
A Synchronous Self-Stabilizing Minimal Domination
Protocol in an Arbitrary Network Graph

Z. Xu, S. T. Hedetniemi, W. Goddard, and P. K. Srimani

Department of Computer Science
Clemson University

Clemson, South Carolina 29634 USA

Abstract. In this paper we propose a new self-stabilizing distributed algorithm
for minimal domination protocol in an arbitrary network graph using the
synchronous model; the proposed protocol is general in the sense that it can
stabilize with every possible minimal dominating set of the graph.

1. Introduction

Most essential services for networked distributed systems (mobile or wired) involve
maintaining a global predicate over the entire network (defined by some invariance
relation on the global state of the network) by using local knowledge at each
participating node. For example, a minimal spanning tree must be maintained to
minimize latency and bandwidth requirements of multicast/broadcast messages or to
implement echo-based distributed algorithms [8, 9, 1, 3]; a minimal dominating set
must be maintained to optimize the number and the locations of the resource centers
in a network [14]; an (r,d) configuration must be maintained in a network where
various resources must be allocated but all nodes have a fixed capacity r [10]; a
minimal coloring of the nodes must be maintained [15].

In this paper we propose a distributed algorithm to maintain a minimal dominating set
in an arbitrary ad hoc network. Our algorithm is fault tolerant (reliable) in the sense
that the algorithms can detect occasional link failures and/or new link creations in the
network (e.g., due to mobility of the hosts) and can readjust the multi-cast tree. Our
approach uses self-stabilization [5, 6] to design the fault-tolerant distributed
algorithms.

The computation is performed in a distributed manner by using the mechanism of
beacon messages. Mobile ad hoc networks use periodic beacon messages (also called
``keep alive" messages) to inform their neighbors of their continued presence. A node
presumes that a neighboring node has moved away unless it receives its beacon
message at stipulated interval. This beacon message provides an inexpensive way of
periodically exchanging additional information between neighboring nodes. In our
algorithm, a node takes action after receiving beacon messages (along with algorithm

psriman
 Proceedings of the 5th International Workshop on Distributed Computing (IWDC), 27-30 December 2003, LNCS 2918, pp. 26-32

2 Xu et.al.: Self-stabilizing Minimal domination

related information) from all the neighboring nodes. The most important contribution
of the paper involves the analysis of the time complexity of the algorithms in terms of
the number of rounds needed for the algorithm to stabilize after a topology change,
where a round is defined as a period of time in which each node in the system
receives beacon messages from all its neighbors. The beacon messages provide
information about its neighbor nodes synchronously (at specific time intervals). Thus,
the synchronous paradigm used here to analyze the complexity of the self-stabilizing
algorithms in ad hoc networks is very different from the traditional paradigm of an
adversarial oracle used in proving the convergence and correctness of self-stabilizing
distributed algorithms in general. Similar paradigms have been used in [2, 16, 12, 11].

2. System Model

We make the following assumptions about the system. A link-layer protocol at each
node i maintains the identities of its neighbors in some list neighbors(i). This data link
protocol also resolves any contention for the shared medium by supporting logical
links between neighbors and ensures that a message sent over a correct (or
functioning) logical link is correctly received by the node at the other end. The logical
links between two neighboring nodes are assumed to be bounded and FIFO. The link-
layer protocol informs the upper layer of any creation/deletion of logical links using
the neighbor discovery protocol described below.

Each node periodically (at intervals of tb) broadcasts a beacon message. This forms
the basis of the neighbor discovery protocol. When node i receives the beacon signal
from node j which is not in its neighbors list neighbors(i), it adds j to its neighbors
list, thus establishing link (i,j). For each link (i,j), node i maintains a timer tij for each
of its neighbors j. If node i does not receive a beacon signal from neighbor j in time tb,
it assumes that link (i,j) is no longer available and removes j from its neighbor set.
Upon receiving a beacon signal from neighbor j, node i resets its appropriate timer.

When a node j sends a beacon message to any of its neighbors, say node i, it includes
some additional information in the message that is used by node i to compute the cost
of the link (i,j) as well as regarding the state of the node j, as used in the algorithm.

The topology of the ad-hoc network is modeled by a (undirected) graph G = (V,E),
where V is the set of nodes and E is the set of links between neighboring nodes. We
assume that the links between two adjacent nodes are always bidirectional. Since the
nodes are mobile, the network topology changes with time. We assume that no node
leaves the system and no new node joins the system; we also assume that transient
link failures are handled by the link-layer protocol by using time-outs,
retransmissions, and per-hop acknowledgments. Thus, the network graph has always
the same node set but different edge sets. Further, we assume that the network
topology remains connected. These assumptions hold in mobile ad hoc networks in

Xu et.al.: Self-stabilizing Minimal domination 3

which the movement of nodes is coordinated to ensure that the topology does not get
disconnected. We also assume that each node is assigned a unique ID.

3. Minimal Dominating Set

Given an undirected graph G= (V, E), a dominating set S is defined to be a subset of
vertices such that ∀v∈V-S: N (i) ∩S ≠ ∅ and a dominating set S is called minimal iff
there does not exist another dominating set S′ such that S′ ⊂ S. Note that N (i) and
N[i] respectively represent the open and the closed neighborhoods of the node i. In
this section we present a synchronous model, self-stabilizing protocol for finding a
minimal dominating set. Figure 1 shows the pseudo-code of the protocol that is
executed at each node i, where 1≤ i ≤ n (we assume nodes are numbered 1 through n).
Each node i has two local variables: x(i), a Boolean flag (the value x(i)=0 indicates
that i ∉ S while the value x(i) = 1indicates that i ∈ S), and a pointer variable P(i).
Note that P(i)=i indicates that node i is currently not dominated; P(i)=null indicates
that the node i is dominated at least twice, i.e., N(i)∩S ≥ 2 and P(i)=j indicates that
node i is dominated only by node j, i.e., N(i) ∩ S = {j}.

R1: if (| N[i]∩ S | = 1)∧ (P(i)∉ N[i]∩ S)
then P(i):=j∈ N[i]∩ S

R2: if (| N[i]∩ S | = 0)
then if P(i) ≠ i
 then P(i) = i
else if (i<min({j | j∈ N(i), P(j)=j}))
 then x(i):=1, P(i):=i
 else P(i):=i

R3: if (| N[i]∩ S | > 1)∧ (x(i)=0)∧ (P(i)≠ null)
then P(i):= null

R4: if (| N[i]∩ S | > 1)∧ (x(i)=1)∧ (∀ j∈ N(i)-S, P(j)=null)

then x(i):=0, and P(i) =


 =∩∩

otherwisenull,
1)(if),(iSiS NN

Figure 1: Minimal Domination Protocol

4 Xu et.al.: Self-stabilizing Minimal domination

4. Correctness Proof

Theorem: When the protocol stabilizes (terminates), the set S = {i | x(i) = 1} gives a
minimal dominating set of the network graph.

Proof: (a) Assume that the set S is not dominating when the protocol has terminated.
Then, ∃ i∈V, S∩ N[i] =φ . Then, we have x(i)=0 and P(i)=i (by R2). Also,
∃ j∈S∩ N(i), P(j)=j∧ j<i. If |S∩ N[j]| = 1, then by R1, node j has to move in the
next round, a contradiction. If |S∩ N[j]| > 1, then by R3, j will move, again a
contradiction. Hence, we have |S∩ N[j]| = 0. Since node j cannot make a move, then
∃ k∈S ∩ N(j), P(k)=k∧ k<j. Repeating the argument and noting there is only
finitely many nodes, we reach a vertex v, where R2 will apply. This is contradiction
to the hypothesis that the protocol is terminated. Therefore, S is dominating.

(b) Assume that S is dominating, but not minimal when the protocol terminates. Then
∃ i∈S, such that S′ = S-{i} is a dominating set. Therefore,∀ j∈N[i], ∃ k∈S-{i},
k∈N[j]. If x(j)=0, then by R1 and R3, P(j) is either k or null. So R4 must apply on
node i, a contradiction. Thus, S is minimal dominating set.

5. Convergence and Time Complexity

Lemma 1: If x(i) changes from 0 to 1 in a round, then any node j∈N(i) cannot
change its x(j) value in the same round

Proof: If x(j)=0, then by R2, only the smaller node between i and j is able to move; If
x(j)=1, then by R2, node i can’t move.

Lemma 2: If a node i changes its x-value from 0 to 1, then x(i) will not change again.

Proof: If x(i) changes from 0 to 1, then by R2, all nodes in the neighborhood N(i)
should have x(j)=0. And by Lemma 1, they will stay at x(j)=0 after mode i moves.
These neighbor nodes have at least one node i in the neighborhood that is in S (i.e.,
x(i)=1), so they won’t go into S unless node i goes out. But by R4, i will never go out
of S unless it is adjacent to some nodes in S.

Theorem 2: The protocol will terminate in at most 4n rounds starting from any
arbitrary illegitimate state.

Xu et.al.: Self-stabilizing Minimal domination 5

Proof: By lemma 2, each node will change its change x value at most twice.
Therefore, there can be at most 2n changes of x values on all nodes in all the time. In
our synchronous model, there can be at most 2n steps which contain changes of x
value. Note that if there is no change in x value of any node in a round, then the move
involves only changes in pointer values. Since the change in any pointer value is
determined only by x values, there can be at most one step which does not contain
changes of x value. Therefore, the upper bound of execution time in synchronized
model is 4 n + 1 rounds.

Example: Consider a network graph of 7 nodes in Figure 2; each node is numbered
from 1 through 7. We use shaded circle to represent node in S (i.e. x-value equals 1),
and un-shaded circle to represent node not in S (i.e. x-value equals 0). The arrows on
the edge represent the pointers from one node to another. If an arrow (i, j) is drawn,
then P(i)=j. If a node i is pointing to it self, then P(i)=i. A zigzag arrow represents a
null pointer.

Figure 2(a): An arbitrary initial state: Figure 2(b): The system state after one
nodes 1, 4, 5, and 7 are privileged round; nodes 1, 3, 4, 6 and 7 privileged
to move.

1

2

3

5

4
6

7

1

2

3

5

4
6

7

6 Xu et.al.: Self-stabilizing Minimal domination

Figure 2(c): system state after 2 rounds; Figure 2(d): The system state after 3
nodes 1, 3, and 4 are privileged. Rounds; protocol terminated

6. Conclusion

We have proposed a self-stabilizing distributed algorithm for maintaining a minimal
dominating set in a network graph. The algorithm (protocol) stabilizes in O(n) rounds
in the synchronous model which can be used for ad hoc networks. The proposed
protocol is general in the sense that the protocol can stabilize with every possible
minimal dominating set of the graph. Consider an arbitrary minimal dominating set S
of the graph G and then consider the following global system state: if i∈S, then
x(i)=1, if i∉S, then x(i)=0, if (|S∩ N[i]| > 1) then P(i) = null, and if (|S∩ N[i]| = 1
), then P(i)=j∈S∩N[i]. It is easy to see that the protocol is stable in this system
state. The significance of this “completeness” of the protocol is that if the system is
initialized to any minimal dominating set with the correct pointer settings, including
minimal dominating sets that are not independent, then it will remain stable. While
the protocol proposed in [17] can only stabilize with an independent set, the protocol
proposed in this paper is capable of being stable with any minimal dominating set.
The importance is that for some graphs no dominating set of smallest cardinality is
independent. For example, consider the graph G formed by taking two stars K{1,n},
and joining their centers by an edge. For this graph, the algorithm of [17] will
stabilize with a set S having at least n+1 nodes, but the proposed algorithm can
stabilize with a set S having the minimum cardinality of two (adjacent) nodes.

7. Acknowledgement

The work is supported by an NSF Award ANI-0218495.

1

2

3

5

4
6

7

1

2

3

5

4
6

7

Xu et.al.: Self-stabilizing Minimal domination 7

7. References

[1] H. Abu-Amara, B.Coan, S.Dolev, A. Kanevsky, and J. L. Welch, “Self-stabilizing topology

maintenance protocols for high-speed networks”, IEEE/ACM Transactions on
Networking, 4(6):902 –912, 1996.

[2] Y. Afek and S. Dolev, “Local stabilizer”, In Proceedings of the 5th Israeli Symposium on
Theory of Computing and Systems, pages 74 – 84, 1997.

[3] H. Attiya and J. Welch. Distributed Computing: Fundamentals, Simulations and Advanced
Topics, McGraw Hill, 1998.

[4] J. Beauquier, A. K. Datta, M.Gradinariu, and F. Magniette, “Self-stabilizing local mutual
exclusion and daemon refinement”. In DISC00 Distributed Computing 14th International
Symposium, Springer LNCS:1914, pages 223 – 237, 2000.

[5] E. W. Dijkstra, “Self-stabilizing systems in spite of distributed control”, Communications
of the ACM, 17(11):643--644, November 1974.

[6] E. W. Dijkstra. “A belated proof of self-stabilization”, Distributed Computing, 1(1):5–6,
1986.

[7] S. Dolev. Self-Stabilization. MIT Press, 2000.
[8] S. Dolev, D. K. Pradhan, and J. L. Welch., “Modified tree structure for location

management in mobile environments”, Computer Communications, 19:335--345, 1996.
[9] S. Dolev and J. L. Welch, “Crash resilient communication in dynamic networks”, IEEE

Transactions on Computers, 46:14 – 26, 1997.
[10] S. Fujita, T. Kameda, and M. Yamashita, “A resource assignment problem on graphs”, In

Proceedings of the 6th International Symposium on Algorithms and Computation, pages
418 – 427, Cairns, Australia, December 1995.

[11] S. K. S Gupta, A.Bouabdallah, and P. K.Srimani., “Self-stabilizing protocol for shortest
path tree for multi-cast routing in mobile networks”, In Euro-Par'00 Parallel Processing,
Proceedings LNCS: 1900, pages 600 – 604, 2000.

[12] S. K. S. Gupta and P.K. Srimani, “Using self-stabilization to design adaptive multicast
protocol for mobile ad hoc networks”, Proceedings of the DIMACS Workshop on Mobile
Networks and Computing, pages 67 – 84, Rutgers University, NJ, 1999.

[13] S. Hsu and S.T. Huang, “A self-stabilizing algorithm for maximal matching”, Information
Processing. Letters, 43:77 – 81, 1992.

[14] T.W. Haynes, S.T.Hedetniemi, and P.J. Slater. Fundamentals of Domination in Graphs,
Marcel Dekker, 1998.

[15] S. T. Hedetniemi, D. P. Jacobs, and P. K. Srimani, “Fault tolerant distributed coloring
algorithms that stabilize in linear time”, Proceedings of the IPDPS-2002 Workshop on
Advances in Parallel and Distributed Computational Models, pages 1 – 5, 2002.

[16] S. Shukla, D. Rosenkrantz, and S. Ravi, “Developing self-stabilizing coloring algorithms
via systematic randomization”, In Proceedings of International. Workshop on Parallel
Processing, pages 668 – 673, 1994.

[17] W. Goddard, S. T. Hedetniemi, D. P. Jacobs, and P. K. Srimani, “Self-Stabilizing
Protocols for Maximal Matching and Maximal Independent Sets for Ad Hoc Networks”,
Proceedings of the Fifth IPDPS Workshop on Advances in Parallel and Distributed
Computational Models, Nice, France, April 22-26, 2003

