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A Synchronized Visual-Inertial Sensor System with FPGA

Pre-Processing for Accurate Real-Time SLAM

Janosch Nikolic, Joern Rehder, Michael Burri, Pascal Gohl,

Stefan Leutenegger, Paul T. Furgale and Roland Siegwart1

Abstract— Robust, accurate pose estimation and mapping
at real-time in six dimensions is a primary need of mobile
robots, in particular flying Micro Aerial Vehicles (MAVs), which
still perform their impressive maneuvers mostly in controlled
environments. This work presents a visual-inertial sensor unit
aimed at effortless deployment on robots in order to equip them
with robust real-time Simultaneous Localization and Mapping
(SLAM) capabilities, and to facilitate research on this important
topic at a low entry barrier.

Up to four cameras are interfaced through a modern ARM-
FPGA system, along with an Inertial Measurement Unit (IMU)
providing high-quality rate gyro and accelerometer measure-
ments, calibrated and hardware-synchronized with the images.
This facilitates a tight fusion of visual and inertial cues that
leads to a level of robustness and accuracy which is difficult to
achieve with purely visual SLAM systems. In addition to raw
data, the sensor head provides FPGA-pre-processed data such
as visual keypoints, reducing the computational complexity of
SLAM algorithms significantly and enabling employment on
resource-constrained platforms.

Sensor selection, hardware and firmware design, as well
as intrinsic and extrinsic calibration are addressed in this
work. Results from a tightly coupled reference visual-inertial
SLAM framework demonstrate the capabilities of the presented
system.

Index Terms— Visual-Inertial SLAM System, Camera, IMU,
FPGA, Calibration, Sensor Fusion.

I. INTRODUCTION

Many mobile robots require on-board localization and

mapping capabilities in order to operate truly autonomously.

Control, path planning, and decision making rely on a timely

and accurate map of the robots surroundings and on an

estimate of the state of the system within this map.

Accordingly, Simultaneous Localization and Mapping

(SLAM) has been an active topic of research for decades

[1]. Tremendous advances led to successful employments of

SLAM systems on all sorts of platforms operating in diverse

environments. Different interoceptive and exteroceptive sen-

sors such as 2D and 3D laser scanners, wheel odometry,

cameras, inertial sensors, ultrasonic range finders, and radar,

amongst others, provide the necessary data.

Yet it is often a challenge to equip a platform with a

reliable and accurate real-time SLAM system that fulfills

payload, power, and cost constraints. A “plug-and-play”

SLAM solution that achieves all requirements and runs ro-

bustly under the given conditions is seldom readily available,

1 Janosch Nikolic and Joern Rehder contributed equally to this work. All
authors are with the ETH, the Swiss Federal Institute of Technology Zurich,
Autonomous Systems Lab (www.asl.ethz.ch), Tannenstrasse 3, CLA, CH-
8092 Zurich, Switzerland.

Fig. 1: The SLAM Sensor unit in a fronto-parallel “stereo”

configuration(front- and side-view). The sensor interfaces

up to four cameras and incorporates a time-synchronized

and calibrated inertial measurement system. Access to high

quality raw- and pre-processed data is provided through

simple interfaces.

and thus significant engineering efforts often have to be

undertaken.

Visual SLAM systems that rely on cameras have re-

ceived particular attention from the robotics and computer

vision communities. A vast amount of data from low-cost,

lightweight cameras enables incredibly powerful SLAM or

structure-from-motion (SfM) systems that perform accurate,

large-scale localization and (dense) mapping in real-time [2],

[3]. However, SLAM algorithms that rely only on visual cues

are often difficult to employ in practice. Dynamic motion, a

lack of visible texture, and the need for precise structure and

motion estimates under such conditions often renders purely

visual SLAM inapplicable.

Augmenting visual SLAM systems with inertial sensors

tackles exactly these issues. MEMS Inertial Measurement

Units (IMUs) provide valuable measurements of angular

velocity and linear acceleration. In tight combination with

visual cues, this can lead to more robust and accurate

SLAM systems that are able to operate in less controlled,

sparsely textured, and poorly illuminated scenes while un-

dergoing dynamic motion. However, this requires all sensors

to be well calibrated, rigidly connected, and precisely time-



synchronized.

This work makes a step towards a general-purpose SLAM

system by providing these capabilities. The sensor head

evolved through the development of several prototypes and

was tested in many applications, for instance in a coal fired

power plant [4] or on a car [5]. Fig. 1 shows our final

hardware iteration.

The remainder of this article is organized as follows:

in Section III, we outline the design concept, FPGA-pre-

processing (see Section III-C), and the calibration of such a

visual-inertial sensor unit (see Section IV). We then overview

our reference tightly coupled visual-inertial motion estima-

tion framework in Section V, which we use in Section VI to

illustrate the capabilities of the sensor system.

II. RELATED WORK

There exist different FPGA vision systems particularly

geared to robotics. The GIMME platform [6] is similar in

scope to this hardware in that it computes visual interest

points on an FPGA and transmits those to a host system

in order to bring visual pose estimation to platforms with

computational and power constraints. However, it is a purely

visual sensor setup and hence does not require elaborated

synchronization or calibration between different types of

sensors.

Another system that employs inertial sensors has been

developed by the DLR [7]. In this system, a general purpose

computer and an FPGA are closely interleaved in order

to enable ego-motion estimation and depth computation on

a handheld device. In contrast to our setup, cameras and

inertial sensors are not as tightly integrated into the system,

and images appear to be timestamped at the start of sensor

exposure, resulting in a varying, exposure dependent offset to

IMU measurements. Furthermore, its weight might prohibit

application on very payload-constrained platforms.

As heterogeneous sensor systems for motion estimation

and localization become increasingly popular, spatial cali-

bration has attracted some attention and resulted in a variety

of frameworks [8]–[10]. More recently, the importance of

accurate synchronization of the sensors became apparent and

was addressed in [8], [11], [12]. While this work makes

use of the calibration presented in [12] to determine the

transformation between cameras and IMU and to determine

fixed delays present when polling inertial data, its approach

to the problem is exactly antithetic: rather than connecting

a set of stand-alone sensors to a general purpose computer

and calibrating for potentially time-variant time-offsets after-

wards, we pursued a tight integration of all hardware com-

ponents with a central unit capable of concurrent triggering

and polling of all sensors.

III. THE VISUAL-INERTIAL SLAM SENSOR

This section outlines important design concepts and

“lessons learned” throughout the development of three suc-

cessive prototypes that led to the sensor presented here.

Subsection III-A provides a conceptual overview of the

sensor. Subsection III-B describes a synchronization method

that guarantees ideal alignment of all sensors in time. Sub-

section III-C describes the FPGA implementation of image

processing operations such as keypoint detection to reduce

CPU-load of successive SLAM software.

A. Sensor Design Concept

At the core of the SLAM sensor, we employ a modern

XILINX Zynq System-on-Chip (SoC), a device that com-

bines FPGA resources with a dual ARM Cortex-A9 on

a single chip. Hardware programmability allows a direct,

lowest-level interface to the CMOS imagers and inertial

sensors, enabling precise synchronization and a reliable data

acquisition process.

At the same time, the chip offers a powerful, industry

standard CPU running Linux. This facilitates simple

development and efficient execution of processes that

are time-consuming to implement on an FPGA (e.g.

host-communication or even a simple SLAM framework).

In contrast to previous prototypes which featured a

XILINX Spartan-6 FPGA - Intel ATOM combination, this

also offers a better integration and a higher bandwidth

between logic and CPU. Fig. 2 gives an overview of the

hardware architecture, and Table I summarizes the technical

specifications of the sensor unit.
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Fig. 2: Block-diagram of the SLAM sensor hardware ar-

chitecture. Camera chips and inertial sensors interface the

ARM-FPGA system-on-chip directly. Standard interfaces

provide fast access to the data provided by the module.

1) Visual Subsystem: The SLAM sensor offers four cam-

era extension ports. The ability to rely on several cameras

is crucial for many real-world applications. Even when

wide Field-of-View (FoV) optics are used, a single camera

may still point into a direction where keypoint tracking

is difficult (lacking texture, temporary obstruction of the

FoV, bad illumination). With the option to use four cameras

simultaneously, configurations such as the combination of a

“fronto-parallel” stereo pair and two fish-eye modules are

quickly realized.

In the current configuration, camera chips were selected

according to their low-light sensitivity and global shutter



Basic Characteristics Value/Characteristic Unit

Mass (for diff. configurations)
1 cam+MPU 60 g
2 cams+mount+ADIS16448 130 g
4 cams+mount+ADIS16488 185 g

Embedded Processing XILINX Zynq 7020
Processor 2xARM Cortex A9
FPGA ARTIX-7
Interfaces GigE, USB2/3

Camera System

Sensors Aptina MT9V034
Shutter type global
Opt. resolution 752×480 pixel
Max. frame rate 60 fps

Inertial System (ADIS16488)

Rate Gyroscope
Measurement Range ±1000 °/s

Noise Density 0.007 °/s Hz-1/2

Accelerometer

Measurement Range ±177 ms-2

Noise Density 0.66 · 10-3 ms-2 Hz-1/2

Max. sampling rate 2.4 kHz

TABLE I: Overview of the SLAM sensors technical specifi-

cations. High quality sensors that perform well in low-light

scenarios and when undergoing dynamic motion are inte-

grated in the sensor unit. The module’s relatively low weight

facilitates employment on payload-constrained platforms.

functionality. Aptina’s MT9V034 CMOS sensors offer good

performance and a direct interface to the FPGA through

LVDS ports. By default, Lensagon lenses of the type

BM2820 (122° diagonal FoV) or BM2420 (132° diagonal

FoV) are used.

In addition, a FLIR Tau 2 thermal imager can be

connected, which then occupies one of the camera ports.

Similar to the camera modules, it directly interfaces with the

Zynq providing time-synchronized digital (14 bit dynamic

range) thermal images to the host.

2) Inertial Subsystem: The current prototype allows two

options with regard to the IMU subsystem. By default, each

camera module is fitted with a low-cost MEMS IMU offering

a triple axis gyroscope, accelerometer, and magnetometer in

a single package. The MPU-9150 was selected due to its high

range in both angular rates and acceleration. Chip internal

filtering and processing are switched off, and only raw data

is used.

In addition, a factory-calibrated MEMS IMU system from

the ADIS family of Analog Devices can be connected.

The ADIS16448 and ADIS16488 are equipped with higher

quality gyroscopes and accelerometers, and they are factory-

calibrated over a large scale and temperature range. Depend-

ing on the application, one can trade-off sensor weight versus

accuracy of the inertial subsystem.

B. Sensor Synchronization and Data Acquisition

We configure the image sensors for external triggering. At

the same, the inertial measurement sensors are polled for data

acquisition. As stated earlier, accurate synchronization of dif-

ferent sensors was the driving motivation for a tight integra-

tion in hardware. It is an established fact in photogrammetry,

that images should be timestamped by their mid-exposure

time, and in previous work [12], it could be shown that

neglecting image exposure time in timestamping data has

an observable effect, which suggests that it could adversely

affect image-based state estimation. We made the design

choice to not correct for the exposure time in timestamping

images, but to account for the exposure time when triggering

the sensors. This way, the middle of the exposure times will

still be equally spaced despite varying lighting conditions,

which exhibits certain advantages when representing states in

a time-discrete manner. Fig. 3 illustrates the synchronization

scheme in comparison with periodically triggering, where

varying lighting conditions result in exposure midpoints that

are not equally spaced.

t

inertial

measurements

periodic

trigger

exposure

compensated

Fig. 3: This timing diagram shows strictly periodic polling

of an IMU as well as two schemes of camera synchro-

nization, where high levels mark exposure times. Triggering

the camera at the instance an inertial measurement is re-

trieved is a common approach to synchronization. However,

the exposure is asymmetrical with respect to the inertial

measurement. By taking varying exposure into account and

shifting each triggering instance accordingly, significantly

improved synchronization can be achieved, as demonstrated

in Fig. 6.

Note that also the inertial measurements may exhibit a

delay. This delay is in general fixed and can be a combination

of communication, filter and logic delays. Section IV will

detail on estimating this delay, which is compensated for in

the same way the exposure delay is addressed, by moving the

moment when a polling request is initiated with respect to

the point in time when the measurement is timestamped. As

part of the results section, Fig. 6 reproduces an experiment

from [12]. The results demonstrate that the delays can

be accounted for in the sensor data acquisition, thereby

improving the synchronization between sensors significantly.

C. FPGA Accelerated Image Processing

As depicted in Fig. 7, the detection of interest points

consumes a significant share of the processing time in the

state estimation pipeline. At the same time, many interest

point detectors operate on a rather confined neighborhood

of pixels and can be implemented exclusively using fixed-

point arithmetic, which renders them well suited for an

implementation as dedicated logic blocks inside an FPGA.

For this project, a fixed-point version of the Harris corner

detector [13] as well as the FAST corner detector [14]

have been implemented. While the resources of the FPGA



used in the setup are not sufficient to integrate them both

at the same time, it is possible to load the FPGA with

different configurations depending on the requirements of the

experiment. Note that the quantities reported in Table II have

been acquired for an earlier prototype based on the Xilinx

XC6SLX45T.

Harris Corner Detection: The Harris corner detector is

based on an approximation of the auto-correlation function

for small image patches. With Ix denoting the derivative in

x-direction of the image intensity at pixel x + u, y + v,

and w(u, v) denoting a weighted averaging function, the

approximated local auto-correlation is calculated as [13]

A(x,y)=
∑

u

∑

v

w(u,v)

[

I2x IxIy
IxIy I2y

]

. (1)

With A and a weighting factor k, the corner response

function r is calculated as

r = |A| − k tr(A)2. (2)

Larger positive values of this function correspond to corner

regions, while negative results indicate edges. Flat regions

trigger a small response. Examining this function reveals

pixel differencing operations, cascaded multiplications as

well as local averaging. Fig. 4 depicts the FPGA imple-

mentation of the corner score function. Derivatives of image

intensities are computed by means of Sobel filters, while

local averaging is performed by convolving with a Gaussian

kernel. As in [6], weighting the Trace of the matrix in

the cost function has been realized by a bit shift opera-

tion. Individual blocks like Sobel and Gaussian filters as

well as the multipliers in the pipeline operate at higher

frequency than the pipeline itself—25 MHz and 125 Mhz

respectively—allowing for the re-utilization of resources.

Furthermore, by making use of the separability properties of

Sobel and Gaussian filters, resource utilization can further

be reduced. The resulting resource utilization is shown in

Table II. The maximum clock rate is limited and thus

imposes upper bounds on the degree to which resources can

be shared. However, the pixel rate of the sensors used in this

sensor setup allows for a excessive re-utilization of resources,

resulting in a core that can be conveniently duplicated for

four cameras without exceeding the area of the FPGA.

FAST Corner Detection: The FAST corner detector is a

heuristically motivated approach to interest point detection,

which compares intensities of image points on a circle around

the point in question. It identifies a pixel as an interest

point based on the number of pixels in a segment that is

either coherently lighter or darker than the central element.

In [14], different scores for nonmaximum suppression are

proposed. Taking the mere number of coherent intensity

comparisons can be efficiently implemented, but results in a

rather coarsely quantized score. On the other hand, consid-

ering the sum of absolute differences (SAD) of this segment

with the center pixel yields finer granularity in the score

at the expense of occupying a larger area on-chip. In this

project, both scores have been implemented with the resource

utilization displayed in Table II. Fig. 5 illustrates a detail of

the implementation as a block diagram, which depicts the

path testing for lighter pixels, which is duplicated for the test

for darker pixels. The central and surrounding pixel, grouped

in sets of four consecutive elements, feed into the block.

The design heavily employs identical blocks, which are

only shown in a number sufficient to convey the underlying

interconnection principles. As for the Harris implementation,

individual components of the detector are clocked at a higher

rate than the overall pipeline, resulting in a reduction in

resource utilization. To this end, the comparison with the

central pixel is executed in four clock cycles, decreasing the

number of comparators that operate on image data. Counting

of coherent segment lengths is done for each potential start-

ing point of the segment in parallel. The appropriate signal

connecting the counting units with the registers holding the

intensity comparisons are represented by a routing network

block in the schematic. Per clock cycle, each segment length

counter evaluates four comparisons. To this end, the counter

block depicted in Fig. 5 determines the position of the first

zero in the 4 bit segment, and accumulates these. Once the

coherency of a segment is interrupted, further accumulations

are blocked. In order to determine the maximum coherent

segment length from the parallel counter units, a recursive

comparator structure has been implemented. The comparison

for darker is implemented accordingly and results from the

two paths which are fused using an additional comparator

stage. The figure does not depict the extraction of the central

pixel and the surrounding circle that precedes the block

shown, as well as the non-maximum suppression succeeding

the block. Note that Fig. 5 depicts the case where the mere

segment length is employed.
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Fig. 5: Logic diagram of a detail of the fast implementation.

By reusing blocks, the area footprint of the core can be

reduced significantly.

RAMB16B DSP48A Slices

Harris 17 (14%) 8 (13%) 774 (11%)
FAST 5 (4%) 0 (0%) 1,124 (16%)
FAST+SAD 5 (4%) 0 (0%) 1,913 (28%)

TABLE II: Resource utilization of the implemented interest

point detectors for a WVGA image on a Xilinx Spartan 6

architecture. The number in brackets indicates the device

utilization for a Xilinx XC6SLX45T.
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IV. CALIBRATION

In order to achieve accurate motion estimates, the sensor

setup needs to be calibrated. As a factory calibrated IMU is

employed in the setup, the remaining quantities that need to

be estimated are

• the camera intrinsics,

• the extrinsics of the stereo setup,

• the transformation between the cameras and the IMU,

• and the fixed time delay between camera and IMU

measurements.

The camera intrinsics and stereo extrinsics are determined

from a set of stills of a checkerboard using the well-

established camera calibration toolbox by Bouguet1. The

toolbox is based on the pinhole camera model and employs

the radial-tangential distortion model established by Brown

[15].

The transformations between the cameras and the IMU

as well as the time delay is estimated using the unified

framework presented in [12]. The framework is based on the

idea of parameterizing time-variant quantities as B-splines—

introduced in detail in [16]—and solving for these as well

as a set of time-invariant calibration parameters in a batch

optimal fashion. Apart from requiring fewer parameters when

fusing measurements of significantly different rates such as

images and inertial data, this approach allows for an accurate

estimation of the fixed time delay between camera and IMU.

Like other frameworks [9], [10], the calibration procedure

requires waving the setup in front of a checkerboard, while

exciting all rotational degrees of freedom sufficiently in

order to render the displacement of camera and IMU well

observable. We also experimented with incorporating the

calibration for the stereo extrinsics directly into the unified

calibration framework, but observed degraded performance

when used in visual-inertial SLAM, an explanation to which

may be that the setups between calibration and SLAM vary

(mostly as far as scene depth is concerned).

The calibration process describes the position and ori-

entation of the IMU with respect to the world frame in

continuous-time, which also includes a continuous-time rep-

resentation of respective derivatives (velocity, acceleration,

and angular velocity). Furthermore, both accelerometer and

1Available at http://www.vision.caltech.edu/bouguetj/

calib_doc/

gyroscope biases—both modeled as random walks—obtain

a continuous-time representation. The calibration may then

be formulated as a batch optimization that combines repro-

jection error ey of checkerboard corners with errors on the

acceleration eα and eω , as well as terms concerning the

compliance of the biases with the random walk processes

(eba and ebω ).

V. VISUAL-INERTIAL MOTION ESTIMATION

Since the sensor was designed to perform real-time visual-

inertial SLAM, we applied our framework [5] to an out-

door dataset. In short, the method is inspired by recent

advances purely vision-based SLAM that solve a sparse non-

linear least-squares problem. Such approaches optimize the

reprojection error of a fairly large number of landmarks

as observed by various camera frames. Our method tightly

integrates inertial measurements into the cost function J by

combining reprojection error er with an IMU error term es
obtained from propagation using standard IMU kinematics

in-between successive image frames:

J(x) :=

I
∑

i=1

K
∑

k=1

∑

j∈J (i,k)

ei,j,kr

T
Wi,j,k

r ei,j,kr +

K−1
∑

k=1

eks
T

Wk
s eks ,

(3)

where x denotes the estimated variables, composed of the

states at all camera snapshot time steps k, as well as all the

3D positions of the landmarks. Note that the states cover

not only 6D poses, but also velocity as well as gyroscope

and accelerometer biases. i stands for the camera index

of the sensor assembly, and j for the landmark index.

Landmarks visible in the ith camera are summarized in

the set J (i, k). Furthermore, Wi,j,k
r denotes the information

matrix of reprojection errors related to detection uncertainty

in the image plane. Finally, Wk
s represents the information

of the kth IMU error, as obtained from the IMU sensor noise

models as provided by the manufacturer (see Table I). We

furthermore include the extrinsic calibration of the cameras

in the optimization.

This fully probabilistically motivated batch optimization

problem over all cameras and IMU measurements quickly

grows intractable. We therefore bound the optimization win-

dow by applying the concept of marginalization. This allows

us to keep a fixed number of keyframes that are arbitrarily

spaced in time and that are still related to each other with

http://www.vision.caltech.edu/bouguetj/calib_doc/
http://www.vision.caltech.edu/bouguetj/calib_doc/


(linearized) IMU error terms. Consequently, drift during

stand-still is avoided, and nevertheless we are able to track

dynamic motions.

VI. RESULTS

A. Sensor Synchronization

The box plot in Fig. 6 depicts the effect of exposure-

compensated sensor synchronization in comparison to a syn-

chronization scheme, where the camera trigger is temporally

aligned with polling the IMU. For each synchronization

paradigm, we collected about ten datasets for three fixed

exposure times by dynamically moving the sensor setup in

front of a checkerboard. The algorithm outlined in Section IV

was used to estimate the time-offset between the measure-

ments. The figure clearly shows the exposure dependency

of the inter-sensor delay for the synchronization where the

camera trigger events are equally spaced in time. In addition,

a fixed offset becomes apparent, which can be estimated

when extrapolating the graph for zero exposure time. As

detailed on in Section III-B, the sensor setup compensates

for the exposure as well as for the fixed time-offset, resulting

in an average inter-sensor delay of only about 7 µs.
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Fig. 6: Results for compensating relative delays of camera

and IMU. The dotted line marks the estimated time offset

between camera and IMU for a synchronization scheme,

where the camera is triggered periodically and the timestamp

represents the trigger time. This paradigm clearly results in

an exposure dependent delay. Note that there also exists a

fixed time-offset, which is induced by filter and communica-

tion delays in the IMU and can be estimated by extrapolating

for zero exposure time. Our setup compensates for both types

of delay, resulting in an almost perfect synchronization with

an average estimated delay of only about 7 µs.

B. Timing

Figure 7 shows profiling results for the visual-inertial

SLAM system. Timings were generated on our flying plat-

form equipped with a Core2Duo host computer. The sensor

assembly was operated in a two-camera configuration, with

CPU

CPU + FPGA

core 0

core 1

core 0

core 1

Fig. 7: Profiling for visual-inertial SLAM with and without

FPGA accelerated keypoint detection on a Core2Duo. De-

tection complexity is directly related to camera resolution

and consumes a significant amount of time. Outsourcing

this operation to the FPGA frees up resources and thus

enables processing on resource-constrained platforms, larger

optimization windows, or other tasks.

both cameras running at 20 Hz, and with an IMU rate of

200 Hz.

The most expensive operation in this configuration is key-

point detection using an SSE-accelerated CPU implementa-

tion of Harris corners, followed by optimization in the visual-

inertial SLAM backend algorithm. With an optimization

window of more than five keyframes, the optimization is not

able to finish in time and starts dropping frames. Using the

FPGA for corner detection resolves this issue.

The computational complexity of the detection further

grows when camera resolution or frame rate is increased,

or when more cameras are integrated. Outsourcing detection

to the FPGA thus significantly reduces CPU load. The re-

maining parts of the visual-inertial SLAM algorithm are then

largely independent of the system’s hardware configuration.

C. Visual-Inertial SLAM Evaluation

We recorded a dataset walking around the ETH main

building. The sequence contains changing illumination, vary-

ing depth, and dynamic objects such as people and cars. The

length of the trajectory was 700 m. Two video streams were

captured at 20 Hz and the IMU at 200 Hz. Processing was

performed with the algorithm outlined in Section V.

Fig. 8 shows the trajectory and structure reconstruction

manually overlaid onto an orthophoto. The position error at

the end of the trajectory amounts to 5 m laterally and 1 m

vertically, thus about 0.7 % of the distance traveled. Note

that no loop-closure constraint was applied when reaching

the point of origin.

VII. CONCLUSION AND OUTLOOK

This work presented the design of a time-synchronized,

calibrated sensor head which is targeted at mobile robotic

applications in need of accurate, robust, real-time pose

estimation and mapping in uncontrolled environments. Hard-

ware synchronization includes compensation for variable

shutter opening, resulting in provably virtually zero time

offset between images and IMU measurements. Low-level

image processing tasks such as keypoint detection were
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Fig. 8: Reconstructed trajectory (red) and estimated land-

marks (black) for a hand-held sequence with the SLAM

system in stereo configuration. A distance of 700 m around

the ETH main building was covered, and drift accumulates

to approximately 5 m laterally and 1 m vertically.

implemented in programmable hardware in order to speed

up processing and free CPU resources. The measurements

taken by the presented sensor head were finally fed to a

tightly-coupled real-time visual-inertial SLAM framework,

the output of which demonstrated the capabilities of the

sensor head.

The modular design is ready for integration of higher

resolution imagers. Our future activities will on the one

hand focus on integration on different platforms ranging from

fixed-wing unmanned aircraft to legged robots. On the other

hand, we plan to port a light-weight visual-inertial SLAM

solution onto the ARM of the sensorhead, in order to obtain

a true “SLAM in a box” module.
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