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A Switching Approach to Event-Triggered Control

Anton Selivanov and Emilia Fridman

Abstract— Event-trigger is used to obtain the measurements
transmission instants in networked control systems. Under
continuous measurements it can generate an infinite number
of events in finite time (Zeno phenomenon) what makes it
inapplicable to the real world systems. Periodic event-trigger
avoids this behavior but does not use all the available infor-
mation. In the present paper we aim to exploit the advantage
of the continuous-time measurements and guarantee positive
lower bound on the inter-event times. Our approach is based
on a switching between periodic sampling and continuous
event-trigger. It is applicable to the systems with polytopic-
type uncertainties and assures the Input-to-State Stability in
the presence of external disturbances and measurement noise.
By an example we demonstrate that the switching approach
to event-triggered control can reduce the network workload
compared to periodic event-trigger.

I. INTRODUCTION

Networked control systems (NCS), that are comprised

of sensors, actuators, and controllers connected through

a communication network, have been recently extensively

studied by researchers from a variety of disciplines [?], [?],

[?], [?]. One of the main challenges in such systems is

that only sampled in time measurements can be transmitted

through a communication network. There are different ways

of obtaining the sequence of sampling instants that preserve

the stability. The simplest approach is to send measurements

periodically. However, under periodic sampling the measure-

ments are sent even when the output fluctuation is small and

does not significantly change the control signal. To avoid

these “redundant” packets one can use continuous event-

trigger [?] that sends measurements only when the relative

change of the output is large enough. As it has been shown

in [?] in case of a static output-feedback execution times,

implicitly defined by continuous event-trigger, can have a

finite limit, i.e. an infinite number of sampling instants is

generated in finite time. To avoid this Zeno phenomenon one

can use periodic event-trigger [?], [?], [?], [?] where event-

trigger condition is checked periodically in discrete time

instants. This approach guarantees a positive lower bound

for the inter-event times and fits the case where the sensor

measures only sampled in time outputs.

However, when the continuous measurements are available

one can use this additional information to improve the

control strategy. A way to do this is to wait for some fixed

time after the measurement has been sent. Then start to

continuously check the event-trigger condition and send the
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next measurement when it is violated. This natural idea has

been implemented in, e.g., [?], [?], where a dynamic output

controller has been studied and event-trigger condition was

a function of the system output, state estimate, and the error

due to triggering. To obtain the value of a waiting time

that preserves the stability following [?], [?] one needs to

solve some special scalar differential equations. In [?] some

qualitative results concerning practical stability have been

obtained for event-trigger with waiting time.

In this work we propose a new approach to event-triggered

control that is based on a switching between periodic sam-

pling and continuous event-trigger. In this approach an appro-

priate waiting time is found from LMI-based conditions. We

extend our results to the systems with external disturbances

and measurement noise (Section III). In Section IV by the

example brought from [?] we demonstrate that our method

can essentially reduce a workload of the network compared

to periodic sampling and periodic event-trigger.

II. A SWITCHING APPROACH TO EVENT-TRIGGER

Consider the system

ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t)
(1)

with a state x ∈ R
n, input u ∈ R

m, and output y ∈ R
l.

Assume that there exists K ∈ R
m×l such that the control

signal u(t) = −Ky(t) stabilizes the system (1) and the

measurements are sent at time instants

0 = t0 < t1 < t2 < . . . , lim
k→∞

tk = ∞. (2)

Then the closed-loop system has the form

ẋ(t) = Ax(t)−BKCx(tk), t ∈ [tk, tk+1), k ∈ N0, (3)

where N0 is the set of nonnegative integers. According to [?]

the closed-loop system (3) under periodic sampling tk = kh
can be presented in the form

ẋ(t) = (A−BKC)x(t) +BKC

∫ t

t−τ(t)

ẋ(s) ds, (4)

where τ(t) = t− tk for t ∈ [tk, tk+1). The system (3) under

continuous event-trigger

tk+1 = min{t > tk | (y(t)− y(tk))
TΩ(y(t)− y(tk))

≥ εyT (t)Ωy(t)} (5)

with a matrix Ω ≥ 0 and a scalar ε ≥ 0 can be rewritten as

ẋ(t) = (A−BKC)x(t)−BKe(t) (6)

with e(t) = y(tk)− y(t) for t ∈ [tk, tk+1).



As we mentioned before, under periodic sampling (leading

to (4)) “redundant” packets can be sent while continuous

event-trigger (that leads to (6)) can cause Zeno phenomenon.

To avoid the above drawbacks periodic event-trigger can be

used. In this case the sampling instants are given by

tk+1 = min{tk + ih | i ∈ N, (y(tk + ih)− y(tk))
TΩ×

(y(tk + ih)− y(tk)) > εyT (tk + ih)Ωy(tk + ih)} (7)

with a matrix Ω ≥ 0 and a scalar ε ≥ 0. The system (3)

under (7) can be written as

ẋ(t) = (A−BKC)x(t) +BKC

∫ t

t−τ(t)

ẋ(s) ds−BKe(t)

(8)

with

τ(t) = t− tk − ih ≤ h, e(t) = y(tk)− y(tk + ih)

for t ∈ [tk + ih, tk + (i + 1)h), i ∈ N0 such that tk + (i +
1)h ≤ tk+1. As one can see, the error due to sampling that

appears in (4) (the integral term) and the error e(t) due to

triggering from (6) are both presented in (8) what makes it

more difficult to ensure the stability of (8).

We propose an event-trigger that allows to separate

these errors by considering the switching between periodic

sampling and continuous event-trigger. Namely, after the

measurement has been sent, the sensor waits for at least h
seconds. During this time the system is described by (4).

Then the sensor begins to continuously check the event-

trigger condition and sends the measurement when it is

violated. During this time the system is described by (6).

This leads to the following choice of sampling instants:

tk+1 = min{t ≥ tk + h | (y(t)− y(tk))
TΩ(y(t)− y(tk))

≥ εyT (t)Ωy(t)} (9)

with a matrix Ω ≥ 0 and scalars ε ≥ 0, h > 0, where the

inter-event times are not less than h. The system (3), (9) can

be presented as a switching between (4) and (6):

ẋ(t) = (A−BKC)x(t) +BKC

∫ t

t−τ(t)

ẋ(s) ds,

t ∈ [tk, tk + h),

(10)

ẋ(t) = (A−BKC)x(t)−BKe(t), t ∈ [tk+h, tk+1), (11)

where

τ(t) = t− tk ≤ h, t ∈ [tk, tk + h),

e(t) = y(tk)− y(t), t ∈ [tk + h, tk+1).
(12)

To obtain the stability conditions for the switched system

(10), (11) we use different Lyapunov functions: for (11) we

consider

VP (x) = xT (t)Px(t), P > 0, (13)

for (10) we apply the functional from [?]:

V (t, xt, ẋt) = VP (x(t)) + VU (t, ẋt) + VX(t, xt), (14)

where xt(θ) = x(t+θ) for θ ∈ [−h, 0], VP is given by (13),

VU (t, ẋt) = (h− τ(t))

∫ t

tk

e2δ(s−t)ẋT (s)Uẋ(s) ds, U > 0,

VX(t, xt) = (h− τ(t))
[

x(t)
x(tk)

]T

×
[

X+XT

2
−X+X1

∗ −X1−XT
1 +X+XT

2

]

[

x(t)
x(tk)

]

.

Note that the values of V and VP coincide at the switching

instants tk and tk + h.

Proposition 1: For given scalars h > 0, ε ≥ 0, δ > 0 let

there exist n × n matrices P > 0, U > 0, X , X1, P2, P3,

Y1, Y2, Y3 and l × l matrix Ω ≥ 0 such that

Ξ > 0, Ψ0 ≤ 0, Ψ1 ≤ 0, Φ ≤ 0, (15)

where

Ξ =

[

P + hX+XT

2 hX1 − hX

∗ −hX1 − hXT
1 + hX+XT

2

]

,

Ψ0 =





Ψ11 −Xδ Ψ12 + hX+XT

2 Ψ13 +X1δ

∗ Ψ22 + hU Ψ23 − h(X −X1)
∗ ∗ Ψ33 −X2δ|τ=0



 ,

Ψ1 =









Ψ11−
X+XT

2 Ψ12 Ψ13+X−X1 hY T
1

∗ Ψ22 Ψ23 hY T
2

∗ ∗ Ψ33−X2δ|τ=h hY T
3

∗ ∗ ∗ −hUe−2δh









,

Φ =





Φ11 Φ12 −PT
2 BK

∗ −PT
3 − P3 −PT

3 BK
∗ ∗ −Ω



 ,

Φ11 = PT
2 (A−BKC)+(A−BKC)TP2+εCTΩC+2δP,

Φ12 = P + (A−BKC)TP3 − PT
2 ,

Ψ11 = ATP2 + PT
2 A+ 2δP − Y1 − Y T

1 ,

Ψ12 = P − PT
2 +ATP3 − Y2,

Ψ13 = Y T
1 − PT

2 BKC − Y3,

Ψ22 = −P3 − PT
3 ,

Ψ23 = Y T
2 − PT

3 BKC,

Ψ33 = Y3 + Y T
3 ,

Xδ = (1/2− δh)(X +XT ),

X1δ = (1− 2δh)(X −X1),

X2δ = (1/2− δ(h− τ))(X +XT − 2X1 − 2XT
1 ).

Then the system (3) under the event-trigger (9) is exponen-

tially stable with a decay rate δ.

Proof. The system (3), (9) is presented in the form of the

switched system (10), (11). According to [?] the conditions

Ξ > 0, Ψ0 ≤ 0, Ψ1 ≤ 0 imply V ≥ α|x(t)|2 and V̇ ≤
−2δV for the system (10). Consider (11). Since for t ∈
[tk + h, tk+1) the relation (9) implies

0 ≤ εxT (t)CTΩCx(t)− eT (t)Ωe(t), (16)



we add (16) to V̇P to compensate the cross term with e(t).
We have

V̇P + 2δVP ≤ 2xTPẋ+ 2δxTPx+ 2[xTPT
2 + ẋTPT

3 ]×

[(A−BKC)x−BKe− ẋ] + [εxTCTΩCx− eTΩe]

= ϕTΦϕ ≤ 0,

where ϕ = col{x(t), ẋ(t), e(t)}. Thus, V̇P ≤ −2δVP .

The stability of the switched system (10), (11) follows

from the fact that at the switching instants tk and tk +h the

values of V and VP coincide.

�

By extending the proof from [?] we obtain the stability

conditions for the system (3), (7) presented in the form (8):

Proposition 2: For given scalars h > 0, ε ≥ 0, δ > 0 let

there exist n × n matrices P > 0, U > 0, X , X1, P2, P3,

Y1, Y2, Y3 and l × l matrix Ω ≥ 0 such that

Ξ > 0, Σ0 ≤ 0, Σ1 ≤ 0, (17)

where

Σ0 =









−PT
2 BK

Ψ0 −PT
3 BK
0

∗ −Ω









, Σ1 =









−PT
2 BK

Ψ1 −PT
3 BK
0

∗ −Ω









,

and Ψi = Ψi + ε[In 0]
TCTΩC[In 0], i = 0, 1. Then the

system (3) with tk given by (7) is exponentially stable with

a decay rate δ.

Remark 1: The feasibility of (17) implies the feasibility

of (15). Therefore, the stability of (3) under (9) can be

guaranteed for larger h and ε compared to (7). This allows to

reduce the amount of sent measurements (see the example

in Section IV). Note that for the fixed h, ε, and Ω under

periodic event-trigger (7) the amount of sent measurements

is deliberately less than under (9). Indeed, if the measurement

is sent at tk and the event-trigger rule is satisfied at tk + h,

according to (7) the sensor will wait till at least tk + 2h
before sending the next measurement, while according to

(9) the next measurement can be sent before tk + 2h.

III. L2-GAIN ANALYSIS AND INPUT-TO-STATE STABILITY

The switching approach can be easily extended to systems

with disturbances. Consider the system

ẋ(t) = Ax(t) +B1w(t) +B2u(t),

z(t) = C1x(t) +D1u(t),

y(t) = C2x(t) +D2v(t)

(18)

with the state x ∈ R
n, control input u ∈ R

m, controlled

output z ∈ R
nz , measurements y ∈ R

l, disturbances

w ∈ R
nw , v ∈ R

nv , and constant matrices of appropriate

dimensions. We study the system (18) under the static output-

feedback

u(t) = Ky(tk), t ∈ [tk, tk+1), (19)

where tk is the sequence of sampling instants given by (9).

The control input can be presented in the form

u(t) =K[C2x(t− τ(t)) +D2v(t− τ(t))], t ∈ [tk, tk + h),

u(t) =K[e(t) + C2x(t) +D2v(t)], t ∈ [tk + h, tk+1)

with e(t) and τ(t) given by (12). Then the closed-loop

system has the form

ẋ(t) = Ax(t) +B1w(t) +B2KC2x(t− τ(t))

+B2KD2v(t− τ(t)),

z(t) = C1x(t) +D1K[C2x(t− τ(t)) +D2v(t− τ(t))],

t ∈ [tk, tk + h),
(20)

ẋ(t) = (A+B2KC2)x(t) +B1w(t) +B2Ke(t)

+B2KD2v(t),

z(t) = (C1 +D1KC2)x(t) +D1K(e(t) +D2v(t)),

t ∈ [tk + h, tk+1).

(21)

Define τ(t) = 0 for t ∈ [tk + h, tk+1). We say that the

system (9), (18), (19) has L2-gain less than γ if for the zero

initial condition x(0) = 0 and all w, v ∈ L2[0,∞) such

that wT (t)w(t) + vT (t− τ(t))v(t− τ(t)) 6≡ 0 the following

relation holds on the trajectories of (9), (18), (19):

J =

∫

∞

0

{

zT (t)z(t)− γ2[wT (t)w(t)

+ vT (t− τ(t))v(t− τ(t))]
}

dt < 0.

(22)

Proposition 3: For given scalars γ > 0, δ > 0, h > 0,

ε ≥ 0 let there exist n× n matrices P > 0, U > 0, X , X1,

P2, P3, Y1, Y2, Y3 and l × l matrix Ω ≥ 0 such that

Ξ > 0, F ≤ 0, G ≤ 0, H ≤ 0, (23)

where Ξ is given in Proposition 1,

F =













F11 F12 F13 PT
2 B1 F15

∗ F22 F23 PT
3 B1 F25

∗ ∗ F33 0 F35

∗ ∗ ∗ −γ2I 0
∗ ∗ ∗ ∗ F55













,

G =

















G11 G12 G13 hY T
1 PT

2 B1 G16

∗ G22 G23 hY T
2 PT

3 B1 G26

∗ ∗ G33 hY T
3 0 G36

∗ ∗ ∗ G44 0 0
∗ ∗ ∗ ∗ −γ2I 0
∗ ∗ ∗ ∗ ∗ G66

















,

H =

















H11 H12 PT
2 B2K PT

2 B1 H15 H16

∗ H22 H23 PT
3 B1 H25 0

∗ ∗ −Ω 0 0 (D1K)T

∗ ∗ ∗ −γ2I 0 0
∗ ∗ ∗ ∗ H55 H56

∗ ∗ ∗ ∗ ∗ −I

















,

G11 = −(X +XT )/2 + 2δP + CT
1 C1 − Y1 − Y T

1

+ PT
2 A+ATP2,

G12 = P − Y2 +ATP3 − PT
2 ,

G13 = X −X1 + (CT
1 D1 + PT

2 B2)KC2 − Y3 + Y T
1 ,

G16 = F15 = (CT
1 D1 + PT

2 B2)KD2,

G22 = H22 = −PT
3 − P3,

G23 = Y T
2 + PT

3 B2KC2,

G26 = F25 = PT
3 B2KD2,



G33 = −(X +XT )/2 +X1 +XT
1

+ (D1KC2)
TD1KD2 + Y3 + Y T

3 ,

G36 = F35 = (D1KC2)
TD1KD2,

G44 = −he−2δhU,

G66 = F55 = −γ2I + (D1KC2)
TD1KD2,

F11 = G11 + δh(X +XT ),

F12 = G12 + h(X +XT )/2,

F13 = G13 + 2δh(X1 −X),

F22 = G22 + hU,

F23 = G23 + h(X1 −X),

F33 = G33 + δh(X +XT − 2X1 − 2XT
1 ),

H11 = PT
2 (A+B2KC2) + (A+B2KC2)

TP2

+ εCT
2 ΩC2 + 2δP,

H12 = P + (A+B2KC2)
TP3 − PT

2 ,

H15 = PT
2 B2KD2 + εCT

2 ΩD2,

H16 = (C1 +D1KC2)
T ,

H23 = PT
3 B2K,

H25 = PT
3 B2KD2,

H55 = −γ2I + εDT
2 ΩD2,

H56 = (D1KD2)
T .

Then the system (18), (19) under the event-trigger (9) is

internally exponentially stable with the decay rate δ and has

L2-gain less than γ.

Proof. The system (9), (18), (19) is presented in the form

(20), (21). For the system (20) consider the functional (14).

Calculating the derivatives we obtain:

V̇P = 2xTPẋ, (24)

V̇X = −

[

x(t)
x(tk)

]T
[

X+XT

2 X1 −X

∗ X+XT

2 −X1 −XT
1

]

[

x(t)
x(tk)

]

+ (h− τ)ẋ
[

(X +XT )x+ 2(X1 −X)x(tk)
]

,
(25)

V̇U ≤ −2δVU − e2δh
∫ t

t−τ(t)

ẋT (s)Uẋ(s) ds

+ (h− τ)ẋTUẋ. (26)

Define

f(t) =
1

τ(t)

∫ t

t−τ(t)

ẋ(s) ds.

Then Jensen’s inequality [?] implies

−e2δh
∫ t

t−τ(t)

ẋT (s)Uẋ(s) ds ≤ −τ(t)e2δhfT (t)Uf(t).

(27)

Similar to [?] we will add the following expressions to V̇ :

0 = 2[xTPT
2 + ẋTPT

3 ][Ax+B1w

+B2K(C2x(t− τ) +D2v(t− τ))− ẋ], (28)

0 = 2[xTY T
1 +ẋTY T

2 +xT (t−τ)Y T
3 ][−x+x(tk)+τf ].

(29)

By summing up (24), (25), (26), (28), (29), using (27), and

substituting z from (20) we find that

V̇ + 2δV + zT z − γ2[wTw + vT (t− τ(t))v(t− τ(t))]

≤ ηTN(τ)η,

where η = col{x, ẋ, x(t − τ(t)), f, w, v(t − τ(t))} and the

matrix-function N(τ) is affine in τ . The condition F ≤ 0
implies N(0) ≤ 0 and G ≤ 0 implies N(h) ≤ 0. Therefore,

N(τ) ≤ 0 for any τ ∈ [0, h].
Now consider the system (21). Event-trigger (9) implies

0 ≤ −eTΩe+ ε[C2x+D2v]
TΩ[C2x+D2v]. (30)

By summing up (24), (30), and

0 = 2[xTPT
2 + ẋTPT

3 ][(A+B2KC2)x+B1w

+B2K(e+D2v)− ẋ] (31)

and using Schur complement [?] for zT z with z given in

(21) we find that

V̇P + 2δVP + zT z − γ2[wTw + vT v] ≤ νTHν ≤ 0,

where ν = col{x, ẋ, e, w, v}.

Define

V =

{

V, t ∈ [tk, tk + h),

VP , t ∈ [tk + h, tk+1).

This function is continuous since V = VP at time instants

tk and tk + h, and

V̇ + 2δV + zT z − γ2[wTw + vT (t− τ(t))v(t− τ(t))] ≤ 0.
(32)

Note that τ(t) = 0 for t ∈ [tk + h, tk+1). For w ≡ 0, v ≡ 0
(32) implies

V̇ ≤ −2δV .

Therefore, the system (18), (19) is internally exponentially

stable with the decay rate δ. By integrating (32) from 0 to

∞ with x(0) = 0 we obtain (22).

�

Corollary 1: If relations in (23) are valid with C1 = 0,

D1 = 0 then the system (18), (19) under the sampling (9) is

Input-to-State Stable with respect to the disturbance w̄(t) =
col{w(t), v(t− τ(t))}.

Proof.If the function w̄T (t)w̄(t) is bounded by ∆2 then (32)

with C1 = 0, D1 = 0 transforms to

V̇ ≤ −2δV + γ2∆2.

The assertion of the corollary follows from the comparison

principle.

�

Remark 2: The switching approach proposed in this pa-

per can be extended to the systems with network-induced

delays [?].

Remark 3: Differently from periodic systems approach

considered in [?] our method is applicable to linear systems



TABLE I

AVERAGE AMOUNT OF SENT MEASUREMENTS (SM)

ε h SM

Periodic sampling — 1.173 18

Event-trigger (7) 4.6× 10−3 1.115 17.47

Event-trigger (7) 0.555 0.344 24.8

Switching approach (9) 0.555 0.899 11.13

with polytopic-type uncertainties. Indeed, LMIs of Proposi-

tions 1, 2, and 3 are affine in A, B, B1, and B2. Therefore, in

the case of system matrices from the uncertain time-varying

polytope

X =

M
∑

j=1

µj(t)Xj , 0 ≤ µj(t) ≤ 1,

M
∑

j=1

µj(t) = 1,

where Xj = [A(j) B(j)] for Propositions 1, 2 and Xj =

[A(j) B
(j)
1 B

(j)
2 ] for Proposition 3, to guarantee the robust

stability of the system one needs to solve these LMIs

simultaneously for all the M vertices Xj applying the same

decision matrices.

IV. EXAMPLES

Example 1 [?]. Consider the system (3) with

A =

[

0 1
−2 3

]

, B =

[

0
1

]

, C = I, K =
[

−1 4
]

.

For ε = 0 (9) transforms into periodic sampling, therefore,

Proposition 1 can be used to obtain the maximum period h.

Under periodic sampling the amount of sent measurements

is
[

Tf

h

]

+ 1, where Tf is the time of simulation and [·] is

the integer part of a given number. To obtain the amount

of sent measurements for tk given by (7) (or (9)), for each

ε = i× 10−4 (i = 0, . . . , 104) we find the maximum h that

satisfies Proposition 2 (or Proposition 1) and for each pair

of (ε, h) we perform numerical simulations with Tf = 20
for several initial conditions given by

(x1(0), x2(0)) =

(

10 cos

(

2π

30
k

)

, 10 sin

(

2π

30
k

))

with k = 1, . . . , 30. Then we choose the pair (ε, h) that

ensures the minimum average amount of sent measurements.

In this example the best result was achieved under periodic

sampling (ε = 0). Proposition 1 gives h = 0.356 for δ =
0.24 and h = 0.424 for δ = 0.001. Both event-triggers (7)

and (9) did not succeed in reducing the network workload.

Example 2 [?]. Consider the system (3) with

A =

[

0 1
0 −3

]

, B =

[

0
1

]

, C =
[

1 0
]

, K = 3.

(33)

We obtained the amount of sent measurements as de-

scribed in Example 1 (taking δ = 0.24, Tf = 20). As

one can see from Table I periodic event-triggered (7) does

not give any significant improvement compared to periodic

sampling, while the event-trigger (9) allows to reduce the

Fig. 1. Event-trigger (7): simulation of the system (3), (33), where ε =
4.6× 10−3, h = 1.115, [x1(0), x2(0)] = [10, 0].

Fig. 2. Event-trigger (9): simulation of the system (3), (33), where ε =
0.555, h = 0.899, [x1(0), x2(0)] = [10, 0].

average amount of sent measurements by almost 40%. In

Figs. 1 and 2 one can see the results of numerical simu-

lations for the event-triggers (7) and (9). The vertical lines

correspond to the time instants when the measurements are

sent. The event-trigger (7) allows to skip the sending of

two measurements (after t4 and t10), while (9) results in

large inter sampling times [t2, t3], [t4, t5], etc. This allows to

significantly reduce the network workload while the decay

rate of convergence is preserved.

V. CONCLUSIONS

We proposed a new approach to event-triggered control

under the continuous-time measurements that ensures the

given lower bound for inter-event times and can significantly

reduce the workload of the network. Our idea is based

on a switching between periodic sampling and continuous

event-trigger. We extended this approach to L2-gain and ISS

analysis of perturbed system. Our method is applicable to

the linear systems with polytopic-type uncertainties.


