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A method is developed for establishing the exact solvability of nonlinear evolution equations in
one space dimension which are linear with constant coefficient in the highest-order derivative.
The method, based on the symmetry structure of the equations, is applied to second-order
equations and then to third-order equations which do not contain a second-order derivative. In
those cases the most general exactly solvable nonlinear equations turn out to be the Burgers
equation and a new third-order evolution equation which contains the Korteweg-de Vries (KdV)
equation and the modified KdV equation as particular cases.

INTRODUCTION

This paper is concerned with the problem of determin-
ing whether a given nonlinear evolution equation is exactly
solvable, and also with the problem of finding all such equa-
tions of a given order. An equation is called exactly solvable
if it admits a Lax formulation,’ that is, if there exist differen-
tial or integral operators L and 4 such that the given equa-
tion can be written in the form L, = [4, L ].

Our approach to the above problem is based on the con-
sideration of the symmetry structure of the given equation. If
an equation is exactly solvable it possesses infinitely many
generalized (as opposed to Lie-point) symmetries. The exis-
tence of a generalized symmetry manifests itself by the exis-
tence of an admissible generalized or Lie-Biacklund (LB) op-
erator.” The existence of infinitely many symmetries is
expressed by the existence of a recursion operator 4 * (see
also Sec. 1) which generates a new admissible LB operator
from a given one. In almost* all known cases the admissible
operator expressing invariance of equation under #-transla-
tion is generated from that expressing invariance under x-
translation. We call equations possessing this property ex-
actly solvable equations of normal type. Another interesting
fact regarding the symmetry structure of evolution equa-
tions is that in all known cases the existence of one general-
ized symmetry implies the existence of infinitely many.
(However, this has not been proved in general.) With the
above in mind we now formulate our criterion, which is
elaborated in Sec. 2.

A. Proposition

A necessary condition for a nonlinear evolution equa-
tion of nth order to be exactly solvable of normal type is that
it admit an LB operator with a generator of order 2n — 1.

Having obtained this generator, it is usually possible by
inspection to obtain the recursion operator 4, the existence
of which provides a sufficient condition for the exact solv-
ability of this equation, since 4 and the Fréchet derivative of
the t-independent part of the equation form a Lax pair (see
Sec. 1).

The above criterion is quite practical since it is algorith-
mically very straightforward to find out if a given equation
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admits a generator of a given order. Further, it is also algor-
ithmically possible to determine which equations of a certain
order admit a generator of a given order. This is illustrated in
Sec. 2, where we find all second-order equations and all
third-order equations (not involving a second-order deriva-
tive) which are of normal type. Within equivalence (see Sec.
2.1), the most general nonlinear second-order equation with
the above property is the Burgers equation. The most general
third-order equations turn out to be: (i) A generalization of
the Korteweg—de Vries (KdV)equation, see (2.18) which, in
particular, contains any linear combination of the KdV and
of the modified KdV (MKdV) as a special case, (ii) A linear
combination of the potential KdV (PKdV) and of the poten-
tial MKdV (PMKdV). The potential KdV (or the potential
version of the KdV) is the equation obtained from the KdV
after replacing the dependent variable u by the “potential”
w, u = w,, and integrating once.

B. Outline of the paper

In Sec. 1 we first define admissible LB operators? as
restricted to evolution equations as well as their commuta-
tors® and prove 2 lemma expressing the admissibility of an
LB operator in a convenient form. We further recall the defi-
nition of a recursion operator® and then prove that the recur-
sion operator together with the Fréchet derivative of the
time-independent part of a given evolution equation form a
Lax pair, and also give a convenient characterization of a
recursion operator as well as of its main property (see Lem-
mas 2 and 3). Finally, for completeness of the presentation,
the definition of a hereditary operator®’ is recalled. In Sec. 2
we first outline our method and then present some concrete
results which also illustrate the general theory. In Sec. 2A we
find all second-order equations possessing a third-order
symmetry and the corresponding admissible generators. We
further show that all these equations can be linearized, and
give explicitly the corresponding linearizing Biackiund
transformations (BT). The recursion operators possessed by
the above equations are also explicitly given. In Sec. 2.2 we
find all third-order equations (not involving a second-order
derivative) possessing a fifth-order symmetry. We also give
the corresponding admissible generators and recursion oper-
ators. Finally, in Sec. 3 we compare our method with other
existing ones and indicate some open questions.
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1. MATHEMATICAL PRELIMINARIES
A. Admissible LB operators

In what follows we shall consider evolution equations
of the form

2 =u, + K (xu,u,,..,u,) =0, 1y
where
ay .
U= a3 u, j=0,1,..,n. (1.2)

The most general LB operator associated with (1.1) is
given by
d
X (= 77——+(D77)——+ Z( n) ;
du U, = du
where = 9(x,t,u,u,,...,t ), N arbitrary, is called the gener-
ator of the above LB operator, D is the total derivative with
respect to x

(1.3)

a a d d

dx i du G du, ti du, T
and D, is defined analogously. Without loss of generality, we
assume that 7% does not depend on ¢-derivatives since for ad-
missible operators they can always be eliminated using equa-
tion (1.1).

The LB operator X (n) is an admissible LB operator of
(1.1) iff X ()12 = o0, where o = 0 when Eq. (1.1) and its dif-
ferential consequences are assumed. The above is denoted by

X2 |lo_o=0 (1.4)
Equation (1.4) provides an algorithm for finding % as the
solution of a system of liner overdetermined equations.

An important special class of LB operators is the class
of Lie (point) operators. The most general such operator
associated with (1.1) is given by

a 8

Z=¢&—4 71 —+4v
§ Ix ot O’
where &, 7, v are functions of x, 7, and u only. The operator Z

can be written in the form (1.3)-by the equivalence®

D=D =

(1.5)

Z&SX (v —buy—Tu), (1.6)

or, using Eq. (1.1), X (v — &u, + 7 K). The above equiv-
alence means that Eq. (1.1) admits Z iff it admits the corre-
sponding X.

The commutator of two LB operators is an LB operator
whose generator is expressed by a simple formula,’

(X (), X (7] = X (15),
=X )1, — X ()7, (L7

Obviously, the admissible LB operators of a given equation
form a Lie algebra.

where 7,

In considering the symmetries of an equation, it is con-
venient to use an operator formulation.” We define the Fré-
chet derivative of a function N (W)=N (u,u, ,u,,...,u, ) by
N'(u), where

, N
N@=Nute) | (1.8)
(96 €e=0
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Clearly, the right-hand side of Eq. (1.8) is linear in v and
therefore N '(u) is an operator acting linearly onv. Actually,

Comparing Eq. (1.3) and (1.9) we obtain

X2 =2'n). (1.10)
Therefore Eq. (1.4) takes the form

2'[n]|p=0 =0. (1.11)

In the case of evolution equations, Eq. (1.11) {or, equivalent-
ly, (1.4)] can be further simplified

Lemma 1: The evolution equation (1.1) admits the LB
operator X (n) generated by 7 = n(x,t,u,u,,...,u,) iff

N +XMK—-XK)p=0 (1.12a)
or, equivalently,
7 +K'[n] —7K]=0. (1.12b)

Proof: Writing out Eq. (1.4), we obtain
(D,m) + X(m)K = 0, when (1.1) holds,

or
)
7, + a_Z”
u; +X(n)K =0, when (1.1) holds,
&
or
7 — i_ZK_jzla%DjK + XK =0. QED.

The advantage of (1.12) in either form as compared with
(1.4) [or (1.11)} is that the validity of (1.1) has already been
assumed. Therefore the admissibility of X () by (1.1) is ex-
pressed as a relation between 7 and K with no further as-
sumptions to be made. Further, using Eq. (1.7) we obtain

Corollary 1:If 77 does not depend on ¢ explicitly, Eq.
(1.1) admits X () iff X () and X (K ) commute.

Recursion Operators: The operator A (1) is a recursion
operator for Eq. (1.1) iff®

[22.4],_,=0. (1.13)

It follows from the above definition that if X (%) is an admissi-
ble LB operator of (1.1) and 4 is a recursion operator of
(1.1), then the infinitely many LB operators X (4 ‘), j = 0,
1, 2,..., are also admissible operators for the equation (1.1).?
(See also Lemma 3 and its corollary.)

We define the Fréchet derivative of an operator-valued
function 4 (u) by
a4 (u + ev)w]

3 €=0

and say that A '(u)[v]wis the derivative of A (&) evaluated at v
and then applied to w. For example, the recursion operator
of the KdV equation is given by 4 ()
=D?+2/3u+1/3u,D~", where D ' is the inverse total
derivative D~ '(w)(x) = > w(& )dE. Therefore
AWl =2/3v+1/3v,D".

Lemma 2: The operator 4 (1) is a recursion operator for

4'(W)vlw= ) (1.14)
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Eq. (1.1)iff the operators 4 (v) and X '(#) form a Lax pair for
Eq. (1.1). This is a consequence of the following equivalence
[24])p_0 =@, +[K'\dDp-o= —4'K]+[K"4]
(1.15)
(Here 4, actually means D,A whereas, for instance, in (1.12)
77, means d7/dt. The reason for this regrettable inconsisten-
cy of notations is that in discussing a Lax pair D, L is custom-
arily denoted by L, .)
Proof:

[{),,A ]77 = [Dl +K',4 ]7’
=[D,Aln+ (K Alp=47+[K"4]y,

since

(D4 [n=DAn)—-AD) =47
The second equivalence in (1.15) follows from the above us-
ing the chain rule of differentiation and Eq. (1.1), since
4, =4"u]= —4'K]. QED.

The most convenient characterization of a recursion
operator follows from the equation

A'K]=[K"4],
since Eq. (1.1) has now been eliminated.
The following lemma expresses a useful property of a
recursion operator.

Lemma 3: The operator A is a recursion operator of Eq.
(1.1)iff

K'[AG1 - ALY IKI=AK'[5]1-8'KD,  (117)
where & (x,t,u,u,,...,u, ) is an arbitrary function of the argu-

ments indicated.
Proof: Using Leibnitz’s rule, we obtain

ASYIKI=4'[K]E+4(5'[KD.
Then using Eq. (1.16) we obtain that
A5 IK1=K'[AS]-AK'[ED+A (5K
iff 4 is a recursion operator of Eq. (1.1). Q.E.D.
From the above lemma and Eq. (1.12b) one finds
Corollary 2: If A (1) is a recursion operator [of Eq. (1.1)]
not depending explicitly on ¢ and X (1), 7(x,t,u,u;,...,ui ) 1S
admitted by Eq. (1.1), then the LB operators X (4 ‘),
j = 1,2,.., are also admitted by (1.1).
Hereditary operators: Assume that Eq. (1.1) possesses a

recursion operator 4. We call hierarchy 1 the hierarchy of
admissible operators

X(4u,), j=0,1,2,, (1.18)

which are generated from the x-translation operator X ().
Itis obvious that the operators X (4, 4+ 4 ‘u,) are also admis-
sible. Equating to zero the generators of these admissible LB
operators we obtain

u, +4°u, =0, j=12,-,

(1.16)

(1.19)

which is the Lax hierarchy of equations associated with Eq.
(1.1)." In Ref. 6 it is shown that the operator 4 is a recursion
operator of the whole hierarchy (1.19) if 4 satisfies

[4,4 1vlw = [4.,4 wv, (1.20)
where
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[4,4 JvJw = A4 4 '[vlw) — 4 '[Av]w, (1.21)

and v, w are arbitrary functions of u, u,,...,#, . An operator 4
satisfying the above property is called a hereditary operator.®
It is clear that any operator 4 is a recursion operator for the
equation #, + u, = 0, since 4 [u,] = [D,4 ]. Therefore, any
hereditary operator 4 is a recursion operator for the whole
hierarchy u, + 4 ‘u, = 0 generated by this operator. There-
fore, an alternative way to find a recursion operator 4 of Eq.
(1.1) is to look for a 4 such that (i) 4 is hereditary and (ii)
Au, = K. The above property of 4 was first introduced in
Ref. (7), where it was used to prove that such a 4 generates
the exactly solvable equations #, + C (4 )u, = 0, where

C (Z)isanarbitrary function of Z, regular, except possibly at
|Z |— o and some points Z (Z, < ).

2. AMETHOD FOR FINDING OUT IF A GIVEN EQUATION
IS EXACTLY SOLVABLE

If an evolution equation admits a Lax formulation it
also admits infinitely many symmetries. Actually, every
member of the Lax hierarchy [see Eq. (1.19)] associated with
a given solvable equation is a generator of a generalized sym-
metry admitted by this equation. Therefore, in order to es-
tablish that an equation is exactly solvable we must prove
that it possesses infinitely many symmetries. Although there
exists an algorithmic way of finding out if a function of the
general form 5 = n(u,u,,...,uy) is an admissible generator,
this does not lead to a very practical method for establishing
the existence of infinitely many symmetries. However, in all
known cases the existence of one generalized symmetry
seems to be sufficient for the existence of infinitely many.
Further, having obtained one generalized symmetry it is
usually possible, almost by inspection, to find a recursion
operator A which generates infinitely many symmetries.
Therefore, the problem of finding out if an equation is exact-
ly solvable reduces to finding an LB symmetry.

In order to find an LB symmetry we must assume the
order of the highest derivative in 9(u,u,,...,u ). But how can
we know N a priori? It is at this point that we use the exis-
tence of A. The only assumption we make is that this A gen-
erates the z-translation symmetry of the equation from the x-
translation symmetry. Let us be more specific. Suppose we
are given an evolution equation of the form

u, +u, + K (u,uy,..ou, ) =0. 2.1)

This equation possesses two Lie-point generators, 7, = u,
and 9, = u, + K (u). If there exists a A which generates 7,
from7,,then4 = D"~ ' 4 ..., Therefore, the first LB gener-
ator is of the form n; = w,, , + g(u,u,,...u,, _,). That is,
N =2n — 1 and, furthermore, u, appears linearly. The
above discussion justifies, in our opinion, the proposition
made in the introduction.

A. Finding all second-order equations which possess a
third order symmetry

In this subsection we first determine all equations of the
form

u, +u,+A@u)=0 2.2)
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possessing an admissible generator of the form

N = us + B (u,u,,u,). 2.3)
It turns out that all equations having this property also pos-
sess infinitely many symmetries and further, all can be lin-
earized.

The following equations and corresponding generators
are obtained (for details see Appendix A)

1
u, +u, + L0} W +ab@u, =0, (2.4a)
b'(u)
b " 3b r”
17:113—{'— 71{? + Tuluz
+ia(br+ 22 Yk dabuy 30, Q4

where b (1) is an arbitrary function of u, b '(u) = db /du, and
a is an arbitrary parameter. (Everywhere in this paper greek
lower-case letters stand for constant parameters.)

(i)

u, + u, + [ y—cw ul + ac(u) =0, (2.5a)
c(u)
ree (B2 () Ja
+3( y=—¢ )u,uz, (.5b)
c

where c¢(u) is an arbitrary function of u. For the discussion to
follow it is convenient to let c=d /d ', d =d (u). Then (2.5a)
becomes

u, +u,+[d"/d' +(y—=0d'/d lu; + ad/d’ =0. (2.5c)
We can add a constant multiple of u, to the left-hand side of
(2.4a) and (2.5a) without altering the above results. This has
been omitted for economy of writing.

We define two equations to be equivalent if one can be
obtained from the other by a transformation involving only
the dependent variable. Then it is clear that Eq. (2.4a) is
equivalent to

(2.6)

under the transformation u—b (1), while Eq. (2.5¢) is equiv-
alent to

u, +u, +auu, =0

U, +u,+ayu=20 2.7
under the transformation u—[d (1)} ?. Therefore, within
equivalence the only nonlinear equation of the form (2.2)
admitting a generalized symmetry of the form (2.3) is the
Burgers equation. Note that under an equivalence transfor-
mation Eqs. (2.4a) and (2.5a) remain exactly solvable and
must hence retain the same form.

1. Linearizing Bédcklund Transformations

It turns out that all the above equations can be linearized.
Also, if they are the only second-order equations exactly
solvable, then they are the only equations of the general form
(2.2) which can be linearized. The following results are ob-
tained in Ref. 10, Sec. 5.4.1:

(i) The only equation of the form (2.2) mapped tov, + v, =0
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under a BT of the general form v, — f(u,v) = 0 is given by
(2.4a). This BT takes the form

b(u)=2w,/(av+A1).

(ii) The only equation of the form (2.2) mapped to
v, + v, = 0 under a BT of the form u, — f(u,v) = 0 is given
by (2.5a) with y=0. This BT takes the form
v=(u,/ac(u)).
(iii) The only equation of the form (2.2) mapped to
v, + v, + ayv = O under a map of the form u = f(v) is given
by (2.5¢). This map is
d)=v'"" (2.10)
Every linear equation possesses infinitely many symme-
tries. Therefore, every nonlinear equation which can be lin-
earized also possesses infinitely many symmetries. However,
the reverse is not true; that is, not every equation possessing
infinitely many symmetries can be linearized (for example,
the KdV). In the case of second-order equations, however,
we see that the class of equations possessing a generalized
symmetry (and actually infinitely many, see below) coin-
cides with the class of second-order equations which can be
linearized.

(2.8)

(2.9)

2. Recursion Operators

Equations (2.4a) and (2.5a) possess, respectively, the
following recursion operators

A=D4+ %I—u, + lab + lau,D'(b"), @.11)
A=D+(7"C )ul. (2.12)
c
The operator (2.11) reduces to
4 =D +lau + jau,D"’ (2.13)

when b = u, which is known to be the recursion operator of
the Burgers equation.?

It is easy to check that the operator A defined by (2.11)
is a hereditary operator. Further, 4 *(u,) is the generator
(2.4b). Consider, now, the operator (2.12). It can be shown
easily that A = D + a(u)u,, where a(u) is an arbitrary func-
tion of u, is a hereditary operator. Therefore, 4 is a recursion
operator for the equation ¥, + Au;, =0 or 4, + u, + au?

= 0. Further, it is clear that the above operator will also be a
recursion operator of the equation u, + u, + au? + ¢ =0,
where ¢(u) is an arbitrary function of u, iff it is a recursion
operator of the equation ¥, + ¢ = 0, that is iff [see (1.16)]

A'lc)=][c,4].

This implies ¢’ + (ac)’ = 0 or @ = (y — ¢')/c. Therefore, A
is a recursion operator of

u, + uy + aut + c(u) =0,
iff
a=(y—c)c.

(2.14a)

(2.14b)

Note that since 4 is a recursion operator of (2.14a), where a
is given by (2.14b), 4 (4,) = u, + au} is a symmetry gener-
ator of (2.14a) and, since the whole right-hand side of (2. 14a)
is also a symmetry, it follows that c(x) is also. This can be

trivially checked directly. Also Ac = yu, and therefore the
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generator c(u) does not produce a new hierarchy of symme-
tries.

In Ref. 11 (which is an excellent exposition of the Esta-
brook-Wahlquist method) Kaup asks which equations of
the general form #, + u, + u? + f(u) = 0 possess a nontri-
vial prologation structure. He then finds that
f(u) = Be " + yand also develops a method of solving the
above equation. Note that if (¥ — ¢)/c = 1 in Eq. (2.5a),
c(u) = Pe“ + yand, further, this equation is equivalent to
a linear one; therefore it is trivially solved.

B. Finding all third-order equations, not involving
second-order derivatives, which possess a fifth-order
symmetry

In this section we determine all equations of the form

u, +u;+A@wu)=0 (2.15)
possessing an admissible generator of the form
N = us + B (u,u,,u,,uq,u,). (2.16)

The following equations and corresponding generators
are obtained (for details see Appendix B).

(M)

u, +us +auw + Bud +yu, =0, (2.17a)
N = us +5auius + 9 Buu,y + Sau,u; + 3 u;

+ 3aPu; + L0 B%u} + sa Bui. (2.17b)
(i1)
U, + u; +au; +b@u, =0, (2.18a)
where b (1) solves
b +8ab’ =0, (2.18b)
N = us + Sautus + 3bu; + Sau,ui + b 'uu,

+3a%u] + Jabu; +3b"'ut +3b7u,. (2.18¢)

It is clear that Eq. (2.17a) is the potential version of the
special case of (2.18a) where a = 0. In this sense, the most
general equation of the form (2.15) admitting a symmetry
generator of the form (2.16) is given by (2.18).

Particular Cases:
@
a=0in(2.17a) (PKdV),

7 =us+ 9 Puus +38u; + B (2.19)
(i)

B =0in(2.17a) (PMKdV),

N = us + Sauiuy + Sau,ul + a’u}. (2.20)
(iii)

b=0in(2.182) (PMKdV),

N = us + Saulu; + Sau,ui + a’u}. 2.21)
(iv)

a=0,b=uin(2.182) (KdV),

N = us + fuu; + Quu, + 0, 2.22)
)

a=0,b=1uin(2182) (MKdV),

N = us + WPuy + Luu,u, + U7 + utu,. (2.23)
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1. Recursion Operators

Equations (2.17a) and (2.18a) possess, respectively, the
following recursion operators

A=D*+y+2au; +4Pu, —2auD “(uy) — 38D N(uy),
2.24)

A=D2+2au’ + 3% —2au,D "'(uy) + u,D'(b"). (2.25)

Letting a or B equal zero in (2.24), we obtain the recursion
operator of the PKdV or of the PMKdV, respectively. Let-
ting b = 0 in (2.25), we obtain the recursion operator of the
PMKdV. Letting @ = 0 in (2.25), we obtain the recursion
operator of the linear combination of the KdV* and of the
MKdV.? It is easily checked that both (2.24) and (2.25) are
hereditary operators. Further, it is interesting that if we start
with (2.25) and require that it is a hereditary operator we
find out that this is the case iff b satisfies (2.18b). Equation
(2.18b) also appears when applying 4 to u; + au;j + b (wu,
in order to obtain the generator (2.18c). Let us consider only
the terms involving integration

1, Db "us + ab'uj + bb'u,)

—2au,D ' (uyus + au,ui + buyu,).
The terms involving bb 'u ,, au,u? , and u,u; integrate exactly
and so we are left with

1, D"(b'uy + ab'uy) — 2au,D ' (buyu,).
Integrating the first term by parts and ignoring the part inte-
grated exactly, we are left with

- %ulDJ[uzul(b " +8ab)],
which is exactly integrable iff Eq. (2.18b) holds.

2. A Backlund Transformation

It is well known tht the KdV equation is related to the
MKJdV equation through the Miura transformation. It is
interesting that Eq. (2.18) is also related to the MKdV equa-
tion [trivially generalized, see (2.28) below]. Taking into
consideration (2.18b), Eq. (2.18a) becomes
u, +u; +aud +( 2 X 4 re Nau oz oy,

=0, (2.26)
where 7 |, 7 ,, T ; are constant parameters. The Backlund
transformation

12 e ) —
u, +Kkv+ A+ (l) eV | (_2) o V2
3a 3a

-0, (2.27)

where k, A are constant parameters, maps Eq. (2.26) to
2 1
v, + U+ [3(1(/(1) + Ay + - 3—(7’172)”2]1)1 =0. (2.28)
a

Note that if Eq. (2.27) is viewed as an ordinary differential
equation with x and u as the independent and dependent
variables, respectively, (¢ is regarded as a parameter) then it

is of the Riccati type. If we put u = (1/\/ —2a )nw, (2.27)
becomes

w, + (=3 )"+ (—2) 0 + A+ (= i)
=0.
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3. COMPARISON WITH OTHER METHODS AND OPEN
QUESTIONS

The most obvious approach to establishing the exact
solvability of a given equation is to guess operators L and 4
such that the given equation can be expressed in the form

L,=[4,L] (3.1

However, this approach is the least practical, since both op-
erators 4 and L must be guessed. A way out is to assume the
form of L and then find all equations that correspond to it. In
this respect there exist two basic approaches; (i) Gel’fand
and Dikii'? assume L and then, by solving Eq. (3.1) algebra-
ically, find all equations that correspond to it. (ii) AKNS"?
(see also Ref. 14) assume a given L, but rather than using Eq.
(3.1) directly, they determine all equations corresponding to
this L by requiring that the evolution of the scattering data
takes a simple form. This method has been extended by New-
ell."”* The above approach has the advantage that it also
paves the way for the actual solution of the evolution equa-
tion involved, but has the weakness that it starts with a given
eigenvalue problem and finds all equations that correspond
to it, rather than starting directly with a given equation.

The most widely used direct method for finding wheth-
er a given equation is exactly solvable has been developed by
Estabrook and Wahlquist.'® This method consists, briefly, of
the following (for consistence of presentation we do not use
the language of differential forms employed in Ref. 16): Find
functions 4 (u, Q Yand B (u, u,,...,u,, _ |, Q) (the assumption
made about the dependence of 4 and B is based on exper-
ience) such that the equations @, = 4, Q, = B are compati-
ble when u satisfies the given nth-order equation. This easily
leads to 4 = 2,a,(w)é(Q), B = Z;b,(u,uy,...u, _)5,(Q),
where the functions a; and b, are completely determined and
the &, satisfy some given commutator relations. The main
problem now is to find a closed algebra of £; and then a
representation of this algebra in terms of Q. Also, sometimes
it is necessary to allow Q to be a vector.

Another direct approach is introduced in Ref. 17,
where A in Eq. (3.1) is taken to be the adjoint of K '(¥), and L
is a recursion operator connecting polynomial solutions of
the equation ¢, + Ay = 0. These solutions are simply relat-
ed to the conservation laws of the given equation by a theo-
rem due to Lax.'® The authors of Ref. 17 employ a perturba-
tive scheme to find conservation laws and then L. A
weakness of this method is that it is applicable only to exactly
solvable equations with infinitely many conservation laws.
However, there exist exactly solvable equations with a finite
number of conservation laws (for example, the Burgers
equation).

The formalism of taking as a Lax pair K '(») and the
operator 4 (which recursively relates solutions of the equa-
tion ¥, + K '(u)y = 0) is developed in Ref. 7. However, this
formalism was not directly related to the symmetry struc-
ture of the given equation. This is done (apparently indepen-
dently) in Ref. 6; see also Sec. 1. The advantage of this ap-
proach is that Eq. (3.1) has to be solved only for L, since
A = K'(u) is explicitly known.

In this paper we emphasize that the knowledge of one
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generalized symmetry makes it possible to obtain 4 almost
by inspection. That is why we concentrate on finding such a
generalized symmetry; the relevant algorithm employed is
very straightforward. Furthermore, demanding that an
equation of a certain order admit a generator of a given or-
der, we obtain in a straightforward way (the algorithm in-
volved is linear) all such equations. Our method has the
weakness that it is applicable to equations of normal type
only. Furthermore, having obtained 4, we must solve the
equations

Ay =41y, ¥, +K'(wy=0. 3.2
However, these equations are not in a very convenient form,
since the first equation involves an integral operator. A prop-
er transformation makes it possible to transform the above
equations to differential ones (for example, in the case of the
KdV this is achieved by taking ¢ = ¢ ?). A general method
for doing this as well as an investigation of Eq. (2.18) will be
presented in a future publication.

Apparently, there exists an intimate connection be-
tween our method and Estabrook-Wahlquist’s one. By ask-
ing two different questions (namely, when a given equation
has a nontrivial prologation structure and when it admits a
generalized symmetry) we obtain similar answers'® (see also
Sec. 2.1). The problem of relating these two methods is under
investigation. The problem of extending the results obtained
here to equations of less restricted form is also under investi-
gation. For example, results have been obtained for nonlin-
ear heat equations.

We hope that the results presented here together with
those of Refs. 20 and 21 (where the group-theoretical nature
of BT and of the constants of motion admitted by evolution
equations is established) as well as those of Refs. 22-26, indi-
cate the importance played by symmetries in understanding
and solving the problems appearing in the analysis of nonlin-
ear evolution equations.
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APPENDIX A

In this appendix we indicate briefly how Eq. (2.4) and
(2.5) are obtained. Equation (2.2) admits the LB operator
associated with the generator (2.3) iff (see Lemma 1)

[X (Uz + A (u!ul)),X (u3 + B(u»u]yuz))] = O’ (Al)
or
2 .
(D3+ s B,+,Df>(u2+A)
j=0

=({D?>+A4,+A4,D)u, + B), (A2)
where
B,,, =0B/0u;, A, , =3d4/3u,;, j=0,1,.2,
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or
i ) 2
DB+ Y A, +DB+YAu;,,
ji=0 1

2 ) 3
=DA+ 3 B, \DA+3Bu,,,. (A3)
j=0 T

Writing out D4, D'B, (j = 1,2, 3) explicitly in Eq. (A3) and
then equating to zero the coefficients of 42 and u,, we obtain

B,; =0, 2DB,=13DA,, (Ad)
or

B =34,u, + au, + F(u,u,). (A5)
The parameter @ generates the z-translation group so we set
it equal to zero. Now substituting (A5) in (A3) and equating
to zero the coefficients of u, / (j = 3, 2, 1, 0), we obtain
Az =0, Fy= %AzAzz +34,,,
2Fpuy = AA; + 34 Apu, + 424 01,

+ %AllZu% +34,u,,
(A6)

A F + AFu, + F 2 + AF, + A Fou,

+ %AzAnu% +A”|u? =0.
Solving Egs. (A6) and taking into consideration (AS5), we
obtain

®

A =a()u?, (A7a)
where a is an arbitrary function of u.

(i1

A= l[))—, ul + bu,, (ATb)

where b () is an arbitrary function of ¥ and b’ = db /du.
Equations (A7) can be combined into one by letting b— £b.
Then

bW

m us + BbWu, (A8a)
[and B = 0 gives (A7a)]. To the above A there corresponds
B=2Tu o 2y 118G+ 2w
+3Bbu, +3B%h%u,. (A8b)
(iii)
A=y —c)eui +c, (A9)

where c is an arbitrary function of u, B is given by (2.5b).

APPENDIX B

In this appendix we indicate briefty how Egs. (2.17) and
(2.18) are obtained. Eq. (2.15) admits the LB operator asso-
ciated with the generator (2.16) iff

[X ((us + 4 (w,u), X (us + B(u,...,u))] =0, (Bl)
or
(D*+A4,+A4,D)us + B)

(D5 +B,+ 3 B,DI Dy +4)=0. (B2)

i=2

Writing out D’4, D/B, (j = 1, 2, 3, 4) and equating the coef-
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ficients of u4 and u, in (B2) to zero, we obtain
9B /3u, =0, 3DB,=5DA,, (B3)
or
B =34 u; + F(uu,u,). (B4)

Replacing B in (B2) by (B4) and equating the coefficients of
u, to zero, we obtain

F = 3d,u5 + A uu; + 34,4, + g(u,u,). (B5)
Replacing B in (B2) by (B4), where F is given by (B5) and

equating the coefficients of uuf, (=3, 2, 1, 0) to zero, we
obtain, respectively,

A222 =0, Az =0,
38y, = 5AA5;, + 104,51, +54,, + 542, ui,

31U, = %AAIZ + %411422”1 + L:;QAZAlZul
+§Amzu% +54,,,u7.

(B6)

Equating the coefficients of #3, ©3 in (B2) to zero, we obtain

A =0, (Ady —Adon)u, +A1Ay — A4y, =0.
(B7)

Solving Egs. (B6a), (B6b), and (B7a), we obtain
A = au; + yuu? + But + bwu, + c(u). (B8)
Eq. (B7b) gives ¥y = 0, b’ = Q, fc’ = 0. Therefore,
A =au) + Bud + bwu, + c(u), (B9)
B = 34,u; + 34,u5 + 34 50,1,

+ 34 \u, + gu,uy), (B10)
where

pb'=0, Bc' =0, (B11)

and we have still to satisfy the compatibility equation of
(B6c¢) and (B6d)

(i) B #£0. Then Egs. (B9) and (B10) indicate that
A=au} + Bui +yu, + 6. (B12)

The compatibility equation of (B6c) and (B6d) is then satis-
fied and, by integrating them, we obtain

g§= zs,f (A2)2du1-

Replacing g in (B10) by (B13), where 4 is given by (B12), we
obtain (2.17b).
(ii) 8 = 0. Then Egs. (B9) and (B10) indicate that

A =oau + bu, +c.

(B13)

(B14)
The compatibility equation of (B6c) and (Béd) gives

b +8ab’' =0, ac’=chb'=0. (B15)
If ¢ #£0 we obtain trivial results, therefore
A =au; + bWu,, (B16)

where b satisfies (2.18b). Integrating (B6c), (B6d) we obtain
g and then, using (B10), we obtain the generator (2.18c).
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