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Abstract Penicillin and related antibiotics disrupt cell wall synthesis to induce bacteriolysis. Lysis

in response to these drugs requires the activity of cell wall hydrolases called autolysins, but how

penicillins misactivate these deadly enzymes has long remained unclear. Here, we show that

alterations in surface polymers called teichoic acids (TAs) play a key role in penicillin-induced lysis of

the Gram-positive pathogen Streptococcus pneumoniae (Sp). We find that during exponential

growth, Sp cells primarily produce lipid-anchored TAs called lipoteichoic acids (LTAs) that bind and

sequester the major autolysin LytA. However, penicillin-treatment or prolonged stationary phase

growth triggers the degradation of a key LTA synthase, causing a switch to the production of wall-

anchored TAs (WTAs). This change allows LytA to associate with and degrade its cell wall substrate,

thus promoting osmotic lysis. Similar changes in surface polymer assembly may underlie the

mechanism of antibiotic- and/or growth phase-induced lysis for other important Gram-positive

pathogens.

DOI: https://doi.org/10.7554/eLife.44912.001

Introduction
Penicillin and related beta-lactams are some of our oldest and most effective antibiotics. These

drugs disrupt the cell wall biogenesis pathway in bacterial cells and in doing so elicit explosive lysis

(Park, 1964; Park and Strominger, 1957). Despite the long history of their use in the clinic, we still

know relatively little about how beta-lactams trigger this catastrophic event. Understanding the

mechanisms responsible for this lethal activity has the potential to provide fundamental new insights

into the cell wall assembly process and to reveal novel ways of inducing bacteriolysis for future thera-

peutic development.

The main targets of the beta-lactams are cell wall synthases called penicillin-binding proteins

(PBPs) (Strominger and Tipper, 1965; Tipper and Strominger, 1965), of which there are two varie-

ties: class A (aPBPs) and class B (bPBPs) (Goffin and Ghuysen, 1998; Sauvage et al., 2008). These

enzymes build the peptidoglycan (PG) matrix that surrounds most bacterial cells and protects them

from osmotic rupture. The aPBPs are bifunctional and possess PG glycosyltransferase (PGT) and

transpeptidase (TP) activity to polymerize the glycan strands of PG and form the inter-strand cross-

links of the network, respectively. The bPBPs, on the other hand, only possess TP activity. They work

in concert with a second class of PG polymerases called the SEDS (shape, elongation, division, and

sporulation) family proteins to synthesize and crosslink new cell wall material (Cho et al., 2016;

Emami et al., 2017; Meeske et al., 2016; Sjodt et al., 2018; Taguchi et al., 2019).

Beta-lactams covalently modify the TP active site of the PBPs to block the PG crosslinking activity

of the aPBPs and SEDS-bPBP complexes (Cho et al., 2016; Tipper and Strominger, 1965). The first
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models of the lytic mechanism following TP inhibition by these drugs proposed that lysis resulted

from the gradual weakening of the wall as it was made with fewer and fewer crosslinks (Park and

Strominger, 1957). However, pioneering studies from Tomasz and co-workers in the Gram-positive

pathogen Streptococcus pneumoniae (Sp) changed this view by showing that lysis in this organism

was dependent on the activity of a PG cleaving enzyme called LytA (Tomasz et al., 1970;

Tomasz and Waks, 1975). Beta-lactam-induced lysis in other bacteria was subsequently shown to

also be dependent on factors with PG processing activity (Cho et al., 2014; Chung et al., 2009;

Heidrich et al., 2001; Heidrich et al., 2002; Tipper and Strominger, 1965; Uehara et al., 2009).

Thus, these PG hydrolases are often referred to as autolysins, and from genome sequencing data we

now know that most bacteria encode a large variety of enzymes capable of breaking bonds in the

PG network (Uehara and Bernhardt, 2011; Vollmer et al., 2008).

In normally growing bacteria, PG hydrolases are thought to participate in a number of critical cel-

lular processes. Their activity is important to create space in the existing wall matrix to allow for the

insertion of new material during cell elongation (Bisicchia et al., 2007; Carballido-López et al.,

2006; Meisner et al., 2013; Sycuro et al., 2010; Vollmer et al., 2008). They also remodel the cell

wall formed at the division site (septal PG) to shape the new poles and promote daughter cell sepa-

ration (De Las Rivas et al., 2002; Fan, 1970; Heidrich et al., 2001; Hett et al., 2008;

Lominski et al., 1958). Given their potential to induce cell lysis, it has long been appreciated that

bacteria must possess robust mechanisms to control when and where PG hydrolases are activated to

cut bonds in the PG network (Uehara and Bernhardt, 2011; Vollmer et al., 2008). However, sur-

prisingly little is known about the regulatory systems that control these potentially deadly enzymes

or how they are subverted by antibiotics like beta-lactams to lyse bacterial cells.

To better understand PG hydrolase regulation and penicillin-induced lysis, we used Sp as a model

system. It has the advantage of requiring a single PG hydrolase called LytA for lysis-induction

(Figure 1A and Figure 1—figure supplement 1) (Tomasz et al., 1970; Tomasz and Waks, 1975).

The problem is therefore more genetically tractable in Sp than in other model organisms where mul-

tiple PG hydrolases are implicated in lysis-induction (Heidrich et al., 2001; Uehara et al., 2009;

Figure 1. Beta-lactam induced lysis of Sp and overview of its cell envelope. (A) The indicated strains were grown

in THY at 37 ˚C in 5% CO2. At an OD600 of ~0.5, they were challenged with penicillin G (PenG) (0.5 mg/ml final).

Growth was monitored every 30 min for 15 hr. (B) Schematic diagram of the cell envelope of Sp. The cell wall

peptidoglycan (PG) (blue) contains Wall Teichoic Acid (WTA) polymers and the lipid bilayer contains Lipoteichoic

Acid (LTA). The constituents of the repeating unit in LTAs and WTAs are indicated; Cho, choline; GlcNac, N-

acetylglucosamine; Rbo, ribitol; ATTGal, 2-acetamido-4-amino-2,4,6-trideoxygalactose; Glc, glucose; Phos,

phosphate. The following figure supplement is available for Figure 1.

DOI: https://doi.org/10.7554/eLife.44912.002

The following figure supplement is available for figure 1:

Figure supplement 1. LytA levels remain constant before and at the onset of growth-phase-dependent autolysis.

DOI: https://doi.org/10.7554/eLife.44912.003
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Vollmer et al., 2008). Another benefit of Sp is its propensity to lyse following prolonged growth in

stationary phase (Fernebro et al., 2004; Mellroth et al., 2012; Tomasz et al., 1970; Tomasz and

Waks, 1975). Like penicillin-induced lysis, autolysis in stationary phase is LytA-dependent

(Fernebro et al., 2004; Mellroth et al., 2012; Tomasz et al., 1970; Tomasz and Waks, 1975). This

property of Sp cells enabled us to develop a genetic screen for LytA regulators. The screen revealed

a key role for surface polymers called teichoic acids (TAs) in controlling LytA activity. TAs are major

constituents of the cell surface in Gram-positive bacteria and are either lipid-anchored (lipoteichoic

acids, LTAs) or wall-anchored (wall teichoic acids, WTAs) (Figure 1B) (Brown et al., 2013; Percy and

Gründling, 2014). Our results indicate that Sp cells primarily produce LTAs during normal exponen-

tial growth, which bind and sequester LytA. However, entry into stationary phase and penicillin-treat-

ment were both found to trigger the degradation of the Sp LTA synthase, causing a switch to the

production of WTAs. This change allows LytA to associate with and degrade its cell wall substrate,

thus promoting osmotic lysis. We propose that changes in surface polymer assembly may similarly

underlie the mechanism of antibiotic-induced lysis for a number of other important Gram-positive

pathogens.

Results

Identification of TacL as a potential LytA control factor
Previous studies indicated that LytA protein levels remain constant during growth, and we have con-

firmed this result (Figure 1—figure supplement 1) (Fernebro et al., 2004; Henriques Normark and

Normark, 2002; Mellroth et al., 2012). Based on this observation, we hypothesized that LytA activ-

ity is negatively regulated during normal exponential growth by an inhibitory factor(s). In this sce-

nario, inhibition would be relieved upon entry into stationary phase or exposure to cell wall synthesis

inhibitors triggering lysis. If correct, this hypothesis predicts that the putative LytA inhibitory factor(s)

should be essential for growth in wild type (LytA+) cells but become non-essential in cells lacking

LytA (DlytA). Therefore, to identify the potential LytA inhibitor(s), we used transposon sequencing

(Tn-Seq) to screen for Sp genes displaying the expected pattern of essentiality/non-essentiality.

Transposon libraries were prepared in a wild-type strain D39 without its capsule (WT) and a deriva-

tive deleted for lytA (DlytA) (Fenton et al., 2016; Land and Winkler, 2011). When the insertion pro-

files were compared, we found that the gene tacL (SPD_1672) was virtually devoid of insertions in

the WT library, but readily inactivated by insertions in the DlytA library (Figure 2A). To validate the

Tn-Seq results, we constructed a TacL-depletion strain in which the sole copy of tacL was placed

under control of a zinc-regulated promoter (DtacL PZn-tacL) (Eberhardt et al., 2009). When TacL

was produced (+Zn), cells were viable regardless of their LytA status (Figure 2B). However, when

TacL was depleted (-Zn), viability was severely compromised only in cells producing LytA

(Figure 2B). Furthermore, TacL depletion during growth in liquid medium caused premature LytA-

dependent autolysis in exponential phase (Figure 2C). Consistent with these findings, a high-

throughput CRISPRi study in Sp cells showed that TacL depletion led to increased lysis in stationary

phase and aberrant cell morphology (Liu et al., 2017). Thus, tacL has the genetic properties

expected for a gene encoding a LytA inhibitor that is active during normal exponential growth.

TacL protects cells from extracellular LytA
LytA lacks a discernible motif for protein secretion and the mechanism by which it is exported has

yet to be defined (Dı́az et al., 1989). Therefore, one possible way in which TacL could control the

ability of LytA to cleave the cell wall is through the inhibition of LytA secretion during exponential

growth. Such a model predicts that both TacL+ and TacL- cells should be equally sensitive to the

addition of purified LytA. To test this possibility, recombinant LytA (rLytA) was purified from Escheri-

chia coli (Figure 3A) and added to exponentially growing cultures of DlytA or DlytA DtacL cells

(Figure 3B). As observed previously, addition of rLytA to DlytA (TacL+) cells had no impact on

growth during exponential phase and only caused lysis in stationary phase (Figure 3B)

(Fernebro et al., 2004; Mellroth et al., 2012). However, the addition of rLytA to DlytA DtacL cells

led to rapid cell lysis during exponential growth (Figure 3B). We therefore conclude that TacL is

required for the growth-phase-dependent control of LytA activity at a step after its export to the cell

surface.

Flores-Kim et al. eLife 2019;8:e44912. DOI: https://doi.org/10.7554/eLife.44912 3 of 23

Research article Microbiology and Infectious Disease

https://doi.org/10.7554/eLife.44912


TacL-dependent LTA biogenesis is antagonistic with WTA synthesis
TacL is a polytopic membrane protein predicted to have a large extracellular loop domain

(Figure 4A). It was originally named RafX because the gene encoding it is located within a locus

involved in raffinose utilization (Wu et al., 2014). Initial studies indicated that TacL was required for

proper teichoic acid biogenesis (Wu et al., 2014), but its role in the process was not clear due the

unique way in which Sp cells synthesize these polymers. Unlike most firmicutes, WTA and LTA in Sp

cells have identical main chains (Brown et al., 2013; Denapaite et al., 2012; Fischer et al., 1993;

Gisch et al., 2013; Heß et al., 2017; Percy and Gründling, 2014). Furthermore, bioinformatic analy-

sis indicates that Sp cells are likely to make WTAs and LTAs from a common precursor polymer

linked to an undecaprenyl phosphate (Und-P) lipid carrier (Figure 4A) (Denapaite et al., 2012). To

make WTAs, the polymer is thought to be transferred to the cell wall by LCP-type enzymes

(Figure 4A) (Brown et al., 2013; Kawai et al., 2011; Percy and Gründling, 2014; Schaefer et al.,

2017). A recent study using mass spectrometry found that TacL is likely to be the corresponding

LTA synthase (Heß et al., 2017). It is thought to be responsible for transferring the TA polymer from

Und-P to the glycolipid anchor diglucosyl-diacylglycerol (Glc2-DAG) to form LTAs (Figure 4A) and

was therefore renamed TacL for teichoic acid ligase (Heß et al., 2017). Consistent with this assign-

ment, HHPred analysis indicates that TacL shares remote similarity with O-antigen ligases (99.7%

probability, E-value 5.1e-13) (Heß et al., 2017; Wu et al., 2014), enzymes from Gram-negative bac-

teria that carry out a similar reaction, the transfer of O-antigen glycan polymers from Und-P to a lipid

A-core glycolipid acceptor (Kalynych et al., 2014).

We confirmed a role for TacL in LTA biogenesis by measuring LTA levels in exponentially growing

cells with or without TacL inactivation (Figure 4B). Membrane preparations from whole cell lysates

were analyzed by SDS-PAGE followed by immunoblotting with commercially available antibodies

specific for the phosphatidyl-choline (PCho) modifications found on the TAs of Sp cells

(Denapaite et al., 2012; Fischer et al., 1993; Gisch et al., 2013; Percy and Gründling, 2014). As

reported previously using this method, we observed a ladder-like banding pattern of PCho-contain-

ing material ranging from 10 to 15 kDa in TacL+ cells (Figure 4B) (Wu et al., 2014). As expected

Figure 2. The essential gene tacL can be inactivated in cells lacking lytA. (A) Transposon insertion profiles from the Tn-Seq screen. Mariner transposon

libraries were generated in wild-type (WT) and DlytA mutant strains and insertion sites were mapped to the Sp genome using Illumina sequencing. The

height of each line reflects the number of sequencing reads at each position. Note that transposon insertions in tacL were much more readily isolated

in cells lacking lytA. (B) Spot dilutions of the indicated strains in the presence and absence of inducer (Zn). The indicated strains were grown to

exponential phase, normalized for OD600 and serially diluted. Aliquots (5 ml) of each dilution were spotted onto TSAII 5% SB plates in the presence or

absence of 100 mM ZnCl2. Plates were incubated at 37 ˚C in 5% CO2 and imaged. (C) Depletion of tacL results in growth arrest and lysis in exponential

phase while its overexpression results in protection against growth-phase-dependent autolysis. Strains containing a zinc-inducible tacL allele (Pzn-tacL)

were grown in THY to mid-exponential phase. Cultures were diluted into fresh THY to an OD600 of 0.025 in the presence or absence of 100 mM ZnCl2
and grown at 37 ˚C in 5% CO2. Growth was monitored by taking OD600 measurements approximately every 30 min for 15 hr.

DOI: https://doi.org/10.7554/eLife.44912.004

Flores-Kim et al. eLife 2019;8:e44912. DOI: https://doi.org/10.7554/eLife.44912 4 of 23

Research article Microbiology and Infectious Disease

https://doi.org/10.7554/eLife.44912.004
https://doi.org/10.7554/eLife.44912


based on the recent mass spectrometry study, the signal for this material was dramatically reduced

in the DtacL strain and was restored upon complementation with tacL expressed from an ectopic

locus (Figure 4B) (Heß et al., 2017). Thus, our results are consistent with the detected material

indeed being LTA and that TacL is required for its formation. In a parallel set of samples, we mea-

sured the effect of TacL inactivation on the production of WTAs, which were detected as alcian blue-

silver stained polymers released from purified cell wall sacculi (Pollack and Neuhaus, 1994). Only a

modest level of WTA material was produced in exponentially growing TacL+ cells (Figure 4B). How-

ever, TacL-defective cells had a striking increase in WTAs that was reduced back to near wild-type

levels upon tacL complementation (Figure 4B). Our results thus provide additional support for the

idea that TacL is the LTA ligase. Furthermore, the finding that WTAs increase when LTA synthesis is

blocked suggests that the two pathways are antagonistic and are likely competing for the shared

Und-P linked precursor (Figure 4A).

A switch from LTA to WTA synthesis occurs at the onset of autolysis
Our results thus far indicate that loss of TacL function during exponential growth leads to a change

in teichoic acid synthesis from LTA to WTA and the induction of LytA-dependent autolysis (Figures 2,

3 and 4). Connecting these two phenomena is that LytA not only has a cell wall cleaving amidase

domain, but also possesses an array of six choline-binding domains (CBDs) that promote its associa-

tion with PCho-modified teichoic acids (Fernández-Tornero et al., 2001; Li et al., 2015;

Sandalova et al., 2016). Thus, we reasoned that the LytA-dependent lethality observed upon TacL

depletion may result from a switch in LytA localization from LTAs to WTAs where the enzyme will

have better access to its substrate to promote cell wall degradation and lysis.

To test this hypothesis, we monitored the association of LytA with the membrane (LTA) and cell

wall (WTA) in both TacL+ and TacL- cells through different stages of growth. To avoid complications

arising from autolysis, we used a catalytically inactive variant of LytA, LytA(H26A) to monitor its local-

ization (Mellroth et al., 2012). However, to guide the collection of samples, particularly those corre-

sponding to the onset of autolysis (A), we grew a WT (LytA+) strain alongside the LytA(H26A)

producing cells (Figure 5A). In TacL+ cells, we observed robust LTA production in exponential phase

(E) and low levels of WTAs (Figure 5A and B). A significant portion of LytA(H26A) in these samples

was found in the membrane fraction, presumably through association with LTAs (Figure 5A and B).

The remaining portion of LytA was most likely retained in the cytoplasm awaiting export as has been

reported previously (Mellroth et al., 2012). In early stationary phase (S), LTAs continued to be

Figure 3. Cells lacking TacL are hypersensitive to exogenous LytA. (A) Coomassie-stained gel of recombinant LytA

(rLytA) purified from E. coli. Molecular weight markers (in kDa) are shown. (B) Growth curves of the indicated

strains before and after the addition of 1 mg/ml rLytA. Cells lacking lytA (DlytA) or tacL and lytA (DlytA DtacL) were

challenged with rLytA at an OD600 of ~0.2. In the absence of TacL, cells rapidly lyse after rLytA addition. By

contrast and as reported previously, the DlytA (TacL+) strain only lyses in stationary phase in a manner similar to

LytA+ cells (Fernebro et al., 2004; Mellroth et al., 2012).

DOI: https://doi.org/10.7554/eLife.44912.005
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detected and the amount of WTAs were observed to increase (Figure 5A and B). The majority of

the extracellular LytA(H26A) remained associated with the membrane fraction, but a small amount

was detected in the cell wall fraction (Figure 5B). Finally, as cells reached late stationary phase when

autolysis normally begins, LTA levels were dramatically reduced while the amount of WTA had

increased relative to the early stationary phase time point (Figure 5A and B). Now, LytA(H26A) was

no longer found associated with the membrane fraction but instead its localization switched almost

entirely to the cell wall fraction where it was presumably bound to the WTAs (Figure 5A and B). In

similar experiments performed in DtacL cells, the WTAs were the only detectable teichoic acids at all

growth stages, and LytA(H26A) was found associated with the cell wall fraction at every time point

(Figure 5C and D).

We wondered whether the same change in teichoic acid production and LytA localization also

occurred during penicillin-induced autolysis. Analogous to the previous set of experiments, a WT

(LytA+) strain was grown alongside a strain producing LytA(H26A) and served as a reference for the

onset of lysis following penicillin-G (PenG) treatment (Figure 6A). Samples were harvested just

before treatment (B), shortly after growth plateaued (P), and at the onset of lysis (L) (Figure 6A and

B). We again saw a transition from LTA synthesis before treatment to the production of primarily

WTAs at the onset of lysis (Figure 6A and B). Extracellular LytA(H26A) similarly was found to switch

from the membrane to cell wall fraction during this time course (Figure 6A and B). We therefore

conclude that both penicillin-induced and growth-phase-dependent autolysis follow a similar path-

way involving a change from LTA to WTA synthesis and an accompanying transition in LytA localiza-

tion. Based on these results, we infer that Sp cells control LytA activity during exponential growth by

preferentially producing LTAs over WTAs to keep LytA at the membrane and prevent it from access-

ing its cell wall substrate. In response to prolonged stationary phase growth or treatment with peni-

cillin, the synthetic bias switches. WTA production becomes favored, resulting in a change in LytA

localization to the cell wall where it catalyzes the destruction of the matrix and promotes autolysis.

Figure 4. Cells lacking TacL contain altered levels of teichoic acids. (A) Schematic model depicting the final steps

in the synthesis of WTA and LTA in Sp. WTAs and LTAs are thought to be synthesized from a common precursor

polymer that is linked to an undecaprenyl phosphate lipid carrier (Denapaite et al., 2012). The polymer is

transferred to the PG by LCP proteins to form WTA (Denapaite et al., 2012). TacL is hypothesized to transfer the

precursor to a glycolipid anchor to generate LTA (Heß et al., 2017). (B) Analysis of LTA and WTA levels during

exponential growth in wild-type (WT) or cells lacking LytA (DlytA), LytA and TacL (DlytADtacL) or the double mutant

harboring a Zn-inducible tacL allele (+tacL) grown in the presence of 100 mM ZnCl2. Top: Immunoblot analysis of

membrane-associated LTAs separated by 16% Tris-tricine SDS-PAGE and probed with a monoclonal antibody

specific for phosphocholine. Middle: Analysis of WTAs released from purified cell wall sacculi and separated by

SDS-PAGE followed by alcian blue-silver staining. Bottom: LC, loading control.

DOI: https://doi.org/10.7554/eLife.44912.006
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TAs are released from cells at the onset of autolysis
The rapid disappearance of LTAs at the onset of autolysis suggests that in addition to the switch

from LTA production to WTAs, other mechanisms are at work to remove existing LTA molecules

from the membrane. Accordingly, Waks and Tomasz, 1978 previously observed the release of cho-

line-containing TA polymers into the medium following treatment of Sp cells with cell wall synthesis

inhibitors (Waks and Tomasz, 1978). To further investigate this phenomenon, cell membrane frac-

tions and culture supernatants were harvested from LytA-defective cells before and during an autoly-

sis time-course induced by either PenG treatment or stationary phase growth. As above, a WT

(LytA+) strain was used as a reference to guide sample collection. In both cases, LTAs were detected

in the membrane at early time points (E and B), but choline-containing material was absent from the

supernatant (Figure 7). However, as autolysis progressed, an increase in choline-containing material

in the supernatant was observed, while at late time points, LTAs in the membrane were barely

detectable (Figure 7). Given their shared structure with WTAs (Gisch et al., 2013), it is not possible

to definitively conclude that the released material is derived from LTAs. However, the coincidence of

choline-containing polymers appearing in the medium with LTAs being lost from the membrane sug-

gests that this material indeed reflects LTA release. Thus, in conjunction with the prior results of

Waks and Tomasz, 1978, our results suggest that LTAs are released from cells during autolysis by

an as yet unknown mechanism. Coupled with the switch in teichoic acid synthesis to favor WTAs

over LTAs, LTA release would allow for the rapid depletion of LTAs and re-localization of LytA to

WTAs where it can promote destruction of the wall matrix.

Figure 5. A switch from LTA to WTA synthesis and LytA localization occurs at the onset of autolysis. (A and C) Growth curves of the indicated strains

cultured at 37 ˚C in 5% CO2. At the indicated time points (E, exponential; S, stationary; A, autolysis), samples from the lytA(H26A) mutants were

collected, normalized to an OD600 of 0.5 and processed as described in Materials and methods. The WT growth curve was used as a reference for the

timing of autolysis. (B and D) Samples from (A) and (C) were analyzed to detect LytA(H26A) in whole cell lysates (cells), associated with protoplast

membranes, or cell wall sacculi. The cytoplasmic protein SigA was used as a control for protoplast integrity. The immunoblots were from the same

membrane and exposure but were cropped to re-order the lanes for clarity. LTAs in the membrane fraction and WTA in the cell wall fraction were

monitored by immunoblot and alcian blue-silver staining, respectively.

DOI: https://doi.org/10.7554/eLife.44912.007
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The autolytic switch is triggered by FtsH-dependent degradation of
TacL
We were next interested in determining how the switch in teichoic acid synthesis is initiated in

response to autolytic conditions. Given that the change involves a loss of detectable LTAs, we sus-

pected that TacL may be the primary regulatory target. As an initial test of this hypothesis, we moni-

tored the effect of tacL overexpression (PZn-tacL) from an ectopic locus on autolysis induction. For

both stationary-phase growth and penicillin treatment, tacL overexpression was found to prevent

the induction of autolysis (Figure 8—figure supplement 1), suggesting that a reduction in TacL lev-

els underlies the autolytic switch from LTA to WTA production.

To investigate this possibility further, a functional FLAG-tagged derivative of TacL was generated

and its steady-state levels were monitored in DlytA cells at different phases of growth or following

penicillin treatment (Figure 8A and B, and Figure 8—figure supplement 2). A reproducible

decrease in TacL-FLAG abundance was observed at time points corresponding to autolysis onset in

a reference LytA+ strain (Figure 8A and B, and Figure 8—figure supplement 2). To determine

whether this reduction in TacL-FLAG levels was caused by protease degradation, we monitored the

half-life of TacL-FLAG following the inhibition of protein synthesis with chloramphenicol (Cm). The

protein appeared to be relatively stable in exponential phase, but its half-life decreased significantly

in late stationary phase or in response to penicillin treatment (Figure 8C and Figure 8—figure sup-

plement 2C). We therefore conclude that TacL degradation is induced in response to conditions

that trigger autolysis.

To identify the protease responsible for TacL degradation, we performed an additional Tn-seq

screen. The rationale for the screen was that mutants unable to degrade TacL should be defective in

the induction of autolysis and therefore more tolerant than WT cells to penicillin treatment. We used

our original transposon library prepared in the WT strain and grew it either without drug or in the

presence of a sub-lethal concentration of penicillin G that caused a mild growth defect without

affecting viability. We then compared the transposon insertion profiles observed in the Tn-Seq data

from these two conditions. A few genes were identified in which transposon insertions were signifi-

cantly enriched in the penicillin treated condition versus the no drug or unrelated drug control

(Figure 8D). One of these genes was ftsH, encoding a highly conserved ATP-dependent zinc metal-

lopeptidase (Ito and Akiyama, 2005). FtsH has two transmembrane segments and a well-known

Figure 6. A switch from LTA to WTA synthesis and LytA localization occurs after exposure to penicillin. (A) Growth

curves of the indicated strains before and after challenge with penicillin G (PenG) (0.5 mg/ml final). At the indicates

time points (B, before PenG addition; A, after addition; L, lysis), samples from the lytA(H26A) strain were collected,

normalized to an OD600 of 0.5 and processed as described in Materials and methods. The growth curve of WT

treated with PenG was used as reference for the timing of lysis (B) Samples from (A) were analyzed to detect LytA

(H26A) in whole cell lysates (cells), associated with protoplast membranes, or with cell wall sacculi. The cytoplasmic

protein SigA was used as a control for protoplast integrity. The immunoblots were from the same membrane and

exposure but were cropped to re-order the lanes for clarity. LTAs in the membrane fraction and WTA in the cell

wall fraction were monitored by immunoblot and alcian blue-silver staining, respectively.

DOI: https://doi.org/10.7554/eLife.44912.008
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role in the degradation of membrane protein substrates (Langklotz et al., 2012). We therefore

focused on FtsH as a candidate for the protease targeting TacL.

To test whether FtsH targets TacL for degradation, we compared TacL-FLAG levels as well as LTA

and WTA production in cells with or without FtsH. Unlike cells with functional FtsH, TacL-FLAG

remained stable in DftsH cells following penicillin treatment (Figure 8A and B). Moreover, these cells

did not undergo the switch in teichoic acid production from LTAs to WTAs, nor did LytA+ cells lack-

ing FtsH autolyze in response to penicillin treatment (Figure 8A and B). Similar observations were

made comparing FtsH+ and FtsH- cells during prolonged stationary phase growth (Figure 8—figure

supplement 2A and B). Specifically, TacL-FLAG remained stable in cells lacking FtsH and LTAs con-

tinued to be produced in stationary phase where their levels were dramatically reduced in FtsH+

cells. Altogether, our results support a model in which autolysis in response to cell wall targeting

drugs or stationary phase growth is caused by a switch in surface polymer biogenesis triggered by

FtsH-mediated degradation of TacL.

Discussion
Autolysis of Sp cells following entry into stationary phase was described by Walther Goebl and

Oswald Avery almost a century ago (Avery and Cullen, 1923; Goebel and Avery, 1929; Neu-

feld, 1900). Although the biological relevance of this phenomenon remains unclear (Eldholm et al.,

2009; Hirst et al., 2008; Kietzman et al., 2016; Martner et al., 2009), it is medically significant due

to its relationship with antibiotic-induced bacteriolysis (Fernebro et al., 2004; Mellroth et al., 2012;

Tomasz et al., 1970; Tomasz and Waks, 1975). The connection between these lytic events was

Figure 7. Teichoic acids are released into the culture medium during autolysis. (A) Growth curve of the indicated

strains cultured at 37 ˚C in 5% CO2. At the indicated time points (E, exponential; S, stationary; A, autolysis),

samples from the DlytA mutant were collected, normalized to an OD600 of 0.5 and processed as described in

Materials and methods. The WT growth curve was used as a reference for the timing of autolysis. (B) Samples from

(A) were analyzed to detect LTA in membranes (Memb) or culture medium (Sup, supernatant) by immonoblot. (C)

Growth curve of the indicated strains cultured at 37 ˚C in 5% CO2. At an OD600 of ~0.5 the cultures were

challenged with penicillin G (PenG) (0.5 mg/ml final). At the indicated time points (B, before PenG addition; A, after

addition; L, lysis), samples from the DlytA mutant were collected and normalized to an OD600 of 0.5. (D) Samples

from (C) were analyzed to detect LTA in membranes (Memb) or supernatant (Sup) by immunoblot.

DOI: https://doi.org/10.7554/eLife.44912.009

Flores-Kim et al. eLife 2019;8:e44912. DOI: https://doi.org/10.7554/eLife.44912 9 of 23

Research article Microbiology and Infectious Disease

https://doi.org/10.7554/eLife.44912.009
https://doi.org/10.7554/eLife.44912


Figure 8. Penicillin treatment causes a reduction in TacL protein levels that depends on FtsH. (A) Growth curves of

the indicated strains harboring a functional TacL-FLAG fusion as the sole source of TacL. At an OD600 of ~0.5 the

cultures were challenged with penicillin G (PenG) (0.5 mg/ml final). At the indicated time points (B, before penG

addition; A, after addition; L, lysis), samples from the DlytA and DftsHDlytA strains were collected and normalized

to an OD600 of 0.5. Samples from a TacL+ DlytA strain were collected at the same time points. The growth curve of

this strain was omitted from the figure for clarity. The growth curve of the TacL-FLAG LytA+ strain (WT) treated

with PenG was used as reference for the timing of lysis. (B) Samples from (A) were processed as described in

Materials and methods to detect TacL-FLAG and FtsH from whole cell lysates, LTA from membrane preparations,

and WTAs released from purified cell wall sacculi. A region of the nitrocellulose membrane used for immunoblot

analysis was stained with Ponceau S (PonS) to control for loading. (C) TacL-FLAG stability before and after PenG

exposure. Wild-type Sp harboring TacL-FLAG was grown as in (A). Prior to PenG exposure (-PenG) or 2 hr after

addition (+PenG), cultures were treated with chloramphenicol (Cm) (50 mg/ml final) to block translation. Samples

were collected immediately before and 10, 20, 30 min after Cm addition and analyzed by SDS-PAGE and anti-

FLAG immunoblotting to detect TacL. A region of the nitrocellulose membrane used for immunoblot analysis was

stained with Ponceau S (PonS) to control for loading. (D) Transposon insertion profiles from a mariner transposon

library generated in wild-type Sp and grown in the presence or absence of sub-inhibitory doses of penicillin G

(PenG) or chloramphenicol (Cm). Transposon insertions in ftsH were significantly enriched (p<0.0001) in the

presence of PenG compared to no drug or the Cm-treated control. The following figure supplements are available

for Figure 8.

DOI: https://doi.org/10.7554/eLife.44912.010

The following figure supplements are available for figure 8:

Figure supplement 1. tacL overexpression prevents growth-phase-dependent and antibiotic-induced autolysis.

DOI: https://doi.org/10.7554/eLife.44912.011

Figure supplement 2. Reduction in TacL protein levels correlates with the growth phase-dependent switch from

LTA to WTA synthesis and autolysis.

DOI: https://doi.org/10.7554/eLife.44912.012
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made half a century later by Tomasz and co-workers (Tomasz et al., 1970; Tomasz and Waks,

1975). Their seminal studies demonstrated that both types of lytic events require the activity of the

PG hydrolase LytA (Tomasz et al., 1970; Tomasz and Waks, 1975). Several decades have now

elapsed since these discoveries were reported yet the regulatory systems controlling LytA during

normal growth and how they are relieved to induce lysis have remained ill-defined. Here, we show

that a change in cell surface polymer biogenesis underlies the onset of autolysis, providing a mecha-

nistic framework to understand the process and exploit it for the development of novel lytic

antibiotics.

Our data indicate that LTAs and WTAs have antagonistic effects on cellular LytA activity. LTAs are

required to prevent LytA-induced lysis during exponential growth whereas an increase in WTA syn-

thesis at the expense of LTAs is associated with conditions that promote cell wall destruction by

LytA (Figures 4, 5, 6, 7 and 8). The polymeric structure of LTA and WTA is identical in Sp cells

(Denapaite et al., 2012; Fischer et al., 1993). LytA is therefore unlikely to have a different enzy-

matic potential when bound to these molecules through its choline-binding domains. Although it is

possible that the association of LytA with WTA is required to properly orient the amidase domain

with respect to its substrate for productive cleavage (Li et al., 2015; Mellroth et al., 2014; Pérez-

Dorado et al., 2010; Sandalova et al., 2016), we favor a model in which the differential control

exerted by these polymers is the result of how they affect the localization of LytA within the cell

envelope (Figure 9).

Cryoelectron microscopy studies of Gram-positive bacteria by Beveridge and co-workers revealed

that the PG layer is spatially separated from the cytoplasmic membrane, forming what has been

referred to as the Gram-positive ‘periplasm’ (Matias and Beveridge, 2008; Matias and Beveridge,

2005; Matias and Beveridge, 2006). Evidence has also been presented that LTAs are likely to be

restricted to this ‘periplasmic’ space (Matias and Beveridge, 2008; Reichmann et al., 2014). We

therefore propose that in Sp cells, the protective function of LTAs is mediated by their ability to

bind and sequester LytA in the membrane-proximal zone of the envelope thereby limiting its access

to the cell wall and ability to cut bonds in the PG network (Figure 9). It is noteworthy that Tomasz

and co-workers previously observed that purified LTAs were capable of inhibiting LytA-mediated

autolysis by a mechanism that was unclear at the time (Briese and Hakenbeck, 1985; Höltje and

Tomasz, 1975). Based on our findings, we infer that these results reflect the ability of micellar forms

of LTAs to similarly bind and sequester LytA to prevent its association with cell wall substrate. After

several hours in stationary phase or following penicillin treatment, we observed a dramatic reduction

in cellular LTAs through the inhibition of their synthesis and what appears to be their release from

the membrane (Figure 7). This drop in LTA levels is associated with a corresponding increase in the

level of WTAs (Figures 5, 6 and 8). At this time, LytA is similarly shifted from the membrane to cell

wall fractions where it is likely bound to WTAs, its association with which has long been known to be

required for cell wall cleavage activity (Giudicelli and Tomasz, 1984; Höltje and Tomasz, 1975;

Li et al., 2015; Mellroth et al., 2014; Tipper and Strominger, 1965; Tomasz et al., 1970;

Waks and Tomasz, 1978). Therefore, our results support a model in which it is the change in TA

polymer synthesis and subsequent recruitment of LytA from membrane-anchored LTAs to its cell

wall substrate that underlies autolysis induction (Figure 9).

Although we do not currently know the mechanism by which Sp cells preferentially make LTAs

during exponential growth, our results establish that the switch to WTA synthesis under autolytic

conditions involves the degradation of TacL, the likely ligase involved in making LTAs (Figure 8 and

Figure 8—figure supplement 2) (Heß et al., 2017). Furthermore, inactivation of the membrane-

bound protease FtsH was shown to prevent TacL degradation and protect cells from LytA-depen-

dent autolysis, suggesting that TacL is a direct substrate of FtsH (Figure 8 and Figure 8—figure

supplement 2). What remains to be determined is how TacL degradation by FtsH is triggered by

conditions that induce autolysis.

The physiological signals governing FtsH activity are not known in any organism but are best

understood in E. coli. As in Sp cells, E. coli FtsH controls an important branch point in an envelope

biogenesis pathway (Ogura et al., 1999). In this case, its key substrate is LpxC, the enzyme catalyz-

ing the committed step in the synthesis of lipopolysaccharide (LPS), a major component of the

Gram-negative outer membrane (Führer et al., 2006; Ogura et al., 1999). The LPS and phospho-

lipid synthesis pathways compete for fatty acids in the form of acyl-ACP precursors (Mohan et al.,

1994; Normark et al., 1969). Therefore, flux between the two pathways must be balanced for
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proper membrane assembly. Indirect evidence suggests that the turnover of LpxC by E. coli FtsH

may be regulated by the availability of certain acyl-ACP precursors or the accumulation of down-

stream products in the LPS synthesis pathway (May and Silhavy, 2018; Mohan et al., 1994;

Normark et al., 1969; Ogura et al., 1999). Thus, in Sp cells, FtsH may similarly respond to precur-

sors or products of the TA polymer assembly pathways it governs. As in E. coli, the sensing mecha-

nism might normally function in the homeostatic control of LTA and WTA levels, which may be

needed for more precise activation of LytA to promote septal PG cleavage and cell separation.

Autolytic conditions would then be expected to somehow short-circuit the normal balancing mecha-

nism, swinging it too far in favor of WTA synthesis such that destructive levels of LytA activity are

stimulated. Further work will be required to test this and other possible models for the upstream sig-

nals governing Sp FtsH activity, their role in normal physiology, and how they are corrupted to

induce autolysis.

Figure 9. Model for LytA regulation. During exponential growth, TacL-dependent LTA synthesis dominates over

LCP-dependent production of WTA. LytA bound to the phosphocholine moeities (purple/black balls) on LTA is

sequestered away from WTA preventing LytA from targeting the cell wall. Upon entry into stationary phase or

exposure to cell wall targeting antibiotics (penicillin), TacL is degraded in an FtsH-dependent manner leading to a

reduction in LTA synthesis and an increase in WTA levels. Association of LytA with newly synthesized WTA leads to

cell wall cleavage and lysis.

DOI: https://doi.org/10.7554/eLife.44912.013
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TAs have been implicated in the control of PG hydrolases in other Gram-positive bacteria. In

Staphylococcus aureus, the major autolysin Atl that acts at division septa to promote cell separation

specifically localizes to the septal PG and this localization requires WTA (Schlag et al., 2010;

Yamada et al., 1996). Interestingly, localization studies suggest that WTA levels are lowest at the

septum in S. aureus suggesting that Atl preferentially localizes to PG lacking attached TA polymers

(Schlag et al., 2010). In B. subtilis, the cell separase LytF localizes to septal PG in a manner that

depends on both WTA and LTA (Kiriyama et al., 2014; Yamamoto et al., 2008). Finally, the major

autolysin AcmA in Lactococcus lactis specifically localizes to the septum while galactosyl-containing

TA polymers are largely absent at this site (Steen et al., 2003). In all of these cases the presence of

TA polymers appears to interfere with autolysin binding to the cell wall, however the mechanisms

underlying the temporal and spatial organization/localization of TAs is not known. Although it

remains to be investigated, our results in Sp cells suggest that rather than one polymer or the other

predominating, it may be the interplay between the LTA and WTA synthesis pathways that plays the

key role in controlling PG hydrolysis and autolytic-induction in these and other Gram-positive

organisms.

Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Strain
(Streptococcus
pneumoniae(Sp) D39 Dcps)

WT (Sp D39 Dcps) Malcolm
Winkler lab
(Lanie et al., 2007)

Wildtype
S. pneumoniae
D39 Dcps

Strain, strain
background
(Sp D39 Dcps)

AKF_Spn001 Fenton et al., 2016 DbgaA::kan

Strain, strain
background
(Sp D39 Dcps)

AKF_Spn002 Fenton et al., 2016 DbgaA::add9(spec)

Strain, strain
background
(Sp D39 Dcps)

AKF_Spn003 Fenton et al., 2016 DbgaA::tetM(tet)

Strain, strain
background
(Sp D39 Dcps)

AKF_Spn004 Fenton et al., 2016 DbgaA::cat

Strain, strain
background
(Sp D39 Dcps)

AKF_Spn005 Fenton et al., 2016 DbgaA::erm

Strain, strain
background
(Sp D39 Dcps)

AKF_Spn351 Fenton et al., 2016 DlytA::cat

Strain, strain
background
(Sp D39 Dcps)

AKF_Spn704 This study DlytA::erm (see Materials
and methods)

Strain, strain
background
(Sp D39 Dcps)

JFK_Spn001 This study DlytA::erm
DtacL::cat

(see Materials
and methods)

Strain, strain
background
(Sp D39 Dcps)

JFK_Spn002 This study DftsH::cat (see Materials
and methods)

Strain, strain
background
(Sp D39 Dcps)

JFK_Spn003 This study DlytA::erm DftsH::cat (see Materials
and methods)

Strain, strain
background
(Sp D39 Dcps)

JFK_Spn004 This study lytA(H26A), erm (see Materials
and methods)

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Strain, strain
background
(Sp D39 Dcps)

JFK_Spn005 This study lytA(H26A), erm DtacL::cat (see Materials
and methods)

Strain, strain
background
(Sp D39 Dcps)

JFK_Spn006 This study tacL-FLAG, spec (see Materials
and methods)

Strain, strain
background
(Sp D39 Dcps)

JFK_Spn007 This study tacL-FLAG,
spec DftsH::cat

(see Materials
and methods)

Strain, strain
background
(Sp D39 Dcps)

JFK_Spn008 This study tacL-FLAG,
spec DlytA::erm

(see Materials
and methods)

Strain, strain
background
(Sp D39 Dcps)

JFK_Spn009 This study tacL-FLAG, spec DlytA::erm DftsH::cat (see Materials
and methods)

Strain, strain
background
(Sp D39 Dcps)

JFK_Spn010 This study DbgaA::
(PZn-tacL, tet)

(see Materials
and methods)

Strain, strain
background
(Sp D39 Dcps)

JFK_Spn011 This study DbgaA::
(PZn-tacL, tet)
DlytA::erm

(see Materials
and methods)

Strain, strain
background
(Sp D39 Dcps)

JFK_Spn012 This study DbgaA::(PZn-
tacL, tet) DtacL::cat

(see Materials
and methods)

Strain, strain
background
(Sp D39 Dcps)

JFK_Spn013 This study DbgaA::(PZn-tacL, tet)
DtacL::cat DlytA::erm

(see Materials
and methods)

Strain, strain
background
(E. coli DH5a)

DH5a Gibco BRL F-hsdR17 D(argF-lacZ)U169
phoA glnV44 F80dlacZ
D M15 gyrA96
recA1 endA1
thi-1 supE44 deoR

Strain, strain
background
(E. coli BL21)

BL21 New England
Biolabs

E. coli B F– ompT gal dcm
lon hsdSB(rB–mB–)
[malB+]K-12(lS)

Recombinant
DNA reagent

pLEM023 Fenton et al., 2016 bgaA’::Pzn::MCS::
tetM::bgaA’ bla

plasmid

Recombinant
DNA reagent

pET24a Novagen PT7, lacI
q; vector

used for protein
expression

plasmid

Recombinant
DNA reagent

pMagellan6 Fenton et al., 2016 IRL(MmeI)::
add9::IRR(MmeI) bla

plasmid

Recombinant
DNA reagent

‘pMalC9’ Fenton et al., 2016 MBP::Himar1 bla plasmid

Recombinant
DNA reagent

pJFK_001 This study tacL in pLEM023 plasmid
(see Materials
and methods)

Recombinant
DNA reagent

pJFK_002 This study lytA in pET24a plasmid
(see Materials
and methods)

Antibody LytA
(rabbit
polyclonal)

This study 1:50000
(see Materials
and methods)

Antibody FtsH
(rabbit
polyclonal)

Kotschwar et al., 2004 1:10000

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Antibody SigA
(rabbit
polyclonal)

Fujita, 2000 1:10000

Antibody FLAG
(TacL-FLAG;
rabbit
polyclonal)

Sigma RRID:AB_796202 1:1000

Antibody LTA
(mouse
monoclonal)

Sigma RRID:AB_1163630 1:1000; anti-
Phosphocholine
TEPC-15

Antibody anti-rabbit
IgG-HRP

BioRad RRID:AB_1102634 1:20000

Strains, plasmids and routine growth conditions
All Sp strains were derived from the unencapsulated D39 strain (D39 Dcps) (Lanie et al., 2007). Cells

were grown in Todd Hewitt broth (Beckton Dickinson) supplemented with 0.5% yeast extract (THY)

at 37˚C in an atmosphere containing 5% CO2. Strains were grown on pre-poured tryptic soy agar 5%

sheep blood plates (TSAII 5% sheep blood, Beckton Dickinson) with a 5 ml overlay of 1% nutrient

broth (NB, Beckton Dickinson) agar containing the required additives or on TSA agar plates contain-

ing 5% defribrinated sheep blood (Northeast laboratory). Luria-Bertani (LB) broth and LB agar were

used for E. coli. Antibiotic concentrations were used as previously described (Fenton et al., 2016).

All strains, plasmids and oligonucleotides used in this study are provided in the key resources and

the supplemental material 1, respectively. The D39 Dcps genotype (Dcps2A’-Dcps2H’) was excluded

from derivative strains for clarity. All S. pneumoniae strains used in this study are derivatives of D39

Dcps. Cam = chloramphenicol, Erm = erythromycin, Kan = kanamycin, Spec = spectinomycin,

Tet = tetracycline, Amp = ampicillin.

Transformation of Sp
Transformations were performed as previously described (Fenton et al., 2016). Briefly, cells in early

exponential phase were back-diluted to an optical density at 600 nm (OD600) of 0.03 and compe-

tence was induced with 500 pg/ml competence stimulating peptide 1 (CSP-1; Anaspec), 0.2% BSA,

and 1 mM CaCl2. Cells were transformed with 100 ng genomic DNA (gDNA) or plasmid DNA. Trans-

formants were selected on TSAII overlay plates containing the appropriate additives.

Growth curves
To monitor growth kinetics and autolysis, Sp cells in early exponential phase were diluted to an

OD600 of 0.025 and grown to mid exponential phase in THY media containing the appropriate addi-

tives at 37˚C in an atmosphere containing 5% CO2. These cells were used as the inoculum and were

diluted to OD600 of 0.025 in THY with the indicated additives and growth was monitored by measur-

ing OD600 every 30 min. The figures that report growth curves are representative of experiments

that were performed on at least two independent samples.

Library generation and transposon insertion sequencing (Tn-seq)
Tn-seq was performed as described previously (Fenton et al., 2016; Fenton et al., 2018). A total of

two independently generated libraries were used in this study: one from D39 Dcps (WT) and another

from its DlytA derivative. Briefly, genomic DNA with Magellan6 transposon insertions generated in

vitro was transformed into competent Sp. To ensure that more than 50% of all TA sites had at least

one transposon insertion,>300,000 transformants were recovered from each library and gDNA iso-

lated. gDNAs were digested with MmeI, followed by adapter ligation. Transposon–chromosome

junctions were amplified and sequenced on the Illumina HiSeq. 2500 platform using TruSeq Small

RNA reagents (Tufts University Core Facility Genomics; RRID:SCR_016383). Reads were demulti-

plexed, trimmed, and transposon- insertion sites mapped onto the D39 genome using methods

described previously (Fenton et al., 2016; Fenton et al., 2018). After normalization, a Mann
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Whitney U test was used to identify genomic regions with significant differences in transposon inser-

tion profiles (Fenton et al., 2016; Fenton et al., 2018). Transposon insertion profiles were visualized

using the Artemis genome browser (v10.2; RRID:SCR_004267) (Carver et al., 2012).

Additional libraries were also generated by replating the D39 Dcps (WT) library in the presence

and absence of 0.025 mg/ml penicillin G or 1.25 mg/ml chloroamphenicol. To maintain library com-

plexity,>4,000,000 colonies were collected from each library and gDNA isolated and analyzed as

described above.

Isolation and analysis of pneumococcal LTAs
Sp strains were grown in THY at 37˚C in an atmosphere containing 5% CO2 to the indicated growth

phase (additives were added as indicated) and normalized to an OD600 of 0.5. 20 ml of the normal-

ized culture was collected by centrifugation at 5000 g for 5 min and the cell pellet was washed twice

with 2 ml SMM (0.5 M sucrose, 20 mM maleic acid, 20 MgCl2, pH 6.5) before resuspending it in 2 ml

SMM. Protoplasts were generated by addition of 20 mg/ml lysozyme and 100 units mutanolysin

(Sigma) and incubated at 37˚C for 30 min. Complete protoplasting was monitored by light micros-

copy. Protoplasts were pelleted by centrifugation at 5000 g for 5 min and resuspended in 2 ml cold

hypotonic buffer to lyse them (20 mM HEPES (Na+), pH 8.0, 100 mM NaCl, 1 mM dithiothreitol

(DTT), 1 mM MgCl2, 1 mM CaCl2, 2X complete protease inhibitors (Roche), 6 mg/ml RNAse A, 6 mg/

ml DNAse). Unbroken spheroplasts were removed by centrifugation 5,000 rpm for 10 min, and then

the membrane fraction was collected by ultracentrifugation at 100,000 g for 1 hr at 4˚C. The pellet

was resuspended in 1 ml SDS sample buffer (200 mM Tris-HCL, pH 6.8, 40% glycerol, 2% SDS,

0.04% Coomassie Blue G-250), boiled for 10 min, and separated by Tris-tricine PAGE followed by

immunoblotting with anti-PCho monoclonal antibody TEPC-15 (Sigma). To analyze TAs released into

the culture medium, the supernatant from each sample was collected, flash-frozen using liquid nitro-

gen, and lyophilized. The lyophilized powder was then resuspended in 0.5 ml of distilled water. Sam-

ples were dialyzed against three 0.5 ml changes of distilled water followed by the addition of 0.5 ml

of 2X SDS sample buffer (400 mM Tris-HCL, pH 6.8, 80% glycerol, 4% SDS, 0.08% Coomassie Blue

G-250). To detect TAs, samples were analyzed as described above. The results in figures analyzing

LTA levels are representative of experiments that were performed on at least two independently col-

lected samples.

Isolation and analysis of pneumococcal WTAs
Sp strains were grown in THY at 37˚C in an atmosphere containing 5% CO2 to the indicated growth

phase and normalized to an OD600 of 0.5. 20 ml of the normalized culture was collected by centrifu-

gation at 7000 g for 5 min. The pellet was resuspended in 2 ml of buffer 1 (50 mM 2-(N-morpholino)

ethanesulfonic acid (MES)), pH 6.5) and centrifuged at 7000 g for 5 min. The resulting pellet was

resuspended in 2 ml of buffer 2 (50 mM MES, pH 6.5, 4% (w/v) SDS) and incubated in boiling water

for 1 hr. After incubation, the cell wall sacculi were collected at 7000 g for 5 min and washed with 2

ml of buffer 2. The sample was transferred into a clean microfuge tube and centrifuged at 16000

rpm for 5 min. The pellet was then washed with 2 ml of buffer 2, followed by successive washes with

2 ml of buffer 3 (50 mM MES, pH 6.5, 2% (w/v) NaCl) and 2 ml of buffer 1. The samples were then

centrifuged at 16000 rpm for 5 min, resuspended in 2 ml of buffer 4 (20 mM Tris-HCl, pH 8.0, 0.5%

(w/v) SDS) supplemented with 2 ml of proteinase K (20 mg/ml), and incubated at 50˚C for 4 hr with

shaking (1000 rpm). After incubation, the pellet was collected by centrifugation and washed with 2

ml of buffer 3 followed by three washes with distilled water. The pellet was then collected by centri-

fugation and subjected to alkaline hydrolysis by resuspending the pellet in 0.5 ml of 1N sodium

hydroxide solution and incubation at 25˚C for 16 hr with shaking (1000 rpm). Insoluble cell wall mate-

rial was pelleted by centrifugation (13000 rpm for 5 min) and the supernatants containing the

extractable WTA were collected and combined 1:1 with 0.5 ml native sample buffer (62.5 mM Tris-

HCl, pH 6.8, 40% glycerol, 0.01% bromophenol blue). To detect WTA, samples were analyzed by

native PAGE followed by alcian-blue silver staining as described in Pollack et al. (Pollack and Neu-

haus, 1994). The figures that report WTA levels are representative of experiments that were per-

formed on at least two independently collected samples.
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LytA subcellular fractionation
Sp strains were grown in THY at 37˚C in an atmosphere containing 5% CO2 to the indicated growth

phase (PenG was added as indicated) and normalized to an OD600 of 0.5. 40 ml of the normalized

culture was collected by centrifugation at 5000 g for 5 min. The cell pellet was washed twice with 2

ml SMM followed by resuspension with 2 ml of SMM and divided into two 1 ml samples (Samples A

and B) and pelleted by centrifugation. Sample A (whole cell lysate) was lysed by resuspension in 500

ml of lysis buffer (see below), followed by addition of 500 ml SDS sample buffer containing 10% 2-

mercaptoethanol and boiled for 10 min. To determine the amount of LytA that localized with the

cell wall (WTA-bound) and the membrane (LTA-bound) fractions, sample B was resuspended in 500

ml SMM and protoplasts were generated by the addition of 20 mg/ml lysozyme and 100 units muta-

nolysin (Sigma) and incubated at 37˚C for 30 min. Complete protoplasting was monitored by light

microscopy. The protoplasts were then pelleted (Sample C) and the supernatant containing the cell

wall (Sample D) was collected. 500 ml of SDS-sample buffer containing 10% 2-mercaptoethanol was

then added to sample D and boiled for 10 min to release WTA-bound LytA. To release LytA from

membrane-bound LTA, sample C was incubated with 500 ml SMM supplemented with 2% choline

chloride (w/v) for 30 min at 25˚C with gentle shaking. The protoplasts were then pelleted by centrifu-

gation, and the supernatant containing LytA was collected. 500 ml of SDS-sample buffer containing

10% 2-mercaptoethanol was added to the supernatant fraction and then boiled for 10 min. Samples

A, C, and D were analyzed by SDS-PAGE followed by immunoblotting with anti-LytA and anti-sigA

antisera. WTAs in sample D were analyzed by alcian-silver blue staining. LTAs in sample C were ana-

lyzed by immunoblot using anti-PCho monoclonal antibody TEPC-15 (Sigma). The figures that report

LytA levels are representative of experiments that were performed on at least two independently

collected samples.

Measurement of TacL-FLAG steady-state level
Sp strains were grown in THY at 37˚C in an atmosphere containing 5% CO2 to the indicated growth

phase (PenG was added as indicated). Cultures were normalized to an OD600 of 0.5 and 5 ml of each

were harvested immediately before and 10, 20, 30 min after addition of chloramphenicol (50 mg/ml

final concentration) to block translation. The cultures were maintained at 37˚C for the duration of the

experiment. Samples were then analyzed by SDS-PAGE and immunoblotting using anti-FLAG poly-

clonal antibody (Sigma). The figures that report TacL-FLAG levels are representative of experiments

that were performed on at least two independently collected samples.

Recombinant LytA (rLytA) purification
Recombinant LytA was produced in E. coli BL21(DE3) containing the pET24a-lytA expression vector.

Cells were grown in LB supplemented with 50 ug/ml kanamycin at 37˚C with vigorous agitation and

lytA expression was induced when cells reached an OD600 of 0.5 with 1 mM IPTG for 2 hr at 37˚C.
Cells were collected by centrifugation and stored overnight at �20˚C. The cell pellets were resus-

pended in E. coli lysis buffer (20 mM Tris, pH 7.5, 500 mM NaCl, DNase 200 mg/ml, and 2X complete

protease inhibitors (Roche)). The cell suspension was then lysed by two passages through a cell dis-

ruptor (Constant systems Ltd.) at 25000 psi and unbroken cells were removed by centrifugation. The

supernatant was then passed over a DEAE cellulose column (Sigma). After washing with 20 column

volumes of wash buffer (20 mM NaPO4, 1.5M NaCl, pH 7), LytA was eluted with two column volumes

of wash buffer supplemented with 140 mM choline chloride. Protein-containing fractions were

pooled and dialyzed against 20 mM Tris, pH 7.5, 150 mM NaCl, 5 mM choline chloride and 10%

glycerol and flash-frozen in liquid N2 and stored at �80 ˚C.

Antisera and immunoblot analysis
Sp cultures were normalized to an OD600 of 0.5 and 5 ml harvested by centrifugation. Cell pellets

were resuspended in 100 ul of lysis buffer (20 mM Tris pH 7.5, 10 mM EDTA, 1 mg/ml lysozyme, 100

units mutanolysin (Sigma), 10 mg/ml DNase I, 100 mg/ml RNase A, and 2X complete protease inhibi-

tors (Roche Applied Sciences) and incubation at 37˚C for 10 min. Equal volume of SDS sample buffer

(100 ml, 0.25 M Tris pH 6.8, 4% SDS, 20% glycerol, 10 mM EDTA) containing 10% 2-mercaptoethanol

was added. Proteins were separated by SDS-PAGE, electroblotted onto nitrocellulose membrane

and blocked in 5% nonfat milk in phosphate-buffered saline (PBS)�0.5% Tween-20. The blocked
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membranes were probed with anti-LytA (1:50,000), B. subtilis anti-FtsH (1:10,000) (Kotschwar et al.,

2004), B. subtilis anti-SigA (Fujita, 2000) (1,10,000), anti-FLAG (Sigma; RRID:AB:796202) (1:1,000),

and anti-PCho TEPC-15 (Sigma; RRID:AB_1163630) (1:1,000) diluted into 1% nonfat milk in 1X PBS-

0.05% Tween-20. Primary antibodies were detected using horseradish peroxidase-conjugated goat,

anti-rabbit IgG (1:20,000, BioRad; RRDID:AB_1102634) and the Western Lightning reagent kit as

described by the manufacturer (PerkinElmer). Chemiluminescence was imaged on a FluorChem R

system (ProteinSimple).

Strain construction
Sp deletion strains
All Sp deletion strains were generated using linear PCR fragments as described in Fenton et al.

(2016) are listed in Supplementary file 1 (Fenton et al., 2016). Briefly, regions of approximately 1

kb flanking each gene were amplified, and an antibiotic resistance cassette placed between them

using isothermal assembly. Assembled PCR products were transformed directly into Sp as described

above. In all cases, deletion primers were given the name: ‘gene name’_5FLANK_F/R for 50 regions

and ‘gene name’_3FLANK_F/R for 30 regions. Antibiotic markers were amplified from DbgaA::antibi-

otic cassette (bga gene disrupted with an antibiotic cassette) strains using the AB_Marker_F/R pri-

mers. A full list of primer sequences can be found in the Supplementary file 1. Extracted gDNA

from deletion strains was confirmed by diagnostic PCR using the AntibioticMarker_R primer in con-

junction with a primer binding ~200 bp 50 of the disrupted gene; these primers were given the typi-

cal name: ‘gene name’_Seq_F. Confirmed gDNAs of single gene deletions were diluted to 20 ng/ml

and used for the construction of multiple knockout strains. For strains containing multiple deletions

and construct integrations, transformants were verified by diagnostic re-streaking on media contain-

ing the proper antibiotics. When needed, each construct was confirmed by diagnostic PCR and/or

sequencing.

Pzn-tacL
The tacL ORF, with its native RBS, was amplified using primers tacL_F_nativeRBS_XhoI and tacL_R_-

BamHI. The primers introduced XhoI and BamHI sites used for cloning into pLEM023 cut with the

same enzymes, resulting in plasmid pJFK001. The plasmid was sequenced and used to transform

strain D39 Dcps Dbga::kan. Integration into the bga locus was confirmed by antibiotic marker

replacement and PCR using the BgaA_FLANK_F primer. gDNA from the resulting strain was pre-

pared and then used to transform the appropriate Sp strains.

tacL-FLAG
The tacL ORF, including its native promoter and RBS and a C-terminal FLAG sequence, was gener-

ated by isothermal assembly from 3 PCR products: 1) a PCR product containing an upstream region

of tacL and the tacL ORF (including a C-terminal FLAG sequence) amplified with oligos tacL_5F_F

and tacL_FLAG; 2) a PCR product containing a Spec cassette amplified with oligos AB_Marker_-

FLAG_F and AB_Marker_R; and 3) a PCR product containing a downstream region of tacL amplified

with oligos tacL_3F_F and tacL_3F_R. The assembled product was used to transform strain D39 Dcps

DlytA::erm DtacL::cat. Integration into the DtacL::cat locus was confirmed by antibiotic marker

replacement and PCR, sequencing, and immunoblot analysis. gDNA from the resulting strain was

prepared and then used to transform the appropriate S. pneumoniae strains.

lytA-H26A
The lytA ORF, including its native promoter and RBS and the H26A mutation, was generated by iso-

thermal from 4 PCR products: 1) a PCR product containing an upstream region of lytA and the H26A

mutation amplified with oligos LytA_5F_F and LytA_H26A_R; 2) a PCR product containing the LytA-

H26A mutation and the 3’ end of lytA using oligos LytA_H26A_F and LytA_ABMarkerF_R; 3) a eryth-

romycin cassette amplified with oligos AB_Marker_ F and AB_Marker_R; and 4) a PCR product con-

taining a downstream region of lytA amplified with oligos lytA_3F_F_AB_Marker_R and lytA_3F_R.

The assembled product was used to transform strain D39 Dcps DlytA::erm. Integration into the

DlytA::cat locus was confirmed by antibiotic marker replacement and PCR, sequencing, and
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immunoblot analysis. gDNA from the resulting strain was prepared and then used to transform the

appropriate Sp strains. pET24a-lytA (pJFK002)

The lytA ORF was amplified using primers lytA_F_purification_NdeI and lytA_R_purification_Hin-

dIII. The primers introduced NdeI and HindIII sites used for cloning into pET24a cut with the same

enzymes, resulting in plasmid pJFK002. The plasmid was confirmed by sequencing.
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