
Research Article
A SYN Flood Attack Detection Method Based on Hierarchical
Multihead Self-Attention Mechanism

Xiaojun Guo 1,2,3 and Xuan Gao 1,2,3

1School of Information Engineering, Xizang Minzu University, Xianyang 712082, China
2Key Laboratory of Optical Information Processing and Visualization Technology of Tibet Autonomous Region,
Xianyang 712082, China
3Xizang Cyberspace Governance Research Center, Xianyang 712082, China

Correspondence should be addressed to Xiaojun Guo; aikt@xzmu.edu.cn

Received 21 November 2021; Accepted 25 August 2022; Published 14 September 2022

Academic Editor: Shah Nazir

Copyright © 2022 XiaojunGuo and XuanGao.)is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Existing SYN flood attack detection methods have obvious problems such as poor feature selectivity, weak generalization ability,
easy overfitting, and low accuracy during training. In the paper, we present a SYN flood attack detection method based on the
Hierarchical Multihad Self-Attention (HMHSA) mechanism. First, we use one-hot encoding and normalization to preprocess
traffic data.)en the preprocessed traffic data is transmitted to the Feature-based Multihead Self-Attention (FBMHA) layer for
feature selection. Finally, we use data slices to determine the features of the preprocessed traffic data under time series by passing
the preprocessed traffic data into the Slice-based Multihead Self-Attention (SBMHA) layer. We tested the proposed method on
different datasets.)e experimental results show that compared with other works, our method presents better in feature selection
and higher detection accuracy (even up to 99.97%).

1. Introduction

With the development of the shared and open Internet,
network security is facing unprecedented challenges. Dis-
tributed denial of service (DDoS) attack has been a challenge
for cyberspace security, and its number, frequency, com-
plexity, and impact of DDoS are proliferating.)e attack
methods become particularly difficult to mitigate [1]. SYN
flood attack is one of the most popular DDoS attack methods
mainly exploiting the three-way handshake defect in the
TCP protocol and IP spoofing techniques.

)e three-way handshake mechanism establishes the
TCP connection between the client and the server. In order
to establish a TCP connection, the client must send a
synchronize (SYN) packet to the server. After receiving the
SYN message sent from the client, the server returns a SYN-
ACK packet. When the client receives the SYN-ACK packet,
it sends an ACK packet to the server. So far, the three-way
handshake is completed [2].

An attacker exploits the server’s half-opened connection
state (SYN_RECV) to perform the SYN flood attack on the
server.)e attacker sends a large number of SYN request
packets with forged source IP addresses.)e server treats
these requests as legitimate. First, the server allocates
memory and resources for these IP sources.)en, it sends
the SYN-ACK packet to the client and finally waits for the
client’s ACK packet in the half-opened state. Attackers send
a large number of illegal SYN requests to cause the TCP
backlog queue to overflow and create half-opened con-
nections until the system resources are exhausted. Many
operating systems and even firewalls and routers are unable
to defend against this attack effectively, and SYN flood at-
tacks have a huge impact on fields such as finance, education,
and media.)e attack principle can be depicted as in
Figure 1.

Deep learning provides a new idea for the study of
network anomaly traffic detection. However, the informa-
tion stored by encoded vectors and their relationship is

Hindawi
Security and Communication Networks
Volume 2022, Article ID 8515836, 13 pages
https://doi.org/10.1155/2022/8515836

mailto:aikt@xzmu.edu.cn
https://orcid.org/0000-0002-9575-4010
https://orcid.org/0000-0002-1526-7969
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/8515836

limited by the distance between sequences for long-term
sequences, and it results in the loss of important features
between sequences.

)erefore, we propose an SYN flood attack detection
method based on the HMHSAmechanism.)emethod uses
Bidirectional Gated Recurrent Unit (Bi-GRU) neural net-
work to encode the input sequence and fully considers the
influence before and after information of each attribute.
)en we add the Multihead Self-Attention mechanism to
learn dependencies between sequences and extract salient
features. In the self-attention mechanism, each datum is
needed to be calculated with attention with all data. No
matter how long the distance is, the maximum path length is
also 1.)erefore, it can better capture long-distance de-
pendence. Moreover, the multihead can learn relevant in-
formation from different representation subspaces to
improve feature selection.)e experimental results verify
the effectiveness of the HMHSA mechanism. Compared
with other methods, it improves the accuracy of SYN flood
attack detection.

)e main contributions of this paper include those as
follows:

(1) We apply double-layer Bi-GRU in encoding input
sequence, which has fewer parameters, good feature
selectivity, and can improve to weak adaptability of
network

(2) We add the Multihead Self-Attention mechanism to
highlight important features. Compared with the
attention mechanism, the Multihead Self-Attention
can learn the deep feature information of a long
sequence and can improve the accuracy while pre-
venting over-fitting

(3) We verify the generalization ability of our method
with three different datasets, the CICDDoS2019
dataset [29], Mirai dataset [3], and the TDS_SELF
dataset (self-made traffic dataset), and the accuracy
was up to 99.97%

)e rest of this paper is organized as follows. In Section
2, we discuss relevant work in the domain of SYN flood
attack detection. Section 3 details the proposed methodol-
ogy.)e results and analysis of experiments are given in
Section 4. Finally, Section 5 describes the conclusion of this
paper and the direction of future work.

2. Related Work

At present, the research on SYN flood attack detection can
be divided into three categories: statistical methods [4, 5],
machine learning methods [6–9], and deep learning
methods.)e statistical methods require feature vector
extraction based on professional knowledge, but the un-
certainty of human factors may affect accuracy. Due to
traditional machine learning limitations, it is impossible to
obtain the deep features from the long-term sequence of
attack traffic.

In recent years, deep learning has been effective in DDoS
detection and SYN flood detection. In 2017, Yuan et al. [10]
proposed a DDoS detection method based on the long short-
term memory (LSTM) network using the UNB ISCX 2012
dataset. It detects abnormal traffic by extracting 20 fields from
a sequence of continuous-flow packets and using a sliding
time window. Brun et al. [11] proposed a deep learning
method based on the dense random neural network, analyzed
the SYN flood attack on the IoT network, determined the

Attacker Target Victim

SYN_SENT

SYN_RCVD

Time Time

SYN_SENT

SYN_RCVD

SYN

SYN-ACK

No reply

SYN

SYN-ACK

No reply

Bot

Figure 1: SYN flood attack.

2 Security and Communication Networks

related indicators of different attacks, and explained how to
calculate features from packet capture. Li and Lu [12] de-
veloped a DDoS detection mechanism based on LSTM and
Bayes (LSTM-BA).)rough the LSTM method, partial
DDoS attacks with high confidence output were identifiable.
For those outputs with low confidence, the Bayes method
was further used for secondary judgment to improve ac-
curacy. Shaahan et al. [13] proposed to apply a convolutional
neural network (CNN) for DDoS detection.)e results show
that CNN achieves superior performance compared to
traditional machine learning methods. However, the CNN
convolution kernel still needed to be optimized. Asad et al.
[14] used feedforward backpropagation architecture and
seven hidden layers to classify network flows. Evmorfos et al.
[15] compared the random neural network with the LSTM.
)e experimental results show that the random network
provides better attack detection and significantly reduces
error rate [10]. Odumuyiwa et al. [16] compared the effect of
unsupervised learning algorithms in DDoS detection and
found that autoencoder works the best, but it needed to be
replicated in larger systems to detect damaged endpoints.
Nagaraju et al. [17] proposed a binary fruit fly algorithm for
the real-time prediction model of SYN flood attack, which
used swarm intelligence to find the optimal parameters.
However, the authors only trained on one dataset, which
cannot verify the generalization ability of the proposed
model. Rehman et al. [18] proposed and evaluated four
anomaly detection algorithms for DDoS attacks, which were
gated recurrent unit (GRU), recurrent neural networks
(RNN), naı̈ve Bayes (NB), and sequential minimal optimi-
zation (SMO). SMO had the best effect on SYN flood de-
tection. Britto and Priya [19] proposed an improved DDoS
attack detection method in the cloud. It uses the deep belief
network and the support vector machine (SVM) as a
learning mechanism to improve detection accuracy.)e
XGBoost had been used as a classification model in the
literature [20, 21].)e XGBoost algorithm has higher ac-
curacy and lower false positive rate than other algorithms. In

addition, XGBoost detects extraordinarily quickly. Ravi et al.
[22] proposed AEGIS (a similarity measure) to detect and
mitigate SYN flood attack for SDN controllers through
regular checks. Besides, Wan et al. [23] proposed a similarity
measure. According to the similarity of the data collected by
the nodes, the correlation function is defined in the fuzzy
theory to classify nodes and select redundant nodes.)e
PSO method [24–27] was also used to detect SYN flood
attacks.)is defense strategy improves the performance of
the system in both memory usage and attack request dwell
time.

)rough the above related research, it can be seen that
the LSTMmethod is used the most, but the LSTM parameter
is too large and the training speed is slow.)e accuracy of
other methods needs to be improved. Besides, most of these
studies do not consider the impact of time series on SYN
flood attack detection.

3. Proposed Methodology

First, the HMHSAmechanism performs data preprocessing,
including missing value processing, data transformation,
and normalization.)en, we build and train the HMHSA
mechanism. Finally, the vector with high weight is extracted,
and the classification results are obtained by the Softmax.
)e overall architecture of the HMHSAmechanism is shown
in Figure 2.

3.1. Bi-GRU Neural Network. GRU is a lightweight version
of LSTM. GRU has only two gate structures, namely, update
gate and reset gate.)e structure of the GRU neural unit is
depicted as in Figure 3.

)e GRU uses the update gate to store the amount of
information saved from the previous memory to the current
timestep and uses the rest gate to determine how to combine
the new input information with the historical information
[28]. A GRU network is defined as

Data processing

Missing Value process

Transormation

Normalization

HMHSA Mechanism

Feature-based
Multi-Head

Self-Attention

Bi-GRU

Slice-based
Multi-Head

Self-Attention

Bi-GRU

OutputInput
Softmax

Figure 2: Architecture of the HMHSA mechanism.

Security and Communication Networks 3

zt � Sigmoid W
(Z)

xt + U
(z)

ht−1􏼐 􏼑,

rt � Sigmoid W
(r)

xt + U
(r)

ht−1􏼐 􏼑,

ht
′ � tanh Wxt + rt ⊙Uht−1(􏼁,

ht � zt ⊙ ht−1 + 1 − zt(􏼁⊙ ht
′,

(1)

where zt is the activation result of the update gate.)e input
vector xt of the t timestep and the information ht−1 of the
previous timestep are linearly transformed and then are put
into the Sigmoid activation function, which maps the var-
iables between 0 and 1. rt is the result of reset gate, which
measures the opening size of the gate. ht

′ calculates the
current memory content by reset gate and uses the Hada-
mard function to determine the previous information to be
retained and forgotten, where ⊙ represents the Hadamard
product. ht is the final updated node status.

)e advantage of GRU is that it can discard and retain
the information in the dimension simultaneously by using a
gate zt. In this paper, we used a bidirectional GRU to process
the input sequence forward and backward in turn so that the
output node of each timestep contains the complete past and
future information under the current moment in the input
sequence.)e Bi-GRU is given by

ht

→
� GRU

����→
xt(􏼁, t ∈ [1, T],

ht

←
� GRU
←

xt(􏼁, t ∈ [1, T],

ht � ht

→
, ht

←
􏼔 􏼕.

(2)

3.2. Multihead Self-Attention Mechanism. Attention mech-
anisms can selectively focus on important information of the
research subject. Using the transformer model for reference,
we use the Multihead Self-Attention mechanism to extract

the dependencies in the sequence space.)is mechanism
captures the information of the same sequence in different
subspaces by combining multiple parallel self-attention
calculations and then obtains more comprehensive corre-
lation features from multiple perspectives and levels.)e
structure of the Multihead Self-Attention mechanism is
shown in Figure 4, which mainly includes two parts.

(1) Scaled dot-Product attention:)e scaling weight
prevents the vector dimension from being too high
to cause the calculated dot product result to be too
large as

Attention(Q, K, V) � softmax
QK

T

��
dk

􏽰􏼠 􏼡V. (3)

)e inputs are composed of query (Q), key (K), and
value (V) matrix. When Q � K � V, it is self-at-
tentionmechanism. QKT is the attentionmatrix, and��

dk

􏽰
turns the attention matrix into a standard

normal distribution.
(2) Attention calculation:)e original Q, K, and V are

linear mapped several times, and the result of each
mapping is input into the scaled dot-product at-
tention, and the result obtained each time is called a
head, which is computed as

headi � Attention Q · W
Q
i , K · W

K
i , V · W

V
i􏼐 􏼑,

MultiHead(Q, K, V) � Concat head1, head2, . . . , headn(􏼁.

(4)

3.3. 3e HMHSA Mechanism.)e HMHSA mechanism
consists of two layers—Bi-GRU, and each layer introduces a
Multihead Self-Attention mechanism. Feature-based Mul-
tihead Self-Attention is used to enhance the expression of

ht–1

zt

rt

1 – zt

xt

ht

ht

ht’

Sigmoid Hadamard

Sigmoid

tanh

Hadamard

Hadamard

Figure 3: Structure of GRU.

4 Security and Communication Networks

traffic features, and Slice-based Multihead Self-Attention is
used for grouping traffic data. Figure 5 shows the structural
outline of the HMHSA mechanism.

3.3.1. FBMHA Layer. Not all features are equally important,
so to fully capture the significant features, we used this
mechanism to determine which features should be the focus.

(1) First, an N-dimensional sample is given:
Xi � [x0

i , x1
i , . . . , xN−1

i], next the word vector of byte
data is encoded by Bi-GRU neural network, then the
characteristics of byte data are learned and finally the
h

j
i is generated:

h
j
i

→
� GRU

����→
xi(􏼁,

h
j
i

←

� GRU
←

xi(􏼁,

h
j
i � h

j
i

→
, h

j
i

←

􏼢 􏼣.

(5)

(2))e FBMHA mechanism is introduced to calculate
the weight distribution of sequence data, and the
sequence information with important contributions
is highlighted.)e input vector comes from the
output vector of the Bi-GRU layer; d is the dimension
of Q and K vector; linear transformation of Q, K, and
V with different parameters W

Q
i , WK

i , and WV
i . We

set the number of heads h as 2, after two calculations
of scaled dot product attention, the output weight
matrix Wo is used to connect two parallel heads to
obtain result a

j
i :

Q, K, V � h
j
i ,

Attention(Q, K, V) � softmax
QK

��
d

√􏼠 􏼡V,

b
i
h � Attention QW

Q
i , KW

K
i , VW

V
i􏼐 􏼑,

a
j

i � concat b
1
h, b

2
h, . . . , b

N
h􏼐 􏼑W

o
.

(6)

After obtaining the weight matrix of the sequence data,
the weighted sum of the weight matrix a

j
i and the byte

information feature vector h
j
i are calculated, and the feature

representation of each byte is updated to obtain the final
output Si:

Si � 􏽘 a
j

i h
j

i . (7)

3.3.2. SBMHA Layer. Intrusion detection traffic data are
related to time.)e traffic information of multiple adjacent
matrices helps to determine the type of current traffic. Traffic
data is grouped and called data slicing. When each traffic
group is synthesized into a large data packet, the Bi-GRU
network ignores the important influence of some key data
packet information on the classification results. By intro-
ducing the attention mechanism, the weight distribution of
the data packets is calculated, and the traffic information
with important contributions is highlighted in a group.

Scaled Dot-product Attention

Q

Linear

K

Linear

V

Linear

Multi-Head Attention

Concat

Output

Figure 4: Structure of multihead self-attention.

Security and Communication Networks 5

(1))e Si generated by the upper layer is used to
generate the characteristic vector hi of the network
flow through Bi-GRU neural network:

h
j
i

→
� GRU

����→
Si(􏼁,

h
j
i

←

� GRU
←

Si(􏼁,

hi � h
j
i

→
, h

j
i

←

􏼢 􏼣.

(8)

(2) Introducing a SBMHA mechanism: For each time-
step, the corresponding hidden state hi is fed through
a single layer of perception to obtain ui as the hidden
representation of hi. Similarly, through the SBMHA
mechanism, the similarity is used to evaluate the
importance of each flow at different times. Finally,
the weighted sum is calculated, which is expressed as
the context vector vi:

ui � tanh Wwhi + bw(􏼁, (9)

...

GRU

Feature-based Multi-Head
Self-Attention Layer

...

... Slice-based Multi-Head
Self-Attention Layer

Dense

Bi-GRU Layer

Embedding Layer

Bi-GRU Layer

GRU GRU

GRU GRU GRU

v0

cr

h0

a0

H0

v1

a1

H1

h1

vr

ar

Hr

hr

S0

a0
1

b1
h

b2
h b1

h
b2
h b1

h
b2
h

a1
1 a1

N–1

h0
1 h1

1 h1
N–1

x0
1 x1

1 x1
N–1

S1 Sr

Figure 5: HMHSA mechanism.

6 Security and Communication Networks

where Ww and bw represent the weight vector and
the bias term, respectively.

Hi � softmax u
T
i us􏼐 􏼑 �

exp u
T
i us􏼐 􏼑

􏽐iexp u
T
i us􏼐 􏼑

. (10)

We evaluate the importance of each slice at different
times using the similarity of ui and us, where us is the
adjacent slice traffic vector.

ai � concat H1, H2, . . . , Hi(􏼁. (11)

)e fusion feature ai is obtained through the Multihead
Self-Attention layer.

vi � 􏽘
i

aihi. (12)

where vi is the weighted sum of the weight matrix ai and the
data flow information feature vector hi.

A summary of the algorithmic phases of the HMHSA
mechanism in Algorithm 1 is provided below.

4. Experiment

4.1. Dataset. In order to verify the performance of HMHSA
mechanism, experiments are carried out on three datasets,
and the data statistics are shown in Table 1.)e CICD-
DoS2019 dataset [29], Mirai dataset [3], and the simulated
real dataset (self-made traffic dataset, TDS_SELF) are used,
respectively.

4.1.1. CICDDoS2019 Dataset.)e CICDDoS2019 dataset
contains normal traffic and the latest common DDoS at-
tacks. At present, many DDoS attack detections [30–34] are
based on this dataset.)e results of the network traffic
analysis use CICFlowMeter-V3, which contains traffic based
on timestamps, source IP and destination IP, source port
and destination port, protocols, attack types, and other
markers and extracted more than 80 traffic features [29]. By
analyzing the SYN flood traffic characteristics, Table 2 shows
that the characteristics selected from the CICDDoS2019
dataset are suitable for our experiment.

4.1.2. Mriai Dataset.)eMriai dataset is created by Meidan
et al. [3]; Mirai is a specific type of botnet malware that
overrides networked Linux devices and successfully turns
them into bots used for distributed attacks such as DDOS.
)e Mirai dataset contains a large number of SYN flood
instances.

4.1.3. TDS_SELF Dataset. TDS_SELF dataset is constituted
of our real local network traffic and SYN flood attack traffic.
)e SYN flood attack traffic is generated through “hping3”
simulation, as shown in Figure 6. Wireshark is used to
capture packets, and tcp.srcport, tcp.dstport, tcp.flags.ack,
tcp.flags.syn, tcp.flags.fin, etc. are selected as features
through CICFlowMeter, as shown in Figure 7.

4.1.4. Data Preprocessing. Preprocessing mainly includes
feature transformation and feature normalization. Feature
conversion uses one-hot encoding to digitize the sequence,
and one-hot encoding can extend the value of discrete
features to Euclidean space, making the distance calculation
between features more reasonable [35].We use theMin-Max
method for normalization, where min is the minimum value
of the sample data and max is the maximum value of the
sample data.)e Min-Max formula is as follows:

x
∗

�
x − min

max − min
. (13)

4.2. Evaluation. In order to evaluate the performance of the
HMHSA mechanism in the detection of SYN flood attack,
we use four indicators: accuracy, precision, recall, and F1-
score [36].

(1) Accuracy. Measure the proportion of the model’s
correct prediction of the samples in the dataset:

Accuracy �
TP + TN

TP + FP + FN + TN
. (14)

(2) Precision. Measure the proportion of the sample that
is predicted to be positive:

Precision �
TP

TP + FN
. (15)

(3) Recall. Evaluate whether to find all the true positive
examples in the sample:

Recall �
TP

TP + FP
. (16)

(4) F1-score.)e balance between accuracy and recall:

F1 − score � 2
precision · recall
precision + recall

􏼠 􏼡. (17)

4.3. Experimental Configuration.)e method proposed in
this paper is verified and implemented on PC, and the
experimental environment is Lenovo Legion R7000; CPU
R7-4800H; memory 16G, hard disk 512G; operating system
Windows 1940; compile PyCharm 2021, Python 3.6; and the
neural network framework is Tensorflow 1.8.0, Keras 2.1.6.

For the parameter setting, we obtained the optimal
parameters through several experiments, and the basic pa-
rameter settings of the method are shown in Table 3.

4.4. Experimental Analysis. In this paper, four experiments
were conducted: (1) the determination of the number of
heads, and the suitable number of heads were selected by
comparing the F1-score; (2) when the epoch is 4, it tended to
be stable, indicating that the method had a good effect, and
small number of training times can achieve high accuracy;
(3) the timestep was selected randomly for the data slicing
layer to discuss the influence on the convergence perfor-
mance; (4) the comparison of different attentions further
verified the superiority of choosing attention in this study.

Security and Communication Networks 7

(1) Start
(2) Input: Training dataset Xi � [x0

i , . . . , xN−1
i] , epochs K, timesteps Nt

(3) Output:)e classification category y
(4) Data preprocessing: Missing value filling, numerical conversion, normalizaiton
(5) For k� 1: K do
(6) //Learning byte data feature information through Bi-GRU
(7) Calculate h

j

i

(8) //Byte data weight distribution obtained by Multihead Self-Attention mechanism
(9) Q, K, V←h

j

i

(10) Calculate Attention(Q, K, V), bi
h, a

j
i

(11) //Update each byte feature representation to get the data flow vector Si

(12) Si←􏽐
​
a

j
i h

j
i

(13))e current data flow St is merged with the history data St, where the length of history data is determined by Nt

(14) //Learning data flow feature information through Bi-GRU
(15) Calculate hi

(16) //Calculation of data flow weight distribution by Multihead Self-Attention
(17) Calculate ui, Hi, ai

(18) //Calculate the weighted sum
(19) vi←􏽐iaihi

(20) Train the model
(21))e output ot of the model is obtained
(22) ifot > 0.5 then
(23) yt � 1 //SYN Flood attack
(24) else
(25) yt � 0 //benign data
(26) end if
(27) end for
(28) return yt

(29) END

ALGORITHM 1:)e HMHSA mechanism.

Table 1: Composition of dataset.

CICDDoS2019 Mirai TDS_SELF

Train samples
Normal samples 37597 56850 40000
Anomaly samples 45332 56850 40000
Total samples 82930 113700 80000

Test samples
Normal samples 45714 54548 50000
Anomaly samples 109023 54548 60000
Total samples 154737 109096 110000

Table 2: CICDDoS2019 dataset.

Features Describe
Source/destination port Source/destination port
Flow bytes/s)e number of packet bytes transmitted per second
Flow packets/s)e number of packets transmitted per second
Flow IAT mean Average rate
Fwd PSH flags)e number of times the PSH flag is set in a forward transmitted packet
Bwd PSH flags)e number of times the PSH flag is set in a packet transmitted in reverse
Fwd URG flags)e number of times the URG flag is set in a forward transmitted packet
Bwd URG flags)e number of times the URG flag is set in reverse packet
FIN flag count)e number of packages with FIN
SYN flag count)e number of packages with SYN
RST flag count)e number of packets with RST
PSH flag count)e number of packages with PUSH
ACK flag count)e number of packets with ACK
URG flag count)e number of packages with URG
act_data_pkt_fwd Packets with a TCP data payload of at least 1 byte in the forward direction
Active mean Average time a stream is active before it is idle
Active std Standard deviation time for a stream to be active before it is idle

8 Security and Communication Networks

4.4.1. Determination of the Number of Heads.)e number
of hyperparameter heads affects the attention of different
features.)e appropriate number of heads can extract
the key spatial characteristics of data packets more ac-
curately. Too many or very few heads may cause the lack
or interference of effective features. In this paper, we set
the number of heads (N_head) as 1–6, and the experi-
mental results are shown in Figure 8. It can be seen that
when the number of heads is 2, the classification result or
F1-score is better than other [29] heads [3].

4.4.2. Determination of Timestep. By comparing the loss
values of the three datasets at different timesteps, it is
found that the minimum loss values are 0.0010, 0.0012,
and 0.0026 when the timestep is 3. When the timestep
exceeds 3, the loss will increase to some extent so that the
timestep can be selected as 3 (see Figure9).

4.4.3. Analysis of Training Results.)e HMHSA mechanism
was trained on the CICDDoS2019 dataset and TDS_SELF
dataset.)e results are shown in Figures 10(a) and 10(b), where
Acc_Train and Acc_Test are the accuracies of the training set
and the testing set, respectively. As can be seen from the figures,
when epoch is 4, the highest accuracies are 99.96% and 99.97%,
respectively, and the accuracies tend to be stable.

In order to further verify the generalization ability of the
model, we trained on the Mirai dataset and added an Early
Stopping function to prevent overfitting. If the training effect
is still not improved after a certain number of times, the
training is stopped. We adjusted the upper limit of epochs to
100 and stopped training in advance when loss did not
decrease for seven consecutive epochs during network
training, which further improved the network fit.)e ex-
perimental result is shown in Figure 10(c).)e accuracy of
the model on the Mirai dataset can reach [29] 99.97%. [3].

4.4.4. Comparison of Different Attention Mechanisms. In
order to evaluate the effectiveness of the HMHSA mecha-
nism, we designed seven different attention mechanisms for
comparison.)ey are No Attention (Bi-GRU), Single At-
tention (SA), Single Self-Attention (SSA), Single Multihead
Self-Attention (SMHSA), Hierarchical Attention (HA),
Hierarchical Self-Attention (HASA), and HMHSA mecha-
nism.)e experiments are carried out on three datasets.)e
accuracy, precision, recall, and F1-score of different struc-
tures are shown in Figures 11–13. Comparative experi-
mental results show that the proposed method can achieve
good results in SYN flood attack detection [29].

Figure 7: SYN flood attack traffic captured by wireshark.

Figure 6: Hping3 simulates SYN flood attack.

Table 3: Basic parameter settings of the method.

Parameters Values
Batch_size 1024
Epoch 6
Dropout 0.5
Learning_rate 0.001
Timestep 3
Two-layer bi-GRU unit 32, 12
Number of attention heads 2
Optimizer Adam

Security and Communication Networks 9

Lo
ss

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

timestep
1 2 3 4 5 6 7 8

CICDDoS2019
Mirai
TDS_SELF

Figure 9: Comparison of loss at different timesteps on the CICDDoS2019 [29], Mirai [3], and TDS_SELF dataset.

0.9825
0.9850
0.9875
0.9900
0.9925
0.9950
0.9975
1.0000

A
cc

ur
ac

y

Epoch
1 2 3 4 5 6

Acc_Train
Acc_Test

(a)

0.9825
0.9850
0.9875
0.9900
0.9925
0.9950
0.9975
1.0000

A
cc

ur
ac

y

Epoch
1 2 3 4 5 6

Acc_Train
Acc_Test

(b)

0.84
0.86
0.88
0.90
0.92
0.94
0.96
0.98
1.00

A
cc

ur
ac

y

Epoch
1 2 3 4 5 6 7

Acc_Train
Acc_Test

(c)

Figure 10: Performance test on the CICDDoS2019, Mirai, and TDS_SELF dataset. (a) CICDDoS2019. (b) Mirai. (c) TDS_SELF.

98.00

98.25

98.50

98.75

99.00

99.25

99.50

99.75

100.00

F1
-s

co
re

 (%
)

CICDDoS2019
Mirai
TDS_SELF

N_head
1 2 3 4 5 6

Figure 8: Comparison of F1-score with different number of heads on the CICDDoS2019, Mirai, and TDS_SELF dataset.

10 Security and Communication Networks

Model
Bi-GRU SA SSA SMHSA HA HAS HMHSA

Accuracy
Precision

Recall
Fi-score

0.992

0.993

0.994

0.995

0.996

0.997

0.998

0.999

1.000

A
cc

ur
ac

y

Figure 11: Comparison of different attention mechanisms on the CICDDoS2019 dataset.

Accuracy
Precision

Recall
Fi-score

Model
Bi-GRU SA SSA SMHSA HA HAS HMHSA

0.95

0.96

0.97

0.98

0.99

1.00

A
cc

ur
ac

y

Figure 12: Comparison of different attention mechanisms on the Mirai dataset.

Accuracy
Precision

Recall
Fi-score

Model
Bi-GRU SA SSA SMHSA HA HAS HMHSA

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

A
cc

ur
ac

y

Figure 13: Comparison of different attention mechanisms on the TDS_SELF dataset.

Security and Communication Networks 11

5. Conclusion

In this study, we have proposed a SYN flood attack detection
method [3] with Hierarchical Multihead Attention mech-
anism. First, Bi-GRU is used to learn the feature information
of byte data, and further, the weight distribution of byte data
is calculated through the Multihead Self-Attention mecha-
nism to capture the internal correlation of byte data and to
highlight the important contribution byte information.
)en, control the value of timestep to perform traffic slicing,
merge historical data flow and current data flow, learn data
flow feature information through Bi-GRU, and further
calculate data flow weight distribution through Multihead
Self-Attention. Finally, the classification is performed by the
Softmax function.

Results illustrate that the method can perform better
feature selection and improve the accuracy. Experiments are
performed on the public network dataset CICDDoS2019,
Mirai dataset, and the simulated TDS_SELF dataset, and the
accuracy can reach 99.96% (CICDDoS2019), 99.97% (Mirai
dataset), and 99.97% (TDS_SELF).

In future work, a fast and accurate defense mechanism is
needed to detect TCP-SYN flood attacks, we plan to further
optimize the model, reduce the network structure of the
model, and design a more lightweight and more reliable
model with a lower false positive rate. Due to the addition of
the attention mechanism, our model lacks fast computation,
and future goals will focus on balancing efficiency and ac-
curacy to further study the evolution of attention.We plan to
evaluate the performance of the proposed detection method
against low-rate SYN flood attack when the attack is similar
to the background total traffic. In addition to this, we will
evaluate the proposed method on a real testbed using a
larger-capacity real network traffic dataset.

Data Availability

)e data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

)e authors declare that they have no conflicts of interest.

Acknowledgments

)is work was supported by the Natural Science Foundation
of Xizang Autonomous Region under Grant No.
XZ2019ZRG-36(Z), the ZangQin Himalay Talent Develop-
ment Support Program (Natural Science) for Distinguished
Young Scholars under Grant No. 324011810216, the Re-
search Team Project for Xizang-Related Network Infor-
mation Content and Data Security under Grant No.
324042000709, and Xizang Cyberspace Governance Re-
search Center.

References

[1] A. Sangodoyin, B. Modu, I. Awan, and J. P. Disso, “An ap-
proach to detecting distributed denial of service attacks in

software defined networks,” in Proceedings of the 2018 IEEE
6th International Conference on Future Internet of 3ings and
Cloud (FiCloud), pp. 436–443, Barcelona, Spain, August 2018.

[2] B. N. Subbulakshmi and T. Subbulakshmi, “Tcp syn flood
attack detection and prevention system using adaptive
thresholding method,” ITM Web of Conferences, vol. 37,
no. 4356, p. 01016, 2021.

[3] Y. Meidan, M. Bohadana, Y. Mathov et al., “N-BaIoT-Net-
work-Based detection of IoT botnet attacks using deep
autoencoders,” IEEE Pervasive Computing, vol. 17, no. 3,
pp. 12–22, 2018.

[4] I. Ocovaj and S. Ocovaj, “Application of entropy formulas in
detection of denial-of-service attacks,” International Journal
of Communication Systems, vol. 32, no. 15, p. e4067, 2019.

[5] M. Rahouti, K. Xiong, N. Ghani, and F. Shaikh, “SYNGuard:
dynamic threshold-based SYN flood attack detection and
mitigation in software-defined networks,” IET Networks,
vol. 10, no. 2, pp. 76–87, 2021.

[6] Y. Liu, M. Dong, K. Ota, J. Li, and J. Wu, “Deep reinforcement
learning based smart mitigation of DDoS flooding in soft-
ware-defined networks,” in Proceedings of the 2018 IEEE 23rd
International Workshop on Computer Aided Modeling and
Design of Communication Links and Networks (CAMAD),
pp. 1–6, IEEE, Barcelona, Spain, September 2018.

[7] N. N. Tuan, P. H. Hung, N. D. Nghia, V. T Nguyen, and
V. P Trung, “A robust TCP-SYN flood mitigation scheme
using machine learning based on SDN,” in Proceedings of the
2019 International Conference on Information and Commu-
nication Technology Convergence (ICTC), pp. 363–368, IEEE,
Jeju, Korea (South), October 2019.

[8] R. Gegan, C. Mao, D. Ghosal, M. Bishop, and S. Peisert,
“Anomaly detection for science DMZs using system perfor-
mance data,” in Proceedings of the 2020 International Con-
ference on Computing, Networking and Communications
(ICNC), pp. 492–496, IEEE, Big Island, HI, USA,
February2020.

[9] R. Swami, M. Dave, and V. Ranga, “Detection and analysis of
TCP-SYN DDoS attack in software-defined networking,”
Wireless Personal Communications, vol. 118, no. 4,
pp. 2295–2317, 2021.

[10] X. Yuan, C. Li, and X. Li, “DeepDefense: identifying DDoS
attack via deep learning,” in Proceedings of the 2017 IEEE
International Conference on Smart Computing (SMART-
COMP), pp. 1–8, IEEE, Hong Kong, China, May 2017.

[11] O. Brun, Y. Yin, E. Kadioglu, G. J Augusto, and M Ramos,
“Deep learning with dense random neural networks for
detecting attacks against IoT-connected home environ-
ments,” in International ISCIS Security Workshop, pp. 79–89,
Springer, Cham, Berline Germany, 2018.

[12] Y. Li and Y. Lu, “LSTM-BA: DDoS detection approach
combining LSTM and Bayes,” in Proceedings of the 2019
Seventh International Conference on Advanced Cloud and Big
Data (CBD), pp. 180–185, IEEE, Suzhou, China, September
2019.

[13] A. R. Shaaban, E. Abd-Elwanis, andM. Hussein, “DDoS attack
detection and classification via Convolutional Neural Net-
work (CNN),” in Proceedings of the 2019 Ninth International
Conference on Intelligent Computing and Information Systems
(ICICIS), pp. 233–238, IEEE, Cairo, Egypt, December 2019.

[14] M. Asad, M. Asim, T. Beg, H. MujtabaAbbas, and S. Abbas,
“Deepdetect: detection of distributed denial of service attacks
using deep learning,” 3e Computer Journal, vol. 63, no. 7,
pp. 983–994, 2020.

12 Security and Communication Networks

[15] S. Evmorfos, G. Vlachodimitropoulos, N. Bakalos, and
E. Gelenbe, “Neural network architectures for the detection of
SYN flood attacks in IoT systems,” in Proceedings of the 13th
ACM International Conference on PErvasive Technologies
Related to Assistive Environments, pp. 1–4, Corfu, Greece,
June 2020.

[16] V. Odumuyiwa and R. Alabi, “DDOS detection on Internet of
things using unsupervised algorithms,” Journal of Cyber Se-
curity and Mobility, vol. 10, pp. 569–592, 2021.

[17] V. Nagaraju, A. Raaza, V. Rajendran, and D. Ravikumar,
“Deep learning binary fruit fly algorithm for identifying SYN
flood attack from TCP/IP,” Materials Today Proceedings,
vol. 65, 2021.

[18] S Rehman, M. Khaliq, S. I. Rasool, Z. ShafiqJavedJalilBashir,
and A. K. Bashir, “DIDDOS: an approach for detection and
identification of distributed denial of service (DDoS) cyber-
attacks using gated recurrent units (GRU),” Future Genera-
tion Computer Systems, vol. 118, pp. 453–466, 2021.

[19] J. D. Britto and M. S. Priya, “Deep belief network and support
vector machine fusion for distributed denial of service and
economical denial of service attack detection in cloud,”
Concurrency and Computation: Practice and Experience,
vol. 34, p. e6543, 2021.

[20] Y. Jiang, G. Tong, H. Yin, and N. Xiong, “A pedestrian de-
tection method based on genetic algorithm for optimize
XGBoost training parameters,” IEEE Access, vol. 7, 2019.

[21] Z. Chen, F. Jiang, Y. Cheng, G Xin, and LWeirong, “XGBoost
classifier for DDoS attack detection and analysis in SDN-
based cloud,” in Proceedings of the 2018 IEEE International
Conference on Big Data and Smart Computing (Bigcomp),
January 2018.

[22] N. Ravi, S. M. Shalinie, C. Lal, and M. Conti, “AEGIS: de-
tection and mitigation of TCP SYN flood on SDN controller,”
IEEE Transactions on Network and Service Management,
vol. 18, no. 1, pp. 745–759, 2021.

[23] R. Wan, N. Xiong, and N. T. Loc, “An energy-efficient sleep
scheduling mechanism with similarity measure for wireless
sensor networks,” Human-centric Computing and Informa-
tion Sciences, vol. 8, no. 1, p. 18, 2018.

[24] Z. Ahmed, M. Mahbub, and S. Jahan, “Defense against SYN
flood attack using LPTR-PSO: a three phased scheduling
approach,” International Journal of Advanced Computer
Science and Applications, vol. 8, no. 9, pp. 8-9, 2017.

[25] W. Guo, N. Xiong, H. C. Chao, S. Chen, and G. Chen, “Design
and analysis of self-adapted task scheduling strategies in
wireless sensor networks,” Sensors, vol. 11, no. 7,
pp. 6533–6554, 2011.

[26] X. Wang, Q. Li, N. Xiong, and Y. Pan, “Ant colony opti-
mization-based location-aware routing for wireless sensor
networks,” International Conference on Wireless Algorithms,
Systems, and Applications, Springer, Berlin, Heidelberg, 2008.

[27] F. XiaXia, R. Hao, and Y. LiXiongYangZhang, “Adaptive GTS
allocation in IEEE 802.15.4 for real-time wireless sensor
networks,” Journal of Systems Architecture, vol. 59, no. 10,
pp. 1231–1242, 2013.

[28] W. Zaremba, I. Sutskever, and O. Vinyals, “Recurrent neural
network regularizatio,” in n, https://arxiv.org/abs/1409.2329,
2014.

[29] I. Sharafaldin, A. H. Lashkari, S. Hakak, and A. A. Ghorbani,
“Developing realistic distributed denial of service (DDoS)
attack dataset and taxonomy,” in Proceedings of the 2019
International Carnahan Conference on Security Technology
(ICCST), pp. 1–8, IEEE, Chennai, India, October 2019.

[30] Y. Jia, F. Zhong, A. Alrawais, B. Gong, and X. Cheng,
“Flowguard: an intelligent edge defense mechanism against
IoT DDoS attacks,” IEEE Internet of 3ings Journal, vol. 7,
no. 10, pp. 9552–9562, 2020.

[31] S. Sindian and S. Sindian, “An enhanced deep autoencoder-
based approach for DDoS attack detection,” WSEAS Trans-
actions on Systems and Control, vol. 15, pp. 716–724, 2020.

[32] H. Kousar, M. M. Mulla, P. Shettar, and D. G. Narayan,
“Detection of DDoS attacks in software defined network using
decision tree,” in Proceedings of the 2021 10th IEEE Inter-
national Conference on Communication Systems and Network
Technologies (CSNT), pp. 783–788, IEEE, Bhopal, India, June
2021.

[33] M. A. Salahuddin, M. F. Bari, H. A. Alameddine,
V. Pourahmadi, and R. Boutaba, “Time-based anomaly de-
tection using autoencoder,” in Proceedings of the 16th In-
ternational Conference on Network and Service Management
(CNSM), pp. 1–9, Izmir, Turkey, November 2020.

[34] N. M. Yungaicela-Naula, C. Vargas-Rosales, and J. A. Perez-
Diaz, “SDN-based architecture for transport and application
layer DDoS attack detection by using machine and deep
learning,” IEEE Access, vol. 9, pp. 108495–108512, 2021.

[35] K. Jiang, W. Wang, A. Wang, and H. Wu, “Network intrusion
detection combined hybrid sampling with deep hierarchical
network,” IEEE Access, vol. 8, pp. 32464–32476, 2020.

[36] Y. Lu, S. Wu, Z. Fang, N. Xiong, S. Yoon, and D. S. Park,
“Exploring finger vein based personal authentication for se-
cure IoT,” Future Generation Computer Systems, vol. 77,
pp. 149–160, 2017.

Security and Communication Networks 13

https://arxiv.org/abs/1409.2329

