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Abstract. In this paper we propose a new self-stabilizing distributed algorithm 
for minimal domination protocol in an arbitrary network graph using the 
synchronous model; the proposed protocol is general in the sense that it can 
stabilize with every possible minimal dominating set of the graph. 

 
1. Introduction 
 
Most essential services for networked distributed systems (mobile or wired) involve 
maintaining a global predicate over the entire network (defined by some invariance 
relation on the global state of the network) by using local knowledge at each 
participating node. For example, a minimal spanning tree must be maintained to 
minimize latency and bandwidth requirements of multicast/broadcast messages or to 
implement echo-based distributed algorithms [8, 9, 1, 3]; a minimal dominating set 
must be maintained to optimize  the number and the locations of the resource centers 
in a network [14]; an (r,d) configuration must be maintained in a network where  
various resources must be allocated but all nodes have a fixed capacity r [10]; a 
minimal coloring of the nodes must be maintained [15].  
 
In this paper we propose a distributed algorithm to maintain a minimal dominating set 
in an arbitrary ad hoc network. Our algorithm is fault tolerant (reliable) in the sense 
that the algorithms can detect occasional link failures and/or new link creations in the 
network (e.g., due to mobility of the hosts) and can readjust the multi-cast tree. Our 
approach uses self-stabilization [5, 6] to design the fault-tolerant distributed 
algorithms. 
 
The computation is performed in a distributed manner by using the mechanism of 
beacon messages. Mobile ad hoc networks use periodic beacon messages (also called 
``keep alive" messages) to inform their neighbors of their continued presence.  A node 
presumes that a neighboring node has moved away unless it receives its beacon 
message at stipulated interval. This beacon message provides an inexpensive way of 
periodically exchanging additional information between neighboring nodes. In our 
algorithm, a node takes action after receiving beacon messages (along with algorithm 
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related information) from all the neighboring nodes. The most important contribution 
of the paper involves the analysis of the time complexity of the algorithms in terms of 
the number of rounds needed for the algorithm to stabilize after a topology change, 
where a round is defined as a period of time in which each node in the system 
receives beacon messages from all its neighbors.  The beacon messages provide 
information about its neighbor nodes synchronously (at specific time intervals). Thus, 
the synchronous paradigm used here to analyze the complexity of the self-stabilizing 
algorithms in ad hoc networks is very different from the traditional paradigm of an 
adversarial oracle used in proving the convergence and correctness of self-stabilizing 
distributed algorithms in general. Similar paradigms have been used in [2, 16, 12, 11]. 
 

2. System Model 

 
We make the following assumptions about the system. A link-layer protocol at each 
node i maintains the identities of its neighbors in some list neighbors(i). This data link 
protocol also resolves any contention for the shared medium by supporting logical 
links between neighbors and ensures that a message sent over a correct (or 
functioning) logical link is correctly received by the node at the other end. The logical 
links between two neighboring nodes are assumed to be bounded and FIFO. The link-
layer protocol informs the upper layer of any creation/deletion of logical links using 
the neighbor discovery protocol described below. 
 
Each node periodically (at intervals of tb) broadcasts a beacon message. This forms 
the basis of the neighbor discovery protocol. When node i receives the beacon signal 
from node j which is not in its neighbors list neighbors(i), it adds j to its neighbors 
list, thus establishing link (i,j). For each link (i,j),  node i maintains a timer tij for each 
of its neighbors j. If node i does not receive a beacon signal from neighbor j in time tb, 
it assumes that link (i,j) is no longer available and removes j from its neighbor set. 
Upon receiving    a beacon signal from neighbor j, node i resets its appropriate timer. 
 
When a node j sends a beacon message to any of its neighbors, say node i, it includes 
some additional information in the message that is used by node i to compute the cost 
of the link (i,j) as well as regarding the state of the node j, as used in the algorithm. 
 
The topology of the ad-hoc network is modeled by a (undirected) graph G = (V,E), 
where V is the set of nodes and E is the set of links between neighboring nodes. We 
assume that the links between two adjacent nodes are always bidirectional. Since the 
nodes are mobile, the network topology changes with time. We assume that no node 
leaves the system and no new node joins the system; we also assume that transient 
link failures are handled by the link-layer protocol by using time-outs, 
retransmissions, and per-hop acknowledgments. Thus, the network graph has always 
the same node set but different edge sets. Further, we assume that the network 
topology remains connected. These assumptions hold in mobile ad hoc networks in 
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which the movement of nodes is coordinated to ensure that the topology does not get 
disconnected. We also assume that each node is assigned a unique ID. 
 
 

3.  Minimal Dominating Set 

Given an undirected graph G= (V, E), a dominating set S is defined to be a subset of 
vertices such that ∀v∈V-S: N (i) ∩S ≠ ∅ and a dominating set S is called minimal iff 
there does not exist another dominating set S′  such that S′ ⊂ S. Note that N (i) and 
N[i] respectively represent the open and the closed neighborhoods of the node i. In 
this section we present a synchronous model, self-stabilizing protocol for finding a 
minimal dominating set. Figure 1 shows the pseudo-code of the protocol that is 
executed at each node i, where 1≤ i ≤ n (we assume nodes are numbered 1 through n). 
Each node i has two local variables: x(i), a Boolean flag (the value x(i)=0 indicates 
that i ∉ S while the value x(i) = 1indicates that i ∈ S), and a pointer variable P(i).  
Note that P(i)=i indicates that node i is currently not dominated; P(i)=null indicates 
that the node i is dominated at least twice, i.e., N(i)∩S ≥ 2 and P(i)=j indicates that 
node i is dominated only by node j, i.e., N(i) ∩ S = {j}. 
 

R1: if (| N[i]∩  S | = 1)∧  (P(i)∉ N[i]∩  S) 
then P(i):=j∈  N[i]∩  S 

R2: if (| N[i]∩  S | = 0) 
then if P(i) ≠ i 
        then P(i) = i 
else if ( i<min({j | j∈  N(i), P(j)=j}) ) 
       then x(i):=1, P(i):=i 
      else P(i):=i 

R3: if (| N[i]∩  S | > 1)∧  (x(i)=0)∧  (P(i)≠  null) 
then P(i):= null 

R4: if (| N[i]∩  S | > 1)∧  (x(i)=1)∧  (∀ j∈  N(i)-S, P(j)=null) 

then x(i):=0, and P(i) = 


 =∩∩

otherwisenull,
1)(if),( iSiS NN

 

 
Figure 1: Minimal Domination Protocol 
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4. Correctness Proof 

 
Theorem: When the protocol stabilizes (terminates), the set S = {i | x(i) = 1} gives a 
minimal dominating set of the network graph. 
 
Proof: (a) Assume that the set S is not dominating when the protocol has terminated. 
Then, ∃ i∈V, S∩ N[i] =φ . Then, we have x(i)=0 and  P(i)=i (by R2). Also, 
∃ j∈S∩ N(i), P(j)=j∧ j<i. If |S∩ N[j]| = 1, then by R1, node j has to move in the 
next round, a contradiction. If |S∩ N[j]| > 1, then by R3, j will move, again a 
contradiction. Hence, we have |S∩ N[j]| = 0. Since node j cannot make a move, then 
∃ k∈S ∩  N(j), P(k)=k∧ k<j. Repeating the argument and noting there is only 
finitely many nodes, we reach a vertex  v, where R2 will apply. This is contradiction 
to the hypothesis that the protocol is terminated. Therefore, S is dominating. 
 
(b) Assume that S is dominating, but not minimal when the protocol terminates. Then 
∃ i∈S, such that S′ = S-{i} is a dominating set. Therefore,∀ j∈N[i], ∃ k∈S-{i}, 
k∈N[j]. If x(j)=0, then by R1 and R3, P(j) is either k or null. So R4 must apply on 
node i, a contradiction. Thus, S is minimal dominating set.                                          
                                                                  
 

5.  Convergence and Time Complexity 

 
Lemma 1: If x(i) changes from 0 to 1 in a round, then any node j∈N(i) cannot 
change its x(j) value in the same round 
 
Proof: If x(j)=0, then by R2, only the smaller node between i and j is able to move; If 
x(j)=1, then by R2,  node i can’t move.                                                                                                                          
 
Lemma 2: If a node i changes its x-value from 0 to 1, then x(i) will not change again.  
 
Proof: If x(i) changes from 0 to 1, then by R2, all nodes in the neighborhood N(i) 
should have x(j)=0. And by Lemma 1, they will stay at x(j)=0 after mode i moves. 
These neighbor nodes have at least one node i in the neighborhood that is in S (i.e., 
x(i)=1), so they won’t go into S unless node i goes out. But by R4, i will never go out 
of S unless it is adjacent to some nodes in S.                                                                
                                                                          
 
Theorem 2: The protocol will terminate in at most 4n rounds starting from any 
arbitrary illegitimate state. 
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Proof: By lemma 2, each node will change its change x value at most twice. 
Therefore, there can be at most 2n changes of x values on all nodes in all the time. In 
our synchronous model, there can be at most 2n steps which contain changes of x 
value. Note that if there is no change in x value of any node in a round, then the move 
involves only changes in pointer values. Since the change in any pointer value is 
determined only by x values, there can be at most one step which does not contain 
changes of x value. Therefore, the upper bound of execution time in synchronized 
model is 4 n + 1 rounds.                                                                                                 
                                                                                            
Example: Consider a network graph of 7 nodes in Figure 2; each node is numbered 
from 1 through 7.  We use shaded circle to represent node in S (i.e. x-value equals 1), 
and un-shaded circle to represent node not in S (i.e. x-value equals 0). The arrows on 
the edge represent the pointers from one node to another. If an arrow (i, j) is drawn, 
then P(i)=j. If a node i is pointing to it self, then P(i)=i. A zigzag arrow represents a 
null pointer. 
 

 
 
 
Figure 2(a): An arbitrary initial state:                Figure 2(b): The system state after one  
nodes 1, 4, 5, and 7 are privileged                       round; nodes 1, 3, 4, 6 and 7 privileged 
to move. 
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Figure 2(c): system state after 2 rounds;           Figure 2(d): The system state after 3  
nodes 1, 3, and 4 are privileged.                         Rounds; protocol terminated 
 

6.  Conclusion 

 
We have proposed a self-stabilizing distributed algorithm for maintaining a minimal 
dominating set in a network graph. The algorithm (protocol) stabilizes in O(n) rounds 
in the synchronous model which can be used for ad hoc networks. The proposed 
protocol is general in the sense that the protocol can stabilize with every possible 
minimal dominating set of the graph. Consider an arbitrary minimal dominating set S 
of the graph G and then consider the following global system state:  if i∈S, then 
x(i)=1, if  i∉S, then x(i)=0, if (|S∩ N[i]| > 1) then P(i) = null, and if ( |S∩ N[i]| = 1 
), then P(i)=j∈S∩N[i]. It is easy to see that the protocol is stable in this system 
state.  The significance of this “completeness” of the protocol is that if the system is 
initialized to any minimal dominating set with the correct pointer settings, including 
minimal dominating sets that are not independent, then it will remain stable. While 
the protocol proposed in [17] can only stabilize with an independent set, the protocol 
proposed in this paper is capable of being stable with any minimal dominating set. 
The importance is that for some graphs no dominating set of  smallest cardinality is 
independent.  For example, consider the graph G formed by taking two stars K{1,n}, 
and joining their centers by an edge.  For this graph, the algorithm of [17] will 
stabilize with a set S having at least n+1 nodes, but the proposed algorithm can 
stabilize with a set S having the minimum cardinality of two (adjacent) nodes. 
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