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Abstract—In this paper we present a novel switched-capacitor
implementation of short-term synaptic dynamics with simultane-
ous depression and facilitation. The developed circuit model is a
modified version of a model of neurotransmitter release derived
from biological measurements. Despite the simplicity of the
circuit the rich dynamics of the original model can be delivered.
By completely relying on SC techniques for all calculations, our
circuit is significantly less sensitive to process variations and eas-
ier to calibrate than commonly employed subthreshold circuits.
The circuit makes use of a technique for minimizing leakage
effects allowing for real-time operation with time constants up to
several seconds. Functionality and robustness of the circuit are
verified by simulations and comparisons to the original model.

Index Terms—Switched-capacitor, short-term synaptic dynam-
ics, depression, facilitation, silicon synapse.

I. I NTRODUCTION

Biological synapses employ a range of short-time adaptation
mechanisms in their stimulus transmission. This so-called
short-term plasticity has been identified as a crucial constituent
of neural information processing, allowing for temporal filter-
ing [1] and pattern classification in attractor networks [2]. The
quantal model of neurotransmitter release introduced in [3] is
a well-established model of these synaptic dynamics that has
been directly derived from biological evidence. Furthermore,
it has been thoroughly analyzed in terms of information
processing [4], [5].

Despite the functional importance of biologically realistic
short-term dynamics, there are only few neuromorphic circuits
implementing simultaneously acting short-term depressing and
facilitating mechanisms as described in [3]. The circuits
presented in [6] produce either depression or facilitation,
while the more complex circuit presented in [7] is at least
capable of switching between the two. A combination of
facilitation and depression mechanisms is shown in [8], but
this implementation is rather aimed at hardware efficiency than
biological relevance. In [9], we prepared the model in [3] for
circuit design, where the depression part is implemented with
OTA-C circuits.

When it comes to neuromorphic implementations of neural
dynamics, the main challenge is replication of large time con-
stants in the order of milliseconds up to several seconds. Most
circuits make use of transistors working in the subthreshold
region [6], [8], exploiting the low drain currents in this regime
to discharge capacitors over a long period of time. A serious
disadvantage resulting from this approach is the sensitivity

to threshold voltage mismatch, resulting in large variations on
the fabricated chip [10]. As an alternative, the time base of the
circuits may be accelerated for increased current amplitudes
[7], but this prevents interfacing to real-time operating sensors
and biological substrates.

In this paper, we aim at tackling both the modeling and
circuit implementation problems introduced above. We take
the full quantal model of [3] and adapt it for an optimized
circuit implementation, deriving equations for mapping pa-
rameters to the adapted model. By this modification, we
retain the full power of the original model while greatly
reducing circuit effort. In contrast to the OTA-C based circuit
presented in [9], we employ switched-capacitor (SC) circuit
techniques for realizing large time constants, whose behaviour
is mainly determined by capacitance ratios instead of absolute
transistor parameters, which greatly decreases their mismatch
sensitivity. This approach has already been successfully ap-
plied to neuromorphic neuron implementations [11], [12]. We
carried out a sample design in180 nm CMOS, relying on
SC techniques for all calculations required by the model to
maximally reduce reliance on analog performance. The main
limit on the achievable time constants are the leakage currents
through the employed switches, which can be minimized with
simple circuit extensions to reach values in the order of
seconds. With all these characteristics, our proposed circuit
can be easily ported to sub-100 nm technologies, taking full
advantage of their higher integration density, while stillbeing
easily controllable by digital logic.

In section II we present our modified model of short-
term synaptic dynamics, obviating the need for expensive
multiplication circuits. The implemented design is presented
in sectionIII followed by simulation results in sectionIV.

II. M ODEL OF SHORT-TERM SYNAPTIC DYNAMICS

A. Original Quantal Model

The quantal model of neurotransmitter release introduced in
[3] describes the amplitude of excitatory postsynaptic currents
(PSC) as a function of the timing of presynaptic spikes and
their history. Equations (1) – (3) show the iterative description
of the model, wheren is the number of the spike and�tn is



the time betweenn-th and(n+ 1)-th spike.un+1 = un � (1� U) � e� �tn�fail + U (1)Rn+1 = Rn � (1� un) � e� �tn�re + 1� e� �tn�re (2)PSCn = A �Rn �un (3)

Two mechanisms acting simultaneously are modulating the
PSC amplitude. An amplifying mechanism called facilitation
is modeled by variableu, which increases by a certain amount
at every presynaptic spike and decays back with time constant�fail to its resting stateU . At high spiking frequenciesun
saturates at 1.R, which describes a depression mechanism is
decreased at presynaptic spikes by a certain amount, which is
influenced byu. The depression recovers to its resting state1
with time constant�re. At high frequenciesRn saturates at 0.
The amplitude of then-th PSC is calculated by a multiplication
of the two variablesun andRn and a scaling factorA, which
represents the absolute synaptic efficacy.

B. Proposed Model

In order to develop a neuromorphic circuit which is capable
of reproducing the quantal model [3] the approach presented
in [9] could be taken. Therefore, exponentially decaying
voltage curves have to be generated which are updated and
triggered at the occurrence of presynaptic spikes. The major
drawback of this approach concerning a switched-capacitor
implementation is the need for a wide-range voltage multiplier
for calculating the product ofun andRn. Existing multipliers
are rather complex, very area consuming [13] or need large
operational amplifiers driving resistive loads [14]. In contrast,
our proposed model is capable of approximately reproducing
the original quantal model without any multiplier circuit and
with a minimum effort on analog circuitry in general.

The iterative description of the proposed model is shown in
eqs. (4) – (6).~un+1 = ~un � (1� ~U) � e� �tn~�fail + ~U (4)~Rn+1 = ((1� �) � ~Rn + � � ~un) � e��tn~�re (5)~PSCn = ~A � (~un � ~Rn) (6)

From Eq. (1) it is obvious that~u is equivalent tou. Only
a parameter mapping has to be performed fromU to ~U . In
contrast to the original model, whereRn+1 depends on the
product ofun andRn, ~Rn+1 only depends on a weighted sum
of ~u and ~R, which simplifies the circuit enormously. Factor�
determines the strength of the depression. Here~R is inverted
to R meaning the ’recovered’ state is at~R = 0. This implies
that large values of~u lead to a stronger increase of~R which
has the same effect as in Eq. (2) where large values ofu lead
to a stronger decrease ofR. Also it can be seen that~R never
exceeds~u so that the difference(~u � ~R) is always positive.
The amplitude of the postsynaptic current~PSC is determined
by this difference scaled by~A. The time course of the PSC is
modeled by an exponential decay with time constant~�PSC .

Fig. 1. Normalized steady-state amplitude of PSC at constant presynaptic
pulse rates for the quantal model and the proposed model. Thepeak frequency
is marked with�. Used parameters areU = 0:03, �re = 130 ms, �fail =530 ms, ~U = 0:055 � = 0:44, ~�re = 87 ms, ~�fail = 864 ms.
C. Parameter Mapping

A characteristic property, which allows for comparing both
models is the steady-state behavior at constant presynaptic
firing rates. If both mechanisms, facilitation and depression,
are acting simultaneously the steady-state amplitudePSCst
of the PSC shows a bell-shaped curve (see Fig.1). In order
to fit our model against the quantal model, parameters can be
adjusted, so that the peaks of the curves are matching. The
peak frequency� of the quantal model is determined by� � 1pU � �fail � �re : (7)

In the proposed model the peak frequency~� is~� � 1q ~U �� � ~�fail � ~�re : (8)

The peak amplitude, normalized to the first PSC amplitude isPSCst(�)PSC1 �r 14U � �fail�re (9)

for the quantal model and~PSCst( ~�)~PSC1 � 1q4 � ~U �� � ~�re~�fail + � ~�re~�fail (10)

for the proposed one. With equations (7) – (10) the time
constants of the proposed model can be derived to~�fail = �fail � �1 + �2r �reU � �fail� (11)~�re = �re � 1�2 � ~U2U �q �reU � �fail + � � ~UU (12)

The remaining parameters~U and�, whose ranges are between
0 and 1, are used for better curve fitting. The absolute PSC
amplitude has to be scaled with~A = A � U~U .

III. SWITCHED-CAPACITOR IMPLEMENTATION

The switched-capacitor circuit implementing the proposed
model is depicted in Fig.2(a). It consists of three analog
blocks for facilitation, depression and PSC generation anda



state machine (FSM) for controlling the switches. The values~u and ~R are stored on capacitorsCu and CR respectively.CPSC stores the trace of the PSC.

A. Circuit Operation

As intended by equations (4) and (5) an exponential decay
of ~u and ~R as well as of the PSC curve has to be performed.
This is implemented by generic switched capacitor resistor
emulations with switchesSu1 andSu2 and capacitorCRu for
the facilitation block,SR1, SR2 andCRR for depression andS1, S2 andCRPSC for the PSC generation circuit, which dis-
chargeCu, CR andCPSC towards ground. The corresponding
time constants of decay~�fail, ~�re and ~�PSC are determined
by the switching frequency and can be adjusted externally.
Therefore signals DECAYu, DECAY R and DECAY PSC
are provided, which send pulses to the state machine in
certain intervals (see Fig.2(b)). If the FSM receives one of
these signals two non-overlapping switch phases are triggered.
In the case of DECAYu, first Su1 is switched on, which
completely dischargesCRu. After Su1 is switched off,Su2
is switched on leading to a charge equalization onCRu andCu. The voltageVu over Cu drops from an initial voltageVu0 to Vu0 � CuCu+CRu . After n switching events a value ofVu0 � ( CuCu+CRu )n is reached. With( CuCu+CRu )n = e�1 the
number of switching events needed for one~�fail period
can be derived, so the pulse frequency of DECAYu is
determined byfDECAY u = �(~�fail � ln CuCu+CRu )�1. Same
applies for depression with and PSC generation circuits. In
our design we choseCu=CRu = 1:12 pF=32 fF = 35=1 andCR=CRR = CPSC=CRPSC = 480 fF=32 fF = 15=1. Thus,
for ~�fail = 500 ms signal DECAY u is sent with a frequency
of 71 Hz.

If a presynaptic spike occurs (signal PRESPK is sent to
the FSM), the values~u, ~R and ~PSC have to be updated. By
definition the current value of~u is represented byVu after
the update and the current value of~R is represented byVR
before the update. This ensures that~u decays towards~U and~R towards 0. Thus,Vu is updated first, then the PSC amplitude
is calculated and finallyVR is updated.

In order to calculate Eq. (4) the FSM alternately switchesSu3 andSu2 (see Fig.2(b)), which increasesVu exponentially
towardsVA and thereby implements a constant update factor(1� ~U). The number of switching events is provided by the 6
bit wide signal UTIL. The relationship between~U and UTIL
depends on the capacitance ratio and can be expressed asUTIL = $ log(1� ~U)log( CuCu+CRu )% : (13)

After charging ofCu, switchesS4 and S5 are closed and
the voltage difference(Vu � VR) is stored onCPSC , which
corresponds to Eq. (6). Finally VR is charged up towardsVu.
As can be seen in Eq. (5) the strength of the charging is
determined by� which is performed by alternately switchingSR2 and SR3 similar to the facilitation mechanism. The

Fig. 2. (a) SC implementation of the proposed model of synaptic dynamics.
CapacitorsCu andCR store the values~u and ~R respectively.CPSC stores
the trace of the PSC. (b) Diagram of switch signals for decay of Vu and
an update at a presynaptic spike. Decay ofVR andVPSC follow the same
principle as forVu.

number of switching events can be calculated byALPHA = $ log(1� �)log( CRCR+CRR )% : (14)

Except for the state whereS4 andS5 are closed,S3 is always
closed to get a defined voltageVPSC by grounding capacitorCPSC .

The voltageVA controls the absolute synaptic efficacy~A
and represents the upper limit forVu and VR. If VA stays
one threshold voltage below supply voltage,Cu, CRu, CR
andCRR can be implemented as PMOS capacitors which then
always operate in the strong inversion region. Also all switches
can be implemented with single NMOS transistors and the
buffer amplifiers do not need to provide rail-to-rail operation.
As can be seen in Fig.3 the amplifiers are implemented in a
single ended single stage folded cascode topology to allow low
supply voltage and a sufficiently high gain to reduce the output
voltage offset. Since the state machine operates at a low clock
frequency of about160 kHz slew rate is not a major issue.
This allows a compact design with a low power consumption.

B. Leakage Optimization

Due to the large time constants in our implementation,
leakage effects at high impedance nodes have to be considered.
The main source for leakage effects atCu and CR are the



Fig. 3. Amplifier in single ended single stage folded cascodetopology used
as buffer in Fig.2.

switching transistorsSR2 andSu2 in off-state. As shown in
[15] the main leakage effects that appear at a turned off tran-
sistor are junction leakage, channel leakage and subthreshold
leakage. They scale with the potentials between the transistor’s
terminals. Therefore, in the interval when neither a decay
nor an update is performed, the voltages acrossCu andCR
are fed back via switchesSu4 and SR4 to CRu and CRR
respectively. SoVDS of the transistors implementingSu2 andSR2 is defined by gain and offset voltage of the buffers, which
is close to 0. Consequently, subthreshold leakage ofSu2 andSR2 is strongly reduced. As bulk and gate of the transistors are
at 0 V while they are turned off, the leakage currents caused
by reverse biased PN junctions at times of highVGB andVDB
cannot be influenced. However, these are much smaller than
the subthreshold leakage in the employed technology [15].

C. Scalability

The circuit is designed for a special architecture of neu-
romorphic synapse arrays presented in [16], where the cir-
cuits generating the PSCs are separated from the individual
synapses. Thus, several synapses receive the same presynaptic
input, which is usually the case in neural networks. This leads
to a smaller number of PSC circuits and smaller synapses,
significantly improving the scalability of the overall system.
As depicted in Fig.4 the PSC circuits with the same parame-
terization can share one decay generation circuit to keep them
as small as possible.

IV. RESULTS

Figure 5 shows the simulation results of PSC amplitudes
of the original quantal model [3], the proposed model and
a circuit simulation for a sequence of constant pulse rates of15 Hz, 30 Hz, 80 Hz and15 Hz with instantaneous transitions.
All curves are normalized to the first PSC amplitude. As can
be seen the proposed model well approximates the quantal
model in terms of steady state amplitudes and the behavior
at spike frequency transitions. At frequencies up to30 Hz
the circuit simulation results match the model results. At
higher frequencies the PSC amplitudes underlie deterministic

Fig. 4. System of several PSC circuits receiving pulse signals from the decay
generation circuit. The PSC circuits consist of the SC circuit shown in Fig.
2(a) and a finite state machine for controlling the switches. PSCs are triggered
by the input signal PRESPK.

jumps which are caused by time discretization of the decay
mechanism ofVu and VR, since at these presynaptic spike
frequencies the pulse frequency of the signal DECAYu is
in the same order of magnitude. In order to suppress the
jumps and to get a finer discretization the ratio of capacitancesCRu=Cu can be made smaller which would raise two issues:
first, the counter in the FSM, which controls the update ofVu has to be larger since more switching phases are needed
to charge the capacitorCu and second, the matching between
these capacitors gets worse. But since future technologiestend
to smaller transistor sizes, the digital building blocks carry less
weight and could be more complex.

An example spike train, which shows both facilitation and
depression, is depicted in Fig.6. The voltageVPSC has been
sampled on valid data only, meaning the state whereS4 andS5
are closed is excluded becauseCPSC is not grounded in this
moment. In order to verify the robustness of the circuit con-
cerning device mismatch and process variations a Monte Carlo
simulation with 100 runs has been performed. The amplitude
deviations, which are similar to those in subthreshold circuits
[17], are mainly caused by the amplifiers whereas the time
constants can be robustly reproduced due to the well matched
capacitors and the externally provided switching frequency.
Note that due to the simplification of the model by replacing
the multiplication in Eq.2 with the difference in Eq.5 some
cases can be covered less accurately. Thus, the response to a
pulse train when�fail = �re is slightly smoother than shown
in [18]. However, most cases can be replicated well.

For the design in a180 nm CMOS technology the required
chip area is approximately2400 �m2 including the FSM,
which consumes about75 % of the entire area. When moving
towards smaller technologies shrinking of analog components
like capacitors and switches is limited, whereas the digital
parts scale fully. Thus, in a65 nm technology, the area could
be shrunk to850 �m2, which is slightly smaller than the
depressing synapse presented in [17].



Fig. 5. Simulation results of the quantal model [3], the proposed model
and the switched-capacitor circuit with a sequence of instantaneous spike
frequency transitions. Parameters are the same as in Fig.1.

Fig. 6. Simulation results ofVPSC for an example spike train including
results of a Monte Carlo simulation with 100 runs. The grey lines represent
the largest deviations from the nominal simulation. Parameters are~U = 0:081� = 0:36, ~�re = 500 ms, ~�fail = 100 ms.

V. CONCLUSION

In this paper we presented an SC implementation of synaptic
dynamics derived from a biologically realistic model. Our
model adaptation reduces the implementation complexity to
simple subtractions, while keeping the computational richness
of the original quantal model. The circuit allows for real-time
operation and is robust in terms of process variation on the
chip. Especially the time constants, which govern dynamic
behavior of a neural network, exhibit very little spread. Since
digital building blocks dominate the overall circuit area,our
design will scale well with advanced CMOS technologies.
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