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Abstract: Due to the increased use of memristors and their many applications, the use of emulators
has grown in parallel to avoid some of the difficulties presented by real devices, such as variability
and reliability. In this paper, we present a memristive emulator designed using a switched capacitor
(SC), that is, an analog component/block and a control part or block implemented using stochastic
computing (SCo) and therefore fully digital. Our design is thus a mixed signal circuit. Memristor
equations are implemented using stochastic computing to generate the control signals necessary to
work with the controllable resistor implemented as a switched capacitor.

Keywords: memristor; emulator; analog design; switched capacitor; stochastic computing; mixed
signal

1. Introduction

Leon Chua defined the memristor theoretically in 1971 [1]. The term “memristor” is
constructed from the words memory and resistor and completes the relationships provided
by the capacitor, inductor and resistor between current, voltage, flux and charge. Leon Chua
introduces, therefore, this fourth passive component to complete the set, proposing that
the memristor is defined by a nonlinear relationship between charge and flux. However, it
was not until 2008 that it could be implemented [2]. Since then, its use has been increasing
and its fields of application have also increased. It is a promising but very recent device,
which implies that there are many studies that must be carried out to understand well
the operating mechanisms and develop new technologies to avoid some of the problems
presented, such as the variability and life time.

It is because of the problems that real devices present that the development of memris-
tive emulators is booming.

Emulators reproduce the operating characteristics of the memristor by eliminating the
aforementioned problems, therefore allowing for the development of more complex and
reliable systems [3]. The memristor behavior which is imitated can be an ideal memristor
or actual device, depending on the implementation. If we are focused on their field of
application, emulators have different characteristics, although there are two main lines of
study: analog emulators and digital emulators.

Many works develop fully analog emulators; for example, in [4], a memristive system
was implemented and results demonstrated that it was very easy to fabricate in academic
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laboratories through classical electrical components from circuit theory. In [5], an emulator
is implemented with transistors, resistors and diodes, and it operates in passive mode.
Other examples like [6,7] use amplifiers in their models. In general, analog systems need
more power consumption. The volatility of the system is worse than in the digital case, but
they present a good implementation of the variable resistance with which the emulator
memristance is described.

On the other hand, digital memristor systems emulators can be implemented in FPGAs
(or ASICS) [8–10]. Their main advantages are that they present short simulation times
and better control of the behaviour of the emulator. However, their variable resistance
implementation poses a problem. In digital emulators, it is much easier to define the
model, but precision is lost (limited number of bits), and there is usually a need for more
computational power than the analog equivalent. For a review of different state-of-the-art
emulators, the interested reader can see, for instance, [3] or [11].

For many years, the scientific community has been greatly interested in developing
different computer architectures. It seeks, among other things, to change the structure of
serial calculations and perform operations in parallel. A high degree of parallelism allows
for faster execution using less complex elements or using approximations even if precision
is lost. Due to the large number of data and operations that must be carried out by current
computer systems, the well-known Von Neumann architecture [12] is not a good choice to
use due to its high consumption of time of computation and energy.

One of the alternatives, as mentioned above, is to use non-deterministic computing
methods, including stochastic computing (SCo). Its main differentiating trait is that it
uses random variables to represent quantities. Probabilistic logic was introduced by Von
Neumann in 1956 [13], expanding the previous work of R.S. Pierce in 1952 [14]. However,
it was not until the 1960s that progress in electronics and computing allowed for its actual
implementation [15,16]. Nowadays, there are many proposals in the literature using this
approach in different fields: image processing [17–19], data compression [20], arithmetic
calculations [21,22], control [23], and A/D conversion [24], to mention just a few.

In this framework, the representation of data is performed in a probabilistic way
using Boolean quantities that are switched in random way during a time. Numbers are
represented as random (0,1) vectors. The average value of these vectors is correlated to
the number represented [25]. These vectors are referred to as stochastic logic number
(SLN). This representation makes it possible to reduce the area occupied, since complex
functions occupying a large space such as multiplication can be reduced to a single logic
gate with great savings in terms of power and area [26]. To create the SLN, a random
number generator (RNG) is needed, and for the designers, it is a challenge to use the
lowest number of these so as to not increase the area of the chip. The number of RNGs is
related to the fact that the operations in SCo are different depending on the encoding of the
number and if the signals are correlated or not (statistical dependent or not). To guarantee
uncorrelated SLNs, different RNGs must be employed to generate each stochastic signal.

In this work, we design, simulate and implement a mixed-signal memristor emulator,
improving the version presented in [27]. Specifically, in this paper, we improve the theoreti-
cal discussion, including the description of the stochastic blocks, and we also present some
experimental results. The proposed emulator consists of two blocks, taking advantage of
the best features of each design part. In the analog block, a switched capacitor is used
to implement a variable resistor, and in the digital one, that is, the control block, we use
stochastic computation. The simulation is done with Matlab to implement the functionality
of both the analog block, similar to that used in [28], and of the control block. For the
experimental implementation, a quadruple analog switch HCF4066FE and a DE0-Nano
FPGA have been used.

This paper is organized as follows: the next section describes the generalities of
memristors, memristor emulators and stochastic logic operations; in the third section,
the model is developed and simulated; the fourth section deals with the experimental
implementation; and, finally, the last section discusses the work.
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2. Theoretical Background
2.1. Memristor Mathematical Description

A memristor is a two-terminal device whose resistance (conductance) can change its
value when a voltage or current signal is applied. In addition, the value of the resistance
(conductance) of the device also depends on its past history and is named memristance
(M) (memconductance (G)). The concept of the memristor was extended by Chua in 1976
to memristive systems to explain the behavior of observed systems [29], for instance, in
nature. Nowadays the classification of memristors includes ideal, generic and extended
memristor [30].

The most general class is the extended memristor, which includes the others. The
dynamic of this class is described using internal variables that determine the internal
state of the memristor; these variables, can be for example, temperature or geometrical
parameters, depending on the system. The memristor can be voltage- or current-controlled,
depending on the input source. On the other hand, in [31], Corinto et al. proposed a
mathematical description in the charge flux domain instead of the voltage and current
domain. We use for our emulator the equations describing a voltage-controlled extended
memristor in the charge flux domain. These are:

i = G(φ, v, x) · v (1)

dx
dt

= g(φ, v, x) (2)

dφ

dt
= v (3)

The memconductance (G), which can be nonlinear, is the inverse of the memristance
of the device M, v is the voltage between its terminals, i is the current, φ is the flux (i.e., the
first momentum of voltage), and x represents other possible state variables.

Finally, it is also important to mention that the memristors present some characteristic
fingerprints distinguishing those of other dynamic systems [31,32]:

1. As Leon Chua noted in [33]: “If it’s NOT pinched, it’s NOT a memristor”. The i-v
curve obtained when a periodic signal with zero DC component (voltage or current)
is applied to the memristor shows a pinched (at the (v = 0, i = 0) point) hysteresis loop;

2. The area of the hysteresis loop should tend to zero for higher frequencies, as noted
in [31]. The behavior at low frequencies depends on the specifics of the memristor,
and there may even exist a frequency where the loop area is maximum [3].

On the other hand, the emulator function must be to mimic the memristor behavior;
this is to show it fingerprints. The emulator can be implemented in analog, digital or mixed
formats. It is crucial that the circuit implements, among others, the internal state variables,
(vector x) in Equations (1) and (2). These internal variables must be included as electrical
variables in the emulator and are assumed to be isolated from a direct interaction with
the outside. They are used, together with the electrical variables (i.e. voltage and flux), to
calculate the value of the equivalent memconductance (G) or memristance (M).

Notice that we have implemented the ideal definition of a memristor, with a simple
relationship between memristance and flux. Other models, even those oriented to the
simulation of actual physical systems as, for instance, in [34–36], could also be implemented.
The main difference of this case with the one presented here would be the implementation
of the non-basic mathematical operations. This could be done using, for instance, the
different circuits proposed in [37–39] for division and the associated square root calculation,
or in [40] for arbitrary function approximation.
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2.2. Stochastic Logic Operations

There are four methods that are used to encode numbers in SCo: unsigned classical
stochastic encoding (UCSE), signed classical stochastic encoding (SCSE), unsigned ex-
tended stochastic encoding (UESE) and signed extended stochastic encoding (SESE) [41,42].
Implementation of different functions strongly depends on the chosen encoding. As an
example, when using UCSE, an AND gate is used to implement the product of two inputs,
while a XNOR gate performs that operation when using the SCSE encoding, as shown in
Figure 1. Moreover, the same logical gate can perform different operations depending on
whether the random signals generated are correlated or not. As an example, with USCE
encoding, a two-inputs AND gate is used to implement a multiplication for uncorrelated
inputs, while it provides the minimum value of the two inputs if they are correlated. In the
present work, we will be using SCSE, and, thus, our numbers will lay in the real (−1..1)
domain. Thus, multiplication requires the use of an XNOR gate.

Figure 1. Basic implementation scheme of a SC multiplier in the (0..1) range (AND gate, left) and in
the (−1..1) range (XNOR gate, right).

Performing an addition is slightly more complex, because numbers with a probability
higher than one cannot be represented, and we may need to add 1 + 1 = 2. Thus, it is better
to implement an alternate form as (x + y)/2, which at most will output a value of 1. This
operation is usually implemented using a multiplexer, as shown in Figure 2a, where the p
(0.5) means a signal with a probability of 0.5 to be ‘1’ or ‘0’. This signal can be generated
using one of the bits from the RNG, thus needing no additional circuitry. The same gate is
used for the (0..1) and the (−1..1) domains.

(a) (b)

Figure 2. Basic implementation schemes (a) of a SC adder using a multiplexer and (b) a stochastic
number generator (SGN) which converts a binary encoded number (BEN) to a stochastic encoded
number (SEN) using a random number generator (RNG).

Other more complex operations (division [23], square roots [23], etc.) may also be
found in the literature, but are not presented here for the sake of clarity. Finally, the
conversion of a number encoded as a classical number can be translated to a stochastic
representation using the schema presented in Figure 2.

3. Memristor Emulator Design
3.1. Theoretical Design

As mentioned above, our system has been implemented in two parts [27,28]. First, we
implemented an analog system including the switched capacitor module (SC), as shown in
Figure 3, whose equivalent resistance Req is described by Equation (4). In this case, both
control external signals S1 and S2 are equal, with a lag of 180 deg. [43]. The second part is a
digital module implementing the control part in stochastic logic, as will be discussed below.
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Req =
1

fSC
1 + e(

D T
τ )

1− e(
D T

τ )
(4)

Figure 3. Switched capacitor (SC) circuit schematic.

T and fs are the period and the frequency of the controlling signal S1 and S2, D is
the duty cycle with values between 0 and 1, C is the capacitance value and τ is the time
constant, that is, RtotC where C is the capacitor and Rtot is the total resistance of the circuit
taking into account the parasitic ones.

For our design, in the charge flux domain, it is necessary to calculate the flux from the
voltage of the terminals of the SC as a first step. Once this is done, then the relationships
between flux and charge are used to obtain the duty cycle (D) that varies the equivalent
resistance of the SC. The digital block is the responsible for all these steps.

For this purpose, a series of approximations shall be done to Equation (4). The
conductance (G) (G = 1/Req) can be rewritten as:

G = fSC
e(−

x
2 ) − e(

x
2 )

e(−
x
2 ) + e(

x
2 )

= fS · C · tanh(
x
2
) (5)

where x = DT/τ.
The use of a first order Taylor expansion of tanh(x/2) allows us to get a simpler

expression. For this, it is necessary to take into account that the decay time of the system
is much longer than the control signal period. Thus, we can obtain a simpler equation
describing the conductance G:

G = fSC
DT
2τ

(6)

It is important to notice that this last equation implies that conductance is linearly
dependent on the duty cycle D.

To calculate the flux, the digital block converts each voltage terminal of the SC (va and
vb in Figure 3) to non-correlated random values. Then, the corresponding value va − vb is
accumulated into a counter, which acts as the integrator. Notice that since we are using
stochastic computing, this up/down counter needs to count only one up (va > vb), one
down (va < vb), or remain the same (va = vb). To implement the memristor device, it is
necessary to use an equation to describe the relationship between flux and charge. In this
work the simplest relation is used:



Technologies 2022, 10, 39 6 of 14

Q = Mφ2 (7)

where M is a constant. This equation does not include any internal variables. Applying the
fourth derivative of the equation, the conductance is:

i = 2Mφ
dφ

dt
= 2Mφv =⇒ G = 2Mφ (8)

Matching Equations (6) and (8), the relation between the duty cycle and flux is:

D =
4Mτ

fSCT
φ = Kφ (9)

K is therefore a constant value.
To control the analog block, it is the SC; therefore, the duty cycle (D) must be used. The

duty cycle is calculated by the digital block from φ according to Equation (9) as a stochastic
value. To use it, the average value of D is calculated to determine Req with Equation (4).

The emulator block design scheme including the two parts of the design, analog and
digital, is shown in Figure 4. The part corresponding to the digital block implemented in
stochastic computing is shown as a circuit in Figure 5.

Figure 4. Swiched capacitor memristor emulator (SCME) block diagram.

Figure 5. Control block implementation using stochastic computing.

3.2. Simulation Results

In order to be considered as a memristor, the emulator must present two characteristic
fingerprints [3,32,33]: (1) a pinched loop (2) whose area changes with frequency.
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Figure 6 presents the i− v of the emulator under inputs of different frequency using
16 bits for the stochastic representation. It is apparent from this figure that the curves are
pinched at the origin and that the loop area changes with frequency. Thus, we can consider
that the two fingerprints are present.

Figure 6. Simulated i− v characteristic curves of the memristor implemented using Figure 4. Three
different frequencies are shown in different colors.

Because of the way it is constructed, the emulator reaches a saturation for the con-
ductance. This is due to the maximum value of D = 1, and can be clearly seen at low
frequencies, where the maximum value of flux is reached faster. This may also be seen
in Figure 7, where the behavior of the Q versus φ near the origin is quadratic, as can be
expected from (7), but it is also seen that its behavior changes to linear after a maximum
value for D = 1 is reached.

It has to be noted that there is a small noise present caused by the stochastic nature
of the system, as discussed above. This noise nearly disappears in the saturation, since
the counter is practically constant, even though a small ripple is present caused by the
stochastic internal behavior. This noise is greatly reduced in the charge and flux domain
(Figure 7, because of the integration.

Finally, the current signal for different frequencies is shown in Figure 8. As can be
seen there, the maximum conductance (related to the maximum value of the current) is
lower for higher values of frequency, as expected.
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Figure 7. Q− φ characteristics of the memristor implemented using Figure 4. The different frequen-
cies (in arbitrary units) are shown in different colors.

Figure 8. Current signal (response) for different frequencies, as obtained from the simulation. The
three different frequencies are shown in different colors and correspond to the ones shown in Figure 6.

4. Experimental Implementation
4.1. Experimental Setup

In order to test the proposed circuit, we have implemented a setup similar to that
of [28]. We have used a quadruple analog switch HCF4066FE driven by a DE0-Nano
FPGA. The analog switch has a working voltage between 0.5 V to 22 V and can switch at
a maximum frequency of 25 kHz when the power supply is 3.3 V. The FPGA generated
the control signals S1 and S2 using 2 of its 3.3 V digital output pins. Additionally, we
have also used a 1 kΩ shunt resistor, along with a 15 µF capacitor. The implemented
circuit is shown in Figure 9. The conversion from analog to stochastic was performed by
first converting from analog to digital using two of the on-board available A/D and then
converting this digital value into stochastic, as described above. We have used 16 bits for
the stochastic representation, and the needed random numbers were created using a public
implementation of the Mersenne twister algorithm [44].
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Figure 9. Physical implementation of the circuit on a prototyping board.

An AFG320 arbitrary signal generator was used to generate the input signal, while
two oscilloscopes were used to monitor the full system. An oscilloscope monitored the
control signals of the HCF4066FE, while the other oscilloscope was used to monitor the
voltage through the shunt resistance of 1 kΩ to obtain the current and also the input voltage,
defined as the difference between the two input terminals.

4.2. Experimental Results

The system has been tested using different input frequencies: 100, 200 and 400 Hz. The
internal behaviour of the circuit is depicted in Figures 10 and 11, which depict, respectively,
the control signals S1 and S2 in one of these cases and the waveform corresponding to the
three least significant bits of the counter.

Figure 10. Stochastic signals S1 and S2 generated by the control circuit.
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Figure 11. Three least significant bits of the counter (b0 is the least significant bit) at a specific time.

The temporal behavior of the current in these three cases is shown in Figure 12. The
currents are clearly nonlinear because of memory: if they were nonlinear due to other
effects, then they would be symmetrical, which they are not. In addition, they are showing
a dependence on the frequency, as expected for a memristor.

100Hz.

Figure 12. Cont.
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200Hz.

400Hz.

Figure 12. Temporal graphs of the measured response (current signals) of the realized memristor
at 3 different frequencies corresponding to the simulated frequencies for driving sine voltage of
(a) 100 Hz, (b) 200 Hz, and (c) 400 Hz.
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The experimental I-V loops are depicted in Figure 13. On the left figure, the three
experimental I-V curves for the corresponding frequencies in Figure 6 (simulations) appear,
while the right picture shows an oscilloscope snapshot in the typical case of a 400 Hz
driving sine voltage. It is apparent that, in all cases, the experimental fingerprint of a
memristor, i.e., the pinched loop [33], is clearly demonstrated. This means that the device
has a resistive behavior (it is pinched, which means no current when no voltage is applied),
and that this resistance has a memory effect (there is a loop, which means that there are
two possible values of the resistance and, hence, the current, for each voltage input value).

Figure 13. Measured I-V signals at different frequencies.

Finally, it has to be noted that the area of the loop changes with frequency, with the
higher area corresponding to higher frequencies. This is caused by the saturation of the
internal counter that corresponds to the flux integral (Equation (3) and Figure 5), which
leads to a linear behaviour once the maximum value is reached.

5. Discussion

As discussed above, the design and implementation of memristor emulators is an
active research field. In this paper, we have made a contribution to this area by presenting
the design, simulation, and experimental implementation of such an emulator. Our pro-
posal is based on using switched capacitors to implement the variable resistor and on using
stochastic computing to implement the control part.

The switched capacitor block has been implemented using standard off-the-shelf
components with a maximum switching frequency of 25 kHz. The control signals at this
frequency are generated inside the control block, which has been implemented into a
DE0-nano FPGA. The FPGA reads the analog inputs (the input voltage of the analog block)
using its built-in AD converters.

As a first step, we have shown using MATLAB simulation that the design is sound
and can implement a system showing the expected fingerprints of a memristor: a closed
loop, pinched at the origin. Finally, we have experimentally implemented the design. This
actual implementation has been tested using sinusoidal waveforms of different frequencies,
and it has behaved as expected. The system shows the memristor fingerprints with noise
induced by the switching, as expected.

Thus, the proposed emulator has been shown to perform with its expected behavior,
being a promising alternative to be implemented as an IP block into IC designs, since it
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is a very simple design requiring a lower number of digital gates than similar designs
using conventional arithmetic implementations. This implementation would allow the
increase of the limiting factor of the switching frequency at 25 kHz caused by the use of
a discrete component, and would also proportionally increase the working frequency of
the emulator.
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