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Abstract: In this paper, we introduce bimodal extensions, one symmetric and one asymmetric, of
the logistic distribution. We define this new density and study some basic properties. We draw
inferences from the moment estimator and maximum likelihood approaches. We present a simulation
study to assess the behaviour of the moment and maximum likelihood estimators. We also study the
singularity of the Fisher information matrix for particular cases. We offer applications in real data
and compare them with a mixture of logistics distributions.
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1. Introduction

Data sets with bimodal behaviour appear in many disciplines, for example mining
(see Bolfarine et al. [1]), medicine (see Ely et al. [2]; Elal-Olivero et al. [3]), meteorology (see
Zhang et al. [4]), etc. The mixture of normal distributions is usually used to model bimodal
data, but these models present some identifiability problems as discussed in McLachan and
Peel [5] and Marin et al. [6].

Various recent works show bimodal distributions based on skew-symmetric distribu-
tions, for example Arnold and Beaver [7], Azzalini and Capitanio [8], Ma and Genton [9],
Arellano-Valle et al. [10], Kim [11], Elal-Olivero et al. [3], Gómez et al. [12], Bolfarine et al. [1]
and Venegas et al. [13]. These bimodal distributions offer a good alternative to statistical
models based on finite mixtures of distributions.

The generalized bimodal (GB) distribution was introduced and studied by Rao et al. [14]
and Sarma et al. [15], with density given by:

fX(x; γ) =

(
γ + x2

1 + γ

)
φ(x), x ∈ R, γ ≥ 0,

where γ is the shape parameter and φ is the density N(0, 1).
A simple reparametrization of the GB distribution leads us to the expression given by:

fX(x; α) =

(
1 + αx2

1 + α

)
φ(x), x ∈ R, α ≥ 0. (1)

It is observed that the distribution N(0, 1) is obtained when α = 0 in the GB distribution.
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This idea can be extended using elliptic distributions; in the univariate case these are
distributions of symmetric random variables. A random variable Y is symmetric about
zero if its pdf (gY) holds with

gY(−y) = gY(y),

for all y ∈ R. For further discussion of the family of elliptic distributions, see Kelker [16]
and Cambanis et al. [17], and the books Fang et al. [18] and Gupta and Varga [19], etc. Then
using this methodology it can be extended (1), as follows

fX(x; α) =

(
1 + αx2

1 + ακ

)
gY(x), x ∈ R,

where α ≥ 0, Y is a random variable symmetric about zero and κ = E(Y2).
Values of k are reported in Table 1 for some particular cases of the density gY:

1. gY(x) = φ(x) (Normal);
2. gY(x) = 1

2 exp(−|x|) (Laplace);
3. gY(x) = c2(1 + x2/ν)−(1+ν)/2 with c2 = (νπ)−1/2Γ(µ/2)−1Γ((ν + 1)/2) (Student-t);
4. gY(x) = exp (x)/(1 + exp (x))2 (Logistic).

Table 1. Values of k for some distributions.

Type k

Normal 1
Laplace 2
Student-t ν

ν−2 , ν > 2
Logistic π2

3

One of the principal motivations of the present article is to consider the symmetric
bimodal logistic (BL) distribution, since the logistic distribution has greater kurtosis than
normal distribution, on account of the simplicity of its probability density function, given
in item 4 of Table 1 and denoted here by Y ∼ L(0, 1). This distribution is therefore an
alternative for modelling bimodal data when the distribution tails are a little heavier.

In other situations data are observed with greater flexibility in their modes; on this
basis we introduce an asymmetric bimodal extension of the logistic distribution.

The paper is organised as follows. In Section 2 we show the density and some
properties of the BL distribution. In Section 3 we carry out parameter estimation using
the moments (M) and maximum likelihood (ML) methods, and a simulation to show the
behaviour of the M and ML estimations. In Section 4 we apply the methodology to one
real data set. Section 5 presents an asymmetric extension of the proposed model and two
illustrations with real data sets. We finish with some conclusions in Section 6.

2. Density Function and Properties

Definition 1. We will say that a random variable Z has a BL distribution if its density function is
given by

fZ(z; α) = 3
(

1 + αz2

3 + π2α

)
exp(z)

(1 + exp(z))2 , z ∈ R, (2)

where α ≥ 0 is the shape parameter. We denote by Z ∼ BL(α).

By a straightforward computation we have

∫ ∞

−∞
fZ(z; α) dz =

3
3 + π2α

[∫ ∞

−∞

exp(z)
(1 + exp(z))2 dz + α

∫ ∞

−∞

z2 exp(z)
(1 + exp(z))2 dz

]
= 1.
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We observe that the first term on the right side of the first equality is the integral of
the standard Logistic distribution, and the second is the second moment of the same distri-
bution; therefore their values are 1 and π2/3 respectively, verifying the second equality.

Figure 1 shows the graph of the BL density for different values of parameter α.
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Figure 1. Plots of the BL distribution (left panel) and its corresponding cdf (right panel) for different
values of the α parameter: α = 0.5 (black line), α = 1 (light blue line) and α = 5 (red line).

2.1. Some Properties

The following properties arise directly from the above definition. Let Z ∼ BL(α) then
the following basic properties are obtained:

Property 1. If α = 0 the standard logistic distribution, Logistic(0, 1), is obtained.

Property 2. As α tends to infinity the limiting distribution is obtained, defined by

fZ(z) =
3z2 exp(z)

π2(1 + exp(z))2 .

Property 3. fZ(−z; α) = fZ(z; α), for all z ∈ R.

Property 4. Consider Y = |Z| the Half BL distribution is obtained. In particular, as α = 0 the
known Half Logistic distribution is obtained.

Property 5. The cumulative distribution function (cdf) of the pdf fZ defined in (2) is given by

FZ(z, α) = 3
3+απ2

[
exp (z)

1+exp (z) + α
(

z2 exp (z)
1+exp (z) − 2z log (1 + exp(z))− 2Li2(− exp (z))

)]
.

We note that FZ is represented based on the poly-logarithm function that is defined as

Lis(z) =
∞

∑
n=1

zn

ns . More precisely, it refers to the dilogarithm function Li2 (taking s = 2). For

more details about this function we refer the reader to Prudnikov et al. [20].
The functions Li2(− exp(z)) and z log(1 + exp(z)) tend to zero when z tends to minus

infinity; this can be proved using L’Hopital’s Rule, concluding that FZ(z, α)→ 0 as z→ −∞.

A well-known reflection property of the dilogarithm function is given by Li2(t) +
Li2(1/t) = −π2/6− 1/2 log2 (−t), in which taking t = − exp(z) we get the following
relation

Li2(− exp(z)) + Li2(− exp(−z)) = −π2

6
− 1

2
z2.
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Multiplying this equality by −2 and adding z2 − 2z log(1 + exp(z)) we have that

z2 − 2z log(1 + exp(z))− 2Li2(− exp(z)) = π2

3 + 2Li2(− exp(−z)) + 2z2 − 2z log(1 + exp(z)). (3)

We note that

lim
z→+∞

2z2 − 2z log(1 + exp(z)) = lim
z→+∞

2z2 − 2z log(exp(z)(1 + exp(−z)))

= lim
z→+∞

−2z log(1 + exp(−z)),

then applying L’Hopital’s rule it follows that this limit is zero when z tends to infinity. Thus,
making z→ +∞ in Equation (3) we obtain that the expression of the left-hand side tends
to π2/3.

We rewrite FZ, given in Property 5, as follows

3
3 + απ2

[
exp (z)

1 + exp (z)
+ α

(
−z2

1 + exp (z)
+ z2 − 2z log (1 + exp(z))− 2Li2(− exp (z))

)]
,

then this latter, combined with the previous argument, concludes that FZ → 1 as z→ +∞.
Figure 1 shows graphs of the cdf for different values of parameter α.

We present the following technical Lemma that will allow us to prove the uni/bimodality
of the proposed distribution.

Lemma 1. Let g be a function defined by:

g(x) = 2α(1 + x)− (αx2 + 1− 2α)ex, α > 0, x ∈ R.

The following holds:

1. g tends to −∞ as x → ±∞, g′(x) = 2α− (αx2 + 2αx + 1− 2α)ex y g′′(x) = −(αx2 +
4αx + 1)ex.

2. g is negative for all x ∈ R whenever 0 < α ≤ 1/4.
3. If α > 1/4, then g has two zeros.

Proof. A direct calculation gives the result for part 1. For part 2, we assume that in x0 we
reach a maximum for g, as g′(x0) = 0 we obtain that

ex0 =
2α

αx2
0 + 2αx0 + 1− 2α

, (4)

with α < 1/4 as the hypothesis. If x0 ≥ 0, then from relation (4) we obtain that 2α/(αx2
0 +

2αx0 + 1− 2α) > 1, or 0 < αx2
0 + 2αx0 + 1 < 4α. From the latter inequality we obtain

that 1 < 4α since αx2
0 + 2αx0 + 1 > 1; this produces a contradiction with the fact that

0 < α ≤ 1/4. Therefore the maximum is obtained in x0 < 0 and its value is g(x0) =
2αx0(1 + ex0), obtained using the definition of g and relation (4); this turns out to be
negative, given the desired result.

To prove part 3, we first state that there is a single maximum value of g. In fact, we
assume that there are two in order to obtain a contradiction. Let us consider two reached in
x0 and x1 with x0 < x1, then at least one x̃ ∈ (x0, x1) where a minimum of g is reached, so
we have that

g(x0)− g(x̃) = 2αx0(1 + ex0)− 2αx̃(1 + ex̃) = 2α(x0 − x̃) + 2α(x0ex0 − x̃ex̃),

the final expression, which is negative, since x0 < x̃, producing a contradiction with the
fact that in x̃ a minimum of g is reached.

Now, let us assume that the maximum value of g is negative and is reached in x0. As
α > 1/4, g(0) = 4α− 1 > 0 and g→ −∞ as x → ±∞; this implies that another maximum
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value for g, which is a contradiction as in the previous paragraph. Thus, the maximum for
g is positive, which gives the desired result.

Proposition 1. Let X ∼ BL(α), then the density function is unimodal if 0 < α ≤ 1/4 and
bimodal as α > 1/4.

Proof. From Equation (2) it follows

f ′(x) =
αx2 + 2αx + 1− (αx2 − 2αx + 1)ex

(1 + αx2)(1 + ex)
f (x).

Hence, the zeros of f ′ are the zeros of h(x) := αx2 + 2αx + 1− (αx2 − 2αx + 1)ex. As
h(0) = 0, we have that x = 0 is a critical point of f .

We Note that h′(x) = g(x), where g is the function defined in Lemma 1. Then using
part 2 of Lemma 1, we obtain that h′(x) < 0 for all x ∈ R. Therefore, h is strictly decreasing
and as h(0) = 0 then x = 0 is the only zero for f ′. By direct calculation together with the
fact that 0 < α < 1/4 we have that f ′′(0) = 3(4α− 1)/8(3 + π2α) < 0, which implies that
f is unimodal; its mode is reached in x = 0 and its value is f (0).

When α = 1/4, by the above argument and Lemma 1, we have that zero is the only
critical point for f . Consequently, its mode is reached at zero.

Now, using part 3 of Lemma 1 we have that h′ has two zeros when α > 1/4 and
as h(0) = 0 we have that h has three zeros; one of these is x = 0 and the others are
±x0 with x0 6= 0 (since h(−x0) = −h(x0)e−x0). Consequently, f has three zeros and
from the previous calculation we have that f ′′(0) > 0, then in x = 0 a minimum of f is
obtained as well as the other zeros in which f reaches its maximum value, which completes
the proof.

2.2. Moments

In this subsection we calculate the moments of a random variable with BL distribution
and its kurtosis coefficient.

Proposition 2. Let Z ∼ BL(α), then for r = 0, 1, 2, . . . the r-th moments of the random
variable Z are:

(a) E
[
Z2r+1] = 0,

(b) E
[
Z2r] = 6

3+π2α

{
(1− 21−2r)Γ(2r + 1)ς(2r) + α(1− 2−2r−1)Γ(2r + 3)ς(2r + 2)

}
,

where ς(s) =
∞

∑
n=1

1
ns is the Riemann Zeta Function and satisfies that ς(s) = Lis(1).

Proof. (a) We can express the odd moments of Z ∼ BL(α) as

E
[

Z2r+1
]
=

3
3 + π2α

{∫ ∞

−∞

z2r+1 exp (z)
(1 + exp (z))2 dz + α

∫ ∞

−∞

z2r+3 exp (z)
(1 + exp (z))2 dz

}
= 0. (5)

Note that the first and second integral represent the odd moments 2r + 1 and 2r + 3 of
the standard logistic distribution, for r = 0, 1, 2, . . .. It is well known that the odd moments
of this distribution are equal to zero (see Johnson et al. [21]).

(b) Let X ∼ Logistic(0, 1) the even moments of X (see Balakrishnan [22]) are given by:

E(Xk) = 2(1− 21−k)Γ(k + 1)ς(k), if k is even.
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Then using these moments, we can calculate the even moments of Z ∼ BL(α) as

E
[

Z2r
]
=

3
3 + π2α

{∫ ∞

−∞

z2r exp (z)
(1 + exp (z))2 dz + α

∫ ∞

−∞

z2r+2 exp (z)
(1 + exp (z))2 dz

}

=
3

3 + π2α

{
2(1− 21−2r)Γ(2r + 1)ς(2r) + α2(1− 2−2r−1)Γ(2r + 3)ς(2r + 2)

}

=
6

3 + π2α

{
(1− 21−2r)Γ(2r + 1)ς(2r) + α(1− 2−2r−1)Γ(2r + 3)ς(2r + 2)

}
.

Definition 2. Let Z ∼ BL(α) and Y = µ + σZ, then the density of Y is given by

fY(y; µ, σ, α) =
3
σ3

(
σ2 + α(y− µ)2

3 + π2α

) exp
(

y−µ
σ

)
(1 + exp

(
y−µ

σ

)
)2

, y ∈ R, (6)

where µ ∈ R is the location parameter, σ > 0 is the scale parameter and α ≥ 0 is the bimodality
parameter. It is denoted as Y ∼ BL(µ, σ, α).

Corollary 1. Let Y ∼ BL(µ, σ, α). Then for k = 1, 2, . . ., the k-th moments of the random variable
of Y are:

E[Yk] =
k

∑
j=0

(
k
j

)
σjE(Zj)µk−j =

2r

∑
j=0

(
2r
2j

)
σ2jE(Z2j)µ2(r−j),

where r = int(k/2), int(·) denotes the integer part function.

Proof. Using binomial theorem, we have that

E
[
Yk
]
= E

[
(σZ + µ)k

]
=

k

∑
j=0

(
k
j

)
σjE(Zj)µk−j.

Corollary 2. Let Y ∼ BL(µ, σ, α). Then

E[Y] = µ, Var[Y] = σ2
(

7απ4 + 5π2

5απ2 + 15

)
.

Proof. Considering the results of Corollary 1, we have that E[Y] = µ and E[Y2] = µ2 +

σ2
(

7απ4+5π2

5απ2+15

)
. Thus, to obtain the second central moment the equality Var[Y] = E[Y2]−

(E[Y])2 must be used.

Corollary 3. Let Y ∼ BL(µ, σ, α). Then the kurtosis coefficient (β2) of Y is

β2(α) =
E[Y− E[Y]]4

(Var[Y])2 =
5 (155απ2 + 49) (απ2 + 3)

7 (7απ2 + 5)2 . (7)

We note that:

1. Considering β2 as a function of α, we have that it is increasing in the interval [0, 1
4π2 )

and is decreasing in ( 1
4π2 , ∞).

2. By straightforward calculation we show that lim
α→0+

β2 = 4.2 and lim
α→∞

β2 =
775
343

.
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Proof. Considering the first derivative with respect to α of the β2(α), β′2 = − 2560π2(4απ2−1)
7(7απ2+5)3 ,

we have that the critical value is obtained at α = 1
4π2 . Taking into account the intervals

[0, 1
4π2 ) and ( 1

4π2 , ∞) it follows that: β′2(α) > 0 in [0, 1
4π2 ) and it is therefore increasing in

this interval; β′2(α) < 0 in ( 1
4π2 , ∞) and it is therefore decreasing in this interval. Finally,

when we evaluate β′′2 (1/4π2) = − 655.360
137.781 π4 < 0 and it is therefore a maximum.

Remark 1. Figure 2 presents a graph of the kurtosis coefficient of the BL distribution. As the BL
distribution is symmetric, the asymmetry coefficient is zero. The values of the kurtosis coefficient of
the BL model are smaller than those of the Logistic model; this frequently occurs since the presence
of more than one mode means that the distribution tails are lighter.
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Figure 2. Graph of the kurtosis coefficient in BL(α) distribution.

3. Inference

In this section, we develop inferences from the location-scale version of the BL dis-
tribution studied above. The inferences are based mainly on M and ML estimation and a
simulation study to see the behaviour of the M estimates (ME) and ML estimates (MLE);
we will also derive the Fisher information matrix, studying the singularity of a special case.

3.1. Moment Estimators

Proposition 3. Let Y1, ..., Yn be a random sample of the random variable Y ∼ BL(θ); to find the
M estimators for θ = (µ, σ, α), the following three equations must be solved simultaneously:

µ̂M = Y, (8)

(343b2 − 775)π4α̂2
M + (490b2 − 2570)π2α̂M = 735− 175b2, (9)

σ̂M =

√
S2
(

5α̂Mπ2 + 15
7α̂Mπ4 + 5π2

)
, (10)

where Y is the mean of the sample (first sample moment), S2 is the sample variance and b2 is the sam-

ple kurtosis coefficient. For a solution to Equation (9) to exist it must be the case
775
343

< b2 <
845
189

.

Proof. From Corollaries 2 and 3, replace E[Y] with Y, Var[Y] with S2 and β2 with b2, the M
estimators θ̂ = (µ̂M, σ̂M, α̂M) are obtained.
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3.2. ML Estimators

Given a random sample Y1, ..., Yn of the BL(µ, σ, α) distribution, the log-likelihood
function can be written as:

`(θ) = c(σ, α) +
n

∑
i=1

zi +
n

∑
i=1

log (1 + αz2
i )− 2

n

∑
i=1

log {1 + exp (zi)}, (11)

where c(σ, α) = n
{

log (3)− log (σ)− log (3 + π2α)
}

, θ = (µ, σ, α), zi =
yi−µ

σ and i = 1, ..., n.
To calculate the estimation for θ = (µ, σ, α) it is necessary to maximize (11), by solving

the following system of equations ∂`(θ)
∂µ = 0; ∂`(θ)

∂σ = 0 and ∂`(θ)
∂α = 0. More precisely,

n

∑
i=1

exp(zi)

1 + exp(zi)
− α

n

∑
i=1

zi

1 + αz2
i

=
n
2

, (12)

2
n

∑
i=1

1
1 + αz2

i
−

n

∑
i=1

zi + 2
n

∑
i=1

zi exp(zi)

1 + exp(zi)
= 3n, (13)

n

∑
i=1

z2
i

1 + αz2
i

=
π2n

3 + π2α
, (14)

must be solved.
The solution for Equations (12)–(14) can be obtained using numerical procedures like

Newton-Raphson, which can be implemented in the R software [23].

3.3. Simulation Study

In this section we present the results of a simulation study designed to assess the
performance of the BL distribution. The acceptance-rejection method was used to carry out
the simulations in this study. Each simulation consisted of 1000 samples of sizes 50, 100 and
200, and the following calculations were obtained for each: mean, root mean squared error
(RMSE), mean absolute deviation (MAD) of the ME and MLE. Table 2 shows the results for
the samples simulated by acceptance-rejection of sizes 50, 100 and 200 respectively.

Table 2. MLE, RMSE and MAD for the BL model with sample size 50, 100 and 200, respectively.

n = 50 n = 100 n = 200
Parameter Value

MLE RMSE MAD MLE RMSE MAD MLE RMSE MAD

µ 68.500 68.491 0.412 0.326 68.491 0.289 0.228 68.503 0.201 0.161
log (σ) 0.000 −0.057 0.125 0.089 −0.028 0.091 0.068 −0.010 0.064 0.050
log (α) −0.693 −0.182 1.751 0.605 −0.499 0.478 0.346 −0.622 0.333 0.262

µ 68.500 68.521 0.389 0.305 68.510 0.272 0.217 68.509 0.193 0.154
log (σ) 0.000 −0.041 0.118 0.087 −0.017 0.086 0.067 −0.007 0.065 0.051
log (α) −0.511 −0.024 2.204 0.692 −0.345 0.536 0.396 −0.446 0.339 0.265

µ 68.500 68.503 0.403 0.319 68.501 0.270 0.211 68.498 0.188 0.150
log (σ) 0.000 −0.032 0.112 0.086 −0.011 0.084 0.066 −0.004 0.061 0.048
log (α) −0.357 0.239 3.060 0.884 −0.239 0.546 0.412 −0.302 0.351 0.277

µ 68.500 68.474 0.628 0.495 68.470 0.417 0.332 68.489 0.295 0.237
log (σ) 0.405 0.344 0.125 0.087 0.372 0.085 0.061 0.389 0.060 0.046
log (α) −0.693 −0.076 2.052 0.613 −0.436 0.496 0.338 −0.561 0.326 0.238

µ 68.500 68.483 0.572 0.451 68.475 0.390 0.31 68.486 0.291 0.232
log (σ) 0.405 0.358 0.115 0.084 0.382 0.083 0.064 0.397 0.059 0.047
log (α) −0.511 0.126 2.758 0.772 −0.283 0.512 0.363 −0.431 0.331 0.26
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Table 2. Cont.

n = 50 n = 100 n = 200
Parameter Value

MLE RMSE MAD MLE RMSE MAD MLE RMSE MAD

µ 68.500 68.497 0.574 0.452 68.500 0.416 0.331 68.503 0.285 0.228
log (σ) 0.405 0.369 0.110 0.082 0.383 0.084 0.065 0.397 0.058 0.046
log (α) −0.357 0.341 3.316 0.949 −0.158 0.527 0.385 −0.296 0.338 0.269

µ 69.000 69.007 0.425 0.336 68.996 0.282 0.223 68.988 0.202 0.161
log (σ) 0.000 −0.053 0.125 0.091 −0.029 0.091 0.068 −0.010 0.062 0.049
log (α) −0.693 −0.263 1.141 0.516 −0.485 0.514 0.367 −0.623 0.319 0.252

µ 69.000 69.006 0.414 0.324 68.995 0.268 0.219 69.003 0.196 0.156
log (σ) 0.000 −0.038 0.117 0.088 −0.020 0.085 0.067 −0.007 0.060 0.048
log (α) −0.511 −0.046 2.019 0.659 −0.301 1.053 0.406 −0.447 0.354 0.277

µ 69.000 68.992 0.393 0.309 68.991 0.254 0.203 68.995 0.181 0.143
log (σ) 0.000 −0.031 0.112 0.085 −0.012 0.081 0.063 −0.008 0.057 0.046
log (α) −0.357 0.178 2.704 0.810 −0.220 0.533 0.41 −0.296 0.342 0.269

µ 69.000 68.988 0.620 0.49 69.003 0.417 0.335 69.001 0.287 0.228
log (σ) 0.405 0.343 0.130 0.092 0.370 0.088 0.064 0.386 0.062 0.047
log (α) −0.693 −0.098 1.996 0.610 −0.435 0.503 0.336 −0.559 0.321 0.236

µ 69.000 68.962 0.602 0.481 68.995 0.405 0.323 68.988 0.277 0.219
log (σ) 0.405 0.354 0.123 0.087 0.382 0.082 0.063 0.395 0.058 0.046
log (α) −0.511 0.096 2.606 0.745 −0.276 1.041 0.402 −0.427 0.335 0.258

µ 69.000 69.028 0.581 0.449 69.030 0.395 0.312 69.005 0.271 0.216
log (σ) 0.405 0.369 0.112 0.083 0.387 0.080 0.062 0.402 0.057 0.045
log (α) −0.357 0.401 3.393 0.994 −0.173 0.506 0.377 −0.290 0.344 0.270

In Table 2 it is observed that as the sample size increases the MLE of µ, log (σ) and
log (α) approach the true values of the parameters. Furthermore, we note that RMSE
and MAD for the parameters µ, log (σ) and log (α) decrease as the sample size increases,
as expected. However we observe that the MLE of the parameters log (σ) and log (α)
underestimate and overestimate the true values in all cases.

In Table 2, RMSE denotes the square root of the empirical mean squared error: for
instance, for µ̂, it is calculated as

RMSE(µ̂) =

√
1
n

n

∑
i=1

(µ̂i − µ)2,

and so on.
The expression of Equation (2) can be rewritten as a mixture of two densities, as follows

fZ(z; α) =
3

(3 + π2α)

exp (z)
(1 + exp(z))2 +

απ2

(3 + π2α)

3z2 exp (z)
π2(1 + exp (z))2

=
3

(3 + π2α)
f1(z) +

απ2

(3 + π2α)
f2(z)

= p1 f1(z) + p2 f2(z),

where f1(z) is the pdf of standard logistic distribution, f2(z) is the pdf present in Property 2,
p1, and p2 are the respective weights. Thus, the algorithm for generating random numbers
from the BL(µ, σ, α) distribution is shown in Algorithm 1.
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Algorithm 1 Generation of random numbers from the distribution BL(µ, σ, α)

repeat i = 1
U1i ∼ U(0, 1)
if U1i ≤ 3/(3 + π2α) then

Zi ∼ Logis(0, 1)
Xi = Ziσ + µ

else
k=0
while k == 0 do

U2i ∼ U(0, 1)
Yi ∼ Cauchy(0, 1)
if U2i ≤ [3y2

i exp (yi)(1 + y2
i )]/[cπ(1 + exp (yi))

2] then
Zi = Yi
Xi = Ziσ + µ
k=1

end if
end while

end if
until i = n

3.4. Fisher Information Matrix

Below we present the Fisher information matrix for the random variable Y ∼ BL(µ, σ, α),
which can be written as:

I f (θ) =

 Iµµ Iµσ Iµα

Iσσ Iσα

Iαα

,

with

Iµµ =
3− 24α + απ2

3σ2(3 + π2α)
+ 4α2η2, Iµσ = 0, Iµα = 0,

Iσσ =
7απ4 − 15απ2 + 5π2 − 165

15σ2(3 + απ2)
+ 4σ2η0, Iσα = 2ση2, Iαα = η4 −

π4

(3 + π2α)2 ,

where ηj = E
[

(Y−µ)j

(σ2+α(Y−µ)2)2

]
and the first and second derivatives are given in Appendix A.

3.5. Special Case

Now we will consider the Fisher information matrix for a special case of the BLlocation-
scale model. A situation of particular interest is the case when α = 0 in Equation (2)
resulting from the logistic model. In this case, the elements of the Fisher information matrix
are given by

I f (µ, σ, α = 0) =



1
3σ2 0 0

0
(π2 + 3)

9σ2
2π2

3σ

0
2π2

3σ

16π4

45


,

its determinant is given by

∣∣∣I f

∣∣∣ =
16π6 − 132π4

1215σ4 6= 0.
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From this we may conclude that the Fisher information matrix is non-singular when
α = 0. Then, for large samples, the ML estimators θ̂ of θ have an asymptotically normal
distribution, i.e.,

√
n(θ̂− θ)

D−→ N3(0, I−1
f (θ)),

where the asymptotic variance of the ML estimators θ̂ is
I−1

f (θ)

n . As the parameters are unknown,
the Fisher information matrix is estimated using the MLE for the unknown parameters.

4. Application

In this section the fit of the BL model is illustrated in a data set that has been analysed
previously by Gui et al. [24], Hassan and Hijazi [25], and others. To do this, we used the M
and ML methods described in Section 3.

The fit of the BL model with this data set is compared with that of the logistic mixture
(LM) model. The respective density is given by:

f (x; µ1, σ1, µ2, σ2, p) =
p exp

(
x−µ1

σ1

)
σ1

(
1 + exp

(
x−µ1

σ1

))2 +
(1− p) exp

(
x−µ2

σ2

)
σ2

(
1 + exp

(
x−µ2

σ2

))2 .

This data set consists of the height in inches of 126 students of the University of
Pennsylvania, [26]. Table 3 presents the basic descriptive statistics of this data set, showing
that the asymmetry of the sample is very close to zero. Furthermore, the mean and median
values are very similar, indicating that the data are symmetrical.

Table 3. Descriptive statistics for the height data set.

n Median Mean Standard Deviation Range Skewness

126 68.44 68.54 4.16 23.5 −0.05

The estimations of the parameters of the BL model were obtained by the M method.
These results are shown in Table 4.

Table 4. ME for the BL model.

Model α̂M µ̂M σ̂M

BL 0.418 68.546 1.357

Using the estimations in Table 4 as the initial values, the height data were fitted
with the BL distribution by ML. The standard errors (SE) were calculated from the Fisher
information matrix presented in Section 3.4 by numerical integration with the integral
function of the pracma package in the R software (see Borchers [27]). The estimations and
standard errors were also obtained for the LM model in order to compare the fits. Akaike’s
information criterion (AIC) was used to measure the selection in both models, which is
defined as AIC = 2k− 2log lik, where k is the number of parameters in the model and log
lik is the maximum value for the log-likelihood function (see Akaike [28]). These results
are presented in Table 5, where we observe that the BL model presents a better fit as its
AIC value is lower than that of the LM model.
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Table 5. MLE, with SE in parentheses of the BL and LM models.

Model α̂ p̂ µ̂1 σ̂1 µ̂2 σ̂2 loglik AIC

BL 0.646 - 68.627 1.268 −355.118 716.236
(0.272) - (0.299) (0.097) - - - -

LM - 0.534 65.867 1.589 71.628 1.589 −355.75 721.5
- (0.119) (0.661) (0.282) (0.729) (0.306) - -

Figure 3 shows the fit of the two densities to the data, and Figure 4 shows the respective
QQ-plots for the BL and LM models.

Height

D
e
n
s
it
y

55 60 65 70 75 80

0
.0

0
0
.0

2
0
.0

4
0
.0

6
0
.0

8
0
.1

0
0
.1

2

Figure 3. Histogram and models fitted for the height data set. The lines represent the fits using
maximum likelihood estimation: LM (dashed line) and BL (solid line).
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Figure 4. (Left panel): QQ-plot for BL model. (Right panel): QQ-plot for LM model.

5. An Asymmetric Extension

To make the modes in the BL distribution more flexible, we introduce an extension
based on the methodology presented by Azzalini [29]. Namely, let f0 be a pdf symmetric
about zero, and G is a cdf such that G′ exists and is a pdf symmetric about zero, then

f (z; λ) = 2 f0(z)G(λz) , z ∈ R,
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is a pdf for any λ ∈ R. Using the BL distribution in this result obtains the skew BL (SBL)
distribution and its pdf is given by

f (z; µ, σ, α, λ) = 6
σ3

(
σ2+α(z−µ)2

3+π2α

)
exp ((z−µ)/σ)

(1+exp ((z−µ)/σ))2
exp (λ(z−µ)/σ)

(1+exp (λ(z−µ)/σ))
, (15)

where z ∈ R, µ ∈ R, σ > 0, α ≥ 0 and λ ∈ R. We denote it by Z ∼ SBL(µ, σ, α, λ).

Remark 2. Figure 5 shows the flexibility in the modes for different values of λ. When λ = 0
the BL distribution is obtained. Futhermore, when α = 0 the skew-Logist distribution studied
in Nadarajah [30] and Gupta and Kundu [31] is obtained. All the properties studied in the BL
distribution can be extended to the SBL distribution.
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Figure 5. Graph of SBL(0, 1, 2, −0.5) (solid line) and SBL(0, 1, 2, 0.5) (dashed line).

5.1. Application 2

In this subsection we fit the data considered in the previous application. Table 6
shows the ML fits of the BL and SBL distributions, from which, using the AIC criterion, we
can observe that the distribution offering the best fit with the data is the BL distribution.
Figure 6 shows the graphs of the QQ-plots of the BL and SBL distributions.

Table 6. MLE, with SE in parentheses of the BL and SBL models.

Model α̂ µ̂ σ̂ λ̂ AIC

BL 0.646 68.627 1.268 - 716.236
(0.272) (0.299) (0.097) - -

SBL 0.644 68.767 1.271 −0.033 718.106
(0.277) (0.499) (0.100) (0.092) -
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Figure 6. (Left panel): QQ-plot for BL model. (Right panel): QQ-plot for SBL model.

We use the results of the estimations given in Table 6 to test the null hypothesis (λ = 0)
that the data are obtained from the BL distribution against the SBL distribution, and the
following statistical test

−2 log Λ(z) = −2 log
LBL(µ̂, σ̂, α̂)

LSBL

(
µ̂, σ̂, α̂, λ̂

) ,

where Λ(z) is the likelihood-ratio statistic. The value of the study data set is−2 log Λ(z) = 0.13,
which is comparable with the critical value of χ2

1 = 3.84 at 95%. There is therefore no evi-
dence to reject the null hypothesis, in other words the BL distribution presents a better fit
than the SBL distribution. Consequently, it is concluded that the data in Application 1 have
a symmetrical bimodal behaviour.

5.2. Application 3

We consider fitting the SBL distribution to a data set available from the web address
http://lib.stat.cmu.edu/datasets/pollen.data (accessed on 15 March 2022). More specifi-
cally, we analyse the 481 observations of the variable “Nub” in the data file POLLEN2.DAT.
This variable measures a geometric characteristic of a specific type of pollen. In Table 7, the
descriptive analysis is provided.

Table 7. Descriptive statistics for the pollen data set.

n Median Mean Standard Deviation Range Skewness

481 −0.298 −0.055 5.071 30.609 −0.149

Table 8 shows the ML fits of the LM and SBL distributions; we observe that by the AIC
criterion, the distribution with the best fit to the data is the SBL distribution. Figures 7 and 8
show the fits for the pollen data sets and the graphs of the QQ-plots of the LM and SBL
distributions respectively.

Table 8. MLE, with SE in parentheses of the SBL and LM models.

Model µ̂1 σ̂1 µ̂2 σ̂2 p̂ α̂ λ̂ AIC

LM −1.826 2.391 5.429 1.508 0.751 - - 2924.36
(0.466) (0.172) (0.564) (0.220) (0.064) - - -

SBL 1.716 1.700 - - - 0.506 −0.235 2922.72
(0.417) (0.089) - - - (0.117) (0.071) -

 http://lib.stat.cmu.edu/datasets/pollen.data
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Figure 7. Histogram and models fitted for the pollen data set. The lines represent the fits using
maximum likelihood estimation: SBL (solid line) and LM (dashed line).
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Figure 8. (Left panel): QQ-plot for SBL model. (Right panel): QQ-plot for LM model.

6. Concluding Remarks

We present bimodal extensions of the Logistic distribution, one symmetric and the
other asymmetric. These distributions are useful for modelling symmetric/asymmetric
bimodal data sets. We present some important properties and discuss two methods of
estimation based on the M and ML estimators, obtained using numerical procedures such
as the Newton-Raphson procedure. Three applications in the real data set are presented
which show the usefulness of the BL and SBL distributions in comparison with two other
bimodal distributions. Some other characteristics of the new models are:

• The proposed model has a closed-form expression and contains the logistic model as
a particular case.

• The even moments are based on the Riemann Zeta Function.
• The simulation study shows that the behaviour of the M and ML estimators is good.
• The Fisher information matrix is non-singular in the symmetric unimodal special case;

this is very important for drawing asymptotic inference from the ML estimators. This
result, i.e., a non-singular Fisher information matrix, cannot be obtained with other
asymmetric extensions of the logistic model.



Mathematics 2022, 10, 1968 16 of 17

• In the application we observe that the BL model shows a better fit with the data than
the typical mixture model.

• We also introduce an asymmetric bimodal extension of the Logistic distribution for
situations where there are bimodal data with flexible modes. This extension is an
alternative to the finite mixture of logistic distribution, as is shown by the first and
third application.
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Appendix A. Derivatives

The first derivatives of `(θ), taking z = (y− µ)/σ, are given by

∂`(θ)

∂µ
= − 1

σ
+

2 exp (z)
σ(1 + exp (z))

− 2αz
σ(1 + αz2)

,

∂`(θ)

∂σ
= − 3

σ
− z

σ
+

2
σ(1 + αz2)

+
2z exp (z)

σ(1 + exp (z))
,

∂`(θ)

∂α
= − π2

(3 + π2α)
+

z2

(1 + αz2)
,

and the second derivatives of `(θ) are

∂2`(θ)

∂µ2 =
2 exp (2z)

σ2(1 + exp (z))2 −
2 exp (z)

σ2(1 + exp (z))
− 4α2z2

σ2(1 + αz2)2 +
2α

σ2(1 + αz2)
,

∂2`(θ)

∂µ∂σ
=

1
σ2 −

2 exp (z)
σ2(1 + exp (z))

+
2z exp (2z)

σ2(1 + exp (z))2 −
2z exp (z)

σ2(1 + exp (z))
+

4αz
σ2(1 + αz2)2 ,

∂2`(θ)

∂µ∂α
=

2αz3

σ(1 + αz2)2 −
2z

σ(1 + αz2)
,

∂2`(θ)

∂σ2 =
3

σ2 +
2z
σ2 −

4z exp (z)
σ2(1 + exp (z))

+
2z2 exp (2z)

σ2(1 + exp (z))2

− 2z2 exp (z)
σ2(1 + exp (z))

− 4
σ2(1 + αz2)2 +

2
σ2(1 + αz2)

,

∂2`(θ)

∂σ∂α
= − 2z2

σ(1 + αz2)2 ,
∂2`(θ)

∂α2 =
π4

(3 + απ2)2 −
z4

(1 + αz2)2 .

https://etda.libraries.psu.edu/files/final_submissions/2429
http://lib.stat.cmu.edu/datasets/pollen.data
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