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Abstract

The van Lint-Wilson AB-method yields a short proof of the Roos bound for the min-
imum distance of a cyclic code. We use the AB-method to obtain a different bound for
the weights of a linear code. In contrast to the Roos bound, the role of the codes A and
B in our bound is symmetric. We use the bound to prove the actual minimum distance
for a class of dual BCH codes of length q2− 1 over Fq. We give cyclic codes [63, 38, 16]
and [65, 40, 16] over F8 that are better than the known [63, 38, 15] and [65, 40, 15] codes.

1 Introduction

Starting with the Hamming codes and the Golay codes in the late 1940’s, cyclic codes have
always played a central role in the theory of error-correcting codes. Reed-Muller codes, BCH
codes and in particular Reed-Solomon codes have found widespread applications. Although
some negative results are known indicating that cyclic codes are asymptotically bad, this re-
mains an open problem. For moderate length, many optimal codes are cyclic. Binary cyclic
codes are better than the Gilbert-Varshamov bound for lengths up to 1023. Rich mathe-
matics is involved in the determination of the actual parameters of a cyclic code in terms of
its defining set. The first result in this direction was obtained by Bose and Ray-Chaudhury
[1, 2] and Hocquenghem [11]. Their result is known as the BCH bound. The bound was
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generalized first by Hartmann-Tzeng [10], and then, using important new ideas, by Roos
[19, 20]. In [14], van Lint and Wilson present further techniques that are often useful when
the actual minimum distance exceeds the Roos bound. They are known as the AB-method
and the Shifting method. The various lower bounds for the minimum distance of a cyclic
code are in general not sharp. And the efficient determination of the minimum distance of a
cyclic code in general remains an open problem. In this paper we prove two bounds for the
minimum distance of a general linear code, the iterated Roos bound (Theorem 8) and the
symmetric Roos bound (Theorem 20). As an application, we give the actual parameters for
a class of dual BCH codes (Theorem 24).

The following notation and terminology applies throughout The finite field with q elements
is denoted by Fq. For a word c ∈ Fn

q , the Hamming weight of c is denoted by wt(c). The
support of a word c is the set of nonzero positions of the word and is denoted by supp(c).
The support of a subset D of Fn

q is defined as supp(D) = {i | xi 6= 0 for some x ∈ D}. The
weight of D is the number of elements of supp(D) and is denoted by wt(D). A q-ary code C
is a linear subspace of Fn

q . For a linear code C, let n(C), k(C) and d(C) denote its length,
dimension and minimum distance, respectively. The r-th generalized Hamming weight of C is
defined by dr(C) = min{wt(D) | D linear subspace of C, k(D) = r}. Define the genus or the
Singleton defect of C as g(C) = n(C)+1−k(C)−d(C). The genus is a nonnegative integer by
the Singleton bound. For two vectors a and b of the same length n, let a·b = a1b1+· · ·+anbn
be the inner product, and let a ∗ b = (a1b1, . . . , anbn) be the componentwise product. For
two subsets A and B of Fn

q , let A ∗ B, = {a ∗ b | a ∈ A,b ∈ B}. We say that A and B
are orthogonal when a · b = 0 for all a ∈ A and all b ∈ B, we denote this by A ⊥ B. The
dual A⊥ of a subspace A is by definition A⊥ = {c ∈ Fn

q | c · a = 0 for all a ∈ A }. A
code A is called degenerate if there is a position such that all code words in A are zero at
that position, or equivalently d(A⊥) = 1. For a subset A of Fn

q , let 〈A〉 be the subspace
generated by A. For a code A of length n and a subset I ⊂ {1, . . . , n}, the subcode A(I) =
{ a | ai = 0 for all i ∈ I }.

2 Two bounds for cyclic Codes

Let Fq be a finite field of order q and for n with (n, q) = 1, let Fqm be an extension of
Fq containing the n-th roots of unity. Let α ∈ Fqm be a primitive n-th root of unity. Let
α(i) = (1, αi, α2i, . . . , α(n−1)i). The Fqm linear cyclic code with generating set {i1, . . . , is}
is by definition C = 〈α(i1), α(i2), . . . , α(is)〉, and the Fq linear cyclic code with defining
set {i1, . . . , is} is by definition the space of all words in Fn

q that are orthogonal to C. We
formulate a special case of the Roos bound for cyclic codes.
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Theorem 1 (Roos bound for cyclic codes [19]) Let the cyclic codes A and B be de-
fined as follows, for i1 < i2 < . . . < is+1,

A = 〈α(i1), α(i2), . . . , α(is+1)〉,
B = 〈α(1), α(2), . . . , α((δ − 1))〉.

Let is+1 − i1 − s < δ − 1. Then, a code C with C ⊥ (A ∗ B) has minimum distance
d(C) ≥ min{n,δ + s}.

For cyclic codes A,B and C it is easy to verify if C ⊥ (A ∗B) given the defining set of C.

Lemma 2 If A and B are the cyclic codes with generating set U and V , respectively, then
C ⊥ (A ∗B) if and only if the defining set for C contains U +V = { u+ v | u ∈ U, v ∈ V }.

The following symmetric version of the Roos bound rules out certain weights in a code and
in general does not give a lower bound for the minimum distance. This is characteristic for
the AB-method that is used for its proof.

Theorem 3 (Symmetric Roos bound for cyclic codes) For i1 < i2 < . . . < is+1, and
j1 < j2 < . . . < jt+1, let

A = 〈α(i1), α(i2), . . . , α(is+1)〉,
B = 〈α(j1), α(j2), . . . , α(jt+1)〉.

Let is+1− i1− s < t+ 1 and jt+1− j1− t < s+ 1. Then, a word c with c ⊥ A ∗B has weight
wt(c) ≤ (is+1 − i1 − s)+ (jt+1 − j1 − t), or wt(c) ≥ s + t + 2.

Proof. Combine Theorem 5 and Corollary 1 in [14]. Theorem 20 in Section 5 gives a
generalization to linear codes. �

3 Bounds for linear codes

In [20], Roos derives the Roos bound for cyclic codes [id., Theorem 2] from a more general
theorem [id., Theorem 1].

Theorem 4 (Roos bound for linear codes [20, Theorem 1]) Let A, B and C be lin-
ear codes such that

(0) d(A⊥) > 1,
(1) C ⊥ (A ∗B),
(2) g(A) ≤ d(B⊥)− 2.
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Then d(C) ≥ min{n,d(B⊥) + k(A)− 1}.

Proof. The proof in [20] applies after matching our notation with their notation. The
formulation in [20] is in terms of a generating matrix X = GA for A and a generating matrix
A = GB for B. And the bound is proven under the condition that every m×(m+d(B⊥)−2)
submatrix of the m×n matrix X is of full rank. Clearly, this is equivalent to saying that X
has no words with support on n−(m+d(B⊥)−2) positions, or d(A) > n−k(A)−d(B⊥)+2.
Finally, for genus g(A) = n+ 1− k(A)− d(A), this can be written as d(B⊥)− 1 > g(A). �

The theorem is equivalent to the following proposition.

Proposition 5 ([17]) Let A,B and C be linear codes of length n such that, for positive
integers a and b

(0) d(A⊥) > 1,
(1) C ⊥ (A ∗B),
(2) k(A) > a,
(3) d(B⊥) > b,
(4) d(A) > n− (a+ b).

Then d(C)≥ min{n, a+ b+ 1}.

Note that Conditions (2),(3),(4) imply that

k(A) + d(A) + d(B⊥) > n+ 2,

which is equivalent to
g(A) < d(B⊥)− 1.

On the other hand, for g(A) ≤ d(B⊥) − 2, Conditions (2),(3),(4) hold with a = k(A) − 1
and b = d(B⊥) − 1. Thus Theorem 4 and Proposition 5 are equivalent. The proposition
reveals the relation between the Roos bound and error-correcting algorithms. A pair of codes
A,B ⊂ Fn

q is called t-error-locating for the code C if

(1) C ⊥ (A ∗B),
(2) k(A) > t,
(3) d(B⊥) > t.

If moreover the pair A,B satisfies

(4) d(A) ≥ n− d(C),

then the pair is called t-error-correcting for the code C ([12],[15],[16]).
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The existence of error-correcting pairs has been shown for algebraic geometry codes and
many binary cyclic codes [5, 7, 8, 9, 17, 18, 21, 22]. If the Conditions (1),(2),(3) and (4)
hold in Proposition 5 with a = b = t, then the pair (A,B) is a t-error-correcting pair for
C and t errors can be corrected efficiently. The decoding up to half the Roos bound or the
Hartmann-Tzeng bound is still an open problem.

Proposition 5 has the following generalization.

Theorem 6 Let A,B and C be linear codes of length n such that, for nonnegative integers
a, b, r with r ≤ a,

(0) d(A⊥) > 1,
(1) C ⊥ (A ∗B),
(2) k(A) > a,
(3) d(B⊥) > b,
(4) dr(A) ≥ n− (a+ b− r).

Then d(C) ≥ min{n,a+ b+ 2− r}.

Proof. The proof is similar to the one in [17] for r = 1. Note that (1) implies that C ∗A is
contained in B⊥. Let c be a nonzero code word of C of minimal weight d(C).

First, assume wt(c) ≤ b. With (0), we obtain a nonzero word a ∈ A with ai 6= 0 and i in
the support of c. Then c∗a is a nonzero word in B⊥ of weight wt(c∗a) ≤ b. A contradiction
with (3). Thus wt(c) > b.

Next, assume b < wt(c) ≤ a + b + 1 − r. Let I− be a subset of the support of c
consisting of b elements, and I+ an index set of a + b + 1 − r elements which contains
supp(c). Let a ∈ A such that ai = 0 for all i ∈ I+ \ I−. Then the vector c ∗ a is an
element of B⊥ and has support in I−. Furthermore |I−| = b < d(B⊥). Hence c ∗ a = 0
by (3), so ai = 0 for all i ∈ I+. Therefore A(I+) = A(I+ \ I−). Now I+ \ I− consists of
a + 1 − r elements, and k(A) ≥ a + 1 by (2). Hence A(I+ \ I−) is a subspace of A and its
dimension is at least r. Therefore wt(A(I+ \ I−)) ≥ n− (a + b− r) by (4). On the other hand
wt(A(I+)) ≤ n−|I+| = n− (a+b+1− r). This is a contradiction, since A(I+) = A(I+ \ I−).
Therefore d(C) ≥ a+ b+ 2− r. �

Because of the weaker condition in (4), Theorem 6 applies in some cases where Proposition
5 does not.

Example 7 Let C be the binary Reed-Muller code RM(2, 5) with parameters [32, 16, 8].
And let A = B be the binary Reed-Muller code RM(1, 5) with parameters [32, 6, 16]. Then
d(B⊥) = 4 and d3(A) = 28 so that the conditions hold with a = 5, b = 3 and r = 3. This
gives d(C) ≥ 7, which improves to d(C) ≥ 8 with the observation that alll words in C are of
even weight.
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4 The iterated Roos-bound

Theorem 8 Let A1, . . . , Am, B1 and C be F-linear codes of length n such that, for all i =
1, . . . ,m,

(0) d(A⊥i ) > 1,
(1) C ⊥ (Am ∗ . . . A1 ∗B1),
(2) k(Ai) > ai,
(3) d(B⊥1 ) > b1,
(4) d(Ai) > n− (ai + · · ·+ a1 + b1).

Then d(C)≥ min{n, am + · · ·+ a1 + b1 + 1}.

Proof. The proof is by induction on m. For m = 1, we can use Proposition 5 with
A = A1 and B = B1. For i = 1, . . . ,m, let Bi+1 = 〈Ai ∗ Bi〉 and let Ci+1 = B⊥i+1. So
that Ci+1 ⊥ Ai ∗ · · · ∗ A1 ∗ B1. Suppose that, by the induction hypothesis for i = m − 1,
d(Cm) > am−1 + · · · + a1 + b1. Then Proposition 5 with A = Am, B = Bm and C = Cm+1

yields d(C) > am + (am−1 + · · ·+ a1 + b). �

For cyclic codes, we formulate the conditions in terms of the generating sets U1, . . . , Um, V1
for the codes A1, . . . , Am, B1, respectively. For a code A with generating set U we use that
k(A) = |U | and d(A) ≥ n− (|Ū | − 1), where Ū is a set of consecutive integers that contains
U .

Corollary 9 Let U1, . . . , Um, V1 be nonempty subsets of Zn and let Vi+1 = Ui + Vi. Let
d1 be the minimum distance of the cyclic code over F with V1 as defining set. If |Ūi| ≤
|Ui| + · · · + |U1| + d1 − i − 1 for all i = 1, . . . ,m, then the minimum distance of the cyclic
code with defining set Vm+1 is at least |Um|+ · · ·+ |U1|+ d1 −m.

Remark 10 In case m = 1 we get the original Roos bound [19, 20, 14]. The special case
m = 2 is still more general than Theorem 2 of [5]. In all cases, the minimum distance bound
obtained with the theorem is that of the Roos bound applied to A = Am, B = Bm. The
purpose of the theorem is therefore not to obtain better bounds than the Roos bound, but
rather to facilitate the choice of sets A and B. We illustrate this for a class of codes.

Definition 11 Let q,m and s be nonnegative integers such that q is a power of a prime
and 0 ≤ s < q. Let n = qm − 1. Let U(q,m, s) be the subset of Zn defined by

U(q,m, s) = { i0 + i1q + · · ·+ im−1q
m−1 | 0 ≤ ij ≤ s for j = 0, . . . ,m− 1 }.

Let C(q,m, s) be the cyclic code of length n over Fq with U(q,m, s) as defining set. The set
U(q,m, s) is invariant under multiplication by q and thus is a complete defining set.
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Proposition 12 The dual code C(q,m, s)⊥ is the BCH code with a defining set J = {1, . . . ,
(q−1−s)qm−1−1} and parameters n = qm−1, k = (s+1)m, and d = (q−1−s)(qm−1)/(q−1).
Proof. The code C(q,m, s) has complete defining set

U = U(q,m, s) = {0 ≤ i < n : 0 ≤ ij ≤ s for j = 0, . . . ,m− 1 }.

It follows that the dual code has complete defining set

V = {0 < i < n : n− i 6∈ U},
= {0 < i < n : ij < q − 1− s for some j = 0, . . . ,m− 1}.

The smallest i not in V is i = (q− 1− s)(qm − 1)/(q− 1). Thus J ⊂ V . On the other hand,
for every i ∈ V there exists an i′ ∈ {qki : k = 0, . . . ,m − 1} with i′m−1 < (q − 1 − s). And
thus i′ < (q − 1 − s)qm−1 and i′ ∈ J . We have shown that J and V define the same code.
The BCH bound for V gives d ≥ (q− 1− s)(qm− 1)/(q− 1). To show that this is the actual
distance we need to show that there exist words with s(qm − 1)/(q − 1) zeros. Since U is a
generating set, we can find words with zeros on any s distinct cosets of the (qm−1)/(q−1)-th
roots of unity. �

Example 13 Let V1 = {0, 1, . . . , s} and let Uj = {0, qj, . . . , sqj} for j = 1, . . . ,m − 1.
Define by induction Vj+1 = Uj + Vj for j = 1, . . . ,m− 1. Then Vj = U(q, j, s) and Ūj = Uj

for all j. So |Ūj| = |Uj| = s + 1 and d1 = s + 2 and all the conditions of Corollary 9 are
satisfied. Hence the minimum distance of C(q,m, s) is at least (m− 1)s+ (s+ 2) = ms+ 2.
The bound is sharp for m = 2, n = q2 − 1 and q ≥ 2s+ 1. In that case, words with support
among the (q+1)-roots of unity have a defining set that reduces modulo q+1 to the defining
set

{−s,−s+ 1, . . . ,−1, 0, 1, . . . , s− 1, s}

which gives an MDS subcode of type [q + 1, q − 2s, 2s+ 2]. Hence the minimum distance of
C(q, 2, s) is equal to 2s+ 2 if q ≥ 2s+ 1.

Lemma 14 Let C = C(q,m, s) be the cyclic code of the previous example. For 0 ≤ a ≤ s,

(a+ 1)s ≥ a(q + a− 1) ⇒ d(C) ≥ ms+ 2 + a(s− a)(m− 1).

Proof. Let V1 = {0, 1, . . . , s − a} + {0, q, . . . , aq}, and let Uj = qjV1, for j = 1, . . . ,m − 1.
Then U(q,m, s) = Um−1 + . . . + U1 + V1. By the HT bound the code with defining set V1
has minimum distance d1 ≥ s+ 2. Also, for j = 1, . . . ,m− 1,

|Uj| = (s− a+ 1)(a+ 1), and |Ūj| = aq + s− a+ 1.
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For the application of Corollary 9 the condition on |Ūj| is strongest for j = 1,

|Ū1| ≤ |U1|+ d1 − 2

⇔ aq + s− a+ 1 ≤ (s− a+ 1)(a+ 1) + s

⇔ aq − a+ a2 ≤ (a+ 1)s.

If the condition holds, then

d(C) ≥ |Um−1|+ · · ·+ |U1|+ d1 − (m− 1)

= (m− 1)(s− a+ 1)(a+ 1) + s+ 2− (m− 1)

= ms+ 2 + a(s− a)(m− 1).

�

Table 1 gives the actual parameters for codes C(q,m, s) with m = 2 for q = 8 or q = 9. The
values for the minimum distance d(C) are obtained with Theorem 24.

q = 8,m = 2 q = 9,m = 2
C C⊥ = BCH C C⊥ = BCH

dim dist dim dist dim dist dim dist
s = 0 62 2 1 63 79 2 1 80

1 59 4 4 54 76 4 4 70
2 54 6 9 45 71 6 9 60
3 47 8 16 36 64 8 16 50
4 38 16 25 27 55 10 25 40
5 27 24 36 18 44 20 36 30
6 14 32 49 9 31 30 49 20
7 16 40 64 10

Table 1: Codes of length 63 (q = 8,m = 2) and length 80 (q = 9,m = 2).

5 The symmetric Roos bound

The following theorem is the main tool in the AB-method, due to van Lint and Wilson [14],
for proving the minimum distance of cyclic codes.

Theorem 15 ([14]) Let c ⊥ A ∗B. Then

wt(c) ≥ k(c ∗ A) + k(c ∗ B).
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Proof. We recall the short argument that is used in the original proof. Let I be the support
of c and let πI be the projection map onto I. Let A′ = πI(c∗A) and B′ = πI(B) ∼ πI(c∗B).
Then A′ and B′ are mutually orthogonal codes of length wt(c), such that k(A′) = k(c ∗ A)
and k(B′) = k(c ∗ B). The sum of the dimensions of orthogonal spaces is at most the
dimension of the ambient space. �

Lemma 16 Let k = k(A), l = k(c ∗ A) and r = k − l. If r ≥ 1, then

dr(A) ≤ n− wt(c).

Proof. Let a1, . . . , ak be a basis of A. If l < k, then after a permutation of this basis we
may assume that c ∗ a1, . . . , c ∗ al is a basis of c ∗ A. So c ∗ aj is a linear combination of
the c ∗ a1, . . . , c ∗ al for all j > l. Hence after a linear transformation of the a1, . . . , ak we
may assume that c ∗ a1, . . . , c ∗ al is a basis of c ∗ A and c ∗ aj = 0 for all j = l + 1, . . . , k.
Let D be the subspace of A generated by al+1, . . . , ak. Then D has dimension k− l = r and
c ∗ a = 0 for all a in D. So ai = 0 for all a ∈ D and i ∈ supp(c). Hence

supp(D) ⊆ {1, . . . , n} \ supp(c).

Therefore dr(A) ≤ wt(D) ≤ n− wt(c). �

Recall that the genus or Singleton defect of C is defined by g(C) = n(C) + 1− k(C)− d(C).
This is a nonnegative integer.

Lemma 17
k(c ∗ A) ≥ min{wt(c)− g(A), k(A)}.

Proof. Let l = k(c∗A) and k = k(A). Suppose that r = k− l > 0. Then dr(A) ≤ n−wt(c)
by Lemma 16. Now dr(A) ≥ d(A) + r − 1. Hence

d(A) ≤ n− wt(c)− (k(A)− k(c ∗ A)− 1).

Or
k(c ∗ A) ≥ wt(c)− g(A).

�

For words c of sufficiently large weight, at least one of the dimensions k(c ∗ A) or k(c ∗ B)
is maximal.

Corollary 18 Let c ⊥ A ∗B, and let wt(c) > g(A) + g(B). Then

k(c ∗ A) = k(A), or k(c ∗B) = k(B).
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Proof. If both k(c ∗ A) < k(A) and k(c ∗B) < k(B), we obtain

wt(c) ≥ k(c ∗ A) + k(c ∗ B) ≥ wt(c)− g(A) + wt(c)− g(B),

where the first inequality is implied by Theorem 15 and the second inequality is a consequence
of applying Lemma 17 twice. Hence g(A) + g(B) ≥ wt(c). This contradicts the assumption.
�

Lemma 19 Let c ⊥ A ∗B. Then

wt(c) ≥ min{wt(c)− g(A), k(A)} + min{wt(c)− g(B), k(B)}.

Proof. Combine Theorem 15 and Lemma 17. �

Theorem 20 ([4]) Let c ⊥ A ∗B, and let k(A) > g(B) and k(B) > g(A). Then

wt(c) ≤ g(A) + g(B), or wt(c) ≥ k(A) + k(B).

Proof. In the inequality of Lemma 19, four possibilities occur for the right hand side. Two
of these are ruled out by the assumptions. Therefore the two given possibilities remain. �

Remark 21 The Roos-bound for cyclic codes (Theorem 1) is the special case where A, B
and C are cyclic, g(B) = 0 and g(A) < k(B). Theorem 20 shows that bounds can still be
obtained if both A and B have non-zero genus as long as their genus is not too large:

g(A) < k(B) and g(B) < k(A).

Theorem 4 uses no condition on g(B) but has a stronger condition on g(A):

g(A) < d(B⊥)− 1.

Thus Theorem 4 and Theorem 20 are not immediately comparable. There are situations
where one does apply and the other does not and vice versa. When

g(A) < d(B⊥)− 1 and g(B) < k(A)

both theorems apply. And in that case d(C) ≥ d(B⊥) + k(A)− 1 > g(A) + g(B) in Theorem
4 improves to d(C) ≥ k(A) + k(B) with Theorem 20.

Example 22 ([14, Example 3]) For cyclic codes, the theorem excludes weights in a way
similar to the combination of Theorem 5 and Corollary 1 in [14]. In Example 3 [id.], the
code C has zeros at R ⊇ A′B′, for

A′ = {αi : 83 ≤ i ≤ 95} ∪ {αi : 98 ≤ i ≤ 111}
B′ = {βj : j = −7, 0, 1}, β = α16.

With the sets A′ and B′ we associate codes A and B in the natural way, such that C ⊥ (A∗B).
The codes have k(A) = 27, g(A) ≤ 2, and k(B) = 3, g(B) ≤ 6. The theorem yields:
wt(c) ≤ 2 + 6, or wt(c) ≥ 27 + 3. Clearly d(C) ≥ 30.
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Example 23 ([6]) With the Klein quartic, one can construct codes A, B and C over GF (8)
of type [24, 3, 20], [24, 4, 19] and [24, 16, 7] respectively, such that C ⊥ (A ∗B). These codes
all improve on the Goppa bound by one. It is sufficient to verify this for the two smaller
codes A and B. With k(A) = 3, g(A) = 2, and k(B) = 4, g(B) = 2, the theorem yields:
wt(c) ≤ 4, or wt(c) ≥ 7. The Goppa bound gives d(C) ≥ 6. So that d(C) ≥ 7.

Theorem 24 For 0 ≤ s ≤ q − 2, let C be the cyclic code of length n = q2 − 1 over Fq with
defining set {i = i0 + i1q : 0 ≤ i0, i1 ≤ s}. Then C has dimension k = (q2 − 1) − (s + 1)2.
For 2s+ 2 ≤ q + 1, d(C) = 2s+ 2. For 2s+ 2 ≥ q,

d(C) =

{
[s+ 2− q/2]q, if q is even.

[s+ 2− (q + 1)/2](q + 1), if q is odd.

Proof. Consider first 0 ≤ 2s + 2 ≤ q + 1. The HT bound with U = {0, 1, . . . , s} and
V = {0, q, . . . , sq} gives d ≥ 2s + 2. For words with support among the (q + 1)-th roots of
unity the defining set reduces modulo q + 1 to the defining set

{−s,−s+ 1, . . . ,−1, 0, 1, . . . , s− 1, s}.

Thus, for 2s + 1 < q + 1, the (q + 1)-th roots support an MDS subcode of type [q + 1, q −
2s, 2s+ 2]. Hence the minimum distance of C is equal to 2s+ 2 if 2s+ 2 ≤ q + 1.
For 2s+2 ≥ q, write s = t+a where a and t are nonnegative integers such that a ≤ s+1−q/2.
We obtain a lower bound for the minimum distance by induction on a. Let A and B be codes
with generating sets U = {0, 1, . . . , t}+ {0, q, . . . , aq} and V = {0, q, . . . , tq}+ {0, 1, . . . , a},
respectively. Then C ⊥ A ∗B,

g(A) = g(B) ≤ g(a) := a(q − t− 1) = a(q − s+ a− 1),

and
k(A) = k(B) = k(a) := (a+ 1)(t+ 1) = (a+ 1)(s− a+ 1).

Furthermore g(a) < k(a), since a ≤ s + 1 − q/2. Let c be a nonzero codeword of C.
Then wt(c) ≤ 2g(a) or wt(c) ≥ 2k(a) by the symmetric Roos bound. Now g(0) = 0 and
g(a) < k(a − 1) again since a ≤ s + 1 − q/2. Hence wt(c) ≥ 2k(a) if a ≤ s + 1 − q/2, by
induction on a. The optimal bound is obtained for a = bs+ 1− q/2c. Hence

a+ 1 =

{
s+ 2− q/2, if q is even,
s+ 2− (q + 1))/2), if q is odd.

and

t+ 1 =

{
q/2, if q is even,

(q + 1)/2, if q is odd.
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We now construct words of weight equal to the obtained lower bound. A generating set for
C is given by

I = {i = i0 + i1q 6= 0 : i0 < q − 1− s or i1 < q − 1− s}

When q is even we look for a word of weight (a + 1)q. In particular, for s = q − 2 and
a = q/2− 1, we look for a word of weight q2/2. Let T (x) denote the trace function from Fq2

to F2,
T (x) = x+ x2 + · · ·+ xq + x2q + · · ·xq2/2.

The exponents i = i0 + i1q in T (x) either have i0 = 0 or i1 = 0. Thus the binary word
(Tr(αi) : i = 0, . . . , q − 2) belongs to C and has weight q2/2. The nonzero elements are the
zeros of

T (x)− 1 =

q/2∏
j=1

(x+ xq − αj),

for distinct nonzero elements αj ∈ Fq. For s < q − 2 and a < q/2− 1, let

f(x) = T (x) ·
q/2−1−a∏

j=1

(x+ xq − αj).

The exponents i = i0 + i1q in f(x) either have i0 < q/2 − a or i1 < q/2 − a. Now q/2 −
a = q − 1 − s and thus the word (f(αi) : i = 0, . . . , q − 2) belongs to C. It has weight
q2/2− (q/2− 1− a)q = (a+ 1)q. When q is odd we look for a word of weight (a+ 1)(q+ 1).
In particular, for s = q − 2 and a = (q − 1)/2− 1, we look for a word of weight (q2 − 1)/2.
Let

τ(x) = xt+1 + x(t+1)q = x(q+1)/2(1 + x(q+1)(q−1)/2).

The exponents i = i0 + i1q in τ(x) either have i0 = 0 or i1 = 0. Thus the word (τ(αi) : i =
0, . . . , q − 2) belongs to C and has weight (q2 − 1)/2. The nonzero elements are the zeros of

x(q
2−1)/2 − 1 =

(q−1)/2∏
j=1

(x · xq − αj),

for distinct nonzero elements αj ∈ Fq. For s < q − 2 and a < (q − 1)/2− 1, let

f(x) = τ(x) ·
(q−1)/2−1−a∏

j=1

(x · xq − αj).

The exponents i = i0 + i1q in f(x) either have i0 < (q− 1)/2− a or i1 < (q− 1)/2− a. Now
(q − 1)/2− a = q − 1− s and thus the word (f(αi) : i = 0, . . . , q − 2) belongs to C. It has
weight (q2 − 1)/2− (q/2− 1− a)(q + 1) = (a+ 1)(q + 1).
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Example 25 The theorem gives as a special case a code C of type [63, 38, 16] over F8

obtained with q = 8,m = 2, s = 4. This is better than the known code [63, 38, 15]. The code
C has defining set

I = {0, 1, 2, 3, 4}+ {0, 8, 16, 24, 32}

For this particular code, the proof in Theorem 24 comes down to two applications of the
AB-method. Let A and B be codes with generating sets U and V , respectively. The choice

U = {0, 1, 2, 3, 4}, V = 8 · U

corresponds to g(A) = g(B) = 0, k(A) = k(B) = 5. And thus by Theorem 20, d(C) ≥ 10.
The choice

U = {0, 1, 2, 3, 8, 9, 10, 11}, V = 8 · U

corresponds to g(A) = g(B) = 4, k(A) = k(B) = 8. And thus by Theorem 20, d(C) ≤ 8
or d(C) ≥ 16. So that d(C) ≥ 16. The same argument applied to the cyclic code of length
n = 65 define with

I = {−2,−1, 0, 1, 2}+ {−16,−8, 0, 8, 16}

gives a code of type [65, 40, 16] that is better than the known code [65, 40, 15].
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