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Abstract

A celebrated theorem in two-dimensional dynamics due to John Franks asserts that
every area-preserving homeomorphism of the sphere has either two or infinitely many
periodic points. In this work we re-prove Franks’ theorem under the additional
assumption that the map is smooth. Our proof uses only tools from symplectic
topology and thus differs significantly from previous proofs. A crucial role is played
by the results of Ginzburg and Kerman concerning resonance relations for Hamiltonian
diffeomorphisms.

1. Introduction

Consider the unit sphere S2 ⊂ R3 equipped with the standard area form ω inherited from R3.
Let φα be the rotation of the sphere by 2πα radians about the vertical axis. Each φα is an
area-preserving diffeomorphism, and there are two simple alternatives for the number of its
periodic points: either α is irrational and φα has exactly two periodic points, the poles; or α
is rational, in which case some iterate of φα is the identity and hence φα has infinitely many
periodic points. The following remarkable theorem due to Franks [Fra92, Fra96] states that these
alternatives for the number of periodic points of area-preserving maps of S2 are universal.

Theorem 1.1 [Fra92, Fra96]. Every area-preserving homeomorphism of S2 has either two or
infinitely many periodic points.

In the case of smooth maps, this theorem was strengthened by Franks and Handel in [FH03],
with the addition of new information on the growth rate of periodic points. The smoothness
condition in [FH03] was then relaxed by Le Calvez in [Le06a]. As stated and proved, these results
all belong to the world of two-dimensional dynamical systems. In particular, all the previous
proofs known to the present authors utilize results, such as Brouwer’s translation theorem,
that capture phenomena unique to dimension two. On the other hand, Franks’ theorem (in the
smooth category) and the results in [FH03] can be recast as statements about Hamiltonian
diffeomorphisms of S2. From this perspective, they can viewed as the two-dimensional models
of a more general class of results that are expected to hold for Hamiltonian diffeomorphisms of
large families of symplectic manifolds (see below).

A first step in the process of absorbing Franks’ theorem into symplectic topology is to re-prove
it using only the tools from this field. This is the goal of the present paper. Other symplectic
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approaches to a similar set of results concerning area-preserving disc maps have been developed
by Bramham (see [BH12]) and by Ghrist et al. in [vdBGVW09].

Here we use some well-known symplectic tools, as well as the results on resonance relations
for Hamiltonian diffeomorphisms from [GK10], to prove the following.

Theorem 1.2. Every Hamiltonian diffeomorphism φ of (S2, ω) has either two or infinitely many
periodic points. If φ has exactly two periodic points, say P and Q, then both are nondegenerate.
In particular, both are elliptic fixed points of φ, and their mean indices ∆(P ),∆(Q) ∈ R/4Z are
irrational and satisfy

∆(P ) + ∆(Q) = 0 mod 4.

We defer a discussion of the mean index to § 2.2.
Theorem 1.2 implies Theorem 1.1 in the smooth category. For the case of Hamiltonian

diffeomorphisms with exactly two periodic points, the restrictions on these points included in
the statement of Theorem 1.2 are not new. As pointed out to us by Bramham, nondegeneracy
follows from the results on area-preserving homeomorphisms of annuli in [Fra92, Fra96], and
the restrictions on the mean indices can be derived from the Lefschetz fixed point theorem
and the Poincaré–Birkhoff theorem. However, we establish these restrictions by other means,
which we hope will lead to analogous restrictions in some of the generalizations of Franks’
theorem that are expected to hold in higher-dimensional settings. Perhaps the best known (and
most approachable) of these conjectured generalizations is the assertion that every Hamiltonian
diffeomorphism of CPn must have either n+ 1 or infinitely many periodic points (see, for
example, [HZ94, p. 263]). Applications of the ideas developed here to such problems will be
considered elsewhere.

Remark 1. Much is known about the set of Hamiltonian diffeomorphisms (in fact
homeomorphisms) of S2 with exactly two periodic points. In [Le06b] it is shown that,
up to conjugacy, every such Hamiltonian diffeomorphism (in fact homeomorphism) is the
compactification of an irrational pseudo-rotation, an area-preserving map of the closed annulus
such that every positively recurrent point has the same irrational rotation number. On the other
hand, such maps are known to exhibit a variety of different behaviors: from simple irrational
rotations to the smooth examples from [AK70, FH77, FK04], which have only three ergodic
invariant measures.

1.1 On the proof of Theorem 1.2
The crucial first step is to prove that if a Hamiltonian diffeomorphism φ of S2 has finitely many
periodic points, then at least two of these points, say P and Q, must have irrational mean
indices. This is established as an essentially immediate implication of the theory of resonance
relations for Hamiltonian diffeomorphisms developed in [GK10]. It is important to note that
these results from [GK10] are themselves implied by the ideas inherent in the recent proofs of
the Conley conjecture by Hingston [Hin09] and Ginzburg [Gin10], as well as the applications and
refinements of these ideas developed by Ginzburg and Gürel in [GG09a, GG10]. With P and Q
in hand, it is then easy to show that in order to prove Theorem 1.2, it suffices to show that φ
cannot have another periodic point, say R, with an integer mean index. Assuming the existence
of such an R, in two distinct cases, we blow up a suitable iteration of φ at two points and glue
the resulting map to itself to obtain an area-preserving diffeomorphism of the torus (following
Arnold). Using index relations and the Floer theory of symplectic diffeomorphisms, we then
prove that the resulting maps cannot exist.
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2. Background material, definitions and conventions

2.1 Symplectic isotopies and Hamiltonian diffeomorphisms
Let (M, ω) be a closed symplectic manifold of dimension 2n and minimal Chern number N .
Our basic object of study will be a smooth isotopy ψt of symplectic diffeomorphisms of (M, ω),
where t takes values in [0, 1] and ψ0 is the identity map. In particular, we will be interested in
the periodic points of ψ1. Denoting the set of fixed points of ψ1 by Fix(ψ1), the set of periodic
points of ψ1 is defined as

Per(ψ1) =
⋃
k∈N

Fix((ψ1)k).

The period of a point X ∈ Per(ψ1) is defined to be the smallest positive integer k for which
X ∈ Fix((ψ1)k). We will also associate to each periodic point X of ψ1 with period k the unique
element of π1(M) or H1(M ; Z) represented by the closed loop t 7→ (ψt)k(X).

To facilitate our study of periodic points, we will assume from now on that the time-dependent
vector field Xt generating our symplectic isotopy ψt extends to a smooth time-periodic vector
field of period one. This imposes no new restrictions as any symplectic isotopy is homotopic,
relative its endpoints, to one with this property. (In particular, ψt is homotopic to ψζ(t) where
ζ : [0, 1]→ [0, 1] is smooth, nondecreasing, onto and constant near 0 and 1.) This assumption
allows us to define ψt for all t ∈ R and to identify ψk with (ψ1)k.

The subset of symplectic isotopies that we are most interested in consists of those
corresponding to Hamiltonian flows. A Hamiltonian on (M, ω) is a function H : R/Z×M → R
or, equivalently, a smooth one-periodic family of functions Ht(·) =H(t, ·). Each Hamiltonian
determines a one-periodic vector field XH on M via the equation iXH

ω =−dHt. The time-t flow
of XH , denoted by φtH , is defined for all t ∈ R. For t ∈ [0, 1], φtH is a smooth isotopy of symplectic
diffeomorphisms. The set of Hamiltonian diffeomorphisms of (M, ω) consists of all the time-one
maps φ= φ1

H of Hamiltonian flows.

2.2 The Conley–Zehnder and mean indices
Let A : [0, 1]→ Sp(n) be a continuous path in the group Sp(n) of 2n× 2n symplectic matrices
such that A(0) is the identity matrix. One can associate to A its Conley–Zehnder index µ(A) ∈ Z,
as defined in [CZ84], and its mean index ∆(A) ∈ R, as defined in [SZ92]. As shown in [SZ92],
these indices satisfy the inequality

|µ(A)−∆(A)|6 n, (1)

where the strict form of the inequality holds if A(1) has at least one eigenvalue different from 1.
Consider a smooth isotopy ψt of symplectic diffeomorphisms as above. Let X be a fixed point

of ψ1 and let x : [0, 1]→M be the closed curve ψt(X). Given a symplectic trivialization ξ of
x∗TM , the linearized flow of ψt along x(t) yields a smooth path Aξ : [0, 1]→ Sp(n) starting at
the identity matrix. The quantities µ(Aξ) and ∆(Aξ) depend only on the homotopy class of the
symplectic trivialization ξ. We denote this class by [ξ] and define the Conley–Zehnder index and
the mean index of X with respect to this choice as, respectively,

µ(X; ψt, [ξ]) = µ(Aξ)

and1

∆(X; ψt, [ξ]) = ∆(Aξ).
1 The symplectic isotopy is included in this notation because we will need to consider fixed points shared by
different symplectic diffeomorphisms.
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In this context, inequality (1) becomes

|µ(X; ψt, [ξ])−∆(X; ψt, [ξ])|6 n, (2)

where the strict form of the inequality holds if the linearization of ψ1 at X, D(ψ1)X , has at least
one eigenvalue different from 1.

2.2.1 Iteration formula. Each fixed point X of ψ1 is also a fixed point of the kth iteration
(ψ1)k = ψk. As shown in [SZ92], the mean index grows linearly under iteration; that is,

∆(X; ψtk, [ξk]) = k∆(X; ψt, [ξ]), (3)

where ξk is the trivialization of TM along ψtk(X) induced by ξ.

2.2.2 Continuity. We now recall a continuity property of the mean index established
in [SZ92]. To do so, we first note that if two fixed points X and X ′, of possibly different maps
ψ1 and ψ′1, represent the same homotopy class c ∈ π1(M), then we can specify a unique class of
symplectic trivializations along both their trajectories by choosing a homotopy class of symplectic
trivializations of z∗(TM) where z : S1→M is any smooth representative of c (in [BH01] such a
choice is referred to as a c-structure). In particular, a choice of [ξ] for X determines a unique class
of symplectic trivializations for X ′, which we still denote by [ξ]. When we compare indices of
fixed points in the same homology class, we will always assume that the classes of trivializations
being used are coupled in this manner.

Now let ψ̃t be a symplectic isotopy that is C1-close to ψt. Under this perturbation, each fixed
point X of ψ1 splits into a collection of fixed points of ψ̃1 which are close to X (and hence in
the same homotopy class as X). If X̃ is one of these fixed points of ψ̃1, then

|∆(X; ψt, [ξ])−∆(X̃; ψ̃t, [ξ])|

is small.

2.2.3 A useful fact in dimension two. The following result is a simple consequence of the
definition of the indices. It can be derived, for example, from [Lon02, ch. 8, Theorem 7].

Lemma 2.1. Let (M, ω) be a two-dimensional symplectic manifold, and suppose that ψt is an
isotopy of symplectic diffeomorphisms of (M, ω) starting at the identity. If X is a fixed point of ψ1

and ∆(X; ψt, [ξ]) is not an integer, then µ(X; ψt, [ξ]) is the odd integer closest to ∆(X; ψt, [ξ]).

2.2.4 Indices of contractible fixed points modulo 2N . When X is a contractible fixed point
of ψt, that is, x(t) = ψt(X) is contractible, it is often useful to restrict attention to trivializations
of x∗TM determined by a choice of smooth spanning disc u : D2→M with u(e2πit) = x(t). For
such choices of trivializations, the corresponding indices are well-defined modulo 2N , twice the
minimal Chern number. In fact, the corresponding elements of R/2NZ depend only on the time-
one map ψ1 and hence will be denoted by µ(X) and ∆(X). The quantities ∆(P ) and ∆(Q)
appearing in the statement of Theorem 1.2 are meant to be understood in this way.

2.3 Floer homology for symplectic diffeomorphisms of the torus

Finally, we recall the properties of the Floer homology of symplectic diffeomorphisms required
for the proof of Theorem 1.2. We will only need to consider the special case where (M, ω) is a
two-dimensional symplectic torus (T2, Ω) and the symplectic diffeomorphism is isotopic to the
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identity. Consider then a smooth isotopy ψt of symplectic diffeomorphisms of (T2, Ω) starting
at the identity such that the fixed points of ψ1 are all nondegenerate. The Floer homology of
ψ1, HF(ψ1), is then well-defined and has the properties described below. The reader is referred
to [DS94, LO95, Sei97a, Sei97b, Sei02a] for more details on the general construction of this Floer
homology, and to [Cot09, Cot10] for more thorough reviews of the Floer theory of symplectic
diffeomorphisms of surfaces.

Invariance under Hamiltonian isotopy. If φ is a Hamiltonian diffeomorphism of (T2, Ω),
then

HF(ψ1φ) = HF(ψ1).

Splitting. The Floer homology HF(ψ1) admits a decomposition of the form

HF(ψ1) =
⊕

c∈H1(T2;Z)

HF(ψ1; c).

Here, each summand HF(ψ1; c) is the homology of a chain complex (CF(ψ1; c), ∂J), where the
chain group CF(ψ1; c) is a torsion-free module over a suitable Novikov ring, and the rank of this
module is the number of fixed points of ψ1 which represent the class c. The group HF(ψ1; 0)
coincides with the Floer–Novikov homology constructed by Lê and Ono in [LO95, Sei02a].
Moreover, if ψt is a Hamiltonian isotopy, then HF(ψ1) = HF(ψ1; 0), which is further equal to
the usual Hamiltonian Floer homology of (T2, Ω) (see [Flo88]); in particular, it is canonically
isomorphic to H(T2; Z).

Grading. Each chain complex (CF(ψ1; c), ∂J) above has a relative Z-grading, and the
boundary operator decreases degrees by one. For the c= 0 case, the grading can be set by
using the usual Conley–Zehnder index of contractible fixed points (which is well-defined since
c1(T2) = 0). In particular, if ψt is a Hamiltonian isotopy, we have

HF∗(ψ1; 0) = H∗+1(T2; Z). (4)

For a general class c ∈H1(T2; Z), the (relative) grading of (CF∗(ψ1; c), ∂J) is again determined
by the Conley–Zehnder index, and the overall shift can be fixed by choosing a homotopy class
of symplectic trivializations of z∗(TT2) where z : S1→ T2 is a smooth representative of c.

Extension to all smooth isotopies. The property of invariance under Hamiltonian isotopy
allows one to also define the Floer homology for any smooth symplectic isotopy ψ̃t of (T2, Ω).
One simply sets

HF∗(ψ̃1) = HF∗(ψ̃1 ◦ φ)

where φ is a Hamiltonian diffeomorphism for which the fixed points of ψ̃1 ◦ φ are nondegenerate.
For example, if ψ̃t = id for all t ∈ [0, 1], we can perturb by the Hamiltonian flow of a C2-small
Morse function to obtain

HF(id) = HF(id; 0) = H(T2; Z). (5)

Dichotomy. Finally, we recall the following well-known result on alternatives for the Floer
homology, whose proof we include for the sake of completeness.

Proposition 2.1. Either ψ1 is a Hamiltonian diffeomorphism, in which case HF(ψ1) =
HF(ψ1; 0) and HF∗(ψ1; 0) = H∗+1(T2; Z), or HF(ψ1) is trivial.

1973

https://doi.org/10.1112/S0010437X12000474 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X12000474


B. Collier et al.

Proof. This result can be derived easily by using the flux homomorphism. Let S̃ymp0(T2, Ω)
denote the universal cover of Symp0(T2, Ω), the identity component of the space of symplectic
diffeomorphisms of (T2, Ω). The points of S̃ymp0(T2, Ω) are of the form [ψt] where ψt is a
symplectic isotopy starting at the identity and [ψt] denotes the homotopy class of ψt relative its
endpoints. The flux homomorphism

F : S̃ymp0(T2, Ω)→H1(T2; R)

is then defined by

F([ψt]) =
∫ 1

0
[ϑt] dt,

where ϑt =−iXtΩ and Xt is the vector field generating ψt. Besides the fact that it is indeed a
homomorphism (where the target H1(T2; R) is identified with Hom(π1(T2), R)), the other crucial
property of F is that its kernel consists of the classes in S̃ymp0(T2, Ω) which can be represented
by Hamiltonian isotopies; see [MS95].

Without loss of generality we may assume that Ω = dθ1 ∧ dθ2 where θ1, θ2 ∈ R/Z are global
angular coordinates on T2. Let a1 and a2 be the standard generators of π1(T2) corresponding to
these coordinates. The flux F([ψt]) is then specified by the two numbers A1 = F([ψt])(a1) and
A2 = F([ψt])(a2).

Consider now the symplectic isotopy

St(θ1, θ2) = (θ1 + tA1, θ2 + tA2).

The flux of [St] is equal to that of [ψt]. Since F is a homomorphism, we have

F([(ψt)−1 ◦ St]) = 0 ∈H1(T2; R).

The characterization of the kernel of F then implies that [(ψt)−1 ◦ St] = [φtG] for some
Hamiltonian flow φtG. In particular, we have

S1 = ψ1 ◦ φ1
G.

By the invariance of Floer homology under Hamiltonian isotopies, this yields

HF(ψ1) = HF(S1).

The Floer homology of S1 is now easy to compute. If A1 =A2 = 0 mod 1, then S1 is the identity
map, and by (4) and (5) we have

HF(S1) = HF(S1; 0)

and

HF∗(S1; 0) = H∗+1(T2; Z).

Otherwise, S1 has no fixed points and hence HF(S1) is trivial. The result follows. 2

3. Proof of Theorem 1.2

Let φ be a Hamiltonian diffeomorphism of S2 with finitely many periodic points. It suffices to
prove Theorem 1.2 for any iteration of φ. Using the freedom to choose this iteration, we may
assume that the periodic points of φ are all fixed points (i.e. have period one). The iteration
formula (3) implies that we may also assume that the mean index of any fixed point of φ is either
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irrational or equal to zero modulo 4. In particular, we have

Per(φ) = Fix(φ) = {p1, . . . , pl, r1, . . . , rm},

where for j = 1, . . . , l the mean indices ∆(pj) are irrational, and for j = 1, . . . , m we have
∆(rj) = 0 mod 4.

3.1 Resonance and periodic points with irrational mean indices
The starting point for the proof of Theorem 1.2 is to show that the number of fixed points of
φ with irrational mean indices is at least two. To prove this, we require the theory of resonance
relations for Hamiltonian diffeomorphisms developed in [GK10]. We now present a condensed
version of these results, keeping only those features which are relevant to the task at hand.

As before, let (M, ω) be a closed symplectic manifold of dimension 2n with minimal Chern
number N . Suppose also that (M, ω) is both weakly monotone (see, for example, [MS04]) and
rational. A Hamiltonian diffeomorphism is said to be perfect if it has finitely many contractible
periodic points which are all fixed points. Let ϕ be a perfect Hamiltonian diffeomorphism of
(M, ω), and let ∆1, . . . ,∆m be the collection of irrational mean indices of the contractible fixed
points of ϕ (as described in § 2.2.4, these are defined modulo 2N). A resonance relation for ϕ is
a vector ~a= (a1, . . . , am) ∈ Zm such that

a1∆1 + · · ·+ am∆m = 0 mod 2N.

The set of resonance relations of ϕ forms a free abelian group R=R(ϕ)⊂ Zm.

Theorem 3.1 [GK10]. Assume that n+ 1 6N <∞.

(i) Then R 6= 0, i.e. the irrational mean indices ∆i satisfy at least one nontrivial resonance
relation.

(ii) If the rank of R is equal to one, then it has a generator of the form r~a= (ra1, . . . , ram),
where ai > 0 for all i, ∑

ai 6
N

N − n
,

and r is the smallest natural number such that the mean index2 of each fixed point of φr is either
irrational or equal to zero modulo 2N .

Returning to the proof of Theorem 1.2, we derive the following consequence for our
Hamiltonian diffeomorphism φ.

Corollary 3.1. At least two of the fixed points of φ, say P and Q, have irrational mean
indices, i.e. are strongly nondegenerate elliptic fixed points. Moreover, if P and Q are the only
fixed points of φ, then their irrational mean indices ∆(P ) and ∆(Q) satisfy

∆(P ) + ∆(Q) = 0 mod 4.

Proof. The sphere is weakly monotone and rational, and its minimal Chern number is two
(N = 2 = n+ 1). Hence, Theorem 3.1 applies and statement (i) implies the first assertion of this
corollary, since there must be at least two fixed points of φ with irrational mean indices in order
for a single nontrivial resonance relation to exist.

2 In [GK10], assertion (ii) is stated for the collection all nonzero mean indices, in which case one can take r = 1.
The formulation here is as described in [GK10, Remark 2.1].
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Suppose that φ has exactly two fixed points, P and Q; then, by the first assertion of
this corollary, both P and Q have irrational mean indices. These indices cannot satisfy
two independent resonance relations, because otherwise they would be the unique solutions
(modulo 4) of a linear system with integer coefficients and hence would be rational. So, in this
case, the rank of R is equal to one and the conclusion of Theorem 3.1(ii) holds, where the natural
number r can be taken to be 1. This immediately implies the second assertion of the corollary. 2

3.2 An assumption and two paths to a contradiction
By Corollary 3.1 and our previous choices, we now have

Per(φ) = Fix(φ) = {P, Q, p3, . . . , pl, r1, . . . , rm}.

Lemma 3.1. If there is no fixed point of φ of type rj (with ∆(rj) = 0 mod 4), then the points
P and Q are the only fixed points of φ.

Proof. Arguing by contradiction, assume that Fix(φ) = {P, Q, p3, . . . , pl} where l > 2 and the
∆(pj) are all irrational. The fixed points of φ are then all nondegenerate and elliptic and so their
topological indices are even. By the Lefschetz fixed point theorem, we would then have the Euler
characteristic of S2 being equal to l > 2. 2

By Corollary 3.1 and Lemma 3.1, we will be done if we can show that it is impossible for φ to
have even one fixed point, r1, with ∆(r1) = 0 mod 4. Arguing by contradiction, we assume that
such a point exists. At this point, the route to a contradiction splits into two paths, with the
first path corresponding to the case where at least one of the rj is degenerate, and the second
to the case where all the rj are nondegenerate.

3.3 Path 1: one of the rj is degenerate
Assume that φ as above has a fixed point, say R= r1, which is degenerate (and satisfies
∆(R) = 0 mod 4).

3.3.1 A useful generating Hamiltonian. We now choose a generating Hamiltonian H :
R/Z× S2→ R for φ such that P and R are both static fixed points of the flow of H, that is,
φ= φ1

H and both P and R are fixed points of φtH for all t ∈ R. We begin with any Hamiltonian G
that generates φ. Let uR : D2→ S2 be a smooth spanning disc for φtG(R). As described in [SZ92,
§ 9] (see also [Gin10, § 5.1]), one can use this disc to construct a contractible loop of Hamiltonian
diffeomorphisms, γt1, such that γt1 ◦ φtG(R) =R for all t ∈ R and γt1 is supported in an arbitrarily
small neighborhood of the image of uR (which could be all of S2). The curve γt1 ◦ φtG(P ) does
not pass through R and is contractible in its complement. Hence, we can choose a spanning disc
uP for γt1 ◦ φtG(P ) whose image does not contain R. Using it we can then construct, as above,
a contractible loop of Hamiltonian diffeomorphisms, γt2, which is trivial in a neighborhood of
R and satisfies γt2 ◦ γt1 ◦ φtG(P ) = P for all t ∈ R. Let H be the unique generating Hamiltonian
of the Hamiltonian path γt2 ◦ γt1 ◦ φtG such that H(t, R) = 0 for all t ∈ R/Z. By reparameterizing
the path γt2 ◦ γt1 ◦ φtG, we may also assume that H vanishes when t is within some small fixed
distance, say 0< δH � 1, of 0 ∈ R/Z.

3.3.2 A generic perturbation of φk. For a k ∈ N, the Hamiltonian diffeomorphism φk is
generated by the Hamiltonian

Hk(t, p) = kH(kt, p).
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More precisely, we have φtHk
= φktH for all t ∈ R. Note that P and R are still static fixed points

of the flow of Hk, and by (3) we have

∆(P ; φtHk
, [ξk]) = k∆(P ; φtH , [ξ]) (6)

and, similarly,

∆(R; φtHk
, [ξk]) = k∆(R; φtH , [ξ]) (7)

for any choice of the class [ξ].

Lemma 3.2. For each k ∈ N there is a neighborhood Uk of R and a Hamiltonian flow φ̃k,t which
is arbitrarily C∞-close to φtHk

, equal to φtHk
outside of Uk, and such that its fixed point set has

the form

Fix(φ̃k,1) = {P, Q, p3 . . . , pl, R, R1, . . . , Rd, r2, . . . , rm}
where:

(i) R is a fixed point of φ̃k,t for all t, an elliptic fixed point of φ̃k,1, and such that

∆(R; φ̃k,t, [ξk]) = k∆(R; φtH , [ξ]) + λ/π

where [ξ] is any class of symplectic trivializations and λ > 0 is arbitrarily close to 0;

(ii) the Rj are all contained in Uk, nondegenerate, and such that ∆(Rj ; φ̃k,t, [ξk]) is arbitrarily
close to k∆(R; φtH , [ξ]) for j = 1, . . . , d and any choice of [ξ];

(iii) none of the φ̃k,t trajectories of the remaining fixed points of φ̃k,1 enter Uk.

Proof. Besides some simple manipulations, we will require only the following generic
transversality result for Hamiltonian diffeomorphisms. Let φ1

F be a Hamiltonian diffeomorphism
of a symplectic manifold (M, ω), and let U be an open subset of M whose boundary is smooth
and contains no fixed point of φ1

F . Then there is a Hamiltonian F̃ arbitrarily C∞-close to F
which equals F in the complement of S1 × U and whose fixed points in U are all nondegenerate.

Now, choose a Darboux ball Uk around R such that none of the one-periodic trajectories of the
Hamiltonian flow of Hk, other than the trajectory through R, enter Uk. Let (x, y) be the Darboux
coordinates in Uk. By our choice of H, it follows from the definition of Hk that it vanishes for
t ∈ [1− δH/k, 1]. Let G be a small function supported in Uk which equals (λ0/2π)(x2 + y2) near
R for a λ0 which is (arbitrarily) small and positive. Let κ : R→ [0, 1] be a smooth bump function
such that κ(t) = 1 for t ∈ [1− 3δH/4k, 1− δH/4k] and κ vanishes outside (1− δH/k, 1). Viewing
κ as a one-periodic function, we set G′(t, p) = κ(t)G(p) and let φ′t be the Hamiltonian flow of
G′ +Hk. Clearly, R is still a static fixed point of φ′t and, since the flows of G′ and Hk are
supported in disjoint time domains, we have

∆(R; φtG′+Hk
, [ξk]) = ∆(R; φtHk

, [ξk]) + ∆(R; φtG′ , [ξk]) = k∆(R; φtH , [ξ]) + λ/π,

where λ= λ0

∫ 1
0 κ(t) dt. This settles assertion (i) of the lemma.

In appropriate coordinates, the linearization of φ′1 at R is rotation by λ radians. Hence
there are no fixed points of φ′1 in some Darboux ball V around R in Uk. Using the fact above,
we can then perturb G′ +Hk in S1 × (Uk r V ) to obtain a Hamiltonian F̃ whose fixed points
R1, . . . , Rd in Uk r V are all nondegenerate. Upon setting φ̃k,t = φt

F̃
we are done. In particular,

the continuity property of the mean index described in § 2.2.2 implies that each ∆(Rj ; φ̃k,t, [ξk])
is arbitrarily close to ∆(R; φtHk

, [ξk]) and hence k∆(R; φtH , [ξ]). Thus condition (ii) is satisfied.
Our choice of Uk ensures that condition (iii) is also satisfied. 2
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3.3.3 Completing the restriction of φ̃k,1 to S2 r {P, R}. The symplectic manifold (S2 r
{P, R}, ω) is symplectomorphic to the open cylinder (−1, 1)× R/2πZ equipped with the
symplectic form dz ∧ dθ. We now show that the map φ̃k,1 can be completed to an area-preserving
diffeomorphism φk of the closed cylinder [−1, 1]× R/2πZ, where φk acts on the boundary circles
ΓP = {1} × R/2πZ and ΓR = {−1} × R/2πZ as rotations by π∆(P ; φ̃k,t, [ξ]) and λ, respectively,
for any choice of the class [ξ].

In general, if X is an elliptic fixed point of a symplectic diffeomorphism ψ1 of S2 which is
isotopic to the identity, then the eigenvalues of D(ψ1)X are e±iπ∆(X,ψt,[ξ]), which are independent
of the choice of the class [ξ]. Hence, the eigenvalues of D(φk,1)R are e±iπλ. If B(ε) is the open
ball in R2 of radius ε > 0 centered at the origin, then for sufficiently small ε there is a symplectic
embedding AR :B(ε)→ (S2, ω) such that AR(0) =R and

D(AR−1 ◦ φ̃k,1 ◦AR)0 =
(

cos λ −sin λ
sin λ cos λ

)
.

Now consider the map (r, θ) 7→ (ρ= r2/2, θ) which takes (B(ε) r 0, r dr ∧ dθ) to ((0, ε2)×
R/2πZ, dρ ∧ dθ). It follows from the linearization above that in (ρ, θ) coordinates, the map
AR
−1 ◦ φ̃k,1 ◦AR extends to the boundary circle {0} × R/2πZ as the map

(ρ, θ) 7→ (ρ, θ + λ).

Applying the same procedure near P gives the desired map φk.

Since R and P are static fixed points of the flow φ̃k,t, we can complete each of the maps φ̃k,t to
an area-preserving diffeomorphism φk,t of the same closed cylider. (The restriction of φk,t to the
boundary circle ΓP (respectively, ΓR) will only be a rotation when P (respectively,R) is an elliptic
fixed point of φ̃k,t, but this is inconsequential since the boundary circles are always invariant.)
In this way we obtain a smooth isotopy of area-preserving diffeomorphisms φk,t starting at the
identity and ending at φk.

3.3.4 Transfer of dynamics to the torus. Following Arnold’s famous argument from [Arn89,
Appendix 9] in support of his conjectured lower bound on the number of fixed points of
Hamiltonian diffeomorphisms, we now extend the map φk to the torus formed by gluing two
copies of the domain cylinder [−1, 1]× R/2πZ along their common boundaries. In fact, as
in [Arn89], we first insert two narrow connecting cylinders along the boundary circles to obtain
a symplectic torus (T2, Ω) of total symplectic area (8 + 4τ)π, where each connecting cylinder is
symplectomorphic to [0, τ ]× R/2πZ. This allows us to extend the map φk to an area-preserving
map ψk of (T2, Ω) which agrees with φk on the two large cylinders and is defined on the connecting
cylinders so that the overall map is smooth. Since φk has no fixed points on the boundary of its
domain, we may also assume (again as in [Arn89]) that no new fixed points are introduced into
the connecting cylinders. Hence, Fix(ψk) consists of two copies of Fix(φk), which we denote by

Fix(φ±k ) = {Q±, p±3 . . . , p±l , R
±
1 , . . . , R

±
d , r

±
2 , . . . , r

±
m}.

3.3.5 The contradiction at the end of path 1. The isotopy φk,t induces a smooth isotopy
ψk,t from the identity to ψk. Hence, the Floer homology of ψk is well-defined. Now, there are
two fixed points of ψk, Q±, corresponding to the fixed point Q of φ. As described below, the
following result concerning the role of Q+ in HF(ψk) contradicts Proposition 2.1.
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Proposition 3.1. If k is sufficiently large, then Q+ represents a nontrivial class in HF(ψk); and
if Q+ is contractible, then the degree of the class [Q+] is greater than one in absolute value.

Proof. Fix a class [ξ] of symplectic trivializations of TS2 along φtH(Q). The resulting class [ξk]
of symplectic trivializations of TS2 along φtHk

(Q) then determines an equivalence class [ξk+] of
symplectic trivializations of TT2 along ψk,t(Q+). Let X± be any fixed point of ψk in the same
homotopy class as Q+, where X is the corresponding fixed point of φ̃k,1. Since the Floer boundary
operator decreases degrees by one, to prove the first assertion of Proposition 3.1 it suffices to
show that for k large enough we have either

∆(X±; ψk,t, [ξk+]) = ∆(Q+; ψk,t, [ξk+])

or
|∆(X±; ψk,t, [ξk+])−∆(Q+; ψk,t, [ξk+])|> 3.

More precisely, by Lemma 2.1 the first equality implies

µ(X±; ψk,t, [ξk+]) = µ(Q+; ψk,t, [ξk+]),

whereas, if the alternative inequality holds and X̃± is a nondegenerate fixed point obtained from
X by perturbation, then it follows from the continuity property of the mean index and (2) that

|µ(X̃±; ψk,t, [ξk+])− µ(Q+; ψk,t, [ξk+])|> 1.

Since there are only finitely many points X±, for any k, it will follow that for large enough k
the point Q+ is in the kernel of the corresponding Floer boundary map and is not in its image,
thus establishing the first assertion of Proposition 3.1.

Case 1: X corresponds to a fixed point of φk, i.e. X 6=R±j . By construction, we have

∆(Q+; ψk,t, [ξk+]) = ∆(Q; φtHk
, [ξk]),

and the iteration formula (3) then implies that

∆(Q+; ψk,t, [ξk+]) = k∆(Q; φtH , [ξ]). (8)

Similarly,
∆(X±; ψk,t, [ξk+]) = k∆(X; φtH , [ξ]). (9)

If ∆(X; φtH , [ξ]) = ∆(Q; φtH , [ξ]), then we are done, as this would imply

∆(X±; ψk,t, [ξk+]) = ∆(Q+; ψk,t, [ξk+]).

If ∆(X; φtH , [ξ]) 6= ∆(Q; φtH , [ξ]), then equations (8) and (9) yield

|∆(X±; ψk,t, [ξk+])−∆(Q+; ψk,t, [ξk+])|= k|∆(X; φtH , [ξ])−∆(Q; φtH , [ξ])|,

and for sufficiently large k we have

|∆(X±; ψk,t, [ξk+])−∆(Q+; ψk,t, [ξk+])|> 3,

as desired.

Case 2: X =R±j . Since ∆(R±j ; ψk,t, [ξk+]) = ∆(Rj ; φ̃k,t, [ξ]), it follows from Lemma 3.2 that
∆(R±j ; ψk,t, [ξk+]) is arbitrarily close to k∆(R; φtH , [ξ]). By assumption, ∆(R; φtH , [ξ]) is an integer
(multiple of 4) and hence not equal to the irrational number ∆(Q; φtH , [ξQ]). Arguing as in Case 1,
we see that for sufficiently large k we have

|∆(R±j ; ψk,t, [ξk+])−∆(Q+; ψk,t, [ξk+])|> 3.
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Finally, we settle the second assertion of Proposition 3.1. If Q+ is a contractible fixed point
of ψk, then φtH(Q) is contractible in S2 r {P, R}. We choose [ξ] in this case so that it is determined
by a spanning disc for φtH(Q). Then the induced class [ξk+] determines the canonical grading of
HF∗(ψk). As established above, we have

∆(Q+; ψk,t, [ξk+]) = k∆(Q; φtH , [ξ]).

Since ∆(Q; φtH , [ξ]) is irrational and hence nonzero, we therefore have

|∆(Q+; ψk,t, [ξk+])|> 2

for large enough k ∈ N. For such k, inequality (2) then yields

|µ(Q+; ψk,t, [ξk+])|> 1. 2

Now, Propositions 2.1 and 3.1 cannot both be true. Proposition 2.1 and the first assertion
of Proposition 3.1 together imply that ψk must be a Hamiltonian diffeomorphism, in which
case HFd(ψk; 0) must be trivial when |d|> 1. But this contradicts the second assertion of
Proposition 3.1. Thus, φ cannot have a degenerate fixed point.

3.4 Path 2: all the rj are nondegenerate
To begin, we choose as in § 3.3.1 a generating Hamiltonian H for φ such that, this time, P and Q
are static fixed points of φtH . Fix (arbitrarily large) k ∈ N such that the fixed points of φk are also
all nondegenerate. Following § 3.3.3, we can then complete the restriction of φk to S2 r {P, Q}
to obtain a smooth area-preserving map φk of the closed cylinder [−1, 1]× R/2πZ which acts
on the boundary circles ΓP = {1} × R/2πZ and ΓQ = {−1} × R/2πZ as (irrational) rotations by
π∆(P ; φtHk

, [ξ]) and π∆(Q; φtHk
, [ξ]), respectively, for any choice of the class [ξ]. Moreover, the

flow φtHk
again induces an isotopy φkt from the identity to φk.

Proceeding as in § 3.3.4, we extend the map φk to the torus formed by gluing two copies of
the domain cylinder [−1, 1]× R/2πZ to one another with two narrow connecting cylinders in
between. In this way we obtain an area-preserving map Ψk of the symplectic torus (T2, Ω) which
agrees with φk on the two large cylinders and is defined on the connecting cylinders so that the
overall map is smooth and has no new fixed points. In particular, Fix(Ψk) consists of two copies
of Fix(φk), which we denote by

Fix±(φk) = {p±3 . . . , p±l , r
±
1 , . . . , r

±
m}.

The isotopy φkt induces a smooth isotopy Ψk,t from the identity to Ψk, so we can again
consider the Floer homology HF(Ψk). The following result again contradicts Proposition 2.1.

Proposition 3.2. If k is sufficiently large, then no contractible fixed point of Ψk has Conley–
Zehnder index equal to one, and r+

1 represents a nontrivial class in HF(Ψk).

Proof. Let Xk be a contractible fixed point of Ψk, where X denotes the corresponding fixed point
of φ. Since π2(T2) is trivial, all classes of symplectic trivializations determined by spanning discs
for Ψk,t(Xk) yield the same values of the mean index and Conley–Zehnder index of Xk. So, in
what follows, we denote these simply by ∆(Xk; Ψk,t) and µ(Xk; Ψk,t). Since Xk is contractible,
X must admit a spanning disc with image in S2 r {P, Q}. Let ∆(X; φtH) denote the mean index
computed with respect to the corresponding class of trivializations along φtH(X). By (3) we have

∆(Xk; Ψk,t) = k∆(X; φtH). (10)
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Case 1: Xk = p±j . Since ∆(pj ; φtH) is irrational, it follows from (10) that for large enough k we
have

|∆(p±j ; Ψk,t)|= k|∆(pj ; φtH)|> 2.
By (2) it then follows that for sufficiently large k we have

|µ(p±j ; Ψk,t)|> 1.

Case 2: Xk = r±j . In this case, ∆(rj ; φtH) = 0 mod 4. If ∆(rj ; φtH) 6= 0, then we can argue as in
the previous case to show that for sufficiently large k we have

|µ(r±j ); Ψk,t|> 1.

Otherwise, it follows from (10) that

∆(r±j ; Ψk,t) = 0.

Since r±j is nondegenerate, the strong form of (2) applies and implies that

µ(r±j ; Ψk,t) = 0.

This settles the first assertion of Proposition 3.2.
To approach the second assertion, we first fix a class [ξ] of symplectic trivializations of TS2

along φtH(r1). This determines an equivalence class [ξk+] of symplectic trivializations of TT2

along Ψk,t(r+
1 ). Let Xk be any fixed point of Ψk in the same homotopy class as r+

1 . Arguing as
in Proposition 3.1, to prove the second assertion of Proposition 3.2 it suffices to show that3 for
k sufficiently large we have either

∆(Xk; Ψk,t, [ξk+]) = ∆(r+
1 ; Ψk,t, [ξk+])

or
|∆(Xk; Ψk,t, [ξk+])−∆(r+

1 ; Ψk,t, [ξk+])|> 3.

Case 1: Xk = p±j . By our construction of Ψk and (3), we have

∆(r+
1 ; Ψk,t, [ξk+]) = k∆(r1; φtH , [ξ])

and
∆(p±j ; Ψk,t, [ξk+]) = k∆(pj ; φtH , [ξ]).

Now ∆(r1; φtH , [ξ]) = 0 mod 4 and ∆(pj ; φtH , [ξ]) is irrational, so for k sufficiently large we have

|∆(r+
1 ; Ψk,t, [ξk+])−∆(p±j ; Ψk,t, [ξk+])|> 3.

Case 2: Xk = r±j . In this case,

∆(r+
1 ; Ψk,t, [ξk+])−∆(r±j ; Ψk,t, [ξk+]) = 0 mod 4.

If the mean indices are equal, we are done. If not, we can argue as in the previous case to show
that for large k the indices differ by more than 3. 2

This leads to the desired contradiction at the end of path 2, as Proposition 3.2 contradicts
Proposition 2.1. In particular, the first assertion of Proposition 3.2 implies that Ψk cannot be
Hamiltonian, and the second assertion of Proposition 3.2 implies that the Floer homology HF(Ψk)
is nontrivial. With this, the proof of Theorem 1.2 is complete.

3 A very similar argument to the one that follows appears in [GG09b].
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