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Abstract

The van Lint-Wilson AB-method yields a short proof of the Roos bound for the min-
imum distance of a cyclic code. We use the AB-method to obtain a different bound for
the weights of a linear code. In contrast to the Roos bound, the role of the codes A and
B in our bound is symmetric. We use the bound to prove the actual minimum distance
for a class of dual BCH codes of length ¢? — 1 over [F,. We give cyclic codes [63, 38, 16]
and [65,40, 16] over Fg that are better than the known [63, 38, 15] and [65, 40, 15] codes.

1 Introduction

Starting with the Hamming codes and the Golay codes in the late 1940’s, cyclic codes have
always played a central role in the theory of error-correcting codes. Reed-Muller codes, BCH
codes and in particular Reed-Solomon codes have found widespread applications. Although
some negative results are known indicating that cyclic codes are asymptotically bad, this re-
mains an open problem. For moderate length, many optimal codes are cyclic. Binary cyclic
codes are better than the Gilbert-Varshamov bound for lengths up to 1023. Rich mathe-
matics is involved in the determination of the actual parameters of a cyclic code in terms of
its defining set. The first result in this direction was obtained by Bose and Ray-Chaudhury
[1, 2] and Hocquenghem [II]. Their result is known as the BCH bound. The bound was
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generalized first by Hartmann-Tzeng [10], and then, using important new ideas, by Roos
[19, 20]. In [14], van Lint and Wilson present further techniques that are often useful when
the actual minimum distance exceeds the Roos bound. They are known as the AB-method
and the Shifting method. The various lower bounds for the minimum distance of a cyclic
code are in general not sharp. And the efficient determination of the minimum distance of a
cyclic code in general remains an open problem. In this paper we prove two bounds for the
minimum distance of a general linear code, the iterated Roos bound (Theorem [§)) and the
symmetric Roos bound (Theorem . As an application, we give the actual parameters for
a class of dual BCH codes (Theorem [24)).

The following notation and terminology applies throughout The finite field with ¢ elements
is denoted by F,. For a word ¢ € [y, the Hamming weight of ¢ is denoted by wt(c). The
support of a word c is the set of nonzero positions of the word and is denoted by supp(c).
The support of a subset D of Iy is defined as supp(D) = {i | x; # 0 for some x € D}. The
weight of D is the number of elements of supp(D) and is denoted by wt(D). A g-ary code C
is a linear subspace of Fy. For a linear code C, let n(C), k(C) and d(C') denote its length,
dimension and minimum distance, respectively. The r-th generalized Hamming weight of C'is
defined by d,(C') = min{wt(D) | D linear subspace of C, k(D) = r}. Define the genus or the
Singleton defect of C as g(C') = n(C)+1—k(C)—d(C). The genus is a nonnegative integer by
the Singleton bound. For two vectors a and b of the same length n, let a-b = a1b1+- - -+a,b,
be the inner product, and let a x b = (a1bq,...,a,b,) be the componentwise product. For
two subsets A and B of F}, let A+ B, = {axb|ac A b€ B}. Wesay that A and B
are orthogonal when a-b = 0 for all a € A and all b € B, we denote this by A 1 B. The
dual A* of a subspace A is by definition A = {c € F} [c-a =0 forall ac A}. A
code A is called degenerate if there is a position such that all code words in A are zero at
that position, or equivalently d(A+) = 1. For a subset A of F}, let (A) be the subspace
generated by A. For a code A of length n and a subset I C {1,...,n}, the subcode A(I) =
{a]a; =0 forall iel}.

2 Two bounds for cyclic Codes

Let F, be a finite field of order ¢ and for n with (n,q) = 1, let F;m be an extension of
[F, containing the n-th roots of unity. Let a € Fym be a primitive n-th root of unity. Let
a(i) = (1,a4,a%,...,a" V). The Fym linear cyclic code with generating set {iy, ..., i}
is by definition C' = (a(iy), a(ia), ..., a(is)), and the F, linear cyclic code with defining
set {i1,...,is} is by definition the space of all words in F} that are orthogonal to C. We
formulate a special case of the Roos bound for cyclic codes.



Theorem 1 (Roos bound for cyclic codes [19]) Let the cyclic codes A and B be de-
fined as follows, for iy < iy < ... <lisi1,

A = (i), alis), - alis)),
B = <C¥(1),Oé<2),...,0[((5— 1)))
Let ig.1 —ip —s < d — 1. Then, a code C with C L (A x B) has minimum distance
d(C) > min{n, + s}.
For cyclic codes A, B and C' it is easy to verify if C' L (A *x B) given the defining set of C'.

Lemma 2 If A and B are the cyclic codes with generating set U and V', respectively, then
C L (Ax B) if and only if the defining set for C' contains U+V ={u+v|ue U, veV }.

The following symmetric version of the Roos bound rules out certain weights in a code and
in general does not give a lower bound for the minimum distance. This is characteristic for
the AB-method that is used for its proof.

Theorem 3 (Symmetric Roos bound for cyclic codes) Fori; < iy < ... <'ig1, and
jl <j2< <jt+17 let

A = <Of(i1), a<i2)a ce >a(is+1)>a

B = <Oé(j1),06(j2),...7Oé<jt+1)>-
Letigyy —i1—s<t+1and jio1—j1—t < s+ 1. Then, a word c with ¢ L Ax B has weight
wt(c) < (igp1 — i1 — 8)+ (Jee1 — j1 — 1), or wt(c) > s+t + 2.

Proof. Combine Theorem 5 and Corollary 1 in [14]. Theorem in Section [5| gives a
generalization to linear codes. 0

3 Bounds for linear codes

In [20], Roos derives the Roos bound for cyclic codes [id., Theorem 2] from a more general
theorem [id., Theorem 1].

Theorem 4 (Roos bound for linear codes [20, Theorem 1]) Let A, B and C be lin-
ear codes such that

(0)  d(A') >1,
(1) CL(AxB),
(2)  g(A) <d(B*+) -2
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Then d(C) > min{n,d(B*) + k(A) — 1}.

Proof. The proof in [20] applies after matching our notation with their notation. The
formulation in [20] is in terms of a generating matrix X = G4 for A and a generating matrix
A = Gp for B. And the bound is proven under the condition that every m x (m+d(B+) —2)
submatrix of the m x n matrix X is of full rank. Clearly, this is equivalent to saying that X
has no words with support on n— (m+d(B*) —2) positions, or d(A) > n—k(A)—d(B*)+2.
Finally, for genus g(A) =n + 1 — k(A) — d(A), this can be written as d(Bt) — 1 > g(A). O

The theorem is equivalent to the following proposition.

Proposition 5 ([17]) Let A, B and C be linear codes of length n such that, for positive
integers a and b

(0) d(A)>1,

(1) O L (AxB),

(2)  kA)>a,

(3) d(B*) >0,

(4)  d(A)>n— (a+b).

Then d(C)> min{n,a+b+ 1}.
Note that Conditions (2),(3),(4) imply that
k(A) +d(A) +d(BY) >n+2,

which is equivalent to

g(A) < d(B*+) - 1.

On the other hand, for g(A) < d(B*) — 2, Conditions (2),(3),(4) hold with a = k(A) — 1
and b = d(B*) — 1. Thus Theorem {4| and Proposition |5 are equivalent. The proposition
reveals the relation between the Roos bound and error-correcting algorithms. A pair of codes
A, B C IFy is called t-error-locating for the code C' if

1) C L (AxB),
(2)  Kk(A) >t
3)  d(B) >t

If moreover the pair A, B satisfies

then the pair is called t-error-correcting for the code C' ([12],[15],[16]).
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The existence of error-correcting pairs has been shown for algebraic geometry codes and
many binary cyclic codes [5l, [7, 8, @, 17, I8, 21, 22]. If the Conditions (1),(2),(3) and (4)
hold in Proposition [b| with a = b = ¢, then the pair (A, B) is a t-error-correcting pair for
C and t errors can be corrected efficiently. The decoding up to half the Roos bound or the
Hartmann-Tzeng bound is still an open problem.

Proposition [5| has the following generalization.

Theorem 6 Let A, B and C' be linear codes of length n such that, for nonnegative integers
a,b,r with r <a,

(0)  d(AY) > 1,

(1) O L (AxB),

) k(A)>a,

(3) d(B*Y)>0b,

4)  d(A)>n—(atb—r)

Then d(C) > min{n,a +b+2 —r}.

Proof. The proof is similar to the one in [I7] for r = 1. Note that (1) implies that C' % A is
contained in B+. Let ¢ be a nonzero code word of C' of minimal weight d(C).

First, assume wt(c) < b. With (0), we obtain a nonzero word a € A with a; # 0 and 7 in
the support of ¢. Then cxa is a nonzero word in Bt of weight wt(cxa) < b. A contradiction
with (3). Thus wt(c) > b.

Next, assume b < wt(c) < a+ b+ 1—r1. Let I~ be a subset of the support of ¢
consisting of b elements, and I™ an index set of a + b + 1 — r elements which contains
supp(c). Let a € A such that a; = 0 for all # € I\ I~. Then the vector ¢ % a is an
element of B+ and has support in I~. Furthermore |[I7| = b < d(B*). Hence c*a = 0
by (3), so a; = 0 for all i € I'T. Therefore A(I*) = A(I*\ I7). Now I\ I~ consists of
a+ 1 —r elements, and k(A) > a+ 1 by (2). Hence A(I*\ I7) is a subspace of A and its
dimension is at least r. Therefore wt(A(I"\17)) > n—(a+b—r) by (4). On the other hand
wt(A(IT)) <n—|I"| =n—(a+b+1—r). Thisis a contradiction, since A(IT) = A(IT\I7).
Therefore d(C) > a+b+2 —r. O

Because of the weaker condition in (4), Theorem |§| applies in some cases where Proposition
[l does not.

Example 7 Let C be the binary Reed-Muller code RM (2,5) with parameters [32, 16, 8].
And let A = B be the binary Reed-Muller code RM(1,5) with parameters [32,6,16]. Then
d(B*) = 4 and d3(A) = 28 so that the conditions hold with a = 5,b = 3 and r = 3. This
gives d(C') > 7, which improves to d(C) > 8 with the observation that alll words in C' are of
even weight.



4 The iterated Roos-bound

Theorem 8 Let Aq,..., A,,, B1 and C be F-linear codes of length n such that, for all i =

1,....m,
(0)  d(A7) > 1,
(1) CL(An*...A;%DBy),
(2) ]f(AZ) > Gy,
(3)  d(Bi) > b,
(4)  d(A;) >n—(a;+ -+ a +b).

Then d(C)> min{n, a,, +---+ ay + by + 1}.

Proof. The proof is by induction on m. For m = 1, we can use Proposition [5| with
A=A and B = By. Fori =1,...,m, let Biy; = (A; x B;) and let C;;1 = Biﬁrl. So
that Cjy1 L A; *---% Ay x By. Suppose that, by the induction hypothesis for i = m — 1,
d(Cpn) > am_1+ -+ + ay + by. Then Proposition [5| with A = A,,, B = B,, and C = C,,,;
yields d(C) > apm + (am—1 + -+ -+ a1 +b). O

For cyclic codes, we formulate the conditions in terms of the generating sets Uy, ..., U, V;
for the codes Ay, ..., Ay, By, respectively. For a code A with generating set U we use that
k(A) = |U| and d(A) > n — (|[U| — 1), where U is a set of consecutive integers that contains
U.

Corollary 9 Let Uy,...,U,, Vi be nonempty subsets of Z, and let Vi, = U; + V;. Let
dy be the minimum distance of the cyclic code over F with Vi as defining set. If |U;| <
Uil + -+ |Ui| +di —i—1 foralli =1,...,m, then the minimum distance of the cyclic
code with defining set V41 is at least |Upy| + -+ + |Ur| + dy — m.

Remark 10 In case m = 1 we get the original Roos bound [19] 20, 14]. The special case
m = 2 is still more general than Theorem 2 of [5]. In all cases, the minimum distance bound
obtained with the theorem is that of the Roos bound applied to A = A,,, B = B,,. The
purpose of the theorem is therefore not to obtain better bounds than the Roos bound, but
rather to facilitate the choice of sets A and B. We illustrate this for a class of codes.

Definition 11 Let ¢,m and s be nonnegative integers such that ¢ is a power of a prime
and 0 < s < ¢q. Let n =¢™ — 1. Let U(q, m, s) be the subset of Z, defined by

Ulg,m,s) ={ig+irq+  +im1qg" | 0<i;<sforj=0,...,m—1}

Let C(g,m, s) be the cyclic code of length n over F, with U(q, m, s) as defining set. The set
U(q,m, s) is invariant under multiplication by ¢ and thus is a complete defining set.



Proposition 12 The dual code C(q,m,s)* is the BCH code with a defining set J = {1,...,
(g—1—s)¢™ ' =1} and parametersn = ¢™—1, k = (s+1)™, and d = (¢q—1—5)(¢™—=1)/(q—1).
Proof. The code C(q,m, s) has complete defining set

U=U(gm,s)={0<i<n: 0<i;<sforj=0,....m—1}
It follows that the dual code has complete defining set

V={0<i<n: n—igU},
={0<i<n:ij<q—1—sforsomej=0,...,m—1}.

The smallest ¢ not in Visi = (¢ —1—s)(¢™ —1)/(¢ —1). Thus J C V. On the other hand,
for every i € V there exists an i’ € {¢"i : k =0,...,m — 1} with ¢/, , < (¢—1—15). And
thus 7/ < (¢ — 1 —s)¢™ ! and i’ € J. We have shown that J and V define the same code.
The BCH bound for V gives d > (¢ —1—s)(¢™ —1)/(¢ — 1). To show that this is the actual
distance we need to show that there exist words with s(¢™ — 1)/(¢ — 1) zeros. Since U is a
generating set, we can find words with zeros on any s distinct cosets of the (¢™—1)/(¢—1)-th
roots of unity. 0

Example 13 Let V; = {0,1,...,s} and let U; = {0,¢’,...,s¢°} for j = 1,...,m — 1.
Define by induction V;; = U; +V; for j =1,...,m — 1. Then V; = U(q, j,s) and U; = U
for all j. So |Uj| = |U;| = s+ 1 and d; = s+ 2 and all the conditions of Corollary [J] are
satisfied. Hence the minimum distance of C'(g,m, s) is at least (m —1)s+ (s +2) = ms + 2.
The bound is sharp for m =2, n = ¢* — 1 and ¢ > 2s + 1. In that case, words with support
among the (¢+ 1)-roots of unity have a defining set that reduces modulo ¢+ 1 to the defining
set
{—=s,—s+1,...,-1,0,1,...,s — 1,5}

which gives an MDS subcode of type [¢ + 1,q — 2s,2s + 2]. Hence the minimum distance of
C(q,2,s) is equal to 2s + 2 if ¢ > 2s + 1.

Lemma 14 Let C = C(q,m,s) be the cyclic code of the previous example. For 0 < a <'s,
(a+1)s>alg+a—1) = d(C)>ms+2+a(s—a)(m—1).

Proof. Let Vi ={0,1,...,s —a}+{0,q,...,aq}, and let U; = ¢/V3, for j = 1,...,m — 1.

Then U(q,m,s) = Up—1 + ...+ Uy + V4. By the HT bound the code with defining set V}

has minimum distance dy; > s + 2. Also, for j =1,...,m — 1,

Ujl=(s—a+1)(a+1), and |U;] =aq+s—a+ 1.



For the application of Corollary @ the condition on |U;] is strongest for j = 1,

U1| < |UL| 4 di — 2
Sag+s—a+1<(s—a+1)(a+1)+s
Saqg—a+a® < (a+1)s.
If the condition holds, then

d(C) 2 U] + -+ U] +dr = (m = 1)
=(m—-1)(s—a+1)a+1)+s+2—(m—1)
=ms+2+a(s—a)(m—1).

O

Table 1 gives the actual parameters for codes C(q, m,s) with m = 2 for ¢ =8 or ¢ = 9. The
values for the minimum distance d(C') are obtained with Theorem [24]

q=8m =2 q=9m=2

C Ct=BCH C C+=BCH
dim dist | dim dist | dim dist | dim dist
62 2 1 63| 79 2 1 80
59 4 4 54| 76 4 4 70
54 6 9 451 71 6 9 60
47 8| 16 36| 64 8| 16 50
38 16| 25 271 55 10| 25 40
27 24| 36 18| 44 20| 36 30
14 32| 49 9| 31 30| 49 20
16 40| 64 10

®
I

N O Ul W N~ O

Table 1: Codes of length 63 (¢ = 8, m = 2) and length 80 (¢ = 9,m = 2).

5 The symmetric Roos bound

The following theorem is the main tool in the AB-method, due to van Lint and Wilson [14],
for proving the minimum distance of cyclic codes.

Theorem 15 ([14]) Letc L Ax B. Then
wt(c) > k(cxA)+k(c*B).
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Proof. We recall the short argument that is used in the original proof. Let I be the support
of ¢ and let 77 be the projection map onto I. Let A" = m;(cxA) and B’ = 7;(B) ~ 7;(c* B).
Then A’ and B’ are mutually orthogonal codes of length wt(c), such that k(A’") = k(c x A)
and k(B') = k(c* B). The sum of the dimensions of orthogonal spaces is at most the
dimension of the ambient space. 0]

Lemma 16 Let k = k(A), l=k(c*xA) andr =k —1. Ifr > 1, then
d,(A) <n—wt(c).

Proof. Let ay,...,a; be a basis of A. If [ < k, then after a permutation of this basis we
may assume that ¢ xa;,...,c*a; is a basis of c x A. So ¢ * a; is a linear combination of
the cxay,...,cxa; for all j > [. Hence after a linear transformation of the ay, ..., a; we
may assume that cxa;,...,cxa;isabasisofcx Aand cxa; =0forall j =1+1,... k.
Let D be the subspace of A generated by a;.1,...,a;. Then D has dimension k —[ = r and
cxa=0forallain D. Soa; =0 for all a € D and i € supp(c). Hence

supp(D) C {1,...,n} \ supp(c).
Therefore d,.(A) < wt(D) < n — wt(c). O

Recall that the genus or Singleton defect of C' is defined by g(C) = n(C) + 1 - k(C) — d(C).
This is a nonnegative integer.

Lemma 17
k(cx A) > min{wt(c) —g(A),k(A)}.

Proof. Letl =k(c*A)and k = k(A). Suppose that r = k—1 > 0. Then d,.(4) < n—wt(c)
by Lemma [16] Now d,(A) > d(A) +r — 1. Hence

d(A) < n—wt(e) — (k(A) —k(c*A) — 1).

k(cx A) > wt(c) —g(A).
U

For words c of sufficiently large weight, at least one of the dimensions k(c * A) or k(c * B)
is maximal.

Corollary 18 Letc L A x B, and let wt(c) > g(A) + g(B). Then
k(cx A) =k(A), or k(cxB)=k(B).
9



Proof. 1f both k(c % A) < k(A) and k(c * B) < k(B), we obtain
wt(c) > k(cx A) + k(cx B) > wt(c) — g(A) + wt(c) — g(B),

where the first inequality is implied by Theorem [L5|and the second inequality is a consequence
of applying Lemma [17) twice. Hence g(A)+ g(B) > wt(c). This contradicts the assumption.
U

Lemma 19 Letc L Ax B. Then
wife) > minfwt(c) — g(A),k(A)} + min{wt(c) — g(B),k(B)}.
Proof. Combine Theorem [15] and Lemma [I7] O
Theorem 20 ([4]) Let c L Ax B, and let k(A) > g(B) and k(B) > g(A). Then
wi(e) < g(A) +(B), or wi(c) > k(A) + k(B).

Proof. In the inequality of Lemma [19] four possibilities occur for the right hand side. Two
of these are ruled out by the assumptions. Therefore the two given possibilities remain. [J

Remark 21 The Roos-bound for cyclic codes (Theorem [1)) is the special case where A, B
and C' are cyclic, g(B) = 0 and g(A) < k(B). Theorem [20| shows that bounds can still be
obtained if both A and B have non-zero genus as long as their genus is not too large:

g(A) < k(B) and g(B) < k(A).
Theorem 4] uses no condition on g(B) but has a stronger condition on g(A):
g(A) < d(B*Y) —1.
Thus Theorem {4] and Theorem are not immediately comparable. There are situations
where one does apply and the other does not and vice versa. When
g(A) < d(B*+) — 1 and ¢g(B) < k(A)
both theorems apply. And in that case d(C') > d(B*)+k(A) —1 > g(A) + ¢g(B) in Theorem
improves to d(C') > k(A) + k(B) with Theorem [20]

Example 22 ([14, Example 3]) For cyclic codes, the theorem excludes weights in a way
similar to the combination of Theorem 5 and Corollary 1 in [14]. In Example 3 [id.], the
code C' has zeros at R O A'B’, for

A = {a":83<i<95}U{a’:98 <i< 111}

B = {#:j=-7,01}, B=a'l
With the sets A" and B’ we associate codes A and B in the natural way, such that C' L (AxB).

The codes have k(A) = 27,9(A) < 2, and k(B) = 3,9(B) < 6. The theorem yields:
wt(c) <246, or wt(c) > 27+ 3. Clearly d(C) > 30.
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Example 23 ([6]) With the Klein quartic, one can construct codes A, B and C over GF'(8)
of type [24, 3,20], [24,4, 19] and [24, 16, 7] respectively, such that C' L (A % B). These codes
all improve on the Goppa bound by one. It is sufficient to verify this for the two smaller
codes A and B. With k(A) = 3,9(A) = 2, and k(B) = 4,g(B) = 2, the theorem yields:
wt(c) <4, or wt(c) > 7. The Goppa bound gives d(C') > 6. So that d(C) > 7.

Theorem 24 For 0 < s < q—2, let C be the cyclic code of length n = ¢* — 1 over F, with
defining set {i = i +i1q : 0 < ig,11 < s}. Then C has dimension k = (¢* — 1) — (s + 1)%.
For2s+2<q+1,d(C)=2s+2. For2s+22>q,

) s +2—q/2q, if q 1s even.
H4) = {[S+2 —(q+1)/2)(q+1), ifq is odd.

Proof. Consider first 0 < 2s +2 < ¢+ 1. The HT bound with U = {0,1,...,s} and
V ={0,q,...,sq} gives d > 2s + 2. For words with support among the (¢ + 1)-th roots of
unity the defining set reduces modulo ¢ + 1 to the defining set

{=s,—s+1,...,—1,0,1,...,s — 1, s}.

Thus, for 2s + 1 < ¢+ 1, the (¢ + 1)-th roots support an MDS subcode of type [¢ + 1,q —
2s,2s 4 2]. Hence the minimum distance of C' is equal to 2s + 2 if 2s +2 < ¢+ 1.

For 2s+2 > ¢, write s = t+a where a and ¢ are nonnegative integers such that a < s+1—¢/2.
We obtain a lower bound for the minimum distance by induction on a. Let A and B be codes
with generating sets U = {0,1,...,t} +{0,q,...,aq} and V ={0,¢q,...,tq} +{0,1,...,a},
respectively. Then C' L Ax B,

g(A) =g(B) < gla) :==alg—t—-1)=a(g—s+a—1),

and

k(A) = k(B) = k(a) == (a+ 1)t + 1) = (a+ 1)(s —a+1).
Furthermore g(a) < k(a), since a < s+ 1 — ¢/2. Let ¢ be a nonzero codeword of C.
Then wt(c) < 2g(a) or wt(c) > 2k(a) by the symmetric Roos bound. Now ¢(0) = 0 and
g(a) < k(a — 1) again since a < s + 1 — ¢/2. Hence wt(c) > 2k(a) if a < s+ 1 —¢q/2, by
induction on a. The optimal bound is obtained for a = [s + 1 — ¢/2]. Hence

G+l s+2—q/2, if ¢ is even,
Sl s+2—(g+1))/2), if ¢is odd.

and /
- q/2, if ¢ is even,
t+l_{ (g+1)/2, if ¢ is odd.
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We now construct words of weight equal to the obtained lower bound. A generating set for
C is given by
I={i=ip+i1qg#0:jp<qg—1—sorip <q—1-—s}
When ¢ is even we look for a word of weight (a 4+ 1)g. In particular, for s = ¢ — 2 and
a = q/2—1, we look for a word of weight ¢?/2. Let T'(x) denote the trace function from F
to FQ,
2
T(x)=a+a%+ a2l + 2% a2
The exponents i = ig + i1q in T'(x) either have i = 0 or ¢; = 0. Thus the binary word

(Tr(a):i=0,...,q — 2) belongs to C and has weight ¢*/2. The nonzero elements are the

zeros of
q/2

T(:E)—le(x+:vq—ozj),

i=1

for distinct nonzero elements o; € F,. For s < ¢ —2 and a < ¢/2 — 1, let

q/2—1—a

f@) =T J[ @+a'=a))

Jj=1

The exponents ¢ = iy + i1q in f(z) either have iyg < ¢/2 —a or i; < ¢/2 — a. Now ¢/2 —
a = q—1—s and thus the word (f(a’) : i = 0,...,q — 2) belongs to C. It has weight
7*/2—(q/2—1—a)qg = (a+1)g. When ¢ is odd we look for a word of weight (a + 1)(¢+1).
In particular, for s = ¢ — 2 and a = (¢ — 1)/2 — 1, we look for a word of weight (¢* — 1)/2.

Let
r(x) = 2!t + 2t — x(q+1)/2(1 + x(qﬂ)(qfl)/?)_

The exponents i = iy + ;¢ in 7(x) either have igp = 0 or 4; = 0. Thus the word (7(a’) : i =
0,...,q—2) belongs to C and has weight (¢*> — 1)/2. The nonzero elements are the zeros of

(g-1)/2
2@-D/2 1 = H (-2 — ),

j=1
for distinct nonzero elements a; € F,. For s <g—2and a < (¢—1)/2—1, let

(4-1)/2-1-a

f)y=r@)- J[ (@ 2'=a.

Jj=1

The exponents ¢ = ig +i1¢ in f(x) either have iy < (¢—1)/2—aori; < (¢—1)/2—a. Now
(¢q—1)/2—a=¢q—1— s and thus the word (f(a'):7=0,...,q —2) belongs to C. It has
weight (¢* —1)/2—(¢/2—1—a)(g+1) = (a+1)(¢+ 1).
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Example 25 The theorem gives as a special case a code C' of type [63,38,16] over Fg
obtained with ¢ = 8, m = 2, s = 4. This is better than the known code [63, 38, 15]. The code
C has defining set

I=4{0,1,2,3,4} +{0,8,16, 24,32}

For this particular code, the proof in Theorem comes down to two applications of the
AB-method. Let A and B be codes with generating sets U and V, respectively. The choice

U=1{0,1,2,34},V=8-U

corresponds to g(A) = g(B) = 0, k(A) = k(B) = 5. And thus by Theorem 20 d(C) > 10.
The choice
U=10,1,2,3,8,9,10,11},V =8 -U

corresponds to g(A) = g(B) = 4, k(A) = k(B) = 8. And thus by Theorem 20 d(C) < 8
or d(C) > 16. So that d(C') > 16. The same argument applied to the cyclic code of length
n = 65 define with

[={-2-1,0,1,2} + {—16,-8,0,8, 16}

gives a code of type [65,40, 16] that is better than the known code [65, 40, 15].
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