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Abstract. If S is a finite set of points in the plane and no conic contains all points 
of S, then S determines a conic which contains exactly five points of S. 

In 1893 Sylvester [13] posed the following problem: given a set of n points in 
the Euclidean or projective plane, not all collinear, is there necessarily a line (a 
Sylvester line) which contains exactly two of the points? Sylvester offered no 
solution and the problem was not solved until, in 1933, the first proof that a 
Sylvester line must exist was given by Gallai. In 1943 Erd6s publicized Gallai's 
solution by posing the Sylvester question as a problem in the American Mathe- 
matical Monthly [5]. One response to Erd6s's problem, by Steinberg [12], gave 
the first completely projective proof of Sylvester's conjecture. Another important 
proof of  the conjecture, using metric techniques, was given by Kelly in 1948 [9]. 

In 1951 Motzkin [11] showed that among the planes determined by a finite 
set of points in 3-space there must be at least one, which he called "ordinary,"  
with the property that all but one of  the points of  the original set which lie on 
that plane are collinear. 

Hansen [6], in 1965, generalizing methods first introduced by Steinberg, proved 
an n-dimensional analogue to Motzkin's results: among the (k -1 ) - f l a t s  deter- 
mined by a finite set of points in a k-dimensional space there must be at least 
one (an ordinary fiat) with the property that all but one of the points of the 
original set which lie in that (k -1) - f l a t  lie in a (k -2 ) - f l a t .  

In 1983 Borwein [2] used unimodal Haar vector spaces to prove a different 
generalization of Sylvester's theorem: if E is a finite set of points in the plane 
such that no two points of E lie on the same vertical line and no polynomial of 
degree less than n + 1 contains all points of E, then for k = 1 , . . . ,  n there is a 
polynomial of degree k containing exactly k +  1 points of E. Borwein's proof 
echoes the proof  that Kelly gave for Sylvester's theorem; his result may be deduced 
using the Motzkin-Hansen theorem and the methods of the present paper. 
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We add to the Sylvester-Gallai theory by proving a Sylvester type theorem for 
conic sections. 

Definition 1. A subset S of  the Euclidean plane is said to be of  order n if there 
is a polynomial p(X, Y)~ R[X, Y] of degree n such that every point of  S is a 
zero ofp.  A subset of  the plane is called an nth-order algebraic curve if it consists 
exactly of  the zeros of  an nth-degree polynomial p(X, Y). 

Definition 2. Let S be a subset of  R 2 and C be an nth-order curve in the plane. 
We say that C is determined by S if, for any nth-order curve C', 

C ' n S ~ C ~ S  ~ C ' = C .  

That is, C is determined by S if it contains certain points of S and is the only 
nth-order curve to contain those points. 

Definition 3. Let S be a subset of ~2 and C be an nth-order curve determined 
by S. We call C n-elementary if [ C n S I  = n(n +3) /2 ;  C is called ordinary if there 
is a point x e S such that C is not determined by S -{ x } .  If S determines an 
n-elementary curve we will say that S is n-elementary. I fS  determines an ordinary 
nth-order curve we will say that S is n-ordinary. 

For example, let S =  {A, B, C, D, E} as shown in Fig. 1. S is a second-order 
set which is 1-elementary, it determines five first-order curves, only one of  which, 
BCDE, is not elementary. S is also 1-ordinary; of the five lines it determines only 
BCDE is not ordinary. 

Definition 4. Let T c  R ~. We use (T) to indicate the smallest affine subspace of  
R ~ containing T. We write dim(T) for the dimension of  (I") and will sometimes 
write dim T. We call (T) a k-flat if (T) is a k-dimensional affine subspace of R n. 
An ( n -  1)-flat will be called a hyperplane. 

Definition 5. Let T_~R" have dimension n. A hyperplane H in R" is said to be 
determined by T if for any hyperplane H' 

H ' n T ~ H n T  ~ H ' = H .  

A hyperplane, H, determined by T is called elementary if]H c~ T] = n; a hyperplane, 
H, determined by T is called ordinary if there is an x ~ T such that dim(H c~ 
( T - { x } ) ) =  n - 2 .  (In words: H is ordinary if all the points of Hc~T, save one, 
lie in an (n-2)- f la t . )  We call T elementary (resp. ordinary) if it determines at 
least one elementary (resp. ordinary) hyperplane. 

"'-B /'C D-~ E-'" 
Fig. ! 
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We note that, in terms of these definitions, Sylvester's theorem says: if S c_ R 2 
is not first order, then it is 1-elementary. 

We omit the easy proof  of  the following result. 

Corollary. Let T ~ R" and H be a hyperplane in R". Then H is determined by T 

i f f  dim(H c~ T)- = n - 1. 

Our goal is to prove the following theorem. 

Theorem. I f  S c R 2 is not co-conic, then there is a conic determined by S which 

contains exactly f ive  points o f  S. 

This is Sylvester's theorem extended to conic sections. Put differently, it says 
that if S ~_ R 2 is not second order, then it is 2-elementary. 

As a first step toward the proof  we define T: R 2 ~ R s by 

T(x ,  y)  = (x  2, xy, y2, x, y) .  

The last two coordinates guarantee that T is 1-1. The following lemmas establish 
some of the properties of  the map T. 

Lemma 1. I f  S c_ R 2 is not second order, then dim T(S) = 5. 

Proof. Suppose not. Then there is a hyperplane H in R s such that T(S)_c H. Let 
H have equation 

ao-~.- a l x  1 -~- •2x2 -Jr- a 3 x  3 + a4x4--~- asxs = O. 

Then, by definition of T, 

ao + a ~ x 2 + a2xy + aay 2 + a4x + asy = 0 

for all (x, y)  ~ S; that is, all points of S lie on a conic. The contradiction proves 
the lemma. [] 

Lemma 2. A set S ~ •2 determines exactly one conic C i f f  dim T ( S ) =  4. In this 
case S ~ C. 

Proof. Suppose S determines a unique conic C. (It  follows from Bezout's theorem 
that any set of  five points, no four of  which are collinear, determines exactly one 
conic; see, for instance, [8, p. 54].) Let C n S = S ~ .  I f  S ~ c S  choose a point 
X e S - S ~ .  Some set of  five points in S~ determines C; by replacing one of those 
five points with X we determine a new conic. But this contradicts the assumption 
that S determines only one conic. It follows that no such point X can exist and 
S=S~;  i.e., S ~  C. Since T(C) determines a hyperplane H~ in R s it follows that 
dim T(S)-< 4. I f  dim T ( S ) <  4 then there is a hyperplane different from the one 
containing T(C),  say 

H2: b o + b l x l + b 2 x 2 + b 3 x 3 + b a x 4 + b s x s = O ,  
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such that T(S) ~ H2. But then all points of  S satisfy 

ho + blx 2 + b2xy + b3y 2 + b4x + bsy = 0, 

a conic different from C. Contradiction. 
Conversely, suppose dim T ( S ) =  4. Let (T(S))  be the hyperplane 

H: ao+a~x~+a2x2+a3x3+a4x4+asxs=O. 

Then S is contained in the conic 

C: a o + a l x 2 + a 2 x y + a 3 y 2 + a 4 x + a s y = O  

so C is the (unique) conic determined by S. [] 

Lemma 3. No three points of  T(R 2) are collinear. 

Proof Suppose X , , X 2 , X 3 e R  2 and T(X,) ,  T(X2), T(X3) are collinear 
in R 5. Then dim(T(X1),  T(X2), T(X3)) = 1. Pick two more points, X4, X5 ~ R: 
so that S = {X~, X2, X3, X4, Xs} determines a unique conic. We have added 
only two points to a set o f  dimension 1, so dim T(S)-<3. This contradicts 
Lemma 2. [] 

Lemma 4. I f  S ~ R 2 has three or more points and its points are collinear, then 
dim T(S) =2 .  (In words, the image o f  S lies in a plane of  R 5, but not in a line.) 

Proof. By Lemma 3 dim T(S)-> 2. Let a be the line containing S and let P and 
Q be points not on a. Then S, = S u  {P, Q} determines a unique conic so, by 
Lemma 2, dim T(S1)=4;  therefore dim T(S) is 2, 3, or 4. Since S does not 
determine a unique conic, dim T(S) # 4. I f  dim T(S) = 3, then we can find a point 
X ~ R 2 such that dim T(S u {X} = 4; but that would imply that S u {X} determined 
a conic, a contradiction, for a line and a point do not determine a conic. Therefore 
dim T(S) = 2. [] 

Note. Lemma 4 shows that the image under T of a line in R 2 is a set of  coplanar 
points in R 5. We can prove the result algebraically in the following way. 

Let a = {(x, y)  [(x, y)  = (Xo, Yo) + t(Uo, Vo), t e R}. Then for (x, y) e a we have 

T( x, y)  = T( xo, Yo) + t( 2XoUo, XoVo + yoUo, 2yoVo, Uo, v0) + t2(u0, UoVo, Vo, O, 0), 

i.e., T(a)  = {z l z  = T(xo, Yo) + tVl + t 2 V2} for points V, and V2 in R 5. Clearly, the 
set T(a)  is a coplanar,  but not collinear. 

Lemma 5. I f  S ~_ R 2 consists of  three noncollinear points, then dim T(S) = 2. 

Proof. By Lemma 3 the dimension is at least 2, but three points cannot  span 
more than a plane, so the dimension must be exactly 2. 
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Lemma 6. / f  S ~ R ~ consists o f  four points, not all collinear, then dim T(S) = 3. 

Proof. Four points cannot span more than three dimensions so the dimension 
is -<3. Since the points are not all coilinear we can choose one more point X ~ R 2 
such that S u {X} determines a unique conic. By Lemma 2 dim T(S w {X})= 4. 
Thus dim T(S) is at least 3, so it must be exactly 3. [] 

Lemma 7. Let S c R ~- be a set which is not o f  order 2, that is, not co-conic. I f  any 
line in R 2 contains exactly three points o f  S, then there is a conic which contains 
exactly five points o f  S and which is determined by those five points (i.e., S is 
2-elementary). 

Proof Let a be a line in R ~ such that a c7 S = {P,, P2, P3}. Let S1 = S -  {P~, P2, P3}- 
I f  $1 is a collinear set then S lies in two lines (or one) and is co-conic. This 
contradiction shows that S, is not collinear, and so must have a Sylvester line 
a, (a line which contains exactly two points of  S,)~ Let P4 and P5 be the points 
of  S, lying in a I . The five points P, ,  P2, ,°3, P4, P5 determine a conic (consisting 
of lines a and a~) which contains no other points of  S. [] 

Lemma 8. I f  S c_ R 2 has k >- 5 points and dim T(S) = 3, then S consists o f  k - 1 
collinear points and another point not on the line determined by the first k - 1 points. 

Proof. Consider a set of four points, no three collinear. Note that no matter 
where a fifth point is added the resulting set of  five will determine a unique conic. 
I f  S contained a subset, S , ,  of  four such points, then for any fifth point X ~ S 
we would have the contradiction 

3 = dim(T(S))  >- dim(T(S,  w {X})) = 4. 

Therefore S has the property that among any four of its elements at least three 
are collinear. It is easy to show that if k = 5 the lemma is true. An induction does 
the rest. []  

Lemma 9. I f  S c_ R 2 is not collinear, but each of  its Sylvester lines goes through 
point P, then S = $1 k){P}, where S~ is a collinear set and P is not on the line 
containing S,.  

Proof. Let S~ = S -  { P} and A ~ S,.  The lines determined by the finite set S -  {A} 
cut the projective plane into polygonal cells. Following Kelly and Moser [10] 
we call those lines determined by S - {A} which contain the edges of  the polygonal 
cell holding A the neighbors of  A. 

Case 1 ( P e S ) .  Suppose that PA were not a Sylvester line in S. Then, since all 
Sylvester lines of S pass through P, no line through A could be a Sylvester line 
of  S. By Theorem 3.1 of  [10], every neighbor of  A would then be a Sylvester line 
of  S; that is, every neighbor of  A would go through P so that A would have at 
most two neighbors and, by Theorem 2.2 of  [10], our lemma would be true. We 
may assume, then, for each A ~ S, the line PA is a Sylvester line of  S. 
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It follows that S, must be collinear, for it it were not it would have to have a 
Sylvester line AB, A, B ~ S,,  which either is, or is not, a Sylvester line of S. I f  
AB is a Sylvester line of  S it must pass through P and, thereby, contain three 
distinct points of  S; a contradiction. But if AB is not a Sylvester line of  S, then 
it must contain at least three points of  S, only two of which (A and B) can lie 
in S,; that is to say AB must contain P. But in that case the line PA is not a 
Sylvester line of  S. Another contradiction. It follows that S, is collinear and the 
lemma is proved in this case. 

Case 2 ( P ~ S ) .  This is impossible, for it it were true, then the set S 2 = S u { P }  
would satisfy the conditions of  Case 1 and we should have to conclude that the 
set S, contrary to hypothesis, was collinear. [] 

We now state the main result. 

Theorem. I f  S c_R 2 is a set of points not all on the same conic, then there is a 
conic containing exactly five points of S and determined by those five points. 

Proof. Since S is not collinear it has Sylvester lines. Let X, Y e S determine a 
Sylvester line. Consider the pencil, ~,  of  lines in R 5 joining T(Y)  to all other 
points of  T(S). By Lemma 1 dim T ( S ) =  5. Suppose P'  is a hyperplane in R 5 
which does not contain T (Y)  and which is not parallel to any of the lines in the 
pencil. 

Let S ' = { A ' ~ P ' [ = l p ~  ~ such that A'=P'rTp}. By Lemma 3 the map A->A', 
for A e S - { Y } ,  is 1-1. 

Suppose we could find points A, B c S - { X ,  Y} such that the points A', B', 
X '  in P '  were collinear. Then the lines T ( Y )  T(A),  T ( Y )  T(B), T ( Y )  T (X)  would 
be coplanar and {T(Y) ,  T(X) ,  T(A), T(B)} would be a coplanar set, i.e., 
d im{T(Y) ,  T(X) ,  T(A),  T(B)} = 2. Lemma 6 would then tell us that { Y, X, A, B} 
is collinear, which is false (X  and Y determine a Sylvester line). Therefore no 
such points A and B exist and X '  is not on the same line (in P') with any two 
other points o f  S'. 

It follows that in the 4-space P'  we can form the pencil ~ ' =  
{X'A'[ A e S - {X, Y}} and these lines will all be distinct. We repeat the projection 
operation. Let P" be a hyperplane (a 3-space) in P '  which does not contain X '  
and is not parallel to any X'A '  in the pencil ~ ' .  For each A ~ S - { X ,  Y} let 
A"= X'A'r7 P"; we have just seen that the map A ~ A" is 1-1 for A ~ S - { X ,  Y}. 

Let S" = {A"[ A e S - {X, Y}} c_ R 3. Suppose that S" is 2-elementary (Definition 
5), that is, S" determines a plane in R 3 which contains exactly three points of S". 
Let A", B", C" be three such points in S". Then dim{A", B", C"}=2, so 
dim{X',  A', B', C'} = 3, and no other points of  S'  are in (X' ,  A', B', C'). Another 
pullback gives 

d im{T(Y) ,  T(X) ,  T(A),  T(B) ,  T ( C ) } = 4 .  

(Note that pullbacks increase the dimension by 1 and introduce exactly one new 
point.) By Lemma 2 { Y, X, A, B, C} determines a conic in R 2 which contains no 
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other points of  S. This shows that if S" is 2-elementary then S is 2-elementary 
(Definition 3) and the theorem is true. 

We assume, then, that S" is not 2-elementary, that every plane in R 3 determined 
by S" contains at least four points of  S". (Of  course, S" is not coplanar, for if it 
were S'  would have dimension 3 and T(S) would have dimension 4.) 

Motzkin [11] proved that S" is 2-ordinary, i.e., S" determines a plane whose 
intersection with S" consists of  a special point W "  and a set o f  collinear points 
P~', P ~ , . . . ,  P~ which lie on a line not containing W". Note that r - 3  because 
every plane determined by S" contains at least four points. 

As before 

dim{ W", P~', P ~ , . . . ,  P~} = 2 

dim{X',  W', P'~, P~ . . . . .  P'~} = 3 

d im{T(Y) ,  T (X) ,  T(W),  T(P,) ,  T(P~)  . . . . .  T(P~)} =4.  

Also, 

so 

and 

dim{P; ,  P'2, . . . , P'r} = 1, 

dim{X',  P~, P ~ , . . . ,  P'~} = 2 

d im{T(Y) ,  T ( X ) ,  T(P~) ,  T(P2) . . . .  , T(P~)} = 3. 

The last set has r + 2 - > 5  elements. By Lemma 8 {Y, X, P, ,  P 2 , . . . ,  Pr} consists 
of  r +  1 collinear points and one other point not on the line. Since X Y  is a 
Sylvester line we may, without loss of  generality, assume that {X, P~, P2, • • -, Pr} 
is a collinear set of  points, on line a in R 2, and Y is not on a. 

We note that if W ~ a, then, by Lemma 4, 

and 

d im{T(W),  T (X) ,  T(P~), T ( P ~ ) , . . . ,  T(Pr)} = 2 

d im{T(Y) ,  T(W),  T(X) ,  T(P,) ,  T ( P 2 ) , . . . ,  T(Pr)} = 3. 

But we have already seen that this dimension is 4, so W ~ a. We now have points 
X,P~,P2 . . . . .  R on line a, points Y and W not on a; it follows that 
{Y, W, X, Pj,  P2 . . . .  , Pr} determines a unique conic ~ Moreover, C n S =  
{Y,  W , X ,  P I , P 2 , . . . , P r } ,  for suppose A ~ C n S ,  then T ( A )  belongs to the 
hyperplane 

(T (W) ,  T(Y) ,  T(X) ,  T(P~), T(P2)  . . . .  , T (Pr) ) .  

Now, either A =  Y or, if A #  Y, we must, by Lemma 2, find A' in the 3-flat 
( W', X ' ,  P~, P ~ , . . . ,  P'~). Again, either A = X, or, if A # X, A" belongs to the 2-flat 
(W", P~', P ~ , . . . ,  P','). Therefore A"=  W" or A"=  P~' for some i. Since all the 
maps are 1-1 this means that A = W or A = P~ for some i. 
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Our situation now is this: having started with X, Y c S, X Y  a Sylvester line, 
we have found points ~;  P ~ , . . . ,  Pr in S such that 

(i) (W", P~ ' , . . . ,  P',') is an ordinary plane in R3; 
(ii) there is a line, a, in R 2 such that 

anS={X,  P, . . . . .  Pr}; 

(iii) {X, Y, W, P 1 , . . . ,  Pr} determines a conic C = a u W Y  which contains no 
other points of S. 

Suppose the line W Y  is not a Sylvester line of  S. Then, since C n S =  
{X, Y, W, PI , . . . ,Pr} ,  W Y n S = { W ,  Y, Pj} for some j ;  but then WY is a line 
containing exactly three points of  S, so by Lemma 7 S is 2-elementary and the 
theorem is proved. We may assume, then, that WY is a Sylvester line of  S. 

We return, now, to the three-dimensional hyperplane P". Suppose that W"A" = 
W"B" implied A =  B for A, B e S - { X ,  Y, W}; i.e., W" is not collinear with any 
other two points of S". Form the pencil of lines W"A", A" e S " -  { W"}, and cut 
the pencil with a 2-flat P'" which does not contain W" and is not parallel to any 
of the lines in the pencil. Define 

S " = { A " I A " =  W " A " n P "  for A in S - { X ,  Y, W}}. 

If the points of  S"  were collinear the points of  S" would be coplanar, those of  
S' would lie in a 3-flat, and those of T(S) in a 4-flat; that is, S would be a co-conic 
set. That is untrue, so S" is not a collinear set and must have Sylvester lines. Let 
A, B e S -  {X, Y, W} be points of  S which give rise to a Sylvester line A'"B"' for 
the set S'". 

It follows that if W" is not collinear with any other two points of S", then 
(W", A", B'~ is an elementary 2-flat in S" (that is, it contains only those three 
points of  S"), so (X',  W' ,A ' ,B ' )  is an elementary 3-flat in S', and 
( T ( Y ) ,  T (X) ,  T (W) ,  T(A),  T(B))  is an elementary 4-flat in R 5. In other words, 
if W" is not collinear with two other points of  S" the theorem is true. 

We assume, then, that W" lies in a line containing at least two other points 
of S". Let b be such a line and let 

b n S " = { W " ,  Q'~,.. . ,  Q~'}, s>-2. 

Then 

dim{ W", Q~ ' , . . . ,  Q~'} = 1, 

so dim{X', W', Q'1,- • -, Q's} = 2 

and dim{T(Y), T(X), T(W), T(Q,) , . . . ,  r(Qs)} = 3. 

By Lemma 8 { Y, X, W, QI . . . .  , Qs} consist of s + 2 collinear points and one other 
point not on the line. Since X Y  and W Y  are Sylvester lines and W is collinear 
with the points Q~ we must have the picture shown in Fig. 2 (the points on the 
line may, of  course, appear  in any order). 
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Fig. 2 

It is important to note that the line b is unique--i t  is the only line containing 
W" and at least two other points of S", for if c were another such line the pullback 
argument above would still lead to the line X W  pictured above. 

We have reduced the problem to this: S" determines an ordinary plane, 
( W", P~ ' , . . . ,  P~), in which W" is the special point. There is exactly one line, b, 
determined by S" which contains W" and at least two other points of S": 

bnS"={W",  Q~ . . . . .  Q~}, s>-2. 

There may be other points of S" in R 3, but we can see at least the ones shown 
in Fig. 3. 

Notice that Q'~" - -  . . . .  Q i (in S ' )  for all i and j. Call this common point Q', i.e., 
Q ' =  Q~" for all i. Notice also that except for this point Q" the projection is 1-1. 

S" is not collinear. Suppose that S" has a Sylvester line A'B"  which does not 
go through Q'". Then (W", A", B") is an elementary 2-flat, (X', W', A', B') is an 
elementary 3-flat, and (T(Y),  T(X), T(W), T(A), T(B)) is an elementary 4-flat. 
In other words, if S" has a Sylvester line which does not go through Q'", then 
the theorem is true. 

So we may assume that all the Sylvester lines of S" go through the single point 
Q". By Lemma 9 S" consists of  Q" and a set of  collinear points which lie on a 
line not containing Q'". It follows that all points of S" except for Q'(, Q ~ , . . . ,  Q" 
lie in the same plane as do P;, P'2',..., P /and  W". 

Next, consider the set S " -  { W", Q'(, Q~ . . . .  , Q~}. If this set is not coilinear, 
then we can find points A" and B" in it which determine a Sytvester line, d. If  

Fig. 3 



304 J.A. Wiseman and P. R. Wilson 

P1 

P2 

Pa 

X 

.Y 

ff ~, d2 ds 
Fig. 4 

all the Sylvester lines for this set went through W" then, by Lemma 9, the set 
would be collinear, so we may assume that d does not contain W". It follows 
that {A", B", Q~'} determines a plane which contains exactly three points of  S". 
We have already seen that in this case S is 2-elementary and the theorem is true. 

We may assume, then, that the points of  S " - {  W", Q'(, Q ~ , . . . ,  Q"} are col- 
linear. Therefore 

s " =  { w " ,  Q' ; ,  Q ' L  . . . , Q T ,  P ' ; ,  P ~  . . . .  , P ~ } .  

In other words, S" lies in the two skew lines a and b. Doing a pullback similar 
to the one done earlier, we have 

• t¢ r! dlm{Pj,  P2,- - - ,  P"}=  1 (r-> 3), 

so dim{X',  P;,  P ~ , . . . ,  P'r} = 2, 

and d im{T(Y) ,  T ( X ) ,  T(P, ) ,  T(P2) . . . .  , T(Pr)} = 3. 

By Lemma 8 the set S must look like Fig. 4 (the order of  the points on the lines 
is irrelevant). Clearly, {P~, P2, W, Q1, Y} determines an elementary conic, so S 
is 2-elementary, and the theorem is proved. [] 

It seems reasonable to conjecture that every non-nth order configuration in 
the plane determines an nth order elementary curve in the plane. That is, given 
a set of  points in the plane not all lying on an algebraic curve of order n, there 
must be at least one curve of order n containing exactly n(n + 3)/2 points of  the 
set and determined by those points. 

Proof of  this conjecture would add considerable interest and importance to 
Sylvester-Gallai theory. 
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