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for Analytical Compliance
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of Flexure Mechanisms
This paper presents a symbolic formulation for analytical compliance analysis and syn-
thesis of flexure mechanisms with serial, parallel, or hybrid topologies. Our approach is
based on the screw theory that characterizes flexure deformations with motion twists and
loadings with force wrenches. In this work, we first derive a symbolic formulation of the
compliance and stiffness matrices for commonly used flexure elements, flexure joints, and
simple chains. Elements of these matrices are all explicit functions of flexure parameters.
To analyze a general flexure mechanism, we subdivide it into multiple structural modules,
which we identify as serial, parallel, or hybrid chains. We then analyze each module with
the known flexure structures in the library. At last, we use a bottom-up approach to
obtain the compliance/stiffness matrix for the overall mechanism. This is done by taking
appropriate coordinate transformation of twists and wrenches in space. Four practical
examples are provided to demonstrate the approach. A numerical example is employed to
compare analytical compliance models against a finite element model. The results show
that the errors are sufficiently small (2%, compared with finite element (FE) model), if
the range of motion is limited to linear deformations. This work provides a systematical
approach for compliance analysis and synthesis of general flexure mechanisms. The
symbolic formulation enables subsequent design tasks, such as compliance synthesis or
sensitivity analysis. [DOI: 10.1115/1.4006441]

1 Introduction and Motivations

Flexure mechanisms [1] are formed by multiple (often identi-
cal) flexure pivots or simple chains that are designed to produce a
defined motion upon application of an appropriate loading. They
are widely used in various precision instruments and machines [2]
from nanomanipulators [3], nanopositioners [4], and optical scan-
ning mirrors [5] to scanning transmission X-ray microscopy [6].

One important step toward the control and design of flexure
mechanisms is the compliance analysis or mapping; the goal of
which is to determine the relationship between the deformation
and the loading applied to the device. Dimentberg [7] applied the
screw calculus [8] to study the statics and vibration of an elastic
suspension system. Loncaric [9] applied Lie algebra to the stiff-
ness and compliance analysis of robotic devices and showed that
the stiffness and compliance matrices can be reduced to a normal
form by a particular choice of the coordinate frame. Lipkin and
Patterson [10–12] studied the structure of compliance matrices via
eigenvalue decomposition. Selig and Ding [13,14] applied the
screw theory [15,16] to the compliance analysis of static beams.
In their work, a general loading is represented by a wrench, while
a general deformation is represented by a motion screw. They
derived the compliance matrix for a cantilever beam subject to an
end loading, and showed that the result was consistent with the
classical one by Mises [17].

Much work has been done to study the compliance analysis and
synthesis of flexure mechanisms. Awtar et al. [18] derived compli-
ance matrix for 2D beams for studying the characteristics of
various beam-based flexures. Dai and Ding [19] studied the com-
pliance analysis of a vibratory bowl feeder mechanism formed by
three leaf-spring flexures. Patil et al. [20] presented an analytical
approach based on the screw theory for analyzing parasitic errors

of flexure mechanism. Pei et al. [21] studied the stiffness and
compliance of cartwheel flexural hinges. Recently Awtar and Sen
[22,23] proposed a generalized constraint model for compliance
and stiffness analysis of 2D beam flexures. Her and Midha [24]
defined a compliance number (or degrees-of-compliance) concept
for type synthesis of compliant mechanisms. Later one, Midha
et al. [25] applied this technique for the type synthesis of compli-
ant constant-force mechanisms. Huang and Schimmels [26,27]
studied the synthesis of a compliance matrix with simple springs
connected in serial or in parallel. Kim et al. [28] proposed a build-
ing block approach for compliance synthesis for planar mecha-
nisms. This is further extended by Krishnan et al. [29,30], who
studied serial and parallel concatenation of building blocks.

On the other hand, FE analysis [31] based approaches are
widely used in the structural mechanics field for analyzing static
deformation of the structures. In these approaches, structures are
first divided into finite number of elements, and stiffness matrices
[32] are then constructed based on the connectivity of these ele-
ments. However, the resulted matrices typically have a very high
dimension depending on the number of elements. Petri [33]
applied linear beam theories to derive stiffness matrices of 3D
flexure mechanisms, which are then utilized for compliance syn-
thesis. All these methods are basically numerical. The intrinsic
characteristics of the compliance of flexure mechanisms are not
explicitly identified.

In this paper, we propose a screw theory based approach for
compliance analysis and synthesis of general 3D flexure mecha-
nisms. The connectivity of individual elements or building
blocks is systematically characterized by coordination transfor-
mation of screws (twists and wrenches). Rather in a numerical
form, the compliance and stiffness matrices are derived in a sym-
bolic form. The benefits of these symbolic formulas are that the
designers can easily recognize the geometric interpretation of
each element in a compliance or stiffness matrix. This also
greatly simplifies subsequent tasks, such as design synthesis or
sensitivity analysis. Compared with FE methods, this approach
is much more efficient.

1Corresponding author.

Contributed by the Mechanisms and Robotics Committee of ASME for publica-

tion in the JOURNAL OF MECHANICAL DESIGN. Manuscript received August 18, 2011;

final manuscript received March 6, 2012; published online April 24, 2012. Assoc.

Editor: Ashitava Ghosal.

Journal of Mechanical Design MAY 2012, Vol. 134 / 051009-1CopyrightVC 2012 by ASME



The rest of the paper is organized as follows: Section 2 presents
the definitions of compliance and stiffness as well as the problem
statement. Section 3 derives the compliance and stiffness matrices
for commonly used flexure elements. Section 4 studies compli-
ance and stiffness matrices for flexure joints and simple chains,
and in Sec. 5, we present basic steps for deriving the compliance
and stiffness matrices of general flexure mechanisms. Also in this
section, a compliant platform is employed to demonstrate the
compliance analysis and synthesis process. The compliance ma-
trix is verified by comparing with a finite element model. At last,
Sec. 6 presents conclusions.

2 Compliance and Stiffness of Flexures

A general flexure mechanism is formed by connecting a
functional stage to the base through one or more flexure ele-
ments, Fig. 1. The coordinate frame oxyz is placed at the stage,
as we are interested in the motion of the stage. Let us denote the
deformation by a general twist T̂ ¼ ðhx; hy; hz; dx; dy; dzÞ with
coordinates written in the frame oxyz, and the loading on the
stage is denoted by a wrench Ŵ ¼ ðFx;Fy;Fz;Mx;My;MzÞ. Both
are column vectors. Our goal is to determine the mapping from
Ŵ to T̂ in terms of geometric and material parameters of the
mechanism. In this paper, we assume that the deformation is suf-
ficiently small so that the principle of linear elastic theory
applies.

According to the elastic theory, the deformation twist and the
loading wrench are related by

T̂ ¼ ½C�Ŵ; Ŵ ¼ ½K�T̂; ½C� ¼ ½K��1
(1)

where [C] and [K] are called 6� 6 compliance and stiffness matri-
ces, respectively.

2.1 Coordinate Transformation of Stiffness and Compli-
ance Matrix. Let T̂ and Ŵ be the twist and wrench represented
in the coordinate frame F . Very often, we have to describe a
twist or a wrench in another coordinate frame F 0. To do so, we
have to apply a coordinate transformation to twists, wrenches,
or compliance/stiffness matrices. Suppose the coordinate transfor-
mation is represented by a 4� 4 homogeneous matrix [R,d] with
[R] being the 3� 3 rotation matrix and vector d being the transla-
tional part. The coordinates of a twist and a wrench in F 0 are
calculated as

T̂0 ¼ ½Ad�T̂; Ŵ0 ¼ ½Ad�Ŵ (2)

where [Ad] is the so-called 6� 6 adjoint transformation matrix

½Ad� ¼ R 0

DR R

� �

(3)

Here, [D] is the skew-symmetric matrix defined by the transla-
tional vector d. The inverse of the adjoint transformation matrix is

½Ad��1 ¼ RT 0

�RTD RT

� �

(4)

where the superscript “T” represents the matrix transpose. These
can be found in a number of graduate texts including Refs. [34]
and [35].

The compliance matrix [C0] in the new coordinate system F 0

can be obtained as follows:

T̂0 ¼ ½Ad�T̂ ¼ ½Ad�ð½C�ŴÞ ¼ ½Ad�½C�½Ad��1
Ŵ0 (5)

Similarly, we can obtain the new stiffness matrix [K0] in F 0.
They are summarized below

½C0� ¼ ½Ad�½C�½Ad��1; ½K0� ¼ ½Ad�½K�½Ad��1
(6)

2.2 Compliance Analysis and Synthesis. Let cij(p) and
kij(p) be the row i and column j elements of [C] and [K], respec-
tively. Obviously, they are functions of the design parameters p
that includes material properties, such as Young’ modulus, geo-
metric parameters of flexure elements, and the parameters related
to assembly of flexure elements. Elements cij and kij represent the
quantitative compliance or stiffness of the stage in the direction
indicted by the index i caused by the loading indicated by the
index j. For instance, c23 represents how much the stage rotates
about the y axis due to a force along z axis, i.e., c23¼ hy/Fz.

In this paper, we study two problems: compliance analysis and
compliance synthesis. The goal of the former is to derive [C] with
the mechanism parameters p given, and the goal of the latter is to
find parameters p to achieve a desired compliance of the stage in
the direction of interest. For instance, we would like to synthesize
the stiffness of a linear spring formed by two parallel flexures.
Assume the spring deforms in the x direction. We would chose the
appropriate values for the design parameters p to achieve a pre-
scribed value for compliance element c41¼ dx/Fx.

3 Commonly Used Flexure Elements

In this section, we seek to build a library of the compliance and
stiffness matrices for various commonly used flexures.

3.1 Blade Flexures. Let us start with the most commonly
used flexure element, a blade or sheet flexure. Figure 2 shows a
blade flexure of length l, thickness t, and width w with t � l and
t � w. The compliance matrix of a blade flexure with a uniform

Fig. 1 A flexure mechanism is deformed by T̂ under a general
loading Ŵ

Fig. 2 A typical blade flexure with a rectangular cross section.
The thickness is much smaller than the length, i.e., t � l .
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cross section can be obtained by following the classical beam
theory, such as Bernoulli–Euler beams. More specifically, the
compliance matrix about the flexure center can be written as

½Cc
b� ¼

0 0 0
l

GJ
0 0

0 0 0 0
l

EIy
0

0 0 0 0 0
l

EIz
l

EA
0 0 0 0 0

0
l3

12EIz
0 0 0 0

0 0
l3

12EIy
0 0 0

2

6

6

6

6

6

6

6

6

6

6

6
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7

7

7

7

7

7

7

7

7

5

(7)

where A¼ tw is the area of the cross section, Iy¼ tw3/12, Iz¼ t3w/
12 are the area moments, E,G are the Young’s and shear modulus,
and J is the torsion constant.

Note that in this paper, a wrench Ŵ is defined with the force
vector preceding the moment vector, which is opposite to that
found in Ref. [13]. If we swap the top three rows with the bottom
three rows of ½Cc

b�, we obtain a diagonal matrix previously
obtained by Selig [13].

Very often, it is more convenient to derive the compliance ma-
trix at the free end of the flexure. This can be easily done by
applying a pure translation along x direction for� l/2 to ½Cc

b�. The
corresponding adjoint transformation matrix is written as

½Ad� ¼ I 0

D I

� �

; ½D� ¼

0 0 0

0 0
l

2

0 � l

2
0

2

6

6

4

3

7

7

5

(8)

Substituting Eqs. (7) and (8) into Eq. (6) yields the compliance
matrix written in the coordinate system at the end of the blade

½Cb� ¼ ½Ad�½Cc
b�½Ad�

�1 ¼

0 0 0
l

GJ
0 0

0 0 � l2

2EIy
0

l

EIy
0

0
l2

2EIz
0 0 0

l

EIz
l
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0
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0 0 0
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0
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5

(9)

It can be seen that [Cb] is determined by five independent design
parameters p¼ (E,G,t,w,l).

For convenience, we normalize Eq. (9) to obtain

½Cb� ¼
l

EIz

0 0 0
1

vb
0 0

0 0 � lj

2
0 j 0

0
l

2
0 0 0 1

l2g

12
0 0 0 0 0

0
l2

3
0 0 0

l

2

0 0
l2j

3
0 � lj

2
0
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(10)

where

j ¼ Iz

Iy
¼ t2

w2
; b ¼ J

Iz
; g ¼ t2

l2
; v ¼ G

E
¼ 1

2ð1þ vÞ (11)

are the nondimensional constants determined by geometries and
material properties. v is the Poisson’s ratio. And b is the ratio of
torsion constant over moment of inertia [36]. For a rectangular
cross section, b is defined by

b ¼ 12
1

3
� 0:21

t

w
1� 1

12

t

w

� �4
� �� �

(12)

which is plotted in Fig. 3. One can see that when t/w is sufficiently
small, b � 4.

For a blade flexure, i.e., j � 1 and g � 1, the compliance ma-
trix [Cb] depends on five new design parameters pb¼ (l/
EIz,v,j,g,l). It is not hard to see that the elements in the columns
1, 3, and 5 of [Cb] are relatively small and can be neglected for
the qualitative study. Furthermore, the location of the instant cen-
ter can be readily obtained from columns 2, 4, and 6. See Su [37]
for detailed qualitative study.

The stiffness matrix is the inverse of the compliance matrix cal-
culated as

½Kb� ¼ ½Cb��1 ¼ EIz

l

0 0 0
12

l2g
0 0

0 0 � 6

l
0
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l2
0

0
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(13)

3.2 Wire Flexures or Slender Rods. When both width and
thickness are much smaller than the length, i.e., t � l and w � l,
the sheet flexure becomes a wire flexure. The compliance and
stiffness matrices of a wire flexure have the same form as that of
the blade flexures except that j is not sufficiently small as the
width w is comparable with the thickness t. If the cross section of
a wire flexure is a circle of diameter d � l (Fig. 4), the compli-
ance matrix (10) can be simplified by substituting A¼pd2/4,
Iy¼ Iz¼ pd4/64, J¼ 2Iz, written as

Fig. 3 The ratio b versus t/w
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½Cw� ¼
l

EIz

0 0 0
1

2v
0 0

0 0 � l

2
0 1 0
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2
0 0 0 1
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(14)

where g¼ d2/l2. It is not hard to see that the only nonzero element
in first column c41¼ l2g/16 is sufficiently small and can be
neglected. This leads that all elements in the first column are ze-
ros. This further implies that the functional body does not deform
under an axial loading. Physically, this agrees with our intuition
that a wire flexure is very stiff along its longitudinal direction and
very compliant in other directions [38].

And the stiffness matrix of a wire flexure is calculated as

½Kw� ¼ ½Cw��1 ¼ EIz

l

0 0 0
16

l2g
0 0

0 0 � 6

l
0

12

l2
0

0
6

l
0 0 0

12

l2
2v 0 0 0 0 0

0 4 0 0 0
6

l

0 0 4 0 � 6

l
0
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7

7

7

5

(15)

Clearly, the compliance or stiffness of a wire flexure with a cir-
cular cross section is determined by only four design parameters
pw¼ (l/EIz,v,g,l).

3.3 Building a Library of Compliance Matrices. It is possi-
ble to repeat the above procedure for other kinds of flexure ele-
ments. Fortunately, there is an abundant work in the literature for
calculating compliance of flexures with various geometries. For
blade or wire flexures with a more complex cross section, we rec-
ommend using [Cb] in Eq. (10). An alternative way is to find an
equivalent circular cross section with the same area of moment
inertia and area. For right circular notches, we can treat them as
the short beam flexures. However, when a more accurate model is
required, one can use the results in Ref. [39]. A more comprehen-
sive receipt for single-axis and multiple-axis flexure hinges has
been done by Lobontiu [40]. Recently Yong et al. [41] reviewed
circular notch type flexure hinges. For helical springs, we would
recommend using the compliance formulation derived by Ding
and Selig [42]. Eventually, we can build a library of compliance
matrices for commonly used flexure elements that can be used to
construct flexure mechanisms with arbitrary topologies.

4 Simple Flexure Chains

In this section, we study simple chains that are formed by two
or more flexure elements. Depending on how the flexure elements
are connected, we can have serial flexure chains or parallel flexure
chains [25].

4.1 Serial Flexure Chains. A serial flexure mechanism is
formed by connecting a functional body to a fixed reference body,
through a serial chain of flexure elements that are joined with in-
termediate bodies. Let us denote the compliance matrix of the jth
flexure element by [Cj]. The deformation of the functional body is
the superimposition of the deformation of individual elements.
However, all deformations must be written in the same coordinate
frame before they can be summed. Mathematically, the overall
compliance matrix of a serial flexure chain is calculated as

½C� ¼
X

m

j¼1

½Adj�½Cj�½Adj��1
(16)

where [Adj] is the coordinate transformation matrix from the jth
flexure to the functional stage.

Example 1. Figure 5 shows a serial chain of two identical wire
flexures that are separated by a rigid rod of length L along x axis.
Assume both wires have a circular cross section of diameter d. If
we place the coordinate system xyz coincides with the end of the
second wire x2y2z2, the coordinate transformations for these two
wire flexures can be written as

½R1� ¼ ½R2� ¼ ½I�; d1 ¼ ð�L; 0; 0Þ; d2 ¼ ð0; 0; 0Þ

By following the formulation for serial chains, we obtain the
compliance matrix for the serial chain as

½Cww� ¼ ½Ad1�½Cw�½Ad1��1 þ ½Ad2�½Cw�½Ad2��1 ¼

l

EIz

0 0 0
1

v
0 0

0 0 �L� l 0 2 0

0 Lþ l 0 0 0 2

l2g

8
0 0 0 0 0

0 L2 þ lLþ 2l2

3
0 0 0 Lþ l

0 0 L2 þ lLþ 2l2
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0 �L� l 0
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7

7

7

7

7

5

(17)

� l

EIz

0 0 0
1

v
0 0

0 0 �L 0 2 0

0 L 0 0 0 2
l2g

8
0 0 0 0 0

0 L2 0 0 0 L

0 0 L2 0 �L 0

2

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

5

(18)

where the approximation step is based on the fact that l � L. If
we would like to consider the second order of parasitic error, we

Fig. 5 A serial chain of two identical wires joined by a rigid rod
of length L. Each wire has a length l and a diameter d.

Fig. 4 A long wire flexure of diameter d and length l with d � l
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would use Eq. (17) for the following analysis. However, in this
paper, we use Eq. (18) instead for the sake of simplicity. By tak-
ing a look at the second and the third column of [Cww] in Eq. (18),
one can easily check that the instant rotation center for both Fy

and Fz is actually the center of the first wire flexure. This agrees
with our intuition.

To complete the analysis, we calculate the stiffness matrix of a
serial chain of two wire flexures by inverting [Cww]

½Kww� ¼ ½Cww��1 ¼ EIz

l

0 0 0
8

l2g
0 0

0 0 � 1

L
0

2

L2
0

0
1

L
0 0 0

2

L2

v 0 0 0 0 0

0 1 0 0 0
1

L

0 0 1 0 � 1

L
0
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7

7

7

7

7

7

7

5

(19)

4.2 Parallel Flexure Chains. A parallel flexure mechanism
is formed by connecting a functional body to a reference body
through two or more flexure elements in parallel. Let us denote
the stiffness matrix of the jth flexure element by [Kj]. For the
same deformation of the stage, the force required will be the sum
of the forces required for each element. As in serial flexure chains,
all loads must be written in the same coordinate frame. Mathe-
matically, the overall stiffness matrix of a parallel flexure chain is
calculated as

½K� ¼
X

m

j¼1

½Adj�½Kj�½Adj��1
(20)

where [Adj] is the coordinate transformation operator from the jth
flexure to the functional stage.

Example 2. Figure 6 shows a trapezoidal leaf-type flexure pivot
that is formed by two identical blade flexures assembled symmet-
rically by an angle w at a distance d. We denote the length of the
blade by l, width by w, and thickness by t. The coordinate trans-
formations for blades 1 and 2 are, respectively

½R1� ¼ Z
p� w

2

� �� �

; d1 ¼
d

2
; 0; 0

� �

½R2� ¼ Z
pþ w

2

� �� �

; d2 ¼ � d

2
; 0; 0

� �

Substituting the above transformation matrices and [Kb] from
Eq. (13) into Eq. (20) to obtain the following stiffness matrix:

½Kt� ¼ ½Ad1�½Kb�½Ad1��1 þ ½Ad2�½Kb�½Ad2��1
(21)

And the compliance matrix is computed as

½Ct� ¼ ½Kt��1 ¼ l

EIz

0 0 c13 c14 0 0

0 0 0 0 c25 0

c31 0 0 0 0 c36
c41 0 0 0 0 c46
0 c52 0 0 0 0

0 0 c63 c64 0 0

2
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6

6

6

6

6

4

3

7

7

7

7

7

7

5

(22)

where cij are the nonzero compliance elements. See similar results
in Refs. [43] and [44].

Let us take a look at the compliance of this flexure pivot subject
to a moment loading Mz. That is, to consider the following two
elements:

c36 ¼
1

2

1þ gþ ðg� 1Þ cosw

6q2 þ gþ 4þ ðg� 4Þ cosw� 12q sin
w

2

2

6

4

3

7

5
(23)

c46 ¼
l cos

w

2
�2

gþ qð1� gÞ sinw
2

6q2 þ gþ 4þ ðg� 4Þ cosw� 12q sin
w

2

2

6

4

3

7

5
(24)

where q¼ d/l and g¼ t2/l2. The element c36 represents the defor-
mation hz due to the loading Mz, and c46 is the parasitic transla-
tional deformation dx.

To determine the position of the instant rotation center on the y
axis, we compute

c46

c36
¼ �l cos

w

2

gþ qð1� gÞ sinw
2

1þ gþ ðg� 1Þ cosw

2

6

4

3

7

5
(25)

It is intuitive to see that the nominal instant center is at the point

r ¼ ð0;�d cot w
2

� �

=2; 0Þ on the y axis, which is the intersection

point of two flexures. (Fig. 6) The parasitic error of the instant
center is calculated as

Dry ¼
c46

c36
þ
d cot

w

2

� �

2
¼

lg cot
w

2
q� sin

w

2

� �

1þ gþ ðg� 1Þ cosw (26)

The relative error Dry/l is plotted in Fig. 7.
Figure 7 and Eq. (26) can be used in the synthesis of flexure

joints. From Eq. (26), we can see that Dry¼ 0 if q¼ sin(w/2)
which corresponds the case shown in Fig. 8(a). Designers can
determine the geometric parameters g,q,w to minimize the error
of instant center while meeting other design requirements.

Example 3. As a special case, when w¼ 0, we obtain the well
known parallelogram linear spring as shown in Fig. 8(b). The rota-
tional compliance of the parallelogram linear spring is obtained
by substituting w¼ 0 into Eq. (23)

c036 ¼
1

2

g

3q2 þ g

� �

(27)

To study the change of the compliance c36, we plot the follow-
ing ratio c36

0=c36 versus w with g¼ 0.01 and q [ [0.5,4] (Fig. 9).

Fig. 6 A parallel flexure mechanism formed by two parallel
ideal blade flexures
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We can see a drastic drop of this ratio as w approaches to p/2. In
other words, the rotational stiffness of parallelogram is signifi-
cantly larger than that of cross-strip flexure pivot when w �p/2.

Now, let us study the translational compliance along x axis and
the parasitic error under a horizontal force. We consider the fol-
lowing two compliance elements:

hz

Fx

¼ c031
l

EIz
¼ � l2

4EIz

g

3q2 þ g

� �

(28)

dx

Fx

¼ c041
l

EIz
¼ l3

24EIz

3q2 þ 4g

3q2 þ g

� �

(29)

When g is sufficiently small, we have

dx

Fx

� l3

24EIz

which is 1/24 of the compliance of one blade flexure shown in Eq.
(10). Obviously, dx/Fx gives the parasitic rotation caused by a lat-
eral force Fx. As indicated in Eq. (28), when g is sufficiently
small, this error is linearly proportional to g. The equivalent
instant line of this parasitic rotation is a line parallel to z axis
through a point on the y axis that is determined by the ratio of dx/
Fx over hz/Fx. That is, dividing Eq. (29) by Eq. (28) yields

� ry ¼
lq2

2g
þ 2l

3
(30)

Equation (30) clearly shows that the separation distance d¼ql
significantly shifts the instant center from 2l/3 (one blade flexure)
to a point far down the y axis as g � q. As a result, this flexure is
considered equivalent to a linear spring.

5 General Flexure Mechanisms

Most practical flexure mechanisms are hybrid. Our compliance
analysis and synthesis framework for general flexure mechanisms
are based on the library of flexure elements built in Sec. 3 and the
formulation for serial and parallel chains derived in Sec. 4.

The compliance analysis/synthesis for hybrid flexure mecha-
nisms is described as follows. First, we subdivide the mechanism
hierarchically into modules: serial/parallel chains until we reach
the level of basic flexure elements previously studied in the
library. Then, we apply the formulation derived in Sec. 4 to obtain
the compliance and stiffness matrices for each of these modules,
chains, and elements at their local coordinate system. We can use a
bottom-up approach to build the compliance matrix for the entire
flexure mechanism. In all steps, we try to keep all major geometric
parameters in symbolic form whenever possible. This is possible
with the help of modern computer algebraic software, such as MATH-

EMATICA or MAPLE. Ultimately, we aim to obtain a symbolic compli-
ance matrix of the functional stage written in the task space.

For compliance analysis, we then substitute the numerical val-
ues for the geometric parameters into the compliance matrix. For
compliance synthesis, we consider individual compliance ele-
ments, and chose a set of design parameters to achieve a desired
compliance. In what follows, we use a spatial parallel compliant
platform (Fig. 10) to demonstrate the process.

5.1 Derivation of the Compliance Matrix. The flexure
mechanism is formed by three identical compliant limbs
assembled symmetrically in parallel. To study the overall compli-
ance of the platform, we use the following steps:

(1) Subdivide the compliant platform mechanism into three
identical limbs. Each limb is a serial chain of two identical
wire flexures notch hinges. The wire flexures have a length
l and a circular cross section of diameter d.

(2) Derive the compliance matrix for each limb. This has al-
ready been done in Example 1 of Sec. 4.1. The compliance
and stiffness matrices written in their local coordinate
frame are given by [Cww] in Eq. (18) and [Kww] in Eq. (19),
respectively.

(3) Derive the transformation matrix from the local coordinate
system at each limb to the task space (coordinate frame on
the stage). For limb 1, the coordinate transformation is
obtained by the geometry shown in Fig. 10, written as

R1 ¼ Z aþ p

2

� �h i

¼
� sina � cosa 0

cosa � sina 0

0 0 1

2

6

4

3

7

5
; d1 ¼

r

�h

0

2

6

4

3

7

5

(31)

Fig. 8 (a) A typical cross-strip flexure pivot and (b) a parallelo-
gram linear spring

Fig. 9 The change of rational compliance versus w [ [0,3p/4]
with g5 0.01 and q [ [0.5,4]

Fig. 7 The error of instant center Dry/l versus w [ [0,3p/4] with
g5 0.01 and q [ [0.25,3.75]
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And the transformations for limbs 2 and 3, [R2], d2, [R3],
d3, are obtained by rotating the coordinate o1x1y1z1 about y
axis for 2p/3 and� 2p/3, respectively. More specifically,
they are written as

R2 ¼

sina

2

cosa

2

ffiffiffi

3
p

2
cosa � sina 0

1

2

ffiffiffi

3
p

sina
1

2

ffiffiffi

3
p

cosa �1

2

2

6

6

6

6

4

3

7

7

7

7

5

; d2 ¼

� r

2
�h

�
ffiffiffi

3
p

r

2

2

6

6

6

4

3

7

7

7

5

R3 ¼

sina

2

cosa

2
�

ffiffiffi

3
p

2
cosa � sina 0

�1

2

ffiffiffi

3
p

sina �1

2

ffiffiffi

3
p

cosa �1

2

2

6

6

6

6

4

3

7

7

7

7

5

; d3 ¼

� r

2
�h
ffiffiffi

3
p

r

2

2

6

6

6

4

3

7

7

7

5

(4) Compute the adjoint transformation matrices for three
limbs by substituting Ri,di(i¼ 1,2,3) into Eq. (3), i.e.

½Adj� ¼
Rj 0

DjRj Rj

� �

ðj ¼ 1; 2; 3Þ (32)

(5) Substitute [Kww] from Eq. (19) and [Adj] from Eq. (32) into
Eq. (20) to obtain the stiffness matrix of the platform

½K3ww� ¼
X

3

j¼1

½Adj�½Kww�½Adj��1
(33)

(6) Compute the compliance matrix of the platform by invert-
ing the stiffness matrix [K3ww]

½C3ww� ¼ ½K3ww��1 ¼ l

EIz

0 0 c13 c14 0 0

0 0 0 0 c25 0

c31 0 0 0 0 c36
c41 0 0 0 0 c46
0 0 0 0 0 0

0 0 c63 c64 0 0

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

(34)

where

c14 ¼ c36 ¼
16sin2a

jDj (35)

c31 ¼ �c13 ¼ c46 ¼ �c64 ¼ c14cy (36)

c63 ¼ c41 ¼ c14c
2
y (37)

c25 ¼
8

v 3sin2a� 2
	 


vcos2aþ ðsin aþ nÞ2 þ n2
þ 2� sin2a

 !

jDj (38)

and

n ¼ r=L; cy ¼ r cot a� h (39)

jDj ¼ 24vsin4aþ 12ðcosð2aÞ þ 3Þ ðsin aþ nÞ2 þ n2
� �

(40)

Here, cy is the nominal rotation center which is the intersection
point of the limbs as shown in Fig. 10.

The compliance of the flexure platform mechanism is deter-
mined by six parameters p3ww¼ (l/EIz,v,n,a,r,h).

5.2 Compliance Analysis and Synthesis. With regard to the
analysis and synthesis of compliance, we can draw the following
conclusions by observing compliance elements of [C3ww].

(1) All compliance elements are proportional to l/EIz and 1/jDj.
This is the overall compliance of the platform in all direc-
tions. l/EIz is the rotational compliance of a wire flexure.
And the plot 1/jDj versus angle a, a [ [15 deg,75 deg] with
Poisson’s ratio v¼ 0.3 and n¼ r/L [ [0,2] is shown in
Fig. 11. To achieve a desired compliance, obviously one
can chose appropriate values for width l, diameter d of the
cross section as well as values of a,v,n.

(2) Notice the second column and the fifth row are zero. This
means that there is no translational compliance on the y
axis. This is due to the simplification step (18). If we are
interested in this parasitic error, we would have to use Eq.
(17) instead. This is consistent with our intuition and our
qualitative study [37].

(3) The instant rotation center for forces Fx and Fz can be
obtained by computing

c41

c31
¼ � c63

c13
¼ cy (41)

This shows that when a lateral force Fx is applied, the
motion of the stage is instantaneously equivalent to a rota-
tion about the line through the instant rotation center paral-
lel to z axis. Similarly, a force Fz will cause a rotation about
the line through the center and parallel to x axis. Once
again, this is consistent with our qualitative study.

Fig. 11 The rotational compliance c25 versus a [ [15 deg,75
deg] with Poisson’s ratio m5 0.3 and n5 r/L [ [0,2]

Fig. 10 A flexure platform mechanism with three identical
chains of two wire flexures
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(4) The translational compliance along x and z axes is the same
due to the symmetry of the platform, calculated as

dx

Fx

¼ dz

Fz

¼ l

EIz
c41 ¼

l

EIz

16 sin a2c2y

jDj (42)

Obviously, one way to increase these two compliances is to
increase the value of cy which is determined by r,a,h as
shown in Eq. (39).

(5) The rotational compliance along x and z axes is also the
same, calculated as

hx

Mx

¼ hz

Mz

¼ l

EIz
c14 ¼

l

EIz

16sin2a

jDj (43)

Obviously, the larger the angle a, the larger of these two
compliances are. When a¼ 0, we have a platform with
three parallel limbs along the vertical line. One can easily
see that this is consistent with our intuition that the rota-
tional compliance about x and z axes will be zero for this
case.

(6) The rotational compliance about y axis is the most compli-
cated one. Let us plot the compliance element c25 versus a
and n in Fig. 12. In general, this compliance drops as the as-
sembly angle a and n increases.

(7) When a¼ 0, we obtain a parallel platform with three verti-
cal limbs. The compliance coefficient c25 becomes

c25 ¼
1

3ðvþ 2n2Þ

which is plotted in Fig. 13. As we can see, the compliance
decreases drastically as n¼ r/L increases.

5.3 Numerical Example. In this section, we use a numerical
example to compare three compliance models: analytical model,
simplified analytical model, and the finite element model. The
dimensions of the flexure platform are l ¼ 20mm;L ¼ 264mm;
d ¼ 1:3mm; r ¼ 70=

ffiffiffi

3
p

; h ¼ 15mm; a ¼ 11:13 deg; E ¼ 210
GPa; v ¼ 0:3

The analytical model is based on the wire flexure equation (17)
without the assumption l � L. The simplified analytical model is
based on the simplified wire flexure equation (18) which assumes
l � L. And in the finite element model, we modeled the platform
as a monolithic part which is meshed into 766,486 3D tetrahedral
elements in ABAQUS. The base of the flexure mechanism is fixed.
The load is applied to the center of the top piece and is limited
within the range of linear deformation.

The results are tabulated in Table 1, where the unit for force
component is Newton, and the units for translational and rota-
tional displacements are millimeter and degrees, respectively. We
can draw the following conclusions.

(1) The horizontal compliance dx/Fx¼ dz/Fz¼ 2.07� 10þ 0 is
significantly larger than the vertical compliance
dy/Fy¼ 4.97� 10�5. This all well agrees with our intuition
and as well as the qualitative study by Su [37].

(2) The rotational compliance about the vertical axis hy/My is
about 7.5 times larger than hx/Mx and hz/Mz. By observing
the plot in Fig. 12, it is not hard to see that we can
increase the relative rotational compliance about y axis
over the compliance about x and z axes by decreasing
the assembly angle a and/or increasing the ratio n. How-
ever, this goal is not achievable by changing l/EIz, the
compliance of the wire flexures, as shown in Sec. 5.2 of
conclusion 1.

(3) The results of the analytical model are very close to the FE
model for three major compliances dx/Fx, dz/Fz, and hy/My.
The maximum error is less than 2%.

(4) The errors of the simplified analytical model are less than
7% compared with the FE model. This is due to the fact
that we omitted l in Eq. (17) since we assume l � L.

6 Conclusion

A symbolic formulation for characterizing the compliance of
general flexure mechanisms is presented. We categorize flexure
mechanisms into serial chains, parallel chains, or hybrid struc-
tures. We first derive the symbolic formulation of the compliance

Fig. 13 The rotational compliance c25 versus n5 r/L [ [0,2] with
Poisson’s ratio m5 0.3 and a50

Fig. 12 The rotational compliance c25 versus a [ [15 deg,75
deg] with Poisson’s ratio m5 0.3 and n5 r/L [ [0,2]

Table 1 Comparison of three compliance models

Compliance
element

Analytical
(original)

Analytical
(simplified) FE

dx/Fx
a 2.07� 100 2.17� 10þ 0 2.03� 10þ 0

hz/Fx 6.22� 10� 1 6.53� 10� 1 6.11� 10� 1

dy/Fy 4.97� 10� 5 4.97� 10� 5 6.82� 10� 5

hy/Fy 0.00� 10þ 0 0.00� 10þ 0 � 1.16� 10� 5

dz/Fz
a 2.07� 10þ 0 2.17� 10þ 0 2.03� 10þ 0

hx/Fz � 6.22� 10� 1 � 6.53� 10� 1 � 6.11� 10� 1

dz/Mx � 1.09� 10� 2 � 1.14� 10� 2 � 1.07� 10� 2

hx/Mx 3.27� 10� 3 3.44� 10� 3 3.21� 10� 3

dy/My 0.00� 10þ 0 0.00� 10þ 0 � 2.04� 10� 7

hy/My
a 2.49� 10� 2 2.53� 10� 2 2.41� 10� 2

dx/Mz 1.09� 10� 2 1.14� 10� 2 1.07� 10� 2

hz/Mz 3.27� 10� 3 3.44� 10� 3 3.21� 10� 3

aMajor compliance elements. Elements not listed are zeros. Units: Fx,y,z

(N), Mx,y,z (N mm), dx,y,z (mm), and hx,y,z (deg).
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and stiffness matrices for a list of commonly used flexure
elements. Based on these formulations, we derived the compliance
matrices for more complicated flexure joints and simple chains.
We aim to build a comprehensive library of compliance matrices
for commonly used flexure structures. To analyze the compliance
of a general flexure mechanism, we first divide the mechanism
into building blocks or modules, analyze each module locally, and
then build the compliance matrix from bottom-up. These symbolic
formulas are beneficial to designers in that their geometric inter-
pretation is more intuitive, they are computationally more efficient
and greatly simplify more demanding tasks, such as design syn-
thesis/optimization and sensitivity analysis. This design frame-
work will be a systematical and robust tool for the analysis and
design of general 3D flexure mechanisms.
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Nomenclature
E ¼ Young’s modulus
G ¼ shear modulus
v ¼ G/E, ratio of shear modulus and Young’s modulus
� ¼ Poisson’s ratio
P ¼ geometric parameters of flexures
A ¼ area of a cross section
Iy ¼ area moment of inertia about y axis
Iz ¼ area moment of inertia about z axis
J ¼ polar moment of inertia
b ¼ J/Iz
T̂ ¼ instantaneous motion twist representing deformation
Ŵ ¼ a wrench representing the loading exerted

[Ad] ¼ a 6� 6 adjoint transformation matrix
[R] ¼ a 3� 3 rotational matrix
[C] ¼ a 6� 6 compliance matrix
[K] ¼ a 6� 6 stiffness matrix

Fx,y,z ¼ external force applied along x,y, or z axis
Mx,y,z ¼ external moment applied about x,y, or z axis
dx,y,z ¼ translational deformation along x,y, or z axis
hx,y,z ¼ rotational deformation about about x,y, or z axis
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