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Abstract: Non-Hermitian topological band structures such

as symmetry-protected exceptional rings (SPERs) can em-

erge for systems described by the generalized eigenvalue

problem (GEVP) with Hermitian matrices. In this paper,

we numerically analyze a photonic crystal with negative

index media, which is described by the GEVP with Hermi-

tian matrices. Our analysis using COMSOL Multiphysics®

demonstrates that a SPER emerges for photonic crystals

composed of split-ring resonators and metal-wire struc-

tures. We expect that the above SPER can be observed in

experiments as it emerges at a finite frequency.

Keywords: generalized eigenvalue problems; non-

Hermitian topology; topological photonics

1 Introduction

The topological band theory has been studied as one of

the central issues of condensed matter physics after the

discovery of the integer quantum Hall effect [1–5]. Exten-

sive studies have revealed the many types of topologi-

cal phases and novel phenomena, such as bulk-boundary

correspondence in electron systems [6, 7] or novel trans-

port properties [8–11] on insulators [12–27] or semimetals

[8–11, 28–31]. Remarkably, classical systems are also within

the scope of the application of the topological band theory:

it has been studied in photonic systems [32–41], phononic

systems [42–48], electrical circuits [49], diffusion phenom-

ena [50–52], game theory [53, 54], and so on. The ubiquity
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of the topological phenomena arises from the fact that the

systems are described by the eigenvalue problem.

These studies for the quantum and the classical sys-

tems have recently been extended to non-Hermitian sys-

tems [55–69]. This extension enriches the topological phe-

nomena. In particular, the non-Hermiticity induces unique

phenomena, such as non-Hermitian skin effects [70–77]

and the emergence of exceptional points (EPs) [78–85]. The

non-Hermitian skin effect is induced by point-gap topology,

which results in extreme sensitivity to the presence/absence

of the boundaries. On the EPs, band touching occurs for both

the real and the imaginary parts, which is also protected by

point-gap topology. The EPs are further enriched by sym-

metry [e.g., the interplay between pseudo-Hermiticity and

EPs results in symmetry-protected exceptional rings (SPERs)

[86–90] (surfaces [91–93]) in two (three) dimensions].

Here, onemay expect that further extension of the band

theory results in novel topological phenomena. In addition,

several systems (e.g., photonic and phononic systems) are

described by the generalized eigenvalue problem (GEVP).

Recently, it has been reported that systems described by the

GEVPwithHermitianmatrices exhibit SPERswith emergent

symmetry [94]. The emergence of such SPERs at the zero

frequency explains the characteristic dispersion relation for

hyperbolic metamaterials, which are continuum systems

described by the Maxwell equations. However, studies of a

lattice system hosting the above SPERs with the GEVPs is

missing.

In this paper, we analyze a photonic crystal composed

of negative index media (NIM), which is described by the

GEVP with Hermitian matrices. Our analysis using COMSOL

Multiphysics® demonstrates that the above photonic sys-

tem, composed of split-ring resonators (SRRs) and metal-

wire structures, hosts a SPER with emergent symmetry at

a finite frequency. In this system, the negativity of the per-

mittivity and the permeability results in the indefiniteness

of the matrices, which is essential for the emergence of the

above SPER.

The rest of this paper is organized as follows. In

Section 2, we briefly review GEVPs and analyze the band

structure of a toy model. The toy model hosts a SPER

protected by the emergent symmetry. In Section 3, we
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analyze a photonic crystal composed of NIM. We show the

emergence of a SPER and discuss the observability of the

SPER. In Section 4, a short summary and discussion are

provided. In Appendix A, Eq. (2) is derived from Eq. (1). In

Appendix B, the relation between the pseudo-Hermiticity

and SPERs is discussed. In Appendix C, a band structure

for the positive permittivity and permeability is shown. In

Appendix D, we analyze a 𝜔-dependent toy model by two

different approaches.

2 GEVP and non-Hermiticity

In this section, we briefly review the GEVP and analyze a toy

model [95]. In contrast to the ordinary eigenvalue problem,

eigenvalues of GEVPs can be complex numbers even when

the matrices are Hermitian. Whether the eigenvalues are

real or complex is not determined by the Hermiticity of

matrices in GEVPs, though it is determined only by the Her-

miticity in the eigenvalue problems. GEVP is defined by

H𝜓 = ES𝜓, (1)

where H and S are Hermitian matrices. The eigenvalue is

denoted by E, and 𝜓 is the eigenvector.

In this problem, the properties of eigenvalues signifi-

cantly depend onwhether thematrices are definite or indef-

inite. In the case that H or S is definite (i.e., all eigenvalues

have the same sign), all of eigenvalues are real. On the other

hand, in the case that the matrices are indefinite, eigenval-

ues can take complex values in spite of the Hermiticity. This

can be seen as follows. Firstly, we note that Eq. (1) can be

rewritten as the following standard eigenvalue problem,

HΣ𝜓 = E𝜓 . (2)

Here,HΣ is defined asHΣ = ΣH′ with the Hermitianmatrix

H
′ and the diagonal Hermitian matrix Σ satisfying Σ2 = 1

(for detailed derivation and explicit definitions of H′ and

Σ, see Appendix A). We note that Σ is the identity matrix

unless S is indefinite. Namely, when S is definite, Eq. (1) is

reduced to the ordinary eigenvalue problem [Eq. (2)] with

the Hermitian matrix, which results in E ∈ ℝ. When S is

indefinite, Eq. (1) is reduced to the ordinary eigenvalue

problem [Eq. (2)] with the non-Hermitianmatrix [96], which

may results in E ∈ ℂ. In addition, HΣ satisfies a symmetry

constraint

ΣHΣΣ = H
†
Σ, (3)

which is the pseudo-Hermiticity. Hence, eigenvalues E

are real or form pairs (E, E∗). This pseudo-Hermiticity is

attributed to the Hermiticity of the matrices H and S. From

the above discussion, we can expect the emergence of the

symmetry-protected non-Hermitian topology in the system

described by the GEVP with indefinite Hermitian matrices.

In order to show the emergence of the non-Hermitian

band structures with Hermitianmatrices, we analyze a two-

band model described by the GEVP, whose matrices are

given by

H(k) =
3∑
i=0

hi(k)𝜎i, S(k) =
3∑
i=0

si(k)𝜎i.

Here, hi(k) and si(k) are real, and 𝜎0 is the 2 × 2 identity

matrix, 𝜎i are the Pauli matrices (i = 1, 2, 3). The vector

k = (kx, ky) describes the momentum. Its eigenvalues are

given by

E(k)± = 1

𝜂(s, s)
[𝜂(h, s)±

√
𝜂(h, s)2 − 𝜂(h,h)𝜂(s, s)], (4)

where 𝜂(, ) is the Minkouski product, 𝜂(a, b) = a0b0

− a1b1 − a2b2 − a3b3 [97].

Here, we analyze the model with h(k) = (0, kx, ky,ML),

s(k) = (1, 0, 0,MR). We choose as |ML| > 0, |MR| > 1, so that

H and S are indefinite. Figure 1 is the dispersion relations

with ML = 0.3 and MR = 1.1. Figure 1(a) and [(b)] shows

the real [imaginary] part of the band structure. One can

see emergence of the symmetry-protected exceptional ring,

which is represented as the red line. In Figure 1(c), the real

and the imaginary parts of eigenvalues at ky = 0 are shown.

The red dots denote EPs. At the red dots, the band touching

occurs both for the real and the imaginary parts.

The above ring of the exceptional points is protected

by the pseudo-Hermiticity. For our 2 × 2 model, the GEVP is

rewritten as HΣ𝜓 = E𝜓 , with

HΣ =

⎛⎜⎜⎜⎜⎜⎝

ML|1+MR|
kx − iky√|1−M2

R
|

−
kx + iky√|1−M2

R
|

ML|1−MR|

⎞⎟⎟⎟⎟⎟⎠
. (5)

This matrix possesses pseudo-Hermiticity for the operator

Σ = 𝜎3, 𝜎3HΣ𝜎3 = H
†
Σ.

The presence of the pseudo-Hermiticity allows us to

define the following ℤ2-invariant,

𝜈 = sgnΔ(k). (6)

Here, Δ(k) is the discriminant of the polynomial of E,

det[H(k)− ES(k)] = det[S(k)] det[HΣ(k)− E] = aN (−E)N +
aN−1(−E)N−1 + · · · + a1(−E)+ a0 with ai ∈ ℂ. It is defined
as

Δ(k) =
∏
n<n′

[
En(k)− En′ (k)

]2
, (7)
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Figure 1: Band structure and ℤ2 invariant for b = (0, 0, 0.5) and d = (kx , ky , 0). Panel (a) [(b)] is the plot of the real [imaginary] part of the band

structure. Red lines indicate the SPER. Panel (c) is the plot of the real (imaginary) part of the band structure at ky = 0. Blue (black) lines represent the

real (imaginary) part. Red points corresponds to the SPER [see also panel (d)]. Panel (d) represent the ℤ2 invariant 𝜈. Orange (white) region is

𝜈 = +1 (𝜈 = −1). Red ring corresponds to the SPER in panels (a) and (b). Band structures in panel (c) are ploted along the dotted line.

where n label eigenvalues En (n = 1,… ,N). Here two

remarks are in order. (i) Because of the pseudo-Hermiticity,

Δ is real. We recall that det S(k) does not change its sign in

the momentum space. (ii) The discriminant can be com-

puted only from the coefficients ai. In Figure 1(d), the

ℤ2-invariant 𝜈 for each point in the momentum space

is shown. The SPER emerges on the line where 𝜈 jumps

because at least two roots En are equal forΔ = 0.

Here we have shown that the system described by the

GEVP with Hermitian matrices exhibits the SPER protected

by the emergent symmetry [see Eq. (3)] when both matrices

are indefinite [see Eq. (1)]. In the next section, we analyze

a photonic crystal composed of NIM described by the GEVP

where the above SPER emerges at a finite frequency.

3 Photonic crystal with negative

index media

3.1 Photonic band calculation and SPER

In this section, we analyze a photonic crystal composed

of NIM, which hosts a SPER at a finite frequency. For the

emergence of the non-Hermiticity based on the GEVP, sys-

tems need to satisfy the Hermiticity and the indefiniteness

of the matrices. Photonic systems are the one of the systems

which can satisfy the above properties.

The band structure of photonic crystals are described

by the Maxwell equations,

∇× E = −𝜕B
𝜕t
, ∇× H = 𝜕D

𝜕t
,

∇ ⋅ D = 0, ∇ ⋅ B = 0.

Here, E (H) is the electric (magnetic) field, and D (B) is the

electric (magnetic) flux density. From these equations, we

obtain the following wave equation,

∇× 𝜇(r)−1∇× E =
(
𝜔

c

)2
𝜀(r)E, (8)

where 𝜀 and 𝜇 are the relative permittivity and the rela-

tive permeability. Angular frequency, position in real space,

and light speed in vacuum are represented as 𝜔, r, and c,

respectively.

The above equation is a GEVP. To see this, we

expand the electric field E(r) by using real space bases as
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E(r) = ∑
j
|𝝓 j⟩cj. Here, |𝝓 j⟩ is the localized bases on the

mesh point j. Applying ⟨𝝓i| from the left yields,

∑
j

⟨∇×𝝓i|𝜇−1(r)|∇×𝝓 j⟩c j = ∑
j

(
𝜔

c

)2⟨𝝓i|𝜀(r)|𝝓 j⟩c j.
(9)

The above equation is a GEVP which can be seen by noting

the correspondence, Hij ↔ ⟨𝛁 ×𝝓i|𝜇−1(r)|𝛁 ×𝝓 j⟩, Sij ↔⟨𝝓i|𝜀(r)|𝝓 j⟩, 𝝍 j ↔ cj. Here, one might consider that the

minus sign of 𝜇 and 𝜀 are factored out by focusing only

on the region where both 𝜇 and 𝜀 are negative. However,

such a procedure is not applicable because electromagnetic

fields can propagate to the outside of regions where 𝜇 and 𝜀

are negative; electromagnetic fields are not confined in the

region where 𝜇 and 𝜀 are negative. Indeed, choosing 𝜇 and

𝜀 to positive values significantly changes the band structure

(for more details, see Appendix C).

As discussed in Section 2, breaking the definiteness of

the both matrices H and S is essential for the emergence of

non-Hermitian band structures. Breaking the definiteness

can be accomplished by negative 𝜀 and 𝜇 in the internal

structures of the photonic crystal.

Now, we consider the photonic crystal of the square

lattice [see Figure 2]. Here, we take the x–y plane parallel

to the two-dimensional photonic crystal and the z-axis per-

pendicular to the system. The unit-cell size is denoted by

a, and the radius of the internal structures of the photonic

crystal is set to be 0.2a. Here, we consider the case when

𝜀 and 𝜇 respectively take nagative constant values in the

green-calored region of Figure 2. The permittibity and the

permeability of green- (white-) colored region are chosen

in 𝜀 = −5.9 and 𝜇 = −0.4 (𝜀 = 1 and 𝜇 = 1). We assume

the photonic crystal is uniform and infinitely long in the

z-direction.

Figure 3 shows the photonic band structures of

the transverse magnetic (TM) mode [E = (0, 0, Ez), H =
(Hx,Hy, 0)]. Eigenvalues are calculated for each k by assum-

ing 𝜀 and 𝜇 are constant. The data are obtained by using

COMSOL. Specifically, we employ the wave optics module.

We set “physics controlledmesh” to finemesh size. In Figure

3(a)–(h), the real [imaginary] part of the dimensionless

parameter 𝜔a∕(2𝜋c) are plotted for several values of kya

[see also the insets of Figure 3(a)–(d)]. The bands of real

eigenvalues are plotted in red. As denoted by the black dots,

band touching occurs for both of the real and the imaginary

parts, indicating emergence of the EPs at fixed kya [see

Figure 3(a)–(c) and (e)–(g)]. These data indicate the emer-

gence of the SPER in the two-dimensional momentum space

[98, 99]. We note that EPs are not observed in Figure 3(d)

and (h) because the SPER does not cross the line specified

by kya = 3𝜋∕8 [see the inset of Figure 3(d)].
Now, we address the topological characterization of the

SPER by theℤ2-invariant. For the computation of 𝜈, we pick

up the two bands involved in the SPER. The ℤ2-invariant is

plotted in the inset of Figure 3(b) [The inset of Figure 3(a), (c)

and (d) show the same data of 𝜈]. The inset of Figure 3(b)

indicates that the SPER is indeed characterized by the

ℤ2-invariant; the ℤ2-invariant 𝜈 jumps from −1 to 1 on the
SPER with increasing kxa from 0 to 𝜋 [see Figure 3(b)].

From the above results of the band structure and

the ℤ2-invariant, we conclude that the photonic crystal

composed of NIM hosts the SPER protected by emergent

symmetry.

Here, a comment is in order concerning the physi-

cal meaning of the complex band structure. Our system

does not include any dissipation, although the eigenval-

ues become complex. This result may suggest that when

Figure 2: Sketch of the photonic crystal. Unit-cell size is represented a and the radius of internal structures of the photonic crystal is chosen as 0.2a.

The regions of NIM (vacuum) are colored in green (white). The permittivity and the permeability are chosen in 𝜀 = −5.9 and 𝜇 = −0.4 (𝜀 = 𝜇 = 1) in

the green- (white-) colored region.
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Figure 3: Photonic band structures of the square lattice photonic crystal composed of NIM. The relative permittivity and the relative permeability are

fixed at 𝜀 = −5.9 and 𝜇 = −0.4 [see Figure 2]. The radius of internal structures of the photonic crystal is chosen as 0.2a, as illustrated in Figure 2.
Panels (a)–(d) are the plot of the real part for several values of kya denoted by the blue lines in the insets. The bands of real eigenvalues are colored in

red. The SPERs are represented by black dots. In the insets of these panels, the ℤ2-invariant 𝜈 is plotted; 𝜈 takes 1 and−1 in the orange- (white-)
colored regions. The boundary between these regions corresponds to the SPER on which we focus. The section between SPER and a line of specific kya

is represented by black dots.

shining electromagnetic fields onto our system, it is

expected that the electromagnetic fields will spatially decay,

as is the case of electromagnetic fields in photonic band gaps

or plasmon inmetals. More detailed discussion is conducted

in Section 3.2. Our SPER is defined as the boundary of the

momentum space where propagating modes are present

and absent.

3.2 Photonic crystal composed of SRRs and
metal-wire structures

In Section 3.1, we have analyzed the photonic crystal com-

posed of the negative 𝜀 and 𝜇. Although we have assumed

𝜀 and 𝜇 are negative constant in the internal structures

[i.e., the green-colored region of Figure 2], 𝜀 and 𝜇 are

the function of the frequency for generic NIM. Here, let us

discuss the case of the green colored region of Figure 2 is

composed of metal-wire structures [100] and SRRs [101] [see

Figure 4(a)], which negative 𝜀 and negative 𝜇 are exper-

imentally reported [102, 103]. With the effective medium

approximation, the permittivity and the permeability of

NIM composed of SRRs and metal-wire structures are given

by [103],

𝜀(𝜔)

𝜀0

= 1−
𝜔
2
ep
−𝜔2

eo

𝜔2 −𝜔2
eo
+ i𝛾𝜔

, (10)

𝜇(𝜔)

𝜇0

= 1−
𝜔
2
mp

−𝜔2
mo

𝜔2 −𝜔2
mo

+ i𝛾𝜔
, (11)

where 𝜔ep∕2𝜋 = 12.8 [GHz], 𝜔eo∕2𝜋 = 10.3 [GHz],

𝜔mp∕2𝜋 = 10.95 [GHz], 𝜔mo∕2𝜋 = 10.05 [GHz], and

𝛾 = 10 [MHz]. 𝜀0 and 𝜇0 are the permittivity and the

permeability in the vacuum, 𝜀0 = 8.85 × 10−12 [F∕m] and
𝜇0 = 1.25 × 10−6 [H∕m]. The frequency dependence of 𝜀

and 𝜇 is shown in Figure 4(b). Both 𝜀 and 𝜇 take negative

values within the colored region in Figure 4(b). When

𝜔∕2𝜋 = 10.7 [GHz], the permittivity and the permeability

become 𝜀 = −5.9 and 𝜇 = −0.4. We note that 𝛾 = 10 [MHz]

is negligible compared to 𝜔ep, 𝜔eo, 𝜔mp, 𝜔mo and 𝜔.

Therefore, Eq. (9) corresponds to solving the following

equation,

∑
j

⟨∇×𝝓i|𝜇−1(𝜔c, r)|∇×𝝓 j⟩c j
=

∑
j

(
𝜔

c

)2⟨𝝓i|𝜀(𝜔c, r)|𝝓 j⟩c j. (12)

with 𝜔c∕2𝜋 = 10.7 [GHz]. Since 𝜔a∕2𝜋c is plotted as the

vertical axis in Figure 3, we can regard the vertical axis as

the unit-cell size a by fixing 𝜔 in 𝜔c, and considering the

vertical axis as 𝜔ca∕2𝜋c.
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Figure 4: Sketch of the SRR and the metal-wire structure, and the permittivity and permeability. Panel (a) displays the sketch of the SRR and the

metal-wire structure as a NIM. Panel (b) displays the plot of the permittivity and the permeability of the NIM composed of SRRs and metal-wire

structures. We fix the frequency to𝜔∕2𝜋 = 10.7 [GHz], as denoted by black points.

From the above perspective, Figure 3 represents the

“band structure” of the unit-cell size a that hosts the eigen-

modes with real 𝜔 and real k.We recall that 𝜔 and k are

fixed in real in our analysis. In the complex region of the

band structure, a needs to be complex for real 𝜔 and real

k, although complex a cannot be realized physically. There-

fore, the complex region of the band structure represents

the area where the eigenmodes with real 𝜔 and k cannot

be excited physically. This result indicates that as we vary

k along the band structure, physically excitable eigenmodes

vanish at specific k points. These k points correspond to EPs,

and the EPs surround the region where physically excitable

eigenmodes are absent with real𝜔 and real k. Such absence

of bands is unique to the GEVP composed of indefinite Her-

mitian matrices. Here, we note that the spatially decaying

modes with complex k are not forbidden in the complex

region [104]. Therefore, electromagnetic fields are consid-

ered to decay spatially as is the case of the electromagnetic

fields in photonic band gaps or plasmon in metals.

We finish this section by the discussion towards the

experimental observation. In the above, we have fixed the

frequency. Thus, we consider that the square-root disper-

sion can be observed by changing the unit-cell size [105].

The square-root dispersion for a photonic crystal with dissi-

pation is experimentally observed in Ref. [86]. Specifically,

we expect that the SPER is observed for approximately

a = 2.8 [cm] and 𝜔∕2𝜋 = 10.7 [GHz] because the SPER

emerges at the vicinity of Re(𝜔a∕2𝜋c) = 1. The radius of

the internal structures of the photonic crystal is approx-

imately 0.2a = 0.56 [cm], which is larger than the size of

SRRs, 0.5 [cm], of Ref. [103]. We note that other metamateri-

als [106] can also be available as NIMwhile we have focused

on the systems composed of SRRs andmetal-wire structures.

4 Summary and discussion

In this paper, we have analyzed the photonic crystal com-

posed of NIM, which is described by the GEVP with Hermi-

tianmatrices. By using COMSOL,wehave elucidated that the

photonic crystal exhibits the SPER protected by the emer-

gent symmetry at a finite frequency. Here, the negativity of

both the permittivity 𝜀 and the permeability 𝜇 is essential

for the emergence of the SPER because it results in the

indefiniteness of the relevant matrices.

So far, we have solved the GEVP by fixing 𝜔. In this

case, the unit-cell size a corresponds to eigenvalues. Namely,

the band structure of real eigenvalues in Figure 3 can be

observed by changing a for fixed frequency 𝜔. We note

that solving 𝜔 self-consistently in Eqs. (9)–(11) also yields

the band structure of real 𝜔 for our system. In contrast to

our band structure, this band structure of self-consistent

approach can be observed by inserting light with various

values of frequency 𝜔 for fixed a. Although comparison

between these two different band structures is not straight-

forward, these two band structures for a specific𝜔 are con-

sistent for the fixed 𝜔. Indeed we confirm the consistency

for a toy model (for more details, see Appendix D).

In our system, complex eigenvalues emerge without

dissipation. Our results imply that as is the case of electro-

magnetic fields in photonic band gaps or plasmon in metal,

the electromagnetic fields in the photonic crystal of the NIM

would decay spatially in the region of the momentum space

where bands take complex values.

In Ref. [94], it has pointed out that the hyperbolic meta-

materials host SPERs at zero frequency. In contrast to the

previous work, we have demonstrated that our photonic

crystal hosts the SPER at a finite frequency. This SPER at
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a finite frequency is expected to be observed by changing

the size of the unit-cell around a = 2.8 [cm]. We expect that

the emergence of SPER will result in a unique reflection

spectrum. The detailed analysis of the reflection spectrum

and the time-evolution are left as future works.

We have employed the effective medium approxima-

tion in order to take into account the internal structure of

the photonic crystal. This approximation become accurate

when the number of resonators inside of the cylinder is

large. This fact indicates that our analysis becomes accurate

for SPERswith large𝜔a∕2𝜋c.We have also assumed that the

system extends infinitely in the z-direction. For more accu-

rate band structures, we need to take into account effects of

the detailed internal structure of cylinders [107] and effects

of the boundaries in the z-direction. We left further analysis

as a future work.

We note that the SPER attracts interests due to its

application to high-sensitivity sensors [108]. Our results of

phtonic crystal might serve as a platform of such a novel

device. We also note that if we scale down our system to

nano-scale the frequency is around the visible light or near-

infrared regions.
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Appendix A: GEVP and

non-Hermiticity

Here, let us derive Eq. (2) from Eq. (1). First, we diagonalize

matrix S by a unitary matrix U , U–1SU = SU . Correspond-

ingly, H and 𝜓 are also transformed U
–1
HU = HU , and

U
−1
𝜓 = 𝜓U .

Second, we decompose matrix SU as follows,

SU = S
′ΣS′. (13)

Here, S′ = diag(|√s1|,… , |√sN |), si are diagonal com-

ponents of SU . Σ is a diagonal matrix whose diagonal

elements are +1 or −1. Note that when the matrix S is

definite, the matrix Σ is equal to the identity matrix.

Finally, we set

H
′ = S

′−1
HUS

′−1
, (14)

𝜓
′ = S

′−1
𝜓U , (15)

and operate Σ from the left side. We can obtain the eigen-

value problem

HΣ𝜓
′ = E𝜓

′
, (16)

with HΣ = ΣH′. The matrix H
′ is Hermitian because the

transformation fromH toH′ preserve the Hermiticity of the

matrix H.

Therefore, in the case that S is definite,HΣ becomes the

Hermitian matrix. In contrast, if S is indefinite,HΣ becomes

non-Hermitian.

Appendix B: Pseudo-Hermiticity

and SPER

In this section, we discuss the relation between the pseudo-

Hermiticity and the symmetry-protected exceptional rings

(SPERs), which is a symmetry-protected non-Hermitian

topological band structure in a two-dimensional system

[86–88, 90–92].

We consider a two-band model of the non-Hermitian

system, which Hamiltonian is given by

H(k) =
3∑
i=1

[
bi(k)+ idi(k)

]
𝜎i, (17)

where b(k) and d(k) are real, and 𝜎i are Pauli matrices.

We assume k is two-dimentional parameter. bi represents

the Hermitian part of the Hamiltonian. Non-Hermiticity of

the Hamiltonian comes from di. In general, bi and di are

three-dimentional vectors which directions and norms vary

independently. Eigenvalues are given by

E(k)± = ±
√
b(k)2 − d(k)2 + 2ib(k) ⋅ d(k). (18)

EPs emerges at k points that satisfy b2 − d
2 = 0 and b · d =

0. Figure 5(a) and [(b)] shows the real [imaginary] part of the

band structure with b = (0, 0.5, 0.5) and d = (kx, ky, 0). Red

points indicate EPs.
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Figure 5: Panel (a) [(b)] is the plot of the real [imaginary] part of the band structure with b = (0, 0.5, 0.5) and d = (kx , ky , 0). Red points indicate EPs.

Panel (c) [(d)] is the plot of the real [imaginary] part of the band structure with b = (0, 0, 0.5) and d = (kx , ky , 0). Red lines indicate the SPER.

Here, let us consider the case of the pseudo-Hermitian

Hamiltonian. The pseudo-Hermitian operator is chosen by

Σ = 𝜎3, the third component of the Pauli matrices. In this

case, Hamiltonian with b = (0, 0, b3) and d = (d1, d2, 0) pre-

serve the pseudo-Hermiticity. When the Hamiltonian has

the pseudo-Hermiticity, one of the constraints for the band

touching, b · d = 0, is satisfied automatically. Therefore, EPs

form one-dimensional lines since one of the band touch-

ing conditions in the two-dimensional parameter space is

eliminated. This structure is the SPER, which is one of

the symmetry-protected non-Hermitian topological band

structures. Figure 5(c) and (d) are the band structure with

b = (0, 0, 0.5) and d = (kx, ky, 0). We can see the emergence

of a SPER denoted by red lines.

Appendix C: Band structure

for positive permittivity

and permeability

We show that the sign of 𝜇 and 𝜀 significantly affects on

the band structure by comparing the band structures for

positive (𝜀, 𝜇) and negative (𝜀, 𝜇).

Figure 6 provides the results of positive (𝜀, 𝜇). As

shown in this figure, the band structure is significantly

different from the one shown in Figure 3(a)–(e). In

Figure 6: Photonic band structure of the square lattice photonic crystal

with (𝜀, 𝜇) = (5.9, 0.4) at kya = 0. The radius of internal structures of the

photonic crystal is chosen as 0.2a with unit-cell size a. The dimensionless

parameter𝜔a∕2𝜋c is real in the entire region, and EPs do not emerge.

particular, EPs do not emerge for (𝜀, 𝜇) = (5.9, 0.4) because

the dimensionless parameter 𝜔a∕2𝜋c remains real in the

entire region.

The above difference of the band structure [see

Figures 3(a) and 6] can be understood by analyzing a simple

model. Consider a system where electromagnetic fields can

be expanded as E(r) = |𝝓1⟩c1 + |𝝓2⟩c2. Here, the |𝝓1⟩ (|𝝓2⟩)
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is bases located on the region 1 (2) where the permittivity

and permeability are 𝜀1 and 𝜇1 (𝜀2 and 𝜇2). We suppose that

the overlap between |𝝓1⟩ and |𝝓2⟩ is finite, which is reason-
able for photonic crystals. In this case, Eq. (9) is rewritten as

(
h1,1 h1,2

h2,1 h2,2

)
𝝍 =

(
𝜔

c

)2(s1,1 s1,2

s2,1 s2,2

)
𝝍 (19)

with

hI, J = ⟨∇×𝝓I|𝜇−1(r)|∇×𝝓J⟩, (20)

sI, J = ⟨𝝓I|𝜀(r)|𝝓J⟩, (21)

𝝍 =
(
c1, c2

)T
, (22)

and I, J = 1, 2. Due to the overlap between the basis, the off-

diagonal elements h1,2, h2,1, s1,2, and s2,1 are finite in general.

Therefore, the sign of 𝜀 and 𝜇 cannot be factored out, which

results in the significant difference of the band structures

[see Figures 3(a) and 6].

Appendix D: Analysis of a

𝝎-dependent toy model by two

different approaches

In the main text, we have discussed the complex band

structures emerging in the photonic crystal composed of

NIM by considering the vertical axis of the band structure

as the unit-cell size. On the other hand, we can obtain

the band structure of the frequency 𝜔 by solving the

𝜔-dependent system self-consistently.We can see the consis-

tency between these two different approaches by analyzing

a 𝜔-dependent toy model.

Here, let us consider the following 𝜔-dependent toy

model in one dimension.(
ML sin(ka)

sin(ka) −ML

)
𝜓

= (𝜔a)2

(
1+MR(𝜔) 0

0 1−MR(𝜔)

)
𝜓, (23)

with

MR(𝜔) = 1− 1

𝜔2
, (24)

ML = −0.3. (25)

We compute the band structure of 𝜔 and “band

structure” of the unit-cell size a. For the computation of the

former bands, we solve the 𝜔-dependent model [Eq. (23)]

self-consistently by fixing a to a0 = 1. For the computation

of the latter bands, we compute eigenvalues by fixing 𝜔 to

𝜔c satisfying MR = 1− 1∕𝜔2 for given MR. The band struc-

ture of 𝜔 is plotted in Figure 7(a) (see the green line). In

this figure, the “band structure” of a is also plotted for MR

(𝜔c) = −1.2 (see the blue and red lines). The black line

denotes 𝜔ca0. This figure indicates that these eigenvalues

coincidewith each other (i.e., the green andblue lines cross).

We note that the imaginary part is zero at the point where

the two bands cross below EPs. For MR(𝜔c) = −1.43, two
bands cross on the EPs [see Figure 7(b)]. ForMR(𝜔c) = −1.7,
two bands cross above the EPs [see Figure 7(c)].

We stress that the band structure of 𝜔 and the “band

structure” of a are essentially different. Therefore, in

Figure 7(b), the EPs on the blue band do not emerge on the

green band as EPs, despite the eigenvalues coincide with

each other. For MR(𝜔c) = −2.1, the two bands no longer

cross.

With the above results, we can see the consistency

between the band structure of 𝜔 and the “band structure”

of a. The above numerical data indicate that in the region

where the “band structure” of a become complex, the bands

of a and the band of 𝜔 do not cross the latter of which

Figure 7: Plot of the eigenvalues of Eq. (23). The self-consistent solution

𝜔a0 (a0 = 1) is plotted in green. The real (imaginary) part of the

eigenvalues for fixed𝜔 is plotted in blue (red). The black line indicates

(𝜔ca0)
2 with𝜔c for givenMR. Panel (a) is the plot of band structures when

MR = −1.2. The green band and the blue band overlap below EPs. Panel

(b) is the plot of band structures whenMR = −1.43. The green band and
the blue band overlap on EPs. Panel (c) is the plot of band structures

when MR = −1.7. The green band and the blue band overlap above EPs.
Panel (d) is the plot of band structures when MR = −2.1. The green band
and the blue band do not overlap.
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denotes a propagating mode (see green lines in Figure 7).

With this result, we consider that the eigenmodes cannot

propagate to the bulk when the bands of a become complex.
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