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Abstract. Predicate abstraction is a useful form of abstraction for the
verification of transition systems with large or infinite state spaces. One
of the main bottlenecks of this approach is the extremely large number
of decision procedures calls that are required to construct the abstract
state space. In this paper we propose the use of a symbolic decision pro-
cedure and its application for predicate abstraction. The advantage of
the approach is that it reduces the number of calls to the decision pro-
cedure exponentially and also provides for reducing the re-computations
inherent in the current approaches. We provide two implementations of
the symbolic decision procedure: one based on BDDs which leverages
the current advances in early quantification algorithms, and the other
based on SAT-solvers. We also demonstrate our approach with quan-
tified predicates for verifying parameterized systems. We illustrate the
effectiveness of this approach on benchmarks from the verification of
microprocessors, communication protocols, parameterized systems, and
Microsoft Windows device drivers.

1 Introduction

Abstraction is crucial in the verification of systems that have large data values,
memories, and parameterized processes. These systems include microprocessors
with large data values and memories, parameterized cache coherence protocols,
and software programs with arbitrarily large values. Predicate abstraction, first
proposed by Graf and Saidi [15] as a special case of the general framework of
abstract interpretation [10], has been used in the verification of protocols [15,22],
parameterized systems [11,12] and software programs [1,13]. In predicate abstrac-
tion, a finite set of predicates is defined over the concrete set of states. These
predicates are used to construct a finite state abstraction of the concrete sys-
tem. The automation in generating the finite abstract model makes this scheme
attractive in combining deductive and algorithmic approaches for infinite state
verification.

One of the main problems in predicate abstraction is that it typically makes
a large number of theorem prover calls when computing the abstract transition
relation or the abstract state space. Most of the current methods, including
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Saidi and Shankar [22], Das, Dill and Park [12], Ball et al. [1], Flanagan and
Qadeer [13] require a number of validity checks that can be exponential in the
number of predicates.

A number of tools [1,15] address this problem by only approximating the
abstract state space — resulting in a weaker abstract transition relation. Das
and Dill [11] have proposed refining the abstract transition relation based on
counterexamples, starting with an initial transition relation. This technique can
work well — particularly for systems with sparse abstract state graphs. However,
this technique may still require a potentially exponential number of calls to a
decision procedure. Namjoshi and Kurshan [20] have proposed an alternative
technique by syntactically transforming a concrete system to an abstract system.
Instead of using a theorem prover, they propose the use of syntactic strategies
to eliminate first-order quantifiers. However, the paper does not report empirical
results to demonstrate the effectiveness of the approach.

In this work, we present a technique to perform predicate abstraction that
reduces the number of calls to decision procedures exponentially. We formu-
late a symbolic representation of the predicate abstraction step, reduce it to a
quantified Boolean formula and then use Boolean techniques (based on Binary
Decision Diagrams (BDDs) [4] and Boolean Satisfiability solvers (SAT)) to gen-
erate a symbolic representation of the abstract transition relation or abstract
state space. Our work is motivated by the recent work in UCLID [6,24], which
transforms quantifier-free first-order formulas into Boolean formulas and uses
Boolean techniques to solve the resulting problems.

The advantage of our approach is three-fold: First, we can leverage efficient
Boolean quantification algorithms [14] based on BDDs and recent advances in
SAT-based techniques for quantification [9,18]. Second, the single call to the
symbolic decision procedure eliminates the overhead of multiple (potentially
exponential) calls to decision procedures (e.g., initializing data structures, li-
braries, system calls in certain cases). Third, in previous work, the decision
procedures cannot exploit the pruning across different calls and result in a lot of
re-computation. The learning and pruning mechanisms in modern SAT solvers
allow us to prevent the re-computations.

Our work considers both quantifier-free and quantified predicates. The quan-
tified predicates are used in the verification of parameterized systems and sys-
tems with unbounded resources. Experimental results indicate that our method
outperforms previous methods by orders of magnitude on a large set of exam-
ples drawn from the verification of microprocessors, communication protocols,
parameterized systems and Microsoft Windows device drivers.

The paper is organized as follows. In Section 2, we provide some background
on predicate abstraction. Section 3 describes how predicate abstraction can be
implemented using our symbolic decision procedure. We also describe several
ways of implementing the decision procedure. Section 4 describes the handling of
universally quantified predicates for verifying parameterized systems. Section 5
presents the results of our experiments.
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2 Background

Fig. 1 displays the syntax of the Logic of Counter Arithmetic with Lambda
Expressions and Uninterpreted Functions (CLU), a fragment of first-order logic
extended with equality, inequality, and counters. An expression in CLU can
evaluate to truth values (bool-expr), integers (int-expr), functions (function-expr)
or predicates (predicate-expr). The logic can be used to describe systems in the
tool UCLID [6].

bool-expr ::= true | false | bool-symbol

| ¬bool-expr | (bool-expr ∧ bool-expr)

| (int-expr= int-expr) | (int-expr< int-expr)

| predicate-expr(int-expr, . . . , int-expr)

int-expr ::= int-var | int-symbol

| ITE(bool-expr, int-expr, int-expr)

| int-expr + int-constant

| function-expr(int-expr, . . . , int-expr)

predicate-expr ::= predicate-symbol | λ int-var, . . . , int-var . bool-expr

function-expr ::= function-symbol | λ int-var, . . . , int-var . int-expr

Fig. 1. CLU Expression Syntax. Expressions can denote computations of Boolean
values, integers, or functions yielding Boolean values or integers.

A system description is a four-tuple1 (S,K, δ, q0) where:

– S is a set of symbols denoting the state elements.
– K is a set of symbols denoting the parameters of the system.
– δ represents the transition function for each state element in S, as CLU

expressions over S ∪ K.
– q0 represents the set of initial state expressions for each state element in S,

as CLU expressions over K.

State variables can be integers, Booleans, functions over integers or predicates
over integers. The functions and predicates represent unbounded mutable arrays
of integers and Booleans, respectively. The symbols in K are the parameters for
the system, and can be used to denote the size of a buffer in the system, the
functionality of an ALU in a processor, or the number of processes in a protocol.
They can also specify a set of initial states of the system. The logic has been
used to model and verify out-of-order processors with unbounded resources and
parameterized cache-coherence protocols [6,17].

For a set of symbols U , an interpretation σU assigns type-consistent values
to each of the symbols in the set U . For any expression Ψ over U , 〈Ψ〉σU denotes
the evaluation of the expression under σU .
1 We can encode inputs to the system at each step by a generator of arbitrary values

as described in previous work by Velev and Bryant [25].
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If q denotes a set of expressions (one for each state element), then 〈q〉σK

applies σK point-wise to each expression of q . If Ψ represents an expression,
then Ψ [Y /U ] substitutes the expressions in Y point-wise for the symbols in U .

A state s of the concrete system is an interpretation to the symbols in S.
Given an interpretation σK to the symbols in K, the initial state of the concrete
system is given as 〈q0〉σK , and an execution sequence of the concrete system is
given by 〈q0〉σK , . . . , 〈qi〉σK , 〈qi+1〉σK , . . ., where qi+1 = δ

[
qi/S

]
. A concrete state

s is reachable if it appears in an execution sequence for any interpretation σK.
For the rest of the paper, we will represent a set of states as either a set or

by a Boolean expression over S ∪ K.

2.1 Predicate Abstraction

The predicate abstraction algorithm generates a finite state abstraction from a
large or infinite state system. The finite model can then be used in the place
of the original system when performing model checking or deriving invariants.
Let Φ

.= {φ1, . . . , φk} be the set of predicates which are used for inducing the
abstract state space. Each of these predicates is a Boolean expression over the
set of symbols in S ∪K. Let B .= {b1, . . . , bk} denote the Boolean variables in the
abstract system such that value of bi denotes the evaluation of the predicate φi

over the concrete state. An abstract state sa is an interpretation to the variables
in B. The abstraction and the concretization functions α and γ are defined over
sets of concrete and abstract states respectively.

If Ψc describes a set of concrete states (as an expression over S ∪ K), then:

α(Ψc)
.= {sa | ∃sc ∈ Ψc ∃σK s.t.

∧
i∈1,...,k

〈bi〉sa ⇔ 〈φi〉sc∪σK}

If Ψa represents a set of abstract states, then

γ(Ψa) .= {sc | α({sc}) ∈ Ψa}

In fact, the concretization function γ is implemented as the substitution,
γ(Ψa) .= Ψa [Φ/B]. For each predicate φi, let φ′

i represent the result of substituting
the next-state expression for each symbol in S. That is, φ′

i
.= φi [δ(S)/S]. Let

Φ′ .= {φ′
1, . . . , φ

′
k}.

Let us now define a cube over B, cB, to be a clause li1 ∧ . . .∧ lim , where each
lij is a literal (either bij or ¬bij , where bij ∈ B). A cube over B is complete if
all the symbols in B are present as literals in the cube. A complete cube over B
corresponds to an abstract state.

Now, we define the computation of the abstract state space using the current
methods [12,22]. To obtain the set of abstract initial states, Ψ0

B, the cubes over
B are enumerated and a complete cube cB is included in Ψ0

B iff the expression
γ(cB)

[
q0/S

]
is satisfiable. The set of reachable abstract states are computed by

performing a fixpoint computation, starting from Ψ0
B and computing Ψ1

B, . . . , Ψr
B,

the states reachable within 1, . . . , r steps from Ψ0
B until Ψr+1

B =⇒ Ψr
B. The main

operation in this process is the computation of the set of abstract successor states
Ψ ′
B, for a set of states ΨB.
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Current methods compute Ψ ′
B iteratively by enumerating cubes over B and

including a complete cube cB in Ψ ′
B, iff the expression γ(ΨB)∧ cB [Φ′/B] is satis-

fiable. The satisfiability is checked using decision procedures for (quantifier-free)
first-order logic. Since an exponential number of cubes over B have to be enu-
merated in the worst case, a very large number of decision procedure calls are
involved in the computation of the abstract state space.

In the next section, we demonstrate how to avoid the possibly exponentially
number of calls to decision procedure by providing a symbolic method to obtain
the set of initial states Ψ0

B and the set of successor states Ψ ′
B, given ΨB.

3 Symbolic Predicate Abstraction

Decision procedures for CLU [6,24] translate a CLU formula Fclu to a proposi-
tional formula F̃clu , such that Fclu is satisfiable iff F̃clu is satisfiable. Different
methods have been proposed for translating a CLU formula to the propositional
formula. These methods differ in ways to enforce the constraints for various the-
ories (uninterpreted functions, inequality, equality etc.) to construct the final
propositional formula. We will give intuitive description of the different meth-
ods as required in the different parts of the paper. Details of the procedures are
outside the scope of this paper, and interested readers are referred to previous
work on this subject [5,6,24].

Now, for every Boolean subexpression E of Fclu , let Ẽ denote the corre-
sponding Boolean subexpression in the final propositional formula (if it exists).
The final formula is denoted as F̃clu

2. Let Σ be the set of symbols in the CLU
formula Fclu (can include Boolean, integer and function symbols) and Σ̃ be the
set of (Boolean) symbols in the final formula F̃clu , where the set of Boolean sym-
bols in Σ̃ include all the Boolean symbols in Σ. The different Boolean encoding
methods preserve the valuation of the Boolean symbols in the original formula:

Proposition 1. There exists an interpretation σ over Σ, such that 〈Fclu〉σ is
true, iff there exists an interpretation σ′ over Σ̃, such that 〈F̃clu〉σ′ is true and
for every Boolean symbol b in Fclu , 〈b〉σ ⇔ 〈b〉σ′ .

Now consider a CLU formula F over the symbols Σ ∪ A, where A contains
Boolean symbols only and Σ∩A = {}. The Boolean formula F̃ is a formula over
Σ̃∪A, where Σ̃ are the Boolean symbols in the final propositional formula other
than symbols in A. Using proposition 1, we can show the following:

Proposition 2. For any interpretation σA over the symbols in A, 〈∃Σ : F〉σA ⇔
〈∃Σ̃ : F̃〉σA .

Now let us get back to the problem of obtaining the initial set of abstract states
Ψ0
B and obtaining the expression for the successors, Ψ ′

B for the set of abstract

2 There can be a Boolean subexpression E1 in Fclu which may not have a corresponding
Boolean subexpression Ẽ1 in F̃clu . This can arise because of optimizations like (true∨
E1 −→ true).
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states in ΨB. The set of initial states for the abstract system is given by the
expression

Ψ0
B

.= ∃K :
∧

i∈{1,...,k}
bi ⇔ φi

[
q0/S

]
(1)

Similarly, given ΨB, one can obtain the set of successors using the following
equation:

Ψ ′
B

.= ∃S : ∃K : γ(ΨB) ∧
∧

i∈{1,...,k}
bi ⇔ φ′

i (2)

The correctness of the encodings follows from the following proposition:

Proposition 3. For any complete cube cB over B, cB ⇒ Ψ0
B iff the expression

γ(cB)
[
q0/S

]
is satisfiable. Similarly, for any complete cube cB over B, cB ⇒ Ψ ′

B
iff the expression γ(ΨB) ∧ cB [Φ′/B] is satisfiable.

Notice that in Equations 1 and 2, the only free variables are the set of Boolean
symbols B. Hence one can use Proposition 2 to reduce these second-order for-
mulas (there can be function symbols in S ∪ K) to an existentially quantified
Boolean formula. For example, the result of propositional encoding of the for-
mula in Equation 2 (with Σ

.= S ∪ K) yields the following structure3:

∃Σ̃ : C ∧ ˜γ(ΨB) ∧
∧

i∈{1,...,k}
bi ⇔ φ̃′

i (3)

where C denotes a set of propositional constraints over the symbols in Σ̃ to
enforce the semantics of different first-order theories (uninterpreted functions,
equality, inequality etc.).

This formulation is also applicable to predicate abstraction techniques which
derive the Weakest Boolean Precondition (WBP) [1] over the set of predicates Φ,
given the weakest precondition WP(δ, ΨS) of a CLU expression ΨS with respect to
the transition function δ. In this case, a cube cB is included in WBP if cB [Φ/B] ⇒
WP(δ, ΨS) is valid. The set of cubes which are not included in WBP is given as:

WBP .= ∃S : ∃K : ¬WP(δ, ΨS) ∧
∧

i∈{1,...,k}
bi ⇔ φi (4)

and WBP .= ¬WBP .
Similarly, one can obtain a symbolic expression for the abstract transition

relation as:

δ(B,B′) .= ∃S : ∃K :
∧

i∈{1,...,k}
bi ⇔ φi ∧

∧
i∈{1,...,k}

bi ′ ⇔ φ′
i (5)

3 The translation needs to ensure that ˜(¬φ′
i) is syntactically same as ¬(̃φ′

i). This
requirement is violated for certain optimizations that push ¬ to the leaves of the
formula [23]. Hence we have to disable such transformations in the Boolean transla-
tion.
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Example 1. Consider a concrete system with two integer state variables, x and
y. Thus S = {x, y}. The initial state q0 is given as q0

x = c0 and q0
y = c0 . The

transition function δ is given as δx
.= f (y) and δy

.= f (x ). The only parameters
which appear in this system are K = {c0 , f }. Consider the predicate φ1

.= x = y
over the system.

The initial abstract state is given as Ψ0
B

.= ∃c0 : b1 ⇔ (c0 = c0)
.= b1 .

For the first iteration, ΨB
.= Ψ0

B . Now γ(b1)
.= x = y and φ′

1
.= (f (y) = f (x )).

The set of successor states Ψ ′
B is denoted as

∃x : ∃y : ∃f : x = y ∧ b1 ⇔ (f (y) = f (x ))

We eliminate the function symbols in the formula by the method of Bryant
et al. [5]. f (y) is replaced by a fresh symbolic constant vf1. f (x ) is replaced by
the expression ITE(x = y, vf1, vf2) to preserve functional consistency. After
eliminating the ITE, the equation becomes

∃x : ∃y : ∃vf1 : ∃vf2 : x = y ∧ b1 ⇔ (x = y ∧ vf1 = vf1 ∨ ¬(x = y) ∧ vf1 = vf2)

For this example, we use the encoding of inequalities using separation predi-
cates (SEP) method [24]. Each inequality is encoded with a fresh Boolean variable
and transitivity constraints are imposed. We use the Boolean variables ex,y to
encode x = y and Boolean variable ef to encode vf1 = vf2 . In this case, no tran-
sitivity constraints are required. The quantified Boolean formula for Ψ ′

B becomes

Ψ ′
B

.= ∃ex,y, ef : ex,y ∧ b1 ⇔ (ex,y ∨ ¬ex,y ∧ ef)

The solution to this equation is simply b1. The set of successor states after
the first iteration, Ψ1

B
.= Ψ ′

B. The reachability analysis terminates since Ψ0
B ⇔ Ψ1

B
and the set of reachable abstract state is given as b1 .

We have thus reduced the problem of computing the set of initial abstract states
Ψ0
B and the set of successors Ψ ′

B to the problem of computing the set of solutions
to an existentially quantified Boolean formula. In the next few sections, we shall
exploit the structure of the formula to efficiently compute the set of solutions.
For the rest of the discussion, we assume that we want to solve the existentially
quantified Boolean formula ∃Σ̃ : F̃.

3.1 Using BDD-Based Approaches

We can obtain the set of solutions to the quantified Boolean formula ∃Σ̃ : F̃ by
constructing the BDD for F̃ and then existentially quantifying out the variables
in Σ̃ using BDD quantification operators. The resultant BDD is a symbolic
representation of the formula ∃Σ̃ : F̃.

The naive method of constructing the BDD for F̃ and then quantifying out
the symbols in Σ̃ is very inefficient, since the size of the intermediate BDD
representing F̃ could be very large. We show that we can exploit the syntactic
formula structure to leverage most the efficient quantification techniques (e.g.
early quantification [14]) from image computation in symbolic model checking.

Equation 3 resembles the equation for post-image computation in symbolic
model checking where C ∧ ˜γ(ΨB) represents the set of current states and the tran-
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sition relation for the state variable bi is given as φ̃′
i. We can treat all the symbols

in Σ̃ as present state variables. In fact, the next state for the variables in Σ̃ are
left unconstrained and can also be interpreted as inputs. We use NuSMV’s [8]
INIT expression to specify C ∧ ˜γ(ΨB) as the set of initial states and for each
state variable bi , specify the next-state transition as φ̃′

i. We then perform one
step of post image computation to obtain the set of successor states.

3.2 Using SAT-Based Approaches

The main difference between the image computation step in traditional model
checking and the quantified equation in Equation 3 is that the number of bound
variables (in Σ̃) often exceeds the number of variables in B. These variables
arise because of the boolean encoding of integers in the CLU formula. In many
cases, the number of variables in B is only 5% of the variables in Σ̃ (for instance
400 Boolean symbols in Σ̃ for just 3 predicates). In these cases, the cost of
constructing the BDD and quantifying the variables in Σ̃ is expensive. Instead
we can use SAT-based methods to compute the set of solutions to Equation 3.

SAT-based quantification engines [18,9] enumerate solutions over Σ̃ ∪ B for
the expression F̃. Since we are only interested in the interpretations of symbols
in B, the part of the assignment which corresponds to symbols in Σ̃ is projected
out. To prevent the SAT checker from computing the same assignment to the
symbols in B again, a blocking clause over the variables in B is added to the set
of conflict clauses to block this assignment. The most challenging part in the
entire procedure is to find a minimal blocking clause, which assigns values to
a minimal subset of literals over B. We have integrated one such tool, SATMC
developed by Daniel Kroening [9], as the SAT-based quantification engine. It
uses heuristics to efficiently add blocking clauses for the variables in B using
the data structures and algorithms of ZChaff [19]. We omit the details of the
procedure from this paper.

Although SAT-based quantification uses an enumeration technique, there
are several advantages over current approaches which use a decision procedure
repeatedly to obtain the set of cubes. First, we can take advantage of the learning
from the SAT solvers, since the same data structure is maintained throughout
the computation. Secondly, the ability to perform non-chronological backtracking
provides more flexibility to obtain better cubes than the approach in Das, Dill
and Park [12], where the order of variables involved in splitting the cubes is
fixed. Lastly, we can remove the overhead of invoking the decision procedure
repeatedly to obtain the set of solutions.

4 Universally Quantified Predicates

To verify systems with function or predicate state elements, we need the ability
to specify quantified predicates. The function and predicate state elements allow
us to model unbounded arrays of integers, truth values or enumerated types.
These unbounded arrays can be used to model memories, queues or network of
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identical processes. For example, if pc is a state element which maps an integer to
an enumerated set of states, then pc(i) denotes the state of the ith process in the
system. Properties for such parameterized systems are expressed as quantified
formulas. To state the property of mutual exclusion, one has to state ∀i , j : i �=
j ⇒ ¬(pc(i) = CS∧ pc(j ) = CS), where CS is the state of a process in the critical
section.

However, introducing universally quantified predicates (predicates of the form
∀i : φ(i), where φ(i) is a quantifier-free CLU expression and i is a vector of
integer variables) adds two dimensions to the problem:

1. For quantifier-free predicates, concretization of the reachable abstract state
space yields the strongest expression involving the predicates (Boolean com-
bination of the predicates) that approximates the concrete reachable states.
This expression serves as an invariant for the system. For parameterized
systems, we have found that the inductive invariant can often be expressed
as ∀i : P(i), where P is a quantifier-free CLU expression [17,21]. However,
given quantified predicates ∀i : φ1(i), . . . ,∀i : φk(i), a Boolean combination
of the predicates does not always yield the strongest expression of the form
∀i : P(i), where P(i) is a Boolean combination of φ1(i), . . . , φk(i). For exam-
ple, one cannot obtain the expression ∀i : φ1(i) ∨ φ2(i) using a combination
of the predicates ∀i : φ1(i) and ∀i : φ2(i).

2. Introducing universally quantified predicates requires us to check satisfia-
bility of first-order formulas with both universal and existential quantifiers,
which is an undecidable task. Hence we need sound quantifier instantiation
strategies to eliminate the universal quantifiers.

To address the first problem, the user provides the set of predicates Φ
.=

{φ1(i), . . . , φk(i)} with an implicit quantifier over i (similar to the work by
Flanagan and Qadeer [13]). As before, we associate a Boolean variable bi with
φi(i). If ΨB be an expression over the symbols in B, then Equation 2 can be
written as:

Ψ ′
B

.= ∃S : ∃K :
(
∀i : ΨB

[
Φ(i)/B

])
∧ ∃j :

∧
i∈{1,...,k}

bi ⇔ φ′
i(j ) (6)

Now we need to address the second problem. First, the existential quantifiers
over j are pulled outside. The universal quantifiers over i are instantiated using
sound instantiation techniques present in UCLID [17]. The resulting formula
has the same existentially quantified structure as that of Equation 2 and thus
can be solved using BDD or SAT-based quantification as before.

Finally, if Ψ∗
B is the set of reachable states over B, then the invariant of the

concrete system is ∀i : Ψ∗
B

[
Φ(i)/B

]
.

5 Results

We have built a prototype of the methods discussed into the tool UCLID [6].
To compare the effectiveness of the approach, we compare against an implemen-
tation of a recursive case-splitting based approach suggested by Das, Dill and
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Park [12]. The approach is based on checking satisfiability of individual cubes as
mentioned in Section 2. The Stanford Validity Checker4 (SVC) [2] is used as the
decision procedure for checking first order formulas. Various optimizations (such
as considering cubes in the increasing order of lengths) are performed to reduce
the number of calls to the decision procedure from the exponential worst case.

We have analyzed the different ways to encode the first order formula as a
Boolean formula. In the rest of the discussion, we use the function elimination
strategy by Bryant et al. [5]. Integers are encoded using two methods:

– FI : The domain of each integer is restricted to a finite but large enough set
of values that preserve satisfiability [6].

– SEP : Each separation predicate x 	
 y + c is encoded as a Boolean variable
and transitivity constraints are imposed [24].

NuSMV is used as the BDD-based model checker. We use dynamic variable or-
dering with the sifting heuristics and IWLS95 heuristics for quantifier scheduling.
SATMC is the SAT-based model checker and is used to solve the quantification
step. All the experiments were performed on a 2.2 GHz Pentium 4 machine with
900MB of memory.

Hardware Benchmarks We have used the predicate abstraction engine in the
context of verification of pipelined DLX processor, an unbounded out-of-order
processor (OOO), communication protocols and mutual exclusion protocols. Be-
low we describe some of them.

Predicate abstraction was used to approximate the reachable set of states
for the DLX pipelined processor. This is used to restrict the set of initial states
for the Burch and Dill commutative diagram approach [7]. Current processor
verification methods that employ Burch and Dill’s technique [5,16] requires the
user to manually provide invariants to restrict the most general state of the
system. The approximate state space was also used to verify the absence of
data-hazards and correctness of stalling logic for the processor.

Quantified predicates are used to derive candidate invariants for the deduc-
tive verification of an out-of-order processor with unbounded resources [17].
Various infinite-state protocols have also been chosen to demonstrate the ef-
fectiveness of the approach. We have chosen the two process Bakery algorithm
(Bakery-2) and a parameterized semaphore protocol [21]. We also chose a com-
munication protocol called the Bounded Retransmission Protocol (BRP) which
was described by Graf and Saidi [15] for demonstrating the use of predicate
abstraction.

Fig 2 illustrates the performance of the different approaches on a set of
benchmarks. For DLXb, the number of calls to SVC reported are even before
the first iteration for the explicit version completes.

4 We have experimented with other decision procedures (e.g. CVC [3],UCLID [6])
but have not found any significant improvement for this application.
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Example Preds Iter Explicit Method Symbolic Time (sec)
SATMC-based NuSMV-based

SVC Time # of Calls FI SEP FI SEP

Semaphore 8 5 37.0 513 16.3 9.7 5.1 2.6
DLXa 5 3 24.5 199 5.3 4.0 2.5 2.3
DLXb 23 5 > 1600 > 16800 > 1000 > 1000 > 1000 535.0

Bakery-2 10 4 59.0 383 9.1 7.1 2.9 2.7
BRP 22 9 561.2 5040 190.2 221.0 25.4 39.9
OOO 8 2 * * 33.0 - > 1000 > 1000

Fig. 2. Hardware example results. “Iter” is the number of iteration for abstract
reachability analysis, “SVC Time” is the time spent inside SVC decision procedure, ”#
of Calls” denote the number of calls to SVC, “FI” and “SEP” denote the Boolean En-
coding using finite-instantiation and separation predicates respectively. A “*” indicates
that SVC produces spurious answer due to rational interpretation. A “-” indicates an
unexpected core dump with separation predicate encoding.

Example # of Predicates Explicit SATMC
Calls Time SEP FI

# Prop-vars Time (sec) # Prop-vars Time (sec)
sl.0 12 955 129.5 64 3.8 60 2.6
sl.20 10 631 81.5 77 4.9 74 3.0
sl.56 11 821 110.2 65 5.4 54 2.6
sl.65 10 469 57.2 50 3.0 46 1.7
dr.10 19 >7576 >1000 162 9.2 115 9.9
dr.13 20 >7351 >1000 234 44.7 161 35.3
dr.14 20 >7189 >1000 232 103.5 157 25.6
dr.15 23 >7237 >1000 336 68.2 198 700.4
dr.16 13 2023 172.2 96 10.8 129 30.6
dr.17 15 3041 507 82 5.4 105 6.1
dr.18 18 >7099 >1000 153 130.6 180 49.7
dr.3 13 2023 355 100 9.0 125 7.0
dr.6 13 3355 596 96 8.1 129 7.8

Fig. 3. Results over SLAM formulas. “Calls” denotes the number of calls to the
decision procedure SVC, “Prop-vars” denotes the number of propositional variables in
the final propositional encoding. “SEP” denotes the method of encoding using sep-
aration predicates, and “FI” denotes the encoding using finite-instantiation. For the
explicit version, the process was stopped after 1000s spent in the decision procedure.

Software Benchmarks For software benchmarks, we generated several prob-
lem instances from the SLAM [1] toolkit for Microsoft Windows device-driver
verification. For each of these examples, the expression for the weakest precondi-
tion (WP) and the set of predicates are supplied. The tool computes the Weakest
Boolean Precondition (WPB) (as described in Section 3). We have run more than
100 such examples. In Fig 3, we report the results on some of the benchmarks
with greater than 10 predicates. The symbolic method also outperforms the ex-
plicit method on smaller set of predicates. On all these examples, the SATMC
based solver outperformed the NuSMV based method. SATMC solver took at
most a few seconds to solve most examples, whereas NuSMV took several min-
utes to solve the bigger examples. This is primarily due to the large number of
Boolean variables in the final encoding.
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5.1 Discussion

We have found that the BDD-based approach is more sensitive to the number
of variables in the final encoding rather than the number of predicates. This is
because the size of the intermediate BDD depends on the sum of the number of
quantified and unquantified variables. This makes it useful for applications where
the number of predicates are large, but the Boolean encoding has a smaller num-
ber of Boolean variables. This is evident in the example with Semaphore, DLXa,
DLXb, Bakery-2 etc. where the NuSMV method outperforms the SATMC-based
method. The SATMC based approach is more robust in the presence of large
number of bound variables. This is evident in the case of the software verification
benchmarks, where the number of Boolean variables is in excess of 100.

The large number of calls to the decision procedure for the DLXb example can
be explained as follows. For this model, the set of reachable states is extremely
dense and results in a dense abstract state space too. Therefore, the number of
cubes to enumerate is very large. This is one reason why even the SATMC based
approach takes a long time to solve the example.

For parameterized systems like the out-of-order processor or cache-coherence
protocols, we have found the SATMC based method to outperform the NuSMV-
based methods on most examples. This is because, even though the number of
predicates is small (typically 10–15), the instantiation of quantifiers produces
a lot of terms in the first-order formula, which translates to a large number of
Boolean variables (almost 500) in the final formula.
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