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A Sylowlike theorem for integral group rings
of finite solvable groups

By

W. KIMMERLE and K. W. ROGGENKAMP *)

1. Introduction. For a finite group G and a commutative ring R we denote by

the group ring of G over R. This group ring is an augmented algebra with

augmentations: RG -> R, £ r
g'9~^ Z V

geG geG

By V(RG) we denote the units in RG, which have augmentation 1. The group of units in
RG is then the product of the units in R and V(RG).

A subgroup H of V(RG) with \H\ = |G| is called a group basis, provided the elements
of H are linearly independent. This latter condition is automatic, provided no rational
prime divisor of \H\ is a unit in R [1]. If H is a group basis, then RG = RH as augmented
algebras and conversely.

The object of this note is to prove the following

Theorem 1. Let Gbea finite solvable group, and let H be a group basis ofZG with Sylow
p-subgroup P. Then there exists a unit a e QG such that a Pa'1 is a Sylow p-subgroup of G.

R e m a r k 1 . For solvable groups it was conjectured by Hans Zassenhaus [12, 1 1] that
for any finite subgroup U of V(ZG) there exists a e QG with aUa'1 c G.

It is known that for a solvable group G, the Sylow p-subgroups of different group bases
in TLG are isomorphic; however, the above result gives information about the embedding
of these Sylow p-subgroups into ZG.

The isomorphism of the Sylow p-subgroups is an immediate consequence of the
following more general result: tfLp stands for the complete ring of p-adic integers.)

Theorem 2 ([9J). Let Gbea finite group such that the generalized Fitting subgroup F*(G)
is a p-group *). Then a group basis H of ZG is conjugate by a unit in TL G to a subgroup
of G.

*) The second author was partially supported by the DFG.
*) This is to say that G has a normal p-subgroup N with the centralizier CG(N) c JV or that the

generalized p'-core 0^(G) is trivial [2, 3].
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We shall state next a more general result, which does not only apply to solvable groups,
aod of which Theorem 1 is a special case - as will become transparent later on. For this
wfr have to introduce some more notation.

D e f i n i t i o n 1 . Let G be a finite group.

1. n(G) is the set of rational prime divisors of |G|.
2. For the rational prime p, the group Op>(G) is the largest normal subgroup of G with

order relatively prime to p.
3. Op*(G) is the generalized p'-core of G [4, Ch. X, Paragraph 14].
4. Let n be a finite set of rational primes. We call a finite group G n-constrained, if for each

q E n there exists a rational prime p such that Op*(G/Op,(G)) = 1 and q does not divide

R e m a r k 2 . Note that in the above definition, the prime q need not be different from
p. Therefore a p-constrained group G is also 7r-constrained for n = n(G)\n(Op,(G)). Clear-
ly a finite solvable group is 7i-constrained for every set of primes n. However, there are
many insolvable groups which are 7i-constrained for some set n (e.g. every Frobenius
group is 7r-constrained for a suitable set n). It is not true though, that a Ti-constrained
group G is p-constrained for every p e n [2, 3].

We can now state the result, which we shall prove here:

Theorem 3. Let G be a finite n-constrained group, and let H be a group basis in ZG. For
each pen and P a Sylow p-subgroup of H9 there exists a unit a e QG with a Pa'1 a Sylow
p-subgroup of G.

2. Connection with the Zassenhaus conjecture. Let us return to a weak form of the
Zassenhaus conjecture (cf. Remark 1):

Conjecture 1 (Zassenhaus [12, 11]). Let G be a finite group. If H is a group basis in
then H is conjugate in QG to G; i.e. there exists a unit a e QG such that aHa~l = G.

R e m a r k 3. It was shown in [7] that the above conjecture is true for finite nilpotent
groups. However, in [8] a metabelian group was constructed, which is a counterexample
to the above Zassenhaus conjecture.

It is convenient, to rephrase the Zassenhaus conjecture in terms of isomorphisms over
class sums.

D e f i n i t i o n 2. Let G be a finite group.

1. A class sum in 7LG is an element of the form

CSG(g)= £ '0;
xeGfCG(g)

i.e. the sum of the different conjugate elements of g.
2. Let H be a group basis in ZG. Then there is a class sum correspondence [1]: For every

h e H there exists an element y(h) e G, such that CSH(h) = CSG(y(h)) inZG. Note that y(h)
is only determined up to conjugacy. Since the conjugacy class of h and y(h) must have
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the same cardinality - use the augmentation - the map y can be extended to a

bijection y: G-> H.

We shall call such a map a class sum correspondence. Note that y is in general not unique
and is in general not a homomorphism of groups; however, it sends p-power elements of
G to p-power elements of H; it even preserves the order of the elements [6].

3. This class sum correspondence induces a correspondence between the normal sub-
groups of G and H, essentially since a normal subgroup is a union of conjugacy classes,
cf. e.g. [10].

4. Let H be a group basis in ZG. An isomorphism Q: H -> G is called an isomorphism
over the class sums provided the induced automorphism - note ZG = ZH - which we
shall also denote by Q

Q-.ZH-+ZG, £ vfc-* I rk-Q(h)
heH heH

has the property q(CSH(h)) = CSG(y(h)).

We can now reformulate the Zassenhaus conjecture - using the theorem of Skolem-
Noether:

Proposition 1. The Zassenhaus conjecture is equivalent to the statement that for each
group basis H of ZG there exists an isomorphism

- this means that the isomorphism problem has a positive answer - which is an isomorphism
over the class sums; with other words the above bijection

can be chosen to be a group isomorphism.

R e m a r k 4. We shall collect here some observations:

1. Theorem 2 thus states, that in case F*(G) is a p-group, then for every group basis
H there exists an isomorphism over the class sums.

2. In our Theorems 1, 3 we are not dealing with the group basis, but rather with a
subgroup of a group basis H. Thus we are looking for an extension of Proposition 1 to
a subgroup U of the group basis H (cf. Remark 1).

3. The obvious extension would be to require that the bijection y in the Definition 2,2
could be chosen in such a way that it is a group isomorphism when restricted to U.

Theorem 4. Let G be a finite group and let U be a finite subgroup of F(<CG). Denote by
L an algebraic number field such that U <= LG. Then the following statements are equiva-
lent.

1. There exists a unit a e LG with a I/a"1 c: G.
2. There exists a group basis H of CG, and there exists a bijection

Q-.H-+G,
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such that

is a class sum preserving group isomorphism; i.e.

for every uell. Moreover,

\CSH(u)\ = \CSG(Q(u))\,

here \CSG(g)\ = \G:CG(g)\ denotes the number of elements conjugate to g.

3. The Proofs.

P r o o f o f T h e o r e m 4 . (!)=> (2): If we take H = a~ 1 Ga, then the conjugation by
a is the desired map Q.

(2) => (1): Let L e K be an algebraic number field, which is a splitting field for G and
choose a simple Wedderburn component A of KG = KH.

Via the projection onto A we obtain two representations of 17, denoted by 0^ and $Q(U)
resp., where <frv is the representation of U c H and 0tf(t7) is the representation of U
induced from Q.

We shall show that the characters for U of <j>v and 0ff(l/) coincide. In fact, by assumption
CSH(u) = CSG(Q(U)) and so we have for the trace of <j>v and 0ff(l/) resp. with / = \CSH(u)\
= \CSG(Q(u))\:

This holds for every u e 17, and since the characters determine a representation up to
isomorphism (conjugacy), we conclude, that <j>v and </>c(l7) are conjugate in A. Since this
can be done for every simple Wedderburn component of KG, we conclude that there
exists b e KG such that b Ub~ 1 = 0(17).

It remains to show that this conjugation can already be achieved in LG. We shall be
using bimodules to reach this goal:

We consider M = LG as L(U x G)-bimodule, by letting U act in its natural way on M
from the left and G acts on the right by its natural action. QM has the same right action
as M, but the left action is twisted by Q:

Since U and 0(17) are conjugate in KG, the bimodules

K ® L M and K ®L
QM

are isomorphic. Invoking the Noether-Deuring theorem, we conclude that the bimodules
M and QM must be isomorphic. Let
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be an isomorphism of L(U x G)-bimodules. We put a = t(l). Then a is a unit in LG and
moreover,

Q(U) - a = a - u
for every u e U. q.e.d.

The proof of Theorem 3 will now follow from Theorem 4, if we can show

Proposition 2. Let G be a finite it-constrained group for n a finite set of rational primes.
H is a group basis in %G.

For qen there exists by Definition 1,4 a prime p such that

Op.(G/Op,(G)) = l.
Let S be a Sylow q-subgroup of H. Then there exists a class sum correspondence

Q'.H^G
such that

QS: S -> Q(S)
is a group isomorphism.

P r o o f . Let

be the augmented ring homomorphism induced from reduction modulo Op,(G).
Since G is 7c-constrained, q does not divide |0P'(G)|, and so

/c,s injects S into ZG/Op,(G).

By the choice of p, we may apply Theorem 2, to conclude that the Zassenhaus conjec-
ture holds for ZG/0P>(G), and so there exists a class sum correspondence in

inducing an isomorphism of groups

Q'.K(H)^K(G).

With the correspondence of normal subgroups (Definition 2,3) we conclude that
ker(K |H) = Op,(H)

and that
\0P.(H)\ = \0,.(G)\.

Thus we can find a Sylow ^-subgroup of G, say, T such that

is a group isomorphism.
Summarizing, we have now constructed a group isomorphism

Qs = : KI V ° Q ° *\s
from StoT.

Claim 1. Let now
y: / / ->G

be a class sum correspondence (Definition 2,2). Then

= CSG(Qs(s)).
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P r o o f o f t h e c l a i m . Because of the class sum correspondence y, there exists for
every s e S an element t e T such that

CSH(s) = CSG(t)

- note that y sends g-power elements to g-power elements (Definition 2,2).
On the other hand, Q induces the class sum correspondence on 7LG/Op>(G\ and so we

must have

CSG/0p,(G)(K(t)) = CSG/0p>(G}(Q o K(S)).

Thus t is conjugate in G to a g-power element of the form w • QS(S) for some w e Op,(G).
Note that we still have freedom in choosing t in its conjugacy class. Thus we can assume
that t is such that K(t) = K(Q(S)). In Op,(G) • T the element w • QS(S) is - by Sylow's theorem
- conjugate by an element H^ e Op,(G) to an element tl e T. But then K(I) = K^) and so
we must have t = tl9 since K\T is injective.

Consequently QS(S) and t are conjugate.

This proves the claim and also finishes the proof of Proposition 2, and hence completes
the proof of Theorem 3 and consequently of Theorem 1.
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