aggressively between full and empty. Al-

gorithms that are based on link utilization and packet drops, like

BLUE, do not fit to the datacenter networks, because the link

utilization also changes aggressively and packet loss can result

in high cost due to the long retransmission timer. It is also pos-

sible to consider a combination of SFQ with DRR to achieve

a potential solution, due to the achieved scalability of the hash

function of SFQ and the fairness mechanism in DRR. However,

due to the shallow buffers and low round-trip-times in the data-

center networks, its fairness mechanism cannot prevent a small

number of flows from dominating the buffer, as later shown in

simulations.

Therefore, our objective will be to find an even simpler algo-

rithm that does not need large buffers in order to work properly,

does not incur reordering, and does not cause permanent hash

conflicts.

2.5. Limiting the congestion window using ECN

Explicit congestion notification (ECN) [24] allows end-to-

end notification of network congestion without dropping pack-

ets. Constantly setting the ECN congestion indication at the

switch level could force flows to restrict the congestion win-

dow size to 1. However, such a solution would force endpoints

to use ECN. In addition, solutions based on ECN indications,

as presented in [25], do not solve the Incast problem in highly

congested networks with relatively small buffers, where the av-

erage congestion window of a flow is close to 1. Continual ECN

indications with a shallow buffer force the TCP sender to reset

the retransmit timer (RTO) if the sending rate must be decreased

below the congestion window of 1 MSS [24].

2.6. TCP Proxy

Another possible solution is to maintain a TCP proxy at each

switch [26]. In this solution, each switch maintains all TCP

connections and manages them on behalf of the end users. For

instance, a switch between a client and a sever would tell the

client that it is the server, and concurrently tell the server that it

is the client, thus managing two TCP connections at once. It is

Figure 1: Architecture of the HCF algorithm.

then easier for the proxy to maintain a list of allowed flows with

their respective credits, and manage all the flows going through

it. However, such a solution obviously requires a prohibitive

complexity and a full change of the switch hardware, and is

therefore not appropriate for data centers.

3. Hashed Credits Fair (HCF) Algorithm

In this section we introduce the Hashed Credits Fair (HCF)

algorithm. The algorithm is implemented in the intermedi-

ate switches, and its objective is to provide increased fairness

among flows using a lightweight implementation.

3.1. HCF Overview

The HCF algorithm sorts arriving packets into two queues:

the High-Priority (HP) and the Low-Priority (LP) queues. The

HP queue receives packets of flows that have recently been

under-served,, while the LP queue receives the other packets.

The HP queue is always served first.

HCF needs to know which flows have recently been under-

served, while avoiding memory-expensive per-flow crediting

mechanisms. To do so, flows are hashed into bins, and cred-

its are attributed per bin. Through the number of bins, the HCF

algorithm trades off memory size and fairness. Moreover, the

hash function is often updated to avoid persistent hash colli-

sions between the same flows.

3.2. HCF Algorithm

Figure 1 illustrates the switch architecture for the HCF algo-

rithm. For simplicity, we assume that all packets have the same

length.The architecture relies on a buffer of size B and on K

credit counters.

The buffer is divided into the HP and LP queues. For in-

stance, assuming that the total buffer size is B, the sizes of the

HP and LP queues can be B/2 each. Other buffer divisions are

possible, as discussed in Section 4, together with additional im-

plementation alternatives.

Time is divided into priority periods. The period length is

dynamic and determined by the HP queue size: whenever the

HP queue becomes empty, the priority period ends. Then, the

next priority period lasts until at least one HP packet has been

serviced and the HP queue is empty again.
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The objective of the priority periods is to reset the credit

counters and to keep changing the hash function. Each priority

period uses a unique hashing function, possibly chosen among a

predetermined set of functions. The inputs of the hash function

are the source/destination IP addresses and ports, and its output

is the index of the hashed bin among the K possible indices.

The algorithm takes the following steps as packets arrive to

the queue.

Initialization — At the start of each priority period,

1. Reset the number of credits c(k) of each bin k, with 0 ≤

k ≤ K − 1, to c(k) = c0 credits.

2. Pick a new hash function f .

Packet arrival — At the arrival of each packet p,

1. Apply the hash function f on the packet’s IP header and

obtain the corresponding bin k = f (p) of the packet.

2. Check the number of credits in bin k and the queue sizes.

If the bin has credits and the HP queue is not full, packet p

joins the HP queue. Otherwise, if the LP queue is not full,

p joins the LP queue. If both queues are full, p is simply

dropped.

3. If p joins the HP queue, decrement the number of credits in

its bin: c(k)← c(k)−1. (With variable-size packets, credits

can be based on the packet length instead. For simplicity,

we restrict explanations to fixed-size packets.)

4. If p joins the LP queue, set the number of credits in its bin:

c(k)← 0. 1 (This ensures packet order preservation within

a flow.)

Packet departure — When the output line can service the

queues,

1. Give priority to the HP queue: if it is not empty, read the

head-of-line packet in the HP queue. Else, read from the

LP queue.

2. If the HP queue was serviced, check its number of packets.

If the HP queue becomes empty, the priority period ends.

Re-enter the initialization step.

Queue Swapping — When the HP queue is empties,

1. Swap the header pointers of the HP queue and the LP

queue.

2. Continue to Initialization.

Algorithm 1 describes the detailed pseudo-code for the HCF

algorithm. It shows that the HCF algorithm holds in a few lines

of code, and relies on three functions that respectively imple-

ment the initialization of the priority period, the packet arrivals,

and the packet departures.

As shown in the simulation results of Section 5, a high packet

arrival rate typically causes the LP queue to rarely get empty,

thus practically ensuring a near-100% utilization of the bottle-

neck link. In addition, the credit mechanism significantly re-

duces the unfairness among flows and the flow starvation.

1This condition was not included in the journal version. We would like to

thank Ahmad Omary for this helpful remark.

Algorithm 1 Hashed Credits Fair (HCF)

init(){

∀k : c(k)← c0;

∗ f ()← createHashFunction(time);

}

arrive(p){

k ← f (p.srcIP, p.destIP, p.srcPort, p.destPort);

if c(k) > 0 and HP. f ull = f alse then

HP.enqueue(p);

c(k)← c(k) − 1;

else if LP. f ull = f alse then

LP.enqueue(p);

c(k)← 0;

else

drop(p);

end if

}

transmit(){

if HP.empty = f alse then

HP.dequeue();

if HP.empty = true then

queuesS wap();

init();

end if

else

LP.dequeue();

end if

}

queuesS wap(){

temp = HP.head;

HP.head = LP.head;

LP.head = temp;

}

3.3. HCF Complexity

The objective of the HCF algorithm is to be very lightweight

and easily implementable, so as to fit data center switches with-

out additional hardware requirements.

The above pseudo-code shows that both the packet arrival

and the packet departure functions have an O(1) time complex-

ity. Their main functions are queueuing/dequeueing packets,

and checking/updating bin credits. Therefore, assuming that

the initialization of the credit bins in the registers to fixed pre-

determined values is O(1), the HCF algorithm runs in an O(1)

time complexity.

On the other hand, when the initialization process occurs,

the bin credits are initialized, and therefore the theoretical time

complexity is O(K). Therefore, the naive worst-case theoretical

algorithm complexity is O(K).

However, in practice, the hardware complexity is O(1), in the

sense that for a small K, the credit array can be stored in the in-

ternal registers, and thus easily initialized in a packet time. This
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makes the HCF algorithm readily implementable in hardware.

In addition, the required memory space overhead for the

management of the algorithm is the memory of the bin array

that holds the amount of credits. Since the maximum credit

of each bin is c0 and there are K bins, the memory needed is

K · ⌈log(c0 + 1)⌉. For instance, it could easily be implemented

in hardware using K = 32 counters of 8 bits each, thus only

holding 32 bytes. In addition, we need to manage two queues

instead of one, and potentially store the timestamp of the pri-

ority period, thus adding a negligible overhead. Therefore, the

total overhead of the HCF is essentially negligible compared to

the memory size needed for the queue (e.g., 32 bytes are negli-

gible relative to an Ethernet packet of 1500 bytes).

In addition, note that the priority period of HCF adjusts dy-

namically to the traffic through the size of the HP queue. It does

not need to be predetermined.

3.4. Queue Swapping to Prevent Packet Reordering

The queue swapping procedure is added to the HCF algo-

rithm in order to prevent packet reordering. For instance, con-

sider two packets p1 and p2 from the same flow successively

arriving to the switch. It might be that the flow does not have

credits left, and therefore p1 is stored in the LP queue. Then, the

HP queue might get empty, thus generating a new priority pe-

riod with bin credits re-initialized to c0. If there is no swapping,

when p2 arrives, it might therefore use a credit and be stored in

the HP queue, which has higher priority. Thus, p2 would depart

earlier than p1, and the packets would be reordered.

As described above, a simple solution to this packet reorder-

ing problem is to swap the HP and LP queues at each new pri-

ority period, while the credits are initialized, by redefining the

LP queue as the HP queue, and vice versa. In the other words,

when each priority period ends, the HP queue is empty. In the

next priority period the previous LP queue becomes the next HP

queue and the previous HP queue becomes the next LP queue.

Hence, all the packets that were left in the previous LP queue at

the end of the priority period, will be serviced first at the next

priority period. The following theorem demonstrates that this

solution ensures that non-dropped packets are not reordered.

Theorem 1. HCF with queue swapping prevents reordering

among packets of a same flow that leave the switch.

Proof 1. First, packets that leave the switch have not been

dropped, and therefore we can restrict the proof to packets cur-

rently in the queues HP and LP.

Consider the set SF of all packets in the queues from a given

flow F, and define the following total order relation ≤ on any

two packets {x, y} ∈ SF
2: x ≤ y iff (x and y are in the same

queue and x is ahead of y) OR (x is in HP and y is in LP). Then

the relation clearly satisfies anti-symmetry, transitivity and to-

tality over SF .

Assume that two packets p1 and p2 of the same flow arrive

in that order but leave the queues reordered: we want to show

that this is impossible.

Let’s first show that p1 ≤ p2. Clearly, if they were reordered

in the switch, at some point, both p1 and p2 were in the switch

queues. There are three possible cases. First, if both p1 and p2

are in the same queue, since the HP and LP queues are FIFO,

then necessarily p1 is ahead of p2 and p1 ≤ p2. Otherwise,

if p1 is in HP and p2 is in LP, p1 ≤ p2 as well by definition.

In the last case, if p1 is in LP, it means that the flow does not

have credits left. If p2 arrives in the same priority period, it will

hash into the same bin with no credits left, and therefore cannot

be stored in HP. Else, if it arrives after the priority period of

p1, then p1 is now in HP by swapping, and as shown above

necessarily p1 ≤ p2 again. Therefore, in all cases, p1 ≤ p2.

Let’s now show that whenever p1 ≤ p2, p1 necessarily leaves

before p2. First, whenever first defined in some priority period,

the relation p1 ≤ p2 is kept during the entire priority period

(as long as no packet has departed): if p1 is ahead of p2 in

the same queue, it stays ahead, and likewise, if p1 is in HP and

p2 is in LP, they stay in their respective queues. In addition, by

definition, p2 cannot leave before p1 during this priority period:

either p1 is ahead of p2 in the same FIFO queue, or p1 is in

HP and p2 is in LP, which cannot be serviced before HP gets

emptied. Therefore, to be reordered, neither p1 not p2 can leave

during the first priority period in which the relation p1 ≤ p2 is

defined.

Last, after the priority period ends, by definition, the HP

queue is empty. Therefore both p1 and p2 were necessarily in

the LP queue, and p1 was necessarily ahead of p2. Since the LP

queue (which becomes the HP queue) is FIFO, p2 cannot leave

before p1, hence there cannot be reordering.

4. Implementation Alternatives

There are several possible implementation alternatives for the

HCF algorithm, involving a broad span of tradeoffs between

cost and performance. While we detail below several of these

alternatives that often introduce additional parameters, we have

attempted to reduce the number of parameters needed in the

main HCF variant described above, since we only need to define

the number of bins K (in addition to the queue size B, which is

needed even in droptail). The objective of reducing the number

of parameters is to enable both an easier implementation and a

range-free scalability of the algorithm.

4.1. Bloom Counter

Instead of using a single hash function, it is possible to com-

bine several hash functions by using a Bloom counter equiva-

lent, where the counter is successively decremented from c0 to

0 [27, 28].

For instance, a possible implementation using Bloom coun-

ters would work as follows. Each arriving packet is mapped

to several bins. If at least one bin has a remaining credit, the

packet is stored in HP, and all of its corresponding positive

hashed credits are decremented. Else it is stored in LP. For

instance, if a flow is hashed to credit values {0, 2, 3}, they are

updated to {0, 1, 2} and the packet is stored in LP.

In particular, when c0 = 1, this implementation reduces to a

simple Bloom filter (more precisely, it shows the complemen-

tary of the Bloom filter bit values). For instance, if a flow is
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hashed to credit values {0, 1, 1}, they are updated to {0, 0, 0}.

Therefore, it is a generalization of the HCF algorithm for any

number of hash functions, and reduces to HCF when using a

single hash function.

The goal of the Bloom filter is to represent set membership

while minimizing the false positive error. In our case, it rep-

resents whether a flow belongs to the set of flows that have

already used a credit, while minimizing the probability that a

flow is wrongly tagged as having already used a credit. The

ideal number of hash functions κ in such a Bloom filter is pro-

vided by

κ ≈
K

N
· log 2,

where K is the number of bins and N the number of flows to

represent [27, 28]. Since we want a small number of bins, we

often use K ≪ N, and therefore there is no point in using more

than one hash function. Simulations with K = 20 bins and

N ≈ 400 flows confirmed that Bloom filters with κ ≥ 2 hash

functions did not improve the performance of HCF.

4.2. Number of Bins

The number of hashed bins K has a significant influence on

the performance of the system. On the one hand, an HCF switch

with a single bin is similar to a FIFO-based switch. On the

other hand, a large number of bins minimizes hash collisions,

and therefore maximizing the fairness among flows. However,

a large number of bins also consumes slightly more system re-

sources, and in particular takes more memory and increases the

implementation complexity. The simulation results in Section

5.3 provide a performance comparison using different numbers

of bins. It appears that K = 20 bins are often enough both for

fairness and starvation.

4.3. Priority Period

In the presented algorithm we use a dynamic priority period,

i.e. the period length dynamically changes depending on the

queue occupancy. To simplify the implementation, a fixed pe-

riod length can be used, so that the credits are initialized and

a new hash function is determined at predetermined periodic

times. However, while a fixed priority period might be simpler

to implement and avoid initializing credits too often, it requires

tuning the period parameter. In addition, simulations in Sec-

tion 5.3 show that a fixed priority period has a negative impact

on the system performance. Further, the fixed priority period

violates the packets ordering, thus, is not recommended for us-

ing.

4.4. Buffer Division between HP and LP Queues

We have presented an equal division of the buffer between

the HP and LP queues, each of size B/2. However, different

divisions are possible. A large LP queue will induce a larger

link utilization. On the other hand, a large HP queue favors

longer priority periods and a better fairness.

Note that when using the queue swapping presented above to

prevent reordering, it is natural to use an equal partition as well,

Figure 2: Architecture of buffer division into three thirds.

since the queue sizes are being swapped at each new priority

period.

Furthermore, it is also possible to use a dynamic division of

the buffer. When a packet arrives and the sum of the queue sizes

is less then B, the packet joins the suitable queue. If the buffer

is full, i.e. the sum of the queue sizes is equal to B, and the

packet is destined to the HP queue, then the last packet from

the LP queue is dropped, and the arrived packet is stored in the

HP queue. This solution improves the performance, although it

involves a more complicated management.

4.5. Buffer Division to Three Thirds with Queues Swapping

A possible issue when using queue swapping is that the HP

queue might already be full at the start of the period that fol-

lows the queue swapping. Therefore, it might need to drop

the newly-arriving high-priority packets. Such an issue occurs

when the LP queue was full before the swap, because the LP

queue becomes the new HP queue in the swap.

A possible solution to overcome this problem is to keep space

for those newly arriving packets. The buffer is divided into three

equal parts. At every point of time, two of the three thirds be-

long to the HP queue and one third belongs to the LP queue.

The architecture and the algorithm are shown on Figure 2.

By definition of the dynamic priority period, at the end of the

priority period, at some time t = T−, the HP queue is empty.

Soon after, at the beginning of the next priority period, at time

t = T+, the HP queue uses again two thirds of the queue, but

now one of the two thirds is the one that was formerly used by

the LP queue. The third remaining part, which is also empty,

becomes the new LP queue. Thus, there will be buffer space for

new arriving high-priority and the low-priority packets.

The next theorem emphasizes the following result: at each

priority period, at least B/3 of the high-priority packets and B/3

of the low-priority packets are guaranteed to enter to the buffer.

Theorem 2. Assuming the buffer division above, for any buffer

size B (divisible by 3), HCF guarantees buffer space for at least
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B/3 HP packets and B/3 LP packets in the start of each priority

period.

Proof 2. Assume that a priority period ends at time t = T−,

and the new priority period begins at time t = T+. According

to the definition of the dynamic priority period, the HP queue

is empty at time t = T− and the length LP(T−) of the LP queue

at time t = T+ satisfies 0 ≤ |LP(T−)| ≤ B/3. Thus, in the worst

case there are B/3 packets in the LP queue.

When the queue swapping occurs, the LP queue becomes the

new HP queue. Thus, the length HP(T+) of the HP queue at

time t = T+ satisfies 0 ≤ |HP(T+)| ≤ B/3 and the LP queue is

empty.

The total size of the HP queue is 2B/3, therefore there is a

buffer space for at least 2B/3 − |B(T+)| ≥ 2B/3 − B/3 = B/3

packets in the HP queue. In addition, the LP queue is empty,

and it can contain up to B/3 packets, therefore there is a buffer

space for B/3 packets in the LP queue as well. �

4.6. Hash Function

A hash function is used to map packets to their corresponding

bins. There are many possible alternative hash functions that

can be used [19]. Since the input size and the output ranges for

the hash function are fixed, the hash function can be easily im-

plemented. In addition, in order to implement a different hash

function for each priority period, it is possible to use an XOR

of the packet header with the local time-stamp of the priority

period start. The algorithm is fully distributed, and therefore

there are no synchronization issues between different ports.

5. Simulation Results

In this section, we run simulations of a congested link using

an NS2 simulator [29]. We assume an N-to-1 topology with a

shared congested link, similar to the topology presented in [3],

with N sources sending N flows through the congested link to

a shared destination. We further assume that the congested link

corresponds to an output of an output-queued switch.

We successively simulate the effects of HCF on on long-flow

starvation and on short-flow throughput collapse. We then an-

alyze the impact of changing the HCF parameters, and finally

check mixes of short and long flows.

We attempt to provide some intuition for all these simula-

tions. Yet, note that the reasons behind data center fairness

problems such as the TCP incast are often hard to model be-

cause of the complex interactions involved [1, 2, 5].

5.1. Long-Flow Starvation

5.1.1. Settings and Metrics

In the long-lived flow simulations, we run N = 400 long TCP

New Reno flows [30] with RTT = 100µs. We also run UDP

packets with average arrival rate of 5% of the switch output link

capacity. The capacity C of the switch congested output link is

100 Mbps, with other links running at a much higher capacity

so as to have the switch output link form a single bottleneck in

the network. The total buffer size B in the switch output is 20

packets, with a uniform packet size L of 1500 bytes. Therefore,

in the HCF switch, the buffer is divided equally between the HP

and LP queues with 10 packets per queue. The HCF algorithm

relies on a dynamic priority period, the flows are hashed in the

simulation using a real hash function into K = 20 bins, and each

bin receives an initial credit of c0 = 1 credit unit. Each simu-

lation is run for 3 minutes, and simulation results are measured

during a final measuring time of T = 10 seconds.

In addition, we compare HCF with the RED-ECN-based and

hashed DRR-based switches. We use the ns2 implementations

of the RED and DRR queues. For both algorithms, we chose

all the default parameters. The parameters for the RED-ECN

queue are set up to turn on the ECN bit, and never drop a packet

if the queue is not full, with a minimal and a maximal thresholds

to zero and to the buffer size, respectively. The reason for this

parameter tuning is that in this case we are able to restrict the

flows most of the time. As a consequence, we can also reach

higher fairness, which is our key objective. The DRR-based

queue uses a hash function, similarly to HCF. The DRR queue

mechanism hashes the flows into 20 bins using a hash function,

in the same way as HCF also uses K = 20 bins. Therefore, in

all simulations we chose the DRR queue mechanism to hash the

flows into the same number of bins as the HCF’s hash function.

Thus we obtain the same hash function collision probability in

both algorithms, enabling us to get closer to an apples-to-apples

comparison.

In the simulations we measure two performance indicators

that can reflect on the extreme unfairness among flows in the

data center network: the unfairness and the starvation percent-

age.

In an ideally-fair system, all flows would be able to send the

same amount of traffic during the measured time of T = 10 sec-

onds i.e. 208.333 packets. This intuitively suggests to define the

unfairness based on the deviations between the number of pack-

ets sent by each flow and the average across all flows. There-

fore, we define the unfairness as the variance of the cumulative

number of packets sent by each flow during some time T .

A significant unfairness often causes long periods of tempo-

rary starvation for flows. We want to characterize such tempo-

rary starvation, and will simply define starvation percentage as

the percentage of all flows that have not sent any packet during

the measuring time T .

In addition, we also consider the throughput and utilization

of the bottleneck link. The bottleneck link throughput is defined

as the rate of all packets transmitted through the bottleneck link

during time T , and the bottleneck link utilization is defined as

the ratio of its throughput by the bottleneck link capacity. The

goal is to keep the bottleneck link utilization close to 100%,

thus maximizing the throughput. In all simulations, we found

that the bottleneck link utilization was extremely close to 100%.

The utilization was 99.72%, 99.93%, 99.94% and 99.93% for

FIFO, DRR, RED-ECN and HCF switches, respectively. This

is due to the relatively high arrival rate of the packets to the

switch, causing the queue to become empty extremely rarely.

Therefore, there was no point plotting it.
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Figure 3: PDF of per-flow throughput in number of received packets during the

period of 10 seconds.

Figure 4: PDF of the longest flow starvation times per flow during the period

of 10 seconds.

5.1.2. Throughput Distribution and Starvation Time

Figure 3 plots the distribution of the per-flow throughput. For

the FIFO-based switch, we can see that most of the flows have a

low throughput during time T , while several flows have a high

throughput. Therefore, the distribution is extremely unfair, be-

cause a few flows send significantly more packets than the oth-

ers.

On the other hand, the distribution of the HCF algorithm is

more concentrated around its mean, thus displaying a lower un-

fairness. This lower unfairness is reflected by the lower distri-

bution variance: while the FIFO, DRR and RED switches have

a computed variance of 5.55 · 104, 9.41 · 104 and 1.79 · 104 re-

spectively, the HCF switch has the lowest variance of 6.74 ·103.

Likewise, we can also see that fewer flows are significantly

impacted by sending nearly packets (65 flows for HCF are in the

first histogram bin vs. 185, 250 and 105 flows for FIFO, DRR

and RED, respectively), thus reflecting as well on the lower

starvation. More precisely, 31% of flows in FIFO and DRR are

fully starved during this period of 10 seconds, 8% of flows in

RED, while only 0.025% of flows in HCF are fully starved.

Figure 4 illustrates the impact of HCF on starvation time. For

each TCP flow, we measure the longest starvation time, i.e. the

(a) Unfairness. (b) Starvation Percentage.

Figure 5: Influence of the buffer size. Comparison between an HCF switch and

a FIFO-based switch.

longest inter-ACK time, over a 3-minute simulation. We then

plot the distribution of this longest starvation time.

Given a simple FIFO-based switch with droptail queueing

and output-queued switching, the plot shows that several flows

have a starvation time that exceeds a minute, and that the star-

vation time of most flows exceeds 20 seconds. On the other

hand, when using HCF in the switch, it can be seen that most

starvation times are under 20 seconds, thus potentially having

a significant impact on application performance (even though

the performance might of course still not be acceptable for the

applications that are most latency-sensitive).

The distribution of the DRR algorithm is close and some-

times worse that of the FIFO queue. The reason is that DRR

does not reserve buffer space for the flows that have not been

served recently, as in the LP queue in HCF, and therefore the

served flows tend to fully occupy the small buffer. The RED-

based switch performs worse than HCF, because it is less effi-

cient in a congested scenario where the average window size of

a flow is smaller than 1.

5.1.3. Buffer Size

Figure 5 shows the influence of the buffer size on the unfair-

ness and starvation. It is obtained by changing the buffer size B

in the baseline defined above.

We can see that for low buffer sizes, the unfairness and star-

vation with HCF are significantly lower than with FIFO. This is

the case we are most interested in, since data center buffers are

often shallow and only consist of a few packets. This simula-

tion illustrates how buffers with a few packets are enough with

HCF to provide low starvation, while FIFO needs buffers of

some 1000 packets. In fact, this can impact the switch architec-

ture: given a packet size of 1500B, this scaled-down example

with 400 flows would need at least 1.5MB of buffering per out-

put. Therefore, a real-life switch with some 40000 flows might

require some 100 times more buffering, thus not being able to

store all packets in the internal memory, and requiring some

external memory with significant hardware changes.

In addition, for higher buffer sizes, the unfairness and starva-

tion are about similar. In particular, the unfairness is a bit lower

with FIFO and starts increasing with large buffer sizes. A pos-

sible explanation is that large buffer sizes favor larger window

sizes, and therefore a larger traffic burstiness, thus increasing

the variance of the per-flow instantaneous throughput.
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5.2. Short-Flow Throughput Collapse

5.2.1. Typical Data Center

We run simulations of the TCP incast problem with short-

flow throughput collapse using the parameters of the data center

incast scenario from [2]. We use 1 Gbps links, a 32 kB switch

buffer, a 0.1 ms round-trip transmission time and data blocks

of 1 MB. As in the typical incast scenario we assume that the

1 MB data blocks are equally distributed over the N storage

servers and are transmitted to the requester over N TCP flows.

Therefore, each flow sends 1/N MB of data.We simulate TCP-

Reno flows with packets of size 1KB. The HCF switch hashes

flows into 16 bins with 1 credit per bin, and uses a dynamic pri-

ority period. The buffer is divided equally between the HP and

the LP queues with 16 packets per queue. The block goodput

of the short TCP flows is defined as the size of the transmitted

data (block size) divided by the longest finish time (latency) of

the flow, as in [1, 2, 3, 4, 5]. We measure block goodput as a

function of the number of flows (servers).

Again, we compare HCF with the RED-ECN-based and

hashed-DRR-based switches. As we stated before, we used

the default ns2 parameters for the RED-ECN queue, seting the

minimal and the maximal thresholds to zero and to equal to the

buffer size, respectively. The DRR queue mechanism’s hash

function hashes the flows into 16 bins.

Figure 6(a) compares FIFO, DRR, RED-ECN and HCF.

HCF outperforms the other algorithms over most flow numbers,

which are roughly divided into three regions:

• Goodput collapse — below 25 servers (flows), the size of

each flow is long enough, so the influence of HCF on fair-

ness is noticeable.

• Goodput preservation — between 25-100 servers, the flow

lengths are too small to notice the influence of HCF on

fairness.

• Goodput recovery — above 100 servers, the large num-

ber of flows causes increased congestion in both FIFO and

HCF, but the HCF credit mechanism balances the packet

drops across the flows, thus balancing the timeouts as well.

Therefore, HCF works better in two cases: with few flows per

block, and with increased congestion.

Note that the HCF algorithm works at the switch level.

Therefore it can be combined with the solutions surveyed in

Section 2.1, which need to change the application and/or trans-

port stacks, in order to achieve even better performance. The

HCF algorithm mitigates the TCP incast due to the fair schedul-

ing of the flows in the shallow switch buffer. The TCP incast

problem arises, when TCP flows suffer from a varying num-

ber of retransmission time-out (RTO) events. With the tra-

ditional FIFO-based switches, while several flows accomplish

their transmission with no RTO event at all, other flows suf-

fer from many RTO events. The flows that do not suffer from

the RTO increase their congestion windows faster and occupy

the buffer space in the switch, thus preventing the loss-suffered

flows from injecting new packets to the buffer. This unfairness

of the number of RTO events per flow has a crucial effect on

the total transmission time of a data block, because it depends

on the finishing time of the latest flow. The HCF algorithm bal-

ances the RTO events between the flows by preserving buffer

space for new flows in the HP queue that have previously suf-

fered losses. Therefore it tends to equalize the finishing times

of all flows and reduces the finishing time of the latest flow.

5.2.2. Next-generation Data Center

Next, we analyze next-generation data centers with param-

eters from [2], where the round-trip times are decreased from

100 µs to 20 µs, the transmission link capacity is increased from

1 Gbps to 10 Gbps, and the block size is increased from 1 MB

to 80 MB. Figure 6(b) shows the comparison of FIFO, DRR,

RED and HCF. As in the previous case, HCF outperforms the

other algorithms over the whole range.

5.2.3. Fixed-sized Flows

Next, we keep the length of each flow constant to 10 KB

(i.e. each flow sends the same amount of data regardless to N).

We simulate a data center with typical parameters of a 1 GB

link capacity and a 100 µs round-trip time. We compare the

performance of a FIFO, DRR and RED-ECN switches with an

HCF switch, which hashes flows into 128 bins.

Figure 6(c) compares FIFO, DRR, RED-ECN and HCF. We

see that HCF outperforms the other algorithms only for a large

number of flows. For a small number of flows, there is not

enough congestion, so the advantages of HCF are limited; and

at the same time, the HCF buffer space is not fully utilized,

because HCF drops more packets then FIFO (to save space for

HP packets).

5.2.4. Starvation Time

We define starvation time as the time between two packet

arrivals (at the destination). The maximal starvation time is af-

fected by the retransmission exponential back-off value, which

grows with the number of consecutive RTO events.

Figures 7(a), 7(b) and 7(c) show the maximal observed star-

vation time at the FIFO-queue, DRR-queue, RED-queue and

the HCF-queue based switches as a function of the number of

servers. In most cases, the maximal starvation time in the HCF-

queue based switch is smaller than in the FIFO, DRR and RED-

ECN cases, which provides some basis for the better goodput.

In addition, Figures 8(a), 8(b) and 8(c) show the average ob-

served starvation time and Figures 9(a), 9(b) and 9(c) show its

standard deviation between the flows. Again, in most cases, the

average starvation time in the HCF-based switch is smaller than

in the FIFO, DRR and RED-ECN cases.

5.3. Analysis of HCF switch parameters

We now want to analyze how the parameters of the HCF al-

gorithm impact its performance. These parameters were de-

tailed in Section 4. We use a baseline for the set of simulation

settings, and for each simulation vary a single parameter in this

baseline. The baseline settings follow those defined in Section

5.1.
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(a) Comparison of goodput at a Typical Data Cen-

ter using FIFO, DRR, RED and HCF switches with

fixed block size.

(b) Comparison of goodput at a Next-Generation

Data Center using FIFO, DRR, RED and HCF

switches with fixed block size.

(c) Comparison of goodput at a Typical Data Cen-

ter using FIFO, DRR, RED and HCF switches with

fixed flow size.

Figure 6: Comparison of goodput using FIFO, DRR, RED and HCF switches under TCP incast scenario.

(a) Comparison of Maximal Starvation Time at a

Typical Data Center at FIFO, DRR, RED and HCF

switches with fixed block size.

(b) Comparison of Maximal Starvation Time at a

Next-Generation Data Center at FIFO, DRR, RED

and HCF switches with fixed block size.

(c) Comparison of Maximal Starvation Time at a

Typical Data Center at FIFO, DRR, RED and HCF

switches with fixed flow size.

Figure 7: Comparison of Maximal Starvation Time using FIFO, DRR, RED and HCF switches under the TCP incast scenario.

(a) Comparison of Average Starvation Time at a

Typical Data Center at FIFO, DRR, RED and HCF

switches with fixed block size.

(b) Comparison of Average Starvation Time at a

Next-Generation Data Center at FIFO, DRR, RED

and HCF switches with fixed block size.

(c) Comparison of Average Starvation Time at a

Typical Data Center at FIFO, DRR, RED and HCF

switches with fixed flow size.

Figure 8: Comparison of Average Starvation Time using FIFO, DRR, RED and HCF switches under the TCP incast scenario.

(a) Comparison of Standard Deviation of a Starva-

tion Times at a Typical Data Center at FIFO, DRR,

RED and HCF switches with fixed block size.

(b) Comparison of Standard Deviation of a Star-

vation Times at a Next-Generation Data Center at

FIFO, DRR, RED and HCF switches with fixed

block size.

(c) Comparison of Standard Deviation of a Starva-

tion Times at a Typical Data Center at FIFO, DRR,

RED and HCF switches with fixed flow size.

Figure 9: Comparison of Standard Deviation of a Starvation Times using FIFO, DRR, RED and HCF switches under the TCP incast scenario.
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(a) Unfairness. (b) Starvation Percentage.

Figure 10: Influence of the initial number of credits per bin.

(a) Unfairness. (b) Starvation Percentage.

Figure 11: Influence of the number of bins.

5.3.1. Initial Number of Credits per Bin

Figure 10 shows the influence of the number of initial cred-

its c0 on the unfairness and starvation. It can be seen that a

large number of initial credits decreases the performance of the

system; an intuitive explanation is that an HCF switch with an

infinite number of credits becomes a FIFO switch, and there-

fore loses the benefits of the credits. In addition, smaller credits

enable smaller priority periods, and therefore a fast renewal of

the hash function, thus reducing the odds of persistent hash col-

lisions between any two flows.

5.3.2. Number of Bins

Figure 11 shows the influence of the number of hash credit

bins K on the unfairness and starvation. Of course, a smaller

number of bins increases unfairness and starvation, and there-

fore decreases the performance of the system, because it in-

creases hash collisions between flows. The plots show that a

few dozen bins seem enough to provide a reasonable fairness

and starvation. Given c0 = 1, i.e. a single bit per bin, this

means that only a few bytes stored in the register are needed for

the HCF bins.

5.3.3. Priority Period Length

Figure 12 shows the influence of the priority period on the

unfairness and starvation. The red solid line shows the value

for the dynamic priority period. It is compared with different

values of a fixed priority period. Simulations show that the dy-

namic priority period fares better than any of the fixed period

values. Therefore, there is no need to fix the priority period

value of HCF. It is an interesting result, in the sense that the

system can learn to dynamically regulate itself better than any

fixed regulation.

(a) Unfairness. (b) Starvation Percentage.

Figure 12: Influence of the fixed priority period. The red solid line shows the

performance with a dynamic priority period.

5.4. Short TCP Flows over Long Flows

We have previously analyzed separately the performance of

long-lived TCP flows and the short-lived TCP flows. We now

want to analyze the performance of mixes of short and long

flows, and in particular the influence of long flows on short

flows. To do so, we change the simulation network to include

only 100 long-lived TCP flows, and use a buffer size of B = 10

packets. We then add several short TCP flows, and check the

total transfer latency time for each short TCP flow. We use

three types of short flows: 10-, 30-, and 60-packet flows, and

generate 100 flows of each type. The total simulation time is 5

minutes, and the start times of the short TCP flows are spread

uniformly in the first half of the simulation time (i.e., the first

2.5 minutes).

Figure 13 compares the performance of the FIFO switch and

the HCF switch under the same network parameters. It plots the

CDF of the transfer latency when measured over the 100 flows

of each type. For instance, a CDF value of 95% at a latency

value of 25 seconds in the second plot indicates that 95% of the

short flows of the second type (i.e., with 30 packets to send)

finished transmission at most 25 seconds after they started.

The plots show that HCF switches often provide a lower

transfer latency than the FIFO switch. More significantly, they

have lower odds of having long transfer latencies. This is espe-

cially meaningful for highly parallel applications, such as sci-

entific computing and parallel database accesses, which start

several flows in parallel and are dependent on the highest trans-

fer latency among all of these.

6. Discussion

We now briefly discuss the correctness and generality of the

assumptions made in this paper.

TCP Problems — We mentioned the incast, latency and the

starvation problems in the Introduction. There are several other

essential problems that need to be solved in order to use TCP

in data centers, which we leave for further study. For instance:

how to best load-balance TCP flows across multiple paths to

enable adaptive routing; how to provide guaranteed delays for

some of the flows; how to avoid congestion spreading in low-

load networks; how to adapt to wireless and optical data center

networks; and how to efficiently carry RDMA traffic [31, 32,

33, 34].

Single Bottleneck — We have assumed the existence of a

main (or single) bottleneck link. This assumption relies on the
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(a) CDF of Transfer Latency for TCP Flows of 10

packets.

(b) CDF of Transfer Latency for TCP Flows of 30

packets.

(c) CDF of Transfer Latency for TCP Flows of 60

packets.

Figure 13: CDF of transfer latency for short TCP flows of different sizes.

observation that TCP flows having more than one bottleneck

actually depend on the most congested one [11]. Thus, the as-

sumption seems realistic enough. However, we also assumed

that congestion only affects packets, not ACKs. This assump-

tion is too restrictive, and the HCF algorithm will need to be

applied on the ACKs as well.

RTTs — In simulations, we did not consider RTT variations

among flows. This assumption should have a limited impact,

because the average propagation delay can often be neglect in

front of the average queueing delay in data centers, as illustrated

with the data center parameters in the Introduction.

Goodput vs. Throughput — We referred in our perfor-

mance criteria for long TCP flows to the throughput, although

the end user may be interested instead in the goodput, which is

defined by the rate of new packets transmitted through the bot-

tleneck link. However, we have seen in our simulations that the

goodput was always within 5% of the throughput, therefore we

neglected the difference between the two indicators.

Switch Model — We have modeled the switch as an

output-queued switch. Real switches are input-queued (IQ) or

combined-input-output-queued (CIOQ), making them harder to

analyze. In addition, the datacenter switches are usually imple-

mented with a speedup large enough that the switch scheduling

effects are negligible [7]. Therefore, we neglect the influences

of the switch scheduling algorithms, which might add other as-

pects of starvation and unfairness [35].

7. Conclusion

In this paper, we analyzed both the TCP-incast short-

flow throughput-collapse problem, and the long-flow starvation

problem. We presented the significant unfairness problem of

TCP flows in data centers. To address it, we introduced HCF,

a novel lightweight data center switch algorithm that is trans-

parent to TCP-based applications. HCF combines a hashing-

based credit allocation algorithm with a queueing mechanism

that provides a higher priority to flows with credits. We fur-

ther showed that HCF runs in an O(1) time complexity, that

it requires significantly less resources than competing fairness

algorithms, that it does not incur reordering, and that it is trans-

parent to the end-station users. Last, we illustrated through sim-

ulations that HCF can dramatically reduce unfairness and star-

vation for long TCP flows in data centers, as well as increase the

goodput of short TCP flows that suffer from TCP incast prob-

lem.

It should be noted that while the HCF algorithm was espe-

cially studied in the framework of data centers, it can be readily

adapted to provide fairness in other types of networks, since it

uses a simple and compact structure that can be easily general-

ized.
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