
A symbolic algorithm for the synthesis of
bounded Petri nets?

J. Carmona1, J. Cortadella1, M. Kishinevsky2, A. Kondratyev3, L. Lavagno4,
and A. Yakovlev5

1 Universitat Politècnica de Catalunya, Spain
2 Intel Corporation, USA

3 Cadence Berkeley Laboratories, USA
4 Politecnico di Torino, Italy
5 Newcastle University, UK

Abstract. This paper presents an algorithm for the synthesis of
bounded Petri nets from transition systems. A bounded Petri net is
always provided in case it exists. Otherwise, the events are split into
several transitions to guarantee the synthesis of a Petri net with bisim-
ilar behavior. The algorithm uses symbolic representations of multisets
of states to efficiently generate all the minimal regions. The algorithm
has been implemented in a tool. Experimental results show a significant
net reduction when compared with approaches for the synthesis of safe
Petri nets.

1 Introduction

The problem of Petri net synthesis consists of building a Petri net that has a
behavior equivalent to a given transition system. The problem was first addressed
by Ehrenfeucht and Rozenberg [ER90] introducing regions to model the sets of
states that characterize marked places. Mukund [Muk92] extended the concept
of region to synthesize nets with weighted arcs.

Different variations of the synthesis problem have been studied in the
past [Dar07]. Most of the efforts have been devoted to the decidability prob-
lem, i.e. questioning about the existence of a Petri net with a specified behavior.
An exception is in [BBD95] where polynomial algorithms for the synthesis of
bounded nets were presented. These methods have been implemented in the
tool SYNET [Cai02].

Desel and Reisig [DR96] reduced the synthesis problem to the calculation of
the subset of minimal regions. In [HKT95,HKT96] the classical trace model by
Mazurkiewicz [Maz87] was extended to describe the behavior of general Petri
nets.

? Work of J. Carmona and J. Cortadella has been supported by the project FOR-
MALISM (TIN2007-66523), and a grant by Intel Corporation. Work of A. Yakovlev
was supported by EPSRC, Grants EP/D053064/1 and EP/E044662/1.

Carmona, J. [et al.]. A symbolic algorithm for the synthesis of bounded Petri nets. A: International
Conference on Applications and Theory of Petri Nets. "Applications and Theory of Petri Nets: 29th
International Conference, PETRI NETS 2008, Xi’an, China, June 23-27, 2008: proceedings". Springer, 2008,
p. 92-111.
The final authenticated version is available online at https://doi.org/10.1007/978-3-540-68746-7_10

a b

r
1

r
2

r
1

r
2

b a

ba

In most of the previous approaches, two major
constraints are imposed: (1) any event must be rep-
resented by only one transition, and (2) the reacha-
bility graph of the Petri net must be isomorphic to
the initially given transition system. The approach
presented in [CKLY98] relaxed the previous condi-
tions. The condition of isomorphism was replaced by bisimilarity [Mil89] and, as
a result, the classical separation axioms did not have to hold for pairs of bisimilar
states. Additionally, the Petri net was allowed to have multiple transitions with
the same label (event). This approach was only applicable to safe Petri nets.
The figure shows a transition system where the separation axioms do not hold,
but a Petri net with bisimilar behavior can be found with the methods described
in [CKLY98].

1.1 Motivation and contributions

There are several areas of interest for the synthesis of Petri nets. One of them is
visualization [VPWJ07]. Understanding the behavior of large concurrent systems
such as business processes [BDLS07] or asynchronous circuits [CKLY98] is a
complex task that can be facilitated by visualizing the causality and concurrency
relations of their events. In these cases, the non-existence of a Petri net should
not be the cause that prevents visualization.

Another interesting area of application is direct synthesis, which consists
of implementing concurrent systems by representing them as Petri nets and
mapping the places and transitions into software of hardware realizations of these
objects (e.g. [SBY07]). Finding succinct representations of concurrent behaviors
contributes to derive efficient implementations.

On the other hand, the state spaces of such concurrent systems do not al-
ways have an explicit representation. Instead, symbolic representations are often
used. This is the case of the transition relations used to verify temporal prop-
erties [CGP00] or the gate netlists used to represent circuits. The behavior is
implicitly represented by the reachable states obtained from these representa-
tions.

This paper provides an efficient synthesis approach for concurrent systems.
An algorithm for bounded Petri nets synthesis based on the theory of general
regions is presented. Starting from the algorithms for synthesizing safe Petri Nets
in [CKLY98], the theory and algorithms are extended by generalizing the notion
of excitation closure from sets of states to multisets of states. The extension
covers the case of the k-bounded Petri nets with weighted arcs. The paper also
proposes heuristics to handle transition systems which do not satisfy the notion
of excitation closure and hence cannot be modeled with general Petri nets with
uniquely labelled transitions. In this case, methods for splitting events allow
to generate Petri Nets with multiple occurrences of the same original label. In
summary, the main features of the approach are:

– The synthesis of weighted Petri nets.

– The use of symbolic methods based on BDDs to explore large state spaces.
– Efficient heuristics for event splitting.

1.2 Two illustrative examples

b

ca

22

p1

p2 p3

120 111 102

022 013 004031040

b b

b b b b

200
a

a a a

c

c
c

c

Fig. 1: A transition system and an equivalent bounded Petri net.

Figure 1 depicts a finite transition system with 9 states and 3 events. After
synthesis, the Petri net at the right is obtained. Each state has a 3-digit label that
corresponds to the marking of places p1, p2 and p3 of the Petri net, respectively.
The shadowed states represent the general region that characterizes place p2.
Each grey tone represents a different multiplicity of the state (4 for the darkest
and 1 for the lightest). Each event has a gradient with respect to the region (+2
for a, -1 for b and 0 for c). The gradient indicates how the event changes the
multiplicity of the state after firing. For the same example, the equivalent safe
Petri net generated by petrify [CKLY98] has 5 places and 10 transitions.

Another example is shown in Fig. 2. The transition system models a behavior
with OR-causality, i.e. the event c can be fire as soon as a or b have fired. The
net model is much simpler and intuitive if bounded nets are used. Instead, the
model with a safe Petri net needs to represent the events a and b with multiple
transitions.

a b

c

d

ba

b ac

d

a

a

b

b

ab

ccd

c

(c)(b)(a)

Fig. 2: (a) Transition system, (b) 2-bounded Petri net, (c) safe Petri net.

The algorithm presented in this paper is based on an efficient manipulation
of multisets to explore the minimal general regions of a finite transition system.

2 Background

2.1 Petri nets and finite transition systems

Definition 1. A Petri net is a tuple (P, T,W,M0) where P and T represent fi-
nite sets of places and transitions, respectively, and W : (P × T) ∪ (T × P) → N
is the weighted flow relation. The initial marking M0 ∈ N|P | defines the initial
state of the system.

Definition 2 (Transition system). A transition system (or TS) is a tuple
(S, Σ, E, sin), where S is a set of states; Σ is an alphabet of actions, such that
S∩Σ = ∅; E ⊆ S×Σ×S is a set of (labelled) transitions; and sin is the initial
state.

Let TS = (S, Σ, E, sin) be a transition system. We consider connected TSs
that satisfy the following axioms:

– S and E are finite sets.
– Every event has an occurrence: ∀e ∈ Σ : ∃(s, e, s′) ∈ E;
– Every state is reachable from the initial state: ∀s ∈ S : sin

∗→ s.

A state without outgoing arcs is called deadlock state.

2.2 Multisets

The following definitions establish the necessary background to understand the
concept of region, introduced in Section 2.3. A region is a multiset where addi-
tional conditions hold. We start by introducing the multiset terminology.

Definition 3 (Multiset). Given a set S, a multiset r of S is a mapping
r : S −→ N.We will also use a set notation for multisets. For example, let
S = {s1, s2, s3, s4}, then a multiset r = {s3

1, s
2
2, s3} corresponds to the following

mapping r(s1) = 3, r(s2) = 2, r(s3) = 1, r(s4) = 0.

Henceforth we will assume r, r1 and r2 to be multisets of a set S.

Definition 4 (Support of a multiset). The support of a multiset r is defined
as

supp(r) = {s ∈ S | r(s) > 0}

Definition 5 (Power of a multiset). The power of a multiset r, denoted by
r�, is defined as

r� = max
s∈S

r(s)

For instance, for the multiset r = {s3
1, s

2
2, s3}, r� = 3.

Definition 6 (Trivial multisets). A multiset r is said to be trivial if
r(s) = r(s′) for all s, s′ ∈ S. The trivial multisets will be denoted by 0, 1, . . . ,
K when r(s) = 0, r(s) = 1, . . . , r(s) = k, for every s ∈ S, respectively.

Definition 7 (k-bounded multiset). A multiset r is k-bounded if for all s ∈
S : r(s) ≤ k.

Definition 8 (Union, intersection and difference of multisets). The
union, intersection and difference of two multisets r1 and r2 are defined as fol-
lows:

(r1 ∪ r2)(s) = max(r1(s), r2(s))
(r1 ∩ r2)(s) = min(r1(s), r2(s))
(r1 − r2)(s) = max(0, r1(s)− r2(s))

Definition 9 (Subset of a multiset). A multiset r1 is a subset of a multiset
r2 (r1 ⊆ r2) if

∀s ∈ S : r1(s) ≤ r2(s)

As usual, we will denote by r1 ⊂ r2 the fact that r1 ⊆ r2 and r1 6= r2.

Definition 10 (k-topset of a multiset). The k-topset of a multiset r, denoted
by >k(r), is defined as follows:

>k(r)(s) =
{

r(s) if r(s) ≥ k
0 otherwise

A multiset r1 is a topset of r2 if there exists some k for which r1 = >k(r2).

Examples. The multiset {s3
1, s3} is a subset of {s3

1, s
2
2, s3}, but it is not a topset.

The multisets {s3
1, s

2
2} and {s3

1} are the 2- and 3-topsets of {s3
1, s

2
2, s3}, respec-

tively. As it will be shown in Section 4, k-topsets are the main objects to look
at when constructing the (weighted) flow relation for Petri net synthesis.

Property 1 (Partial order of multisets). The relation ⊆ (subset) on the set of
multisets of S is a partial order.

Property 2 (The lattice of k-bounded multisets). The set of k-bounded multisets
of a set S with the relation ⊆ is a lattice. The meet and join operations are the
intersection and union of multisets respectively. The least and greatest elements
are 0 and K respectively.

2.3 General regions

Let TS = (S, Σ, E, sin) be a transition system. In this section, we will consider
multisets of the set S.

Definition 11 (Gradient of a transition). Given a multiset r, the gradient
of a transition (s, e, s′) is defined as

∆r(s, e, s′) = r(s′)− r(s)

An event e is said to have a non-constant gradient in r if there are two transitions
(s1, e, s

′
1) and (s2, e, s

′
2) such that

r(s′1)− r(s1) 6= r(s′2)− r(s2)

Definition 12 (Region). A multiset r is a region if all events have a constant
gradient in r.

The original notion of region from [ER90] was restricted to subsets of S, i.e.
events could only have gradients in {−1, 0,+1}.

Definition 13 (Gradient of an event). Given a region r and an event e with
(s, e, s′) ∈ E, the gradient of e in r is defined as

∆r(e) = r(s′)− r(s)

Definition 14 (Minimal region). A region r is minimal if there is no other
region r′ 6= 0 such that r′ ⊂ r.

Note that the trivial region 0 is not considered to be minimal.

Theorem 1. Let r be a region such that 1 ⊂ r. Then r is not a minimal region.

Proof. Trivial. A smaller region can be obtained by subtracting 1 from each r(s).
2

Definition 15 (Excitation and switching regions6). The excitation region
of an event e, ER(e), is the set of states in which e is enabled, i.e.

ER(e) = {s | ∃s′ : (s, e, s′) ∈ E}

The switching region of an event e, SR(e), is the set of states reachable from
ER(e) after having fired e, i.e.

SR(e) = {s | ∃s′ : (s′, e, s) ∈ E}

For convenience, ER(e) and SR(e) will be also considered as multisets of states
when necessary.

Definition 16 (Pre- and post-regions). A region r is a pre-region of e if
ER(e) ⊆ r. A region r is a post-region of e if SR(e) ⊆ r. The sets of pre- and
post-regions of an event e are denoted by ◦e and e◦ respectively.

Note that a region r can be a pre-region and a post-region of the same event
in case ER(e) ∪ SR(e) ⊆ r. The behavior modeled in this situation can be seen
as a self-loop in a Petri net.

6 Excitation and switching regions are not regions in the terms of Definition 12. They
correspond to the set of states in which an event is enabled or just fired, correspond-
ingly. The terms are used due to historical reasons.

Properties of regions

Property 3. Let TS = (S, Σ, E, sin) be a transition system without deadlock
states. Then, for any region r there is an event e for which ∆r(e) ≤ 0.

Proof. By contradiction. Assume that ∆r(e) > 0 for all events. Then for all arcs
(s, e, s′) we have that r(s′) > r(s). Since TS has no deadlock states and S is
finite, there is at least one cycle s0 → s1 → . . . → sn → s0. This would result in
r(s0) > r(s0), which is a contradiction. 2

Property 4. Let TS = (S, Σ, E, sin) be a transition system in which there is a
transition (s, e′, sin) ∈ E. Then, for any region r there is an event e for which
∆r(e) ≥ 0.

Proof. By contradiction. Assume that ∆r(e) < 0 for all events. Then for all arcs
(s, e, s′) we have that r(s′) < r(s). Since there is (s, e′, sin) ∈ E, there is at least
one cycle sin → s1 → . . . → sn = s → sin. This would result in r(sin) < r(sin),
which is a contradiction. 2

Property 5. Let TS = (S, Σ, E, sin) be a transition system without deadlock
states. Then, any region r 6= ∅ is the pre-region of some event e.

Proof. Property 3 guarantees the existence of an event e such that ∆r(e) ≤ 0. If
∆r(e) < 0, then every state in ER(e) must be in the support of r and the claim
holds. If every event e fulfilling Property 3 satisfies ∆r(e) = 0, then supp(r) = S:
if the contrary is assumed, since the transition system is deadlock-free and r 6= ∅,
the states in the support of r must be connected to some states out of r. However,
if every event has non-negative gradient in r, then in this situation r must contain
all the states. 2

Property 6. Let TS = (S, Σ, E, sin) be a transition system. Then, any region
r 6= ∅ is the pre-region or the post-region of some event e.

Proof. A similar reasoning of the proof of Property 5 can be applied here, but
using Properties 3 and 4. 2

2.4 Excitation-closed TSs

This section defines a specific class of transition systems, called excitation-closed,
for which the synthesis approach presented in this paper guarantees that the
Petri net obtained has a reachability graph bisimilar to the initial transition
system.

Definition 17 (Enabling topset). The set of smallest enabling topsets of an
event e is denoted by ?e and defined as follows:

?e = {q | ∃r ∈ ◦e, k > 0 : q = >k(r) ∧ ER(e) ⊆ >k(r) ∧ ER(e) 6⊆ >k+1(r)}

Intuitively, q belongs to ?e if it is the topset of a pre-region r of e and there
is no larger topset that includes ER(e).

e

e
2

s
11 2

1 2

1

0 4 2

0

1 2 3

5

8 4

9

e

ee e

e e

e e

e e

s
1 s

2

1 2

4

3 3

1 2 3

5

74 8

10

e

1 2
s

e

e

s

s

e

s

e

s

e

2

8

6 66 8 7

10

4 5

2 3121 1 2 1 2 3

54

6 6 6 8 7

105

e e

ee

ee

e e

ee e

e e

ee e

ee

e e

e

e e

e e

e

e e

ee

Fig. 3: Successive calculations of u2(r, e).

Definition 18 (ECTS). A TS is excitation closed if it satisfies the following
two properties:

1. Excitation closure. For each event e⋂
q∈?e

supp(q) = ER(e)

2. Event effectiveness. For each event e, ◦e 6= ∅

3 Generation of minimal regions

Now we are ready to describe an algorithm to generate the set of all k-bounded
minimal regions from a given transition system. Informally, the generation of
minimal regions is based on Property 6, that states that any region is either
a pre-region or post-region of some event. Therefore the exploration of regions
starts by considering the ER and SR of every event, and expands those sets
that violate the region condition. Provided that only minimal expansions are
considered at each step of the algorithm, the generation of all the minimal regions
is guaranteed. Hence the notion of multiset expansion is crucial in this paper.

Multisets are expanded with the aim of ensuring constant gradient for every
event. Formally, given a multiset r and an event e with non-constant gradient,
the following definitions characterize the set of regions that include r.

1 2

1

0 4 2

0

1 2 3

5

8 4

9

1 2

e

e

s s

e e

e e

e

e

e e e

e

1 2

3

0 2

0

4 4 4

7

44 8

9

1 2
s

e

s

e

e

e e

e e

e e

e e

e

2 2

3

0 2

0

6 6 6

7

48

9

e

e

e

s1 s2

e e

e e

e

e e

e e

4

Fig. 4: Successive calculations of u1(r, e).

Definition 19. Let r 6= 0 be a multiset. We define

Rg(r, e) = {r′ ⊇ r|r′ is a region and ∆r′(e) ≤ g}
Rg(r, e) = {r′ ⊇ r|r′ is a region and ∆r′(e) ≥ g}

Rg(r, e) is the set of all regions larger than r in which the gradient of e is
smaller than or equal to g. Similar for Rg(r, e) and the gradient of e greater than
or equal to g. Notice that in this definition a gradient g is used to partition the
set of regions including r into two classes. This binary partition is the basis for
the calculation of minimal k-bounded regions that will be presented at the end
of this section.

To expand a multiset in order to convert it into a region, it is necessary to
know the lower bound needed for the increase in each state in order to satisfy a
given gradient constraint. The next functions provide these lower bounds:

Definition 20. Given a multiset r, a state s and an event e, the following δ
functions are defined7:

δg(r, e, s) = max(0, max
(s,e,s′)∈E

(r(s′)− r(s)− g))

δg(r, e, s) = max(0, max
(s′,e,s)∈E

(r(s′)− r(s) + g))

Informally, δg denotes a lower bound for the increase of r(s), taking into
account the arcs leaving from s, to force ∆r′(e) ≤ g in some region r′ larger
than r. Similarly, δg denotes a lower bound taking into account the arcs arriving
at s, to force ∆r′(e) ≥ g. Let us use Figure 3 to illustrate this concept. In the
figure each state is labeled with r(s). For the states s1 and s2 in the top-left
figure, we have:

δ2(r, e, s1) = 3 δ2(r, e, s2) = 0

δ2(r, e, s1) is determined by the arc 2 e→ 1 and indicates that r′(s1) ≥ 4 in
case we seek a region r′ ⊃ r with ∆r′(e) ≥ 2. Analogously, Figure 4 illustrates
the symmetrical concept. For the states s1 and s2 in the leftmost figure we have:
7 For convenience, we consider maxx∈D P (x) = 0 when the domain D is empty.

δ1(r, e, s1) = 2 δ1(r, e, s2) = 2

δ1(r, e, s1) is determined by the arc 1 e→ 4 , indicating that r′(s1) ≥ 3 for
∆r′(e) ≤ 1. Similarly, δ1(r, e, s2) is determined by the arc 5 e→ 8 .

Definition 21. Given a multiset r and an event e, the multisets ug(r, e) and
ug(r, e) are defined as follows:

ug(r, e)(s) = r(s) + δg(r, e, s)
ug(r, e)(s) = r(s) + δg(r, e, s)

Intuitively, ug(r, e) is a safe move towards growing r and obtaining all regions
r′ with ∆r(e) ≤ g. Similarly, ug(r, e) for those regions with ∆r(e) ≥ g. It is
easy to see that ug(r, e) and ug(r, e) always derive multisets larger than r. The
successive calculations of ug(r, e) and ug(r, e) are illustrated in Figures 3 and 4,
respectively.

Theorem 2 (Expansion on events).

(a) Let r 6= 0 be a multiset and e an event such that there exists some (s, e, s′)
with r(s′)− r(s) > g. The following hold:
1. r ⊂ ug(r, e)
2. Rg(r, e) = Rg(ug(r, e), e)

(b) Let r 6= 0 be a multiset and e an event such that there exists some (s, e, s′)
with r(s′)− r(s) < g. The following hold:
1. r ⊂ ug(r, e)
2. Rg(r, e) = Rg(ug(r, e), e)

Proof. (We prove item (a), item (b) is similar.)
(a.1) Given the event e, for all states s, s′ with (s, e, s′) either (i) r(s′)−r(s) ≤ g
or (ii) r(s′) − r(s) > g. In situation (i), the following equality holds: r(s) =
ug(r, e)(s) because δg(r, e, s) = 0 by Definition 20. In situation (ii), δg(r, e, s) > 0,
and therefore r(s) < ug(r, e)(s). Given that the rest of states without outgoing
arcs labeled e fulfill also r(s) = ug(r, e)(s), and because there exists at least one
transition satisfying (ii), the claim holds.
(a.2) To obtain Rg(r, e) it is necessary to guarantee ∆r′(e) ≤ g for each region
r′ ⊇ r. Given (s, e, s′) with r(s′) − r(s) > g, two possibilities can induce a
gradient lower than g, e.g decreasing r(s′) or increasing r(s), but only the latter
leads to a multiset with r as a subset. 2

Figure 5 presents an algorithm for the calculation of all minimal k-bounded
regions. It is based on a dynamic programming approach that, starting from
a multiset, generates an exploration tree in which an event with non-constant
gradient is chosen at each node. All possible gradients for that event are explored
by means of a binary search. Dynamic programming with memoization avoids
the exploration of multiple instances of the same node. The final step of the
algorithm (lines 16-17) removes all those multisets that are neither regions nor
minimal regions that have been generated during the exploration.

generate minimal regions (TS,k) {
1: R = ∅; /* set of explored multisets */

2: P = {ER(e) | e ∈ E} ∪ {SR(e) | e ∈ E};
3: while (P 6= ∅) /* multisets pending for exploration */

4: r = remove one element (P);

5: if (r 6∈ R) /* dynamic programming with memoization */

6: R = R ∪ {r};
7: if (r is not a region)

8: e = choose event with non constant gradient (r);
9: (gmin, gmax) = ‘‘minimum and maximum gradients of e in r’’;
10: g = b(gmin + gmax)/2c; /* gradient for binary search */;

11: r1 = ug(r, e); if ((r�1 ≤ k) ∧ (1 6⊂ r1)) P = P ∪ {r1} endif;
12: r2 = ug+1(r, e); if ((r�2 ≤ k) ∧ (1 6⊂ r2)) P = P ∪ {r2} endif;
13: endif
14: endif
15 endwhile;
16: R = R \ {r | r is not a region}; /* Keep only regions */

17: R = R \ {r | ∃r′ ∈ R : r′ ⊂ r}; /* Keep only minimal regions */

}

Fig. 5: Algorithm for the generation of all k-bounded minimal regions.

Theorem 3. The algorithm generate minimal regions in Figure 5 calculates all
k-bounded minimal regions.

Proof. The proof is based on the following facts:

1. All minimal regions are a pre- or a post-region of some event (property 6).
Any pre- (post-) region of an event is larger than its ER (SR). Line 2 of the
algorithm puts all seeds for exploration in P . These seeds are the ERs and
SRs of all events.

2. Each r that is not a region is enlarged by ug(r, e) and ug+1(r, e) for some
event e with non-constant gradient. Given that g = b(gmin +gmax)/2c, there
is always some transition s1

e→ s2 such that r(s2) − r(s1) = gmax > g and
some transition s3

e→ s4 such that r(s4)− r(s3) = gmin < g + 1. Therefore,
the conditions for theorem 2 hold. By exploring ug(r, e) and ug+1(r, e), no
minimal regions are missed.

3. The algorithm halts since the set of k-bounded multisets with ⊆ is a lattice
and the multisets derived at each level of the tree are larger than their
predecessors. Thus, the exploration will halt at those nodes in which the
power of the multiset is larger than k (lines 11-12). The condition (1 6⊂ r′)
in lines 11-12 improves the efficiency of the search (see theorem 1). 2

For the case of safe Petri nets, line 9 of the algorithm always gives
g = gmin = 0 and gmax = 1. The calculation of u0(r, e) and u1(r, e) with the
constraints r�1 , r�2 ≤ 1 is equivalent to the expansion of sets of states presented
in lemma 4.2 of [CKLY98].

a

a

a

a

b

b b

1

1

1

1

0

0 0

s1

s2

s3

s6s5

s4

s0

s1

s2

s3

s6s5

s4

s0

a

a

a

a

b

b b

6

4

2

3

0

1 0 ba

32

(a) (b) (c)

Fig. 6: Generation of minimal region: (a) ER(a), (b) final region after the exploration
shown in table 1, (c) equivalent Petri net.

ri(s) illegal chosen
ri s0 s1 s2 s3 s4 s5 s6 events event gmin gmax g
r1 = ER(a) 1 1 1 0 1 0 0 {a, b} a -1 0 -1
r2 = u−1(r1, a) 2 2 1 0 1 0 0 {a, b} b -2 -1 -2
r3 = u−2(r2, b) 3 2 1 0 2 0 0 {a, b} a -2 -1 -2
r4 = u−2(r3, a) 4 3 2 0 2 0 0 {a, b} b -3 -2 -3
r5 = u−3(r4, b) 5 3 2 0 3 0 0 {a, b} b -3 -2 -3
r6 = u−3(r5, b) 6 3 2 0 3 0 0 {a} a -3 -1 -2
r7 = u−2(r6, a) 6 4 2 0 3 1 0 ∅

Table 1: Path in the exploration tree for the generation of the region in Figure 6(b).

Figure 6 presents an example of calculation of minimal regions. Starting from
ER(a), the multiset is iteratively enlarged until a minimal region is obtained.
Table 1 describes one of the paths of the exploration tree.

3.1 Symbolic representation of multisets

All the operations required in the algorithm of Figure 5 to manipulate the mul-
tisets can be efficiently implemented by using a symbolic representation. A mul-
tiset can be modeled as a vector of Boolean functions, where the function at
position i describes the characteristic function of the set of states having car-
dinality i. Hence, multiset operations (union, intersection and complement) can
be performed as logic operations (disjunction, conjunction and complement) on
Boolean functions. An array of Binary Decision Diagrams (BDDs) [Bry86] is
used to represent implicitly a multiset.

4 Synthesis of Petri nets

The synthesis of Petri nets can be based on the generation of minimal regions
described by the algorithm in Figure 5.

For the sake of efficiency, different strategies can be sought for synthesis. They
can differ in the way the exploration tree is built. One of the possible strategies
would consist in defining upper bounds on the capacity of the regions (kmax)

and on the gradient of the events (wmax). The tree can then be explored without
surpassing these bounds. For example, one could start with kmax = gmax = 1
to check whether a safe Petri net can be derived. In case the excitation closure
does not hold, the bounds could be increased, etc. Splitting labels could be done
when the bounds go too high without finding the excitation closure.

By tuning the search algorithm with different parameters, the search for
minimal regions can be pruned at the convenience of the user.

Once all minimal regions have been generated, excitation closure must be
verified (see Definition 18). In case excitation closure holds, a minimal saturated8

PN can be generated as follows:

– For each event e, a transition labeled with e is generated.
– For each minimal region ri, a place pi is generated.
– Place pi contains k tokens in the initial marking if ri(sin) = k.
– For each event e and minimal region ri such that ri ∈ ◦e find q ∈? e such

that q = >k(ri). Add an arc from place pi to transition e with weight k.
In case ∆ri(e) > −k add an arc from transition e to place pi with weight
k + ∆ri(e).

– For each event e and minimal region ri such that SR(e) ⊆ ri add an arc from
transition e to place pi with weight ∆ri(e)

9.

Given that the approach presented in this paper is a generalization for the
case of safe Petri nets from [CKLY98], the following theorem can be proved:

Theorem 4. Let TS be an excitation closed transitions system. The synthesis
approach of this section derives a PN with reachability graph bisimilar to TS.

Proof. In [CKLY98], a proof for the case of safe Petri nets was given (Theorem
3.4). The proof for the bounded case is a simple extension, where only the defi-
nition of excitation closure must be adapted to deal with multisets. Due to the
lack of space we sketch the steps to attain the generalization.

The proof shows, by induction on the length of the traces leading to a state,
that there is a correspondence between the reachability graph of the synthesized
net and TS. The crucial idea is that non-minimal regions can be removed from
a state in TS to derive a state in the reachability graph of the synthesized net.
Moreover excitation closure ensures that this correspondence preserves the tran-
sitions in both transition systems. Based on this correspondence, a bisimulation
is defined between the states of TS and the states of the reachability graph of
the synthesized net. 2

The algorithm described in this section is complete in the sense that if ex-
citation closure holds in the initial transition system and a bound large enough
is used, the computation of a set of minimal regions to derive a Petri net with
bisimilar behavior is guaranteed.
8 The net synthesized by the algorithm is called saturated since all regions are mapped

into the corresponding places [CKLY98].
9 If SR(e) ⊆ ri, then the Definition 13 makes ∆ri(e) ≥ 0.

4.1 Irredundant Petri nets

A minimal saturated PN can be redundant. There are two types of redundancies
that can be considered in a minimal saturated PN:

1. A minimal region is not necessary to guarantee the excitation closure of any
of the events for which the ER is included in it. In this case, the corresponding
place can be simply removed from the PN.

2. Given a minimal region r, its corresponding place p and an event e such
that ER(e) ⊆ >k(r) and ∆r(e) = g, if the excitation closure can still be
ensured for e by considering >k−1(r) instead of >k(r), then the arcs p

k→ e

and e
k+g→ p in the PN can be substituted by the arcs p

k−1→ e and e
k+g−1→ p

respectively as long as k + g − 1 ≥ 0. In the case that k + g − 1 = 0, the arc
e → p can be removed also.

In fact, the first case of redundancy can be considered as a particular case of
the second. If we consider that >0(r) = S, we can say that a region r is redundant
when we can ensure the excitation closure of all events by using always >0(r)
instead of >k(r) for some k > 0. Note that in this case, the region would be
represented by an isolated place (all arcs have weight 0) that could be simply
removed from the Petri net without changing its behavior.

5 Splitting events

Splitting events is necessary when the excitation closure does not hold. When
an event is split into different copies this corresponds to different transitions in
the Petri net with the same label. This section presents some heuristics to split
events.

5.1 Splitting disconnected ERs

Assume that we have a situation such as the one depicted in Figure 7 in which

ER3(e1)ER2(e2)ER1(e1)

ER1(e) ER2(e) ER3(e)

Fig. 7: Disconnected ERs.

EC(e) =
⋂

q∈?e

supp(q) 6= ER(e)

However, ER(e) has several disconnected compo-
nents ERi(e). In the figure, the white part in a ERi(e)
represents those states in EC(e)− ERi(e). For some
of those components, EC(e) has no states adjacent
to ERi(e) (ER2(e) in the Figure). By splitting event
e into two events e1 and e2 in such a way that e2 cor-
responds to ERs with no adjacent states in EC(e),
we will ensure at least the excitation closure of e2.

1

22

a

a a

b

b b

0

1

1

1

1 2

s1 s3

s0

(a)

b

b b

0

1

1

1

1 2

s1 s3

s0

(b)

a

a

a

s5s5s2 s2s4 s4

Fig. 8: Splitting on different gradients.

5.2 Splitting on the most promising expansion of an ER

The algorithm presented in Section 3 for generating minimal regions explores all
the expansions uk and uk of an ER. When excitation closure does not hold, all
these expansions are stored. Finally, given an event without excitation closure,
the expansion r containing the maximum number of events with constant gra-
dient (i.e. the expansion where less effort is needed to transform it into a region
by splitting) is selected as source of splitting.

Given the selected expansion r where some events have non-constant gradi-
ent, let |4r (e)| represent the number of different gradients for event e in r. The
event a with minimal | 4r (a)| is selected for splitting. Let g1, g2, . . . gn be the
different gradients for a in r. Event a is split into n different events, one for each
gradient gi. Let us use the expansion depicted in Figure 8(a) to illustrate this
process. In this multiset, events a and b have both non-constant gradient. The
gradients for event a are {0,+1} whereas the gradients for b are {−1, 0,+1}.
Therefore event a is selected for splitting. The new events created correspond to
the following ERs (shown in Figure 8(b)):

ER(a1) = {s0}
ER(a2) = {s1, s3}

Intuitively, the splitting of the event with minimal | 4r (e)| represents the
minimal necessary legalization of some illegal event in r in order to convert it
into a region.

6 Synthesis examples

This section contains some examples of synthesis, illustrating the power of the
synthesis algorithm developed in this paper. We show three examples, all them
with non-safe behavior, and describe intermidiate solutions that combine split-
ting with k-bounded synthesis.

1

2

(a)

b

a b

a

s0

a

c s2 s3

s1

s4

a

b

c

(c)

p2

(b)

c

ba

p0 p1

2

2

p0

p1 p2

p3

a

Fig. 9: (a) transition system, (b) 2-bounded Petri net, (c) safe Petri net.

6.1 Example 1

The example is depicted in Figure 9. If 2-bounded synthesis is applied, three
minimal regions are sufficient for the excitation closure of the transition system:

p0 = {s2
0, s1, s3}, p1 = {s0, s1, s2}, p2 = {s1, s

2
2, s4}

In this example, the excitation closure of event c is guaranteed by the in-
tersection of the multisets >1(p1) and >2(p2), both including ER(c). However,
>1(p1) is redundant and the self-loop arc between p1 and c can be omitted. The
Petri net obtained is shown in Figure 9(b). If safe synthesis is applied, event a
must be splitted. The four regions guaranteeing the excitation closure are:

p0 = {s0}, p1 = {s1, s2}, p2 = {s1, s3}, p3 = {s2, s4}

The safe Petri net synthesized is shown in Figure 9(c).

6.2 Example 2

The example is shown in Figure 10. In this case, two minimal regions are sufficient
to guarantee the excitation closure when the maximal bound allowed is three
(the corresponding Petri net is shown in Figure 10(b)):

p0 = {s3
0, s

2
1, s2, s3}, p1 = {s1, s

2
2, s3, s

3
4, s

2
5, s6}

The excitation closure of event b is guaranteed by >2(p1). However we also
have that ∆b(p1) = −1, thus requiring an arc from p1 to b with weight 2 and
another arc from b to p1 with weight 1. The former is necessary to ensure that
b will not fire unless two tokens are held in p1. The latter is necessary to ensure
the gradient -1 of b with regard to p1. Figures 10(c)-(d) contain the synthesis for
bound 2 and 1, respectively.

1

2

3

1

2

3 1

2b

a

p0

(a) (b) (d)(c)

p1

b

a

a

s2

s4

b

a

ab

2

s0

s1

s3

s5

s6

b

a

a

a

a

a

a b

b

Fig. 10: (a) transition system, (b) 3-bounded, (c) 2-bounded and (d) safe Petri net.

6.3 Example 3

This example is depicted in Figure 11. Using bound 4, the minimal regions are
the following:

p0 = {s0}, p1 = {s4
1, s

3
2, s3, s

2
4, s6}, p2 = {s2, s

2
4, s5, s

3
6, s

4
7}

The synthesis with different bounds is shown in Figures 11(c)-(d). Notice
that the synthesis for bounds two and three derives the same Petri net.

7 Experimental results

In this section a set of parameterizable benchmarks are synthesized using the
methods described in this paper. The following examples have been artificially
created:

1. A model for n processes competing for m shared resources, where n > m.
Figure 12(a) describes a Petri net for this model10,

2. A model for m producers and n consumers, where m > n. Figure 12(b)
describes a Petri net for this model.

3. A 2-bounded pipeline of n processes. Figure 12(c) describes a Petri net for
this model.

Table 2 contains a comparison between a synthesis algorithm of safe Petri
nets [CKLY98], implemented in the tool petrify, and the synthesis of general

10 A simplified version of this model was also synthesized by SYNET [Cai02] in [BD98].

1

1

2

2

3

4

p0

c

a b

2

a

a
b

b

s1

s2

s4

s3

s5

s6

s7

a

a

a

a

a

4

p1

2

p2

b

(a) (b) (c)

c

c

(d)

c
s0

a

ba

a

a

Fig. 11: (a) transition system, (b) 4-bounded, (c) 3-bounded/2-bounded and (d) safe
Petri net.

Petri nets as described in this paper, implemented in the prototype tool Genet.
For each benchmark, the size of the transition system (states and arcs), number
of places and transitions and cpu time is shown for the two approaches. The
transition system has been initially generated from the Petri nets. Clearly, the
methods developed in this paper generalize those of the tool petrify, and par-
ticularly the generation of minimal regions for arbitrary bounds has significantly
more complexity than its safe counterpart. However, many of the implementa-
tion heuristics and optimizations included in petrify must also be extended and
adapted to Genet. Provided that this optimization stage is under development
in Genet, we concentrate on the synthesis of small examples. Hence, cpu times
are only preliminary and may be improved after the optimization of the tool.

The main message from Table 2 is the expressive power of the approach
developed in this paper to derive an event-based representation of a state-based
one, with minimal size. If the initial transition system is excitation closed, using
a bound large enough one can guarantee no splitting and therefore the number of
events in the synthesized Petri net is equal to the number of different events in the
transition system. Note that the excitation closure holds for all the benchmarks
considered in Table 2, because the transition systems considered are derived
from the corresponding Petri nets shown in Figure 12.

Label splitting is a key method to ensure the excitation closure. However,
its application can degrade the solution significantly (both in terms of cpu time
required for the synthesis and the quality of the solution obtained), specially if
many splittings must be performed to achieve excitation closure, as it can be seen
in the benchmarks SHAREDRESOURCE(5,2) and BOUNDEDPIPELINE(7). In these
examples, the synthesis performed by petrify derives a safe Petri net with
one order of magnitude more transitions than the bounded synthesis method
presented in this paper. Hence label splitting might be relegated to situations

P
1

P
n

........

m

(a)

P
m

P
1

..........

n
n

n

(b)

P
n

P
2

P
1

..
..
..
..
..

2

2 2

2 2

2

(c)

Fig. 12: Parameterized benchmarks: (a) n processes competing for m shared resources,
(b) m producers and n consumers, (c) a 2-bounded pipeline of n processes.

where the excitation closure does not hold (see the examples of Section 6), or
when the maximal bound is not known, or when constraints are imposed on the
bound of the resulting Petri net.

8 Conclusions

An algorithm for the synthesis of k-bounded Petri nets has been presented. By
heuristically splitting events into multiple transitions, the algorithm always guar-
antees a visualization object. Still, a minimal Petri net with bisimilar behavior
is obtained when the original transition systems is excitation closed.

The theory presented in this paper is accompanied with a tool that provides
a practical visualization engine for concurrent behaviors.

References

[BBD95] E. Badouel, L. Bernardinello, and P. Darondeau. Polynomial algorithms for
the synthesis of bounded nets. Lecture Notes in Computer Science, 915:364–
383, 1995.

[BD98] Eric Badouel and Philippe Darondeau. Theory of regions. In Wolfgang
Reisig and Grzegorz Rozenberg, editors, Petri Nets, volume 1491 of Lecture
Notes in Computer Science, pages 529–586. Springer, 1998.

[BDLS07] R. Bergenthum, J. Desel, R. Lorenz, and S.Mauser. Process mining based
on regions of languages. In Proc. 5th Int. Conf. on Business Process Man-
agement, pages 375–383, September 2007.

[Bry86] Randal Bryant. Graph-based algorithms for Boolean function manipulation.
IEEE Transactions on Computer-Aided Design, 35(8):677–691, 1986.

Petrify Genet

benchmark |S| |E| |P | |T | CPU |P | |T | CPU

SHAREDRESOURCE(3,2) 63 186 15 16 0s 13 12 0s

SHAREDRESOURCE(4,2) 243 936 20 24 5s 17 16 21s

SHAREDRESOURCE(5,2) 918 4320 48 197 180m 24 20 6m

SHAREDRESOURCE(4,3) 255 1016 21 26 2s 17 16 4m40s

PRODUCERCONSUMER(3,2) 24 68 9 10 0s 8 7 0s

PRODUCERCONSUMER(4,2) 48 176 11 13 0s 10 9 0s

PRODUCERCONSUMER(3,3) 32 92 10 13 0s 8 7 5s

PRODUCERCONSUMER(4,3) 64 240 12 17 1s 10 9 37s

PRODUCERCONSUMER(6,3) 256 1408 16 25 25s 14 13 16m

BOUNDEDPIPELINE(4) 81 135 14 9 0s 8 5 1s

BOUNDEDPIPELINE(5) 243 459 17 11 1s 10 6 19s

BOUNDEDPIPELINE(6) 729 1539 27 19 6s 12 7 5m

BOUNDEDPIPELINE(7) 2187 5103 83 68 110m 14 8 88m

Table 2: Synthesis of parameterized benchmarks

[Cai02] Benôıt Caillaud. Synet : A synthesizer of distributable bounded Petri-nets
from finite automata. http://www.irisa.fr/s4/tools/synet/, 2002.

[CGP00] E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. The MIT
Press, 2000.

[CKLY98] J. Cortadella, M. Kishinevsky, L. Lavagno, and A. Yakovlev. Deriving
Petri nets from finite transition systems. IEEE Transactions on Computers,
47(8):859–882, August 1998.

[Dar07] Philippe Darondeau. Synthesis and control of asynchronous and distributed
systems. In Twan Basten, Gabriel Juhás, and Sandeep K. Shukla, editors,
ACSD, pages 13–22. IEEE Computer Society, 2007.

[DR96] J. Desel and W. Reisig. The synthesis problem of Petri nets. Acta Infor-
matica, 33(4):297–315, 1996.

[ER90] A. Ehrenfeucht and G. Rozenberg. Partial (Set) 2-Structures. Part I, II.
Acta Informatica, 27:315–368, 1990.

[HKT95] P. W. Hoogers, H. C. M. Kleijn, and P. S. Thiagarajan. A trace semantics
for petri nets. Inf. Comput., 117(1):98–114, 1995.

[HKT96] P. W. Hoogers, H. C. M. Kleijn, and P. S. Thiagarajan. An event structure
semantics for general petri nets. Theor. Comput. Sci., 153(1&2):129–170,
1996.

[Maz87] Antoni W. Mazurkiewicz. Trace theory. In Advances in Petri Nets, volume
255 of Lecture Notes in Computer Science, pages 279–324, 1987.

[Mil89] Robin Milner. Communication and Concurrency. Prentice-Hall, 1989.
[Muk92] M. Mukund. Petri nets and step transition systems. Int. Journal of Foun-

dations of Computer Science, 3(4):443–478, 1992.
[SBY07] D. Sokolov, A. Bystrov, and A. Yakovlev. Direct mapping of low-latency

asynchronous controllers from STGs. IEEE Transactions on Computer-
Aided Design, 26(6):993–1009, June 2007.

[VPWJ07] H.M.W. Verbeek, A.J. Pretorius, W.M.P. van der Aalst, and J.J. van Wijk.
On Petri-net synthesis and attribute-based visualization. In Proc. Workshop
on Petri Nets and Software Engineering (PNSE’07), pages 127–141, June
2007.

