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Abstract. We propose a novel prior for variational 3D reconstruction
that favors symmetric solutions when dealing with noisy or incomplete
data. We detect symmetries from incomplete data while explicitly han-
dling unexplored areas to allow for plausible scene completions. The
set of detected symmetries is then enforced on their respective support
domain within a variational reconstruction framework. This formulation
also handles multiple symmetries sharing the same support. The pro-
posed approach is able to denoise and complete surface geometry and
even hallucinate large scene parts. We demonstrate in several experi-
ments the benefit of harnessing symmetries when regularizing a surface.
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1 Introduction

One of the long-time goals of computer vision algorithms is to imitate the numer-
ous powerful abilities of the human visual system to achieve better scene under-
standing. Many methods have actually been inspired by the physiology of the
visual cortex of mammalian brains. One of the strongest cues that humans use
in order to infer the underlying geometry of a scene despite having access to
only a partial view is symmetry, as shown in [20]. Moreover, symmetry is a very
strong and useful concept because it applies to many natural and man-made
environments. Following this inspiration, we propose a method which leverages
symmetry information directly within a 3D reconstruction procedure in order
to complete or denoise symmetric surface regions which have been partially
occluded or where the input information has low quality. In contrast to the
majority of 3D reconstruction methods which fit minimal surfaces in order to fill
unobserved surface parts, our method favors solutions which align with symme-
tries and adhere to required smoothness properties at the same time. Similarly
to how humans extrapolate occluded areas and 3D information from just a few
view points, our method can hallucinate entire scene parts in unobserved areas,
fill small holes, or denoise observed surface geometry once a symmetry has been
detected. An example of our approach is shown in Fig. 1.
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Fig. 1. Example application of our approach. A model of a stool was scanned by a
depth camera and the result is incomplete due to occlusions. With only two detected
symmetries we can complete the 5-way symmetry of the model.

1.1 Contributions

We propose to use symmetry information as a prior in 3D reconstruction in order
to favor symmetric solutions when dealing with noisy and incomplete data. For
this purpose, we extend standard symmetry detection algorithms to be able to
exploit partially unexplored domains. Our framework naturally unifies the appli-
cations of symmetry-based surface denoising, completion and the hallucination
of unexplored surface areas. To the best of our knowledge, we present the first
method that handles multiple symmetries with a shared support region, since
the proposed algorithm computes an approximation to a non-trivial projection
to equally satisfy a set of symmetries. Finally, our method extends the tool-
box of priors for many existing variational 3D reconstruction methods and we
show that a symmetry prior can achieve quality improvements with a moderate
runtime overhead.

1.2 Related Work

The works by Liu et al. [13] and Mitra et al. [16] give a broad overview of
symmetry detection methods, although most of the work they discuss focuses
on symmetry extraction for computer graphics applications. Therefore, their
applicability is mostly shown on perfect synthetic data. In this section, we focus
on works that detect and exploit symmetries from real data for vision applica-
tions.

Köser et al. [11] detect planar reflective symmetries in a single 2D image.
They demonstrate that the arising stereo problem can be solved with standard
stereo matching when the distance of the camera to the symmetry plane corre-
sponds to a reasonable baseline.

Kazhdan et al. [7] define a reflective symmetry descriptor for 3D models
by continuously measuring symmetry scores for all planes through the models’
center of mass. We briefly repeat some of their theoretic results as we are going
to use them in Sect. 2. Let γ ∈ Γ be a symmetric transformation and u be a
symmetric object, then u is symmetric with respect to γ if it is invariant under
the symmetric transformation, that is, γ(u) = u. Using the group properties of
the symmetry transform, Kazhdan et al.define the following symmetry distance
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in which Πγ(u) = 1
2 (u + γ(u)) is the orthogonal projection of object u onto the

set of objects which are symmetric with respect to the symmetry γ.
Based on these results, Podolak et al. [23] focused on planar reflective sym-

metries and generalized the descriptor to detect also non-object-centered sym-
metries. They further define geometric properties which can be used for model
alignment or classification. Both [4,22] detect symmetries in meshes and pro-
pose a symmetric remeshing of objects for quality improvements of the mesh
and for more consistent mesh approximations during simplification operations.
Similarly, Mitra et al. [15] use approximate symmetry information of objects to
allow their transformation into perfectly symmetric objects.

Cohen et al. [2] detect symmetries in sparse point clouds by using appearance-
based 3D-3D point matching in a RANSAC-based procedure. They then exploit
these symmetries to remove drift from point-clouds. Although their work is done
on sparse point clouds, we present a similar approach for voxel grids in Sect. 2.

Symmetries have also been used for many applications, e.g. shape matching
and feature point matching [6], object part segmentation, and canonical coordi-
nate frame selection [23]. Our goal is to apply these concepts into the domain of
dense 3D reconstruction. Nevertheless, our work is not the first one leveraging
symmetry information in this domain. One of the earliest attempts to incorpo-
rate symmetry priors into surface reconstruction methods was by Terzopoulos
et al. [25] who use a deformable spine model to create a generalized cylinder
shape from a single image.

Application-wise, the work by Thrun and Wegbreit [26] is closely related to
ours. They detect an entire hierarchy of different symmetry types in point cloud
data and subsequently demonstrate the completion of unexplored surface parts.
As opposed to our approach, they do not simultaneously denoise the input data
and they do not compute a water-tight surface.

In contrast, we propose to integrate knowledge about symmetries directly
into the surface reconstruction process in order to better reason about noisy or
incomplete input data which can come from image-based matching algorithms
or 3D depth sensors. Furthermore, our approach can handle any number of
symmetries and their support domains can arbitrarily overlap. To the best of
our knowledge no other method deals with several symmetries that share the
same domain in a way that the “symmetrized” result obeys the group structure
of several symmetries at once.

We build our symmetry prior into the variational volumetric 3D recon-
struction framework which has been used in various settings, e.g. depth map
fusion [29], 3D reconstruction [9,27], multi-label semantic reconstruction [5], and
spatio-temporal reconstruction [17], with anisotropic regularization [5,10,18] or
connectivity constraints [19]. The proposed method extends these lines of works
by a symmetry prior which can be easily combined with any of these works.
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Moreover, since the 3D reconstruction is formulated as a 3D segmentation prob-
lem, the proposed prior is also directly applicable to a large set of segmentation
methods like [24,28].

2 Symmetry Detection

In order to exploit symmetry priors for reconstruction, we first need to detect
the symmetries that best fit the data. In this paper, we focus on detecting planar
symmetries. As input we use integrated depth information, which is represented
by a truncated signed distance function (TSDF) on a volume V ⊂ R [3]. The
TSDF assigns a positive value for voxels corresponding to free space and a neg-
ative value for occupied voxels (which are placed behind the observed depth
values). A zero value in this function denotes an unobserved (or occluded) voxel.
A surface is then implicitly defined as the transition between positive and neg-
ative values. Since we are only interested in voxels lying on the surface of the
object, we only look at the voxels for which the gradient is very strong.

Furthermore, since planar surfaces are symmetric with respect to all planes
perpendicular to them, which is not very informative for the global scene or
even for a small object, we decide to look only at those voxels that exhibit
a certain degree of curvature. Thus, the goal is to find the symmetry planes
that best reflect these high-gradient and high-curvature voxels into positions
that also have a large gradient and curvature or that are otherwise unknown or
occluded. Note that [8] detect partial symmetries in volumetric data via sparse
matching of extracted line features, which is a more sophisticated way of using
the gradient on the data. While trying to find the symmetries of a scene, we
define the symmetry support Vγ ⊆ V ⊂ R

3 as a hole-free, connected subset of
the reconstruction domain V that fits the detected symmetry, that is, we try
to include all occupied and free space which complies with the symmetry γ.
Unobserved regions will be included an treated in a way such that they perfectly
fulfill the symmetry to allow for hole filling and hallucination.

2.1 RANSAC

We apply a RANSAC-based approach by taking as input the list of high-gradient
and high-curvature voxels, which we will refer to as surface voxels, and the list
of unknown voxels. First, we randomly sample two surface voxels, which define a
unique symmetry plane that reflect one of these voxels into the other. Next, we
look through all of the surface voxels and reflect them over this plane to look for
inliers to this particular symmetry. If the reflection of a surface voxel falls into
the position of another surface voxel, then they are both considered as inliers to
this symmetry plane. However, if it falls into an unknown voxel position, then
we also consider it as an inlier since this could be a potential occluded part of a
symmetric object. We randomly sample planes from two surface voxels as many
times as stated by the RANSAC termination formula.
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The plane with the most inliers is chosen as the best global symmetry plane
γ for this surface, and its inliers define the support Vγ . Since we are interested
in potentially finding many symmetries for the same scene, RANSAC could be
applied sequentially by removing the inliers for the best symmetry and then
subsequently re-detecting the next best symmetry among the remaining surface
voxels. However, since there could be many symmetries with the same support,
we modify RANSAC and keep track of the set of best N solutions (where N has
to be determined a-priori). This way, we extract the N symmetries that best fit
the entire surface. We will refer to this set of symmetries as Γ .

Local Symmetry Detection. A scene can be composed of several objects with
different sizes and symmetries. However, due to the size variability, applying
RANSAC on the whole volume as described before would miss most of the sym-
metries for small objects and also cluster different objects with similar symmetry
planes into one approximate, noisy, symmetry plane. Therefore, we apply the
described RANSAC approach for sliding boxes of different sizes over the entire
volume. This allows the segmentation of objects as the support for the different
symmetries found. The symmetry planes with the bigger inlier ratios and their
support are chosen as candidates for local object symmetries. For multiple detec-
tions of the same object (parts) at different scales we gave preference to larger
support domains and rejected detections whose support is a subset of another.

2.2 Hough Transform

Alternatively to RANSAC, we also implement a method based on [23], which
resembles the Hough transform approach, in order to have additional insights in
the space of planar symmetries belonging to an object. As cost for the hough
space voting, we use the Planar-Reflective Symmetry Transform (PRST), which
is defined according to [23] as follows

PRST(u, γ) = 1 −
SD2(u, γ)

‖u‖
2 =

1 + u · γ(u)

2
. (2)

We parametrize planes in 3D by the spherical coordinates of their normals θ ∈
[0, π], φ ∈ [0, π] and the distance to the origin d ∈ [dmin, dmax]. After finding
the peaks in the Hough Space using a non-maximal suppression scheme, we can
obtain planar symmetries with high PRST values, as illustrated in Fig. 2.

If we consider the special case when u values are binaries, representing an
occupancy grid, the Eq. (2) becomes the number of inliers of the γ symmet-
ric plane, a metric also used in the RANSAC method described previously.
Therefore, the methods are essentially very similar and the decision between
one or the other depends only on technical considerations. For example, the
runtime of Hough Transform is fixed, which is the number of iterations used
in the plane sampling; on the other hand, the number of iterations ran by
RANSAC depends on the current inlier threshold and, therefore, could possi-
bly finish sooner. Another advantage of RANSAC is its low memory footprint
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Fig. 2. Hough transform example: (a) Shows a 3D scan of a real chair. (b) Illustrates
the planar symmetry reflection (red) of the high-gradient voxels (blue). Finally, (c) is
the Hough space obtained by importance sampling in a Monte Carlo framework, as
described in [23]. (Color figure online)

and the fact that it doesn’t require a non-maximal suppression step. However,
knowing the Hough space can be a handy tool to visually understand the type
of symmetries obtained in the process.

One should notice that there are more sophisticated methods in the litera-
ture to better extract symmetries, for instance [15,26]. However, the main con-
tribution of the paper is the use of these detected symmetries in a variational
optimization framework, described in the following section.

3 Surface Reconstruction with a Symmetry Prior

Given the set of detected symmetries Γ as described in Sect. 2, the goal is to find
the 3D reconstruction of a surface which fulfills three simultaneous conditions:
it should interpolate the given depth data, align with the given symmetries, and
adhere to the defined degree of smoothness. We represent the surface by the
implicit binary labeling function u : V ⊂ R

3 → {0, 1}. The depth information
is fused into the data cost f : V → R which encodes the depth measurements
volumetrically as a truncated signed distance function similar as in [29]. Similarly
to this work, we integrate the data cost on the entire ray from the measured
depth towards the camera. This has the advantage of being able to directly
identify unexplored areas within the data cost, since unseen voxels will keep
their initial value f = 0. In this way, a zero value in the computed TSFD shows
no preference towards occupied or free-space, thus implying an unobserved voxel.
On the other hand, this approach has the disadvantage that outliers in the depth
map carve incorrect holes into the aggregated cost. Using the symmetry distance
from Eq. (1), the surface can then be found as the minimizer of the following
energy

E(u) =

∫

V

(

|Du| + λfu
)

dx + µ
∑

γ∈Γ

ωγ · SD2
Vγ

(u, γ) , (3)
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in which λ, µ ∈ R≥0 respectively weigh the contributions of each term to control
the amount of surface smoothness and symmetry. The first term is the Total
Variation regularizer in which D is the derivative in a distributional sense. The
last term of Eq. (3) minimizes the distance of all symmetries given by Γ for which
we use a slightly modified distance measure (Eq. (1)) in such a way that the dis-
tance is only evaluated for points within the corresponding support domain Vγ .
Furthermore, the weights ωγ can be used to change the impact among individual
symmetries.

Symmetry Projection. For a given set of m symmetries Γ = {γ1, γ2, . . . , γm},
minimizing energy (3) approximates the joint projection onto a set of symmetries

ΠΓ (u) = Πγ1,γ2,...,γm
(u) = min

v:∀γi∈Γ :γi(v)=v
‖u − v‖ , (4)

and if the regularization is turned off, i.e. for λ, µ → ∞ and uniform weights ωγ

this projection corresponds to the minimizer of (3), i.e. ΠΓ (u) = arg minu E(u).
This relation can be seen by replacing the and-condition over the symmetries in
Eq. (4) by the sum of the costs which leads to a similar expression as in Eq. (3).

Remark. As shown in [7] and stated in Eq. (1), the projection Πγ(u) of function
u onto a single symmetry has a simple analytic solution: being the average of
u and γ(u). This is not the case for the projection onto a set of symmetries.
Figure 3 illustrates that even the projection Πγ1,γ2

(u) onto only two symmetries
is not a simple combination of the individual projections Πγ1

(u),Πγ2
(u). Since

our method minimizes the symmetry distance to an arbitrary set of symmetries,
the minimizer of energy (3) for an infinite symmetry term weight (µ → ∞)
approaches the joint projection ΠΓ onto all symmetries in Γ which inherently
generates a complex symmetry group as a combination of the input symmetries.

(a) (b) (c) (d) (e) (f) (g)

Fig. 3. A toy example illustrating the projection onto multiple symmetries. (a) Shows
data cost f which enforces a single point (white corresponds to f < 0) as being occu-
pied, and a small region to be free-space (black =̂ f > 0) in order to avoid a constant
solution. The rest of the image has no data cost (gray =̂ f = 0). (b) A planar-reflective
symmetry γ1 and corresponding projection Πγ1

(u). (c) γ2, Πγ2
(u). (d) Overlaid solu-

tion of Πγ1
(u), Πγ2

(u) - this image corresponds to a solution of Eq. (3) with a low
weight µ for the symmetry term. (d)–(g) In our setup we can continuously steer the
amount of enforced symmetry by increasing µ until the image eventually fully adheres
to the group structure of both symmetries.
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4 Numerical Optimization

In order to minimize Eq. (3) we discretize the volume domain V on a regu-
lar voxel grid. In a discrete setting u is a stacked vector of all voxels in the
volume domain. The symmetry dependencies between different points can be
represented as a linear transformation, that is, the symmetry distance in Eq. (3)

can be rewritten as SD2(u, γ) = ‖Aγu − b‖
2
. As a result, all three terms of the

functional are convex and we can efficiently minimize energy (3) with the pre-
conditioned first-order primal-dual algorithm [21]. In our setting the algorithm
alternatingly iterates the following projected gradient ascent, gradient decent
and linear extrapolation steps.

pn+1 = Π‖p‖≤1 [pn + σDūn]

un+1 = Π[0,1]

[

un + τ
(

div pn+1 − λf − µ
∑

γ∈Γ

ωγAT
γ (Aγun − b)

)]

(5)

ūn+1 = 2un+1 − un

with Π‖p‖≤1[p] = p/max(1, ‖p‖) being the projection onto the unit ball and

Π[0,1](x) = max
(

0,min(1, x)
)

being a simple clamping. The derivative and diver-
gence operators are discretized by forward and backward differences, respec-
tively.

The primal-dual surface optimization lends itself to a parallel implementation
for which we used the CUDA framework. Without further processing, we finally
extract a mesh as the 0.5 iso-surface from the implicit surface representation u
using the Marching cubes [14] algorithm.

Although the most common types of symmetries, like planar reflective sym-
metries, rotational, and translational symmetries are represented by linear trans-
formations, the convexity of the energy is also not violated if the symmetry
transformation is non-linear. This is because the transformation affects only the
argument x of u, but not u itself. Hence, our formulation can handle any type
of symmetry. In this work, we focus, however, on planar reflective symmetries
since these are the most common ones in many environments.

Planar Reflective Symmetries. In this case the symmetry γ is parametrized by
a 3D plane given in Hessian normal form by nx − d = 0 with unit normal
n ∈ R

3 and the distance from the origin d ∈ R. The linear transformation inside
the symmetry term in Eq. (5) is then given by b = 0, Aγ = (I − Mγ), with I

being the identity matrix. The binary matrix Mγ ∈ {0, 1}|V |×|V | (with |V | being
the number of voxels in the discretized volume domain) encodes all pairwise
dependencies between voxels being linked by the symmetry γ and is defined as

(Mγ)ij =

{

1 if m(j) = m(i) − 2n
(

m(i)T n − d
)

0 otherwise.
(6)

Here function m : Z → Z
3 converts between the stacked 1D voxel index and the

corresponding 3D voxel index. Further, pairwise dependencies (non-zero entries
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in matrix Mγ) are only added for voxels inside the corresponding symmetry sup-
port domain Vγ . In sum, for the case of planar reflective symmetries the relations
in Eq. (6) essentially add pairwise interactions according to the symmetry for all
points in the symmetry support domain Vγ .

5 Experiments

Although our approach inherently combines surface denoising, completion and
hallucination, we try to isolate and evaluate these properties separately in the
following experiments.

5.1 Surface Denoising and Completion

In order to evaluate the denoising properties of our approach, we artificially
degraded the 3D reconstruction of a building by dropping every second depth
map from the original reconstruction. These depth maps were created by a plane
sweep stereo matching approach from a sequential set of 118 images taken from
all sides of the building. To improve the degraded model, we used the symmetry
prior with the best scoring vertical symmetries in the scene, see Fig. 4.
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2
depth maps 1

2
depth maps + symmetry

Fig. 4. Reconstruction of the building “g-hall” with large occlusions in the input data
due to vegetation. The top row shows example input images, corresponding depth maps
and the two best scoring planar symmetries. For comparison purposes, we degraded
the original reconstruction (left column) by taking out half of the depth maps (center
column) in order to introduce noise and missing data. Applying a symmetry prior to
the degraded model completes many occluded areas on the backside, reduces the noise
and enhances details like the window frames.
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5.2 Surface Hallucination

In Fig. 5 we demonstrate the ability of our method to hallucinate large parts of
a scene in unexplored areas. To this end, we took the Capitol data set from [1]
consisting of a large building captured with 359 images. For the experiment,
we selected one of the connected components with 129 images of the data set,
representing half of the building as shown in the center column of Fig. 5. Using
the two best scoring planar reflective symmetries, we were able to hallucinate
the other half of the building and compared the result to the full stitched model
presented as a result in [1]. An overlay of the two reconstructions reveals that
the center part of this building is actually not exactly symmetric. Naturally,
surrounding objects like the stairs do not fit to the reflected surface, but it is
also visible that large parts of the walls and details like the windows align well.

5.3 Local Symmetries

Figure 6 shows an experiment with multiple local symmetries of objects in a
desk scene. The local symmetries were detected using the RANSAC approach
with sliding search boxes as described in Sect. 2.1. The first row in Fig. 6 depicts
the input data which was scanned with a structured light RGB-D sensor and
is missing surface information for several unobserved scene parts. The baseline
reconstruction without the symmetry term (µ = 0) is shown in the second row of
Fig. 6. Some of its areas are filled with minimal surfaces as visible in the backside
of the monitor and the lower part of the office chair. In contrast, the results with
our approach (third row of Fig. 6) demonstrate that these areas are filled in a
more meaningful way with the help of the symmetry information.

Another advantage of our approach is the combination of the symmetry prior
and the classical minimal surface smoothness prior. While the lower part of the
chair and the backside of the monitor clearly show the benefit of the symmetry
term while regularizing the surface, the impact of the total variation term is
not clear in these cases. Nevertheless, its impact is still important as it helps to
denoise the surface and close smaller holes. For instance, the input surface infor-
mation of the monitor stand is not sufficient to fully reconstruct it without holes
by solely using the symmetry prior. As highlighted in Fig. 8, the combination of
the two priors unifies their desired properties and yields superior reconstruction
results in comparison to using only one of the priors alone.

5.4 Discussion and Limitations

While the proposed symmetry detection is rather robust to noise, the subse-
quent surface optimization with the proposed symmetry prior is sensitive even
to very small changes of the symmetry parameters: (1) The accuracy of the
symmetry support (up to surface noise) is essential, because otherwise inconsis-
tent scene parts are forced to take consistent occupancy labels and the resulting
label depends on the data support, the smoothness parameter and the number
of pairwise inconsistencies within the group structure of the favored symmetry.
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Fig. 5. This experiment shows a symmetric reconstruction of the capitol building in
Providence (Rhode Island, USA) with a large unexplored area. We created a partial
model by leaving out depth maps and then detected symmetries and hallucinated the
rest of the building into the unexplored area.
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Fig. 6. Experiment with a desk scene containing multiple local planar symmetries
shown as teal-colored planes in the first column. Several scene parts such as the backside
of the monitor and the lower part of the chair were occluded during data acquisition.
The figure shows the reconstruction results of the baseline approach (second row) which
fills-in a minimal surface into the unknown regions in comparison to reconstruction with
the proposed symmetry prior (third row) which completes these regions while obeying
to the previously detected symmetries.

(2) The accuracy of the symmetry plane normal has strong influence on the
result, because even small angular errors lead to large reconstruction errors for
points that are far away from the symmetry plane as explained in Fig. 7.

Parameter Settings. We experimented with several settings for the individual
symmetry weights ωγ , like e.g. the support size, inlier ratios, or number of
inliers, following the idea that symmetries with a stronger data support should
also be enforced in a stronger way. However, we found that uniform weights
(∀γ : ωγ = 1) gave the best results and used them in all of our experiments.
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raw input + symmetry plane with symmetry (µ = 200)

without symmetry (µ = 0) with symmetry (µ = 2)

Fig. 7. Partial scan of a symmetric hallway. The figure shows different values of sym-
metry term weights µ in comparison. Even the very small angular error in the symmetry
plane leads to inconsistencies in surface areas like the floor and walls and makes them
disappear if the symmetry is enforced strongly (µ = 200). Our approach allows for a
compromise by only putting a low symmetry weight (µ = 2), which leads to a not fully
symmetric scene, but allows to recover the floor and all the walls in this dataset.

The other model parameters (volume resolution, data term weight λ, and sym-
metry term weight µ) are summarized in Table 1. The choice of these parameters
is intuitive and careful tuning was not necessary. In order to weigh the amount
of smoothness, data fidelity and symmetry against each other, we found as a rule
of thumb that the data term weight and the symmetry term weight should be
changed in a similar manner in order to keep a similar amount of smoothness,
e.g. when enforcing more symmetry, the data term weight should be raised as
well to maintain the amount of data fidelity. Conversely, for less smoothness the
data term weight is raised and the symmetry term weight needs to be raised
as well in order to maintain a comparable impact of the symmetry term. For
more sophisticated symmetries like the stool or the toy example in Fig. 3, large
symmetry term weights are required to enforce the full group structure.

For the detection of the global symmetries, we achieved better results and
shorter runtimes on the larger data sets with the Hough transform, while for the
local symmetry detection, the RANSAC approach gave better symmetry pro-
posals. As mentioned in Sect. 2, we use a sliding box approach (3D convolution)
with different box sizes to better detect all the objects in the scene. We chose
sliding boxes of sizes 20%, 30%, 40%, and 60% of the total volume size and
moved them by quarter box length quantities. For the symmetry support regions
Vγ , we simply took the tight bounding box of the inlier points of the symmetry,
but a better symmetry-based segmentation could also be used [26].
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without symmetry with symmetry prior

Fig. 8. Benefit of combining the min-
imal surface and the symmetry prior:
less than half of the monitor stand
was observed, the symmetry prior alone
would leave a hole in the stand, but
the combination of the priors yields the
desired result.

Table 1. Overview of parameters for all
experiments. The first two columns show
the voxel resolution next to the correspond-
ing dataset and the last two columns show
the data term weight λ and the symmetry
term weight µ (see Eq. (3)).

Dataset Voxel resolution |V | λ µ

Stool 191 × 158 × 135 (4M) 108 107

Capitol 700 × 560 × 560 (220M) 1.5 6

g-hall 512 × 512 × 213 (56M) 0.75 6

Desk 311 × 289 × 239 (21M) 1500 300

Hallway 730 × 436 × 301 (96M) 200 200

Computation Time. All results have been computed on a Linux-based i7 CPU
with a GeForce GTX 780 graphics card. While the symmetry detection is per-
formed by unoptimized CPU code, the surface optimization with a symmetry
prior has been implemented on the GPU. The computation times for the symme-
try detection vary depending on the dataset and are within seconds for simple
scenes like the stool and up to 2 h for the sliding box approach on the desk
dataset. The computation time for the surface optimization with and without
symmetry constraints with 80M voxels were 2:20 min and 1:03 min, respectively.
This highly depends on the grid resolution, e.g., the reconstruction of the stool in
Fig. 1 with 4M voxels took only 5 s with- and 2 s without symmetry constraints.

6 Conclusion

In this paper we proposed a novel symmetry prior for variational 3D reconstruc-
tion. Our method is able to enforce several symmetries with the same support
area, allowing for symmetry interactions that proved to be very useful for sev-
eral applications such as surface denoising and completion, as well as surface
hallucination in the case of highly incomplete data. We also discussed two pla-
nar symmetry detection approaches and how to handle and exploit unobserved
areas in order to more robustly detect such symmetries. We showed the results
of our method in several datasets, ranging from noisy and slightly incomplete
reconstructions, to models with almost half of its surface missing. We also showed
results on scenes with several local symmetries with different support sizes. In
future work, we would like to explore better symmetry detection methods, as
well as experiment with different kinds of symmetries, such as rotational, trans-
lational or curved symmetries (e.g. as in [12]).
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8. Kerber, J., Wand, M., Krüger, J.H., Seidel, H.: Partial symmetry detection in
volume data. In: Proceedings of the Vision, Modeling, and Visualization Workshop,
Berlin, Germany, 4–6 October 2011, pp. 41–48 (2011)

9. Kolev, K., Klodt, M., Brox, T., Cremers, D.: Continuous global optimization in
multiview 3D reconstruction. IJCV 84(1), 80–96 (2009)

10. Kolev, K., Pock, T., Cremers, D.: Anisotropic minimal surfaces integrating pho-
toconsistency and normal information for multiview stereo. In: ECCV, Heraklion,
Greece, September 2010
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