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A Syntactic Approach to Scale-Space-Based 
Corner Description 

Comelia Fermiiller and Walter Kropatsch 

Abstract-Planar curves are described by information about corners 
integrated over various levels of resolution. The detection of corners takes 
place on a digital representation. To compensate for ambiguities arising 
from sampling problems due to the discreteness, results about the local 
behavior of curvature extrema in continuous scale-space are employed. 

Index Terms-2-D-shape description, scale-space reduction of curva- 
ture extrema, corner detection, multiresolution representation. 

I. MOTIVATION AND PREVIOUS RESEARCH 

The problem of finding a shape description of planar curves through 
a representation of points of interest along the curve [6], [13] has 
received a lot of attention in the past. Previously published methods 
can be broadly classified into those performing comer detection at 
one scale (usually through polygonal approximation of the curve [ZO]) 
and those dealing with descriptions at different scales [7], [ 171. The 
latter are further classifiable into methods that deal with the problem 
in a continuous manner, in scale-space [l] ,  [16], and methods that 
represent the data in a discrete way by employing multiresolution 
structures (e.g., pyramids [9]) or using symbolic representations of 
features at multiple scales [21]. 

Techniques that operate at just one level of resolution may suffer 
from the disadvantage of finding many unimportant details while 
at the same time missing large rounded comers. Techniques that 
operate in scale-space on a continuous representation are quite 
elaborate, involving considerable overhead; therefore, various dis- 
cretization schemes have been introduced [2]. Although scale-space 
methods have produced interesting results, they may be problem- 
atic in practical applications, since they must employ either 1- 
D [16] or 2-D smoothing [8], [19]. In the first case, important 
large-scale structures may be lost; while in the second case, the 
topological properties may be destroyed. Finally, techniques that 
operate on a discrete pyramid, where the number of grid points 
is reduced from one level to the next, are limited to a finite 
number of resolutions and may suffer from the problem of under- 
sampling. 

The method introduced in this paper, which employs “syntactic 
smoothing” (to be explained later), works on a discrete pyramid 
[ 111, but takes advantage of mathematical relationships among curves 
in scale-space, and can thus be considered as a hybrid algorithm. 
Although it is of a discrete nature, it is supported by scale-space 
information. Furthermore, it combines the advantages of 1-D and 2- 
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Fig. 1. Curvature points of a curve. 

D smoothing, since local 2-D smoothing is performed, but the context 
information inherent in the curve is considered. 

The motivation behind this work that first appeared in [5] is to 
introduce a curve description which is suitable for many higher-level 
visual tasks, such as matching used in problems related to stereo, 
motion, or object recognition. A description of curves should clearly 
be robust under rotation, scaling, and translation. Further criteria of 
importance for a reliable computer description are: the computability 
of the representation by using only local support, the representation 
of the description at varying levels of detail, and its stability; that is, 
small changes in the input should cause only small changes in the 
representation. 

The curve pyramid [ 1 I ]  is first used in order to obtain a represen- 
tation of the curve at varying levels of detail. Different resolutions of 
curves in digital images are calculated by reducing a small number 
of curve segments at higher resolution to one segment at lower 
resolution. The images (the levels of the pyramid) are superimposed 
on each other in such a way that there exists a geometrical relationship 
between their elements. 

Then, a method for calculating comers in parallel is introduced. 
It is based on the idea of deciding whether a pixel represents 
a comer by looking only at the pixel itself and a few of its 
neighbors. Continuous curves in scale-space are considered to analyze 
the behavior of curvature extrema under smoothing. The results 
obtained are used to define measures for the description of a curve 
in the pyramid. These measures form the basis of a stable descrip- 
tion. 

11. CURVATURE POINTS OF CONTINUOUS CURVES IN SCALE-SPACE 

Planar curves are described by points where the curvature has a 
local extremum or has the value zero. 

Definition 1 (Curvature Points): C ( t ) ,  with t any parameteriza- 
tion, is an oriented, planar, closed curve. The maxima, minima, and 
zero-crossings of the curvature are called curvature points. Among 
the extrema, there is a further distinction as to whether the value 
of the curvature at these points is positive or negative. Therefore, 
there exist five classes of points: positive maximum (Max’), negative 
maximum ( Max-), positive minimum (Min’), negative minimum 
( h h - ) ,  and inflection point (0) (Fig. 1). 

This classification depends on the orientation of the curve. If it 
changes, positive maxima become negative minima, negative maxima 
become positive minima, and vice versa. 

Our method of curve description using curvature employs both the 
size (value) and scope of the curvature. 

Definition 2 (Scope of Curvature): Let C ( t )  be an oriented, pla- 
nar, closed curve. The scope of curvature ( B ( t k ) ) ,  with center at point 
Ct,,consistsoftheright andleft scope B ( t k )  = { B R ( t k ) , B L ( t k ) } .  
The right scope is the length of the curve’s arc from Ct, to the 
next curvature point in the positive orientation, and B L ( t k )  is the 
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Fig. 2. Reduction of curvature points 

arc's length from Ct, to the next curvature point in the negative 
orientation. 

In order to provide the means of relating descriptions at different 
scales, we need to analyze the behavior of curves under progressive 
smoothing. This method is called scale-space-filtering [22]. It is a 
way of describing a curve C ( t ,  c )  under smoothing with a kemel of 
width (T, where (T is treated as a continuously increasing parameter. 
C ( t , o )  is the convolution (*) of a curve C ( t )  with a kemel g ( t ,  c): 

C(t.(T) = C ( t ) * g ( t , f f ) .  

In principle, there are several possibilities for choosing g ( t ,  (T). 
Babaud et al. [3] and Yuille and Poggio [23] proved that when filtering 
a one-dimensional function r ( t )  with a Gaussian, no generic zero- 
crossings and no curvature extrema are created as the scale increases. 
Bergholm [4] showed that when blurring with a two-dimensional 
Gaussian, any closed curve tums into a circle. 

An equivalent way of generating the family of signals in scale- 
space is by solving the diffusion equation [IO].  Lindeberg [I41 has 
analyzed the nature of smoothing kemels when dealing with discrete 
signals, which led to the development of a discrete analog of Gaussian 
kemels and to a discretized version of the diffusion equation. 

The previous studies show that the number of maxima, minima, 
and zero-crossings of curvature, for curves that are smoothed in 
these ways, decreases. In this paper, curves are characterized by their 
comers; therefore, the behavior of maxima and minima of curvature 

. under smoothing is analyzed. The following theorem makes this 
explicit. 

Proposition I ;  There are ten possible combinations of three suc- 
cessive curvature points, when the middle one is an extremum as 
listed below. The local reduction of these triplets under smoothing 
is shown below. 
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To prove the validity of each reduction, one needs to plot the 
curve in 2-D space, with the .r-axis representing the arc length and 
the y-axis the curvature, and observe in this space when the middle 
extremum disappears [5] .  For example, R I  can be established by 
comparing (a) and (b) of Fig. 2. 

At this point, we need to emphasize that the results of the theorem 
are of a syntactic nature and do not involve the smoothing parameter 
(T. The value of (T at which the middle extremum in any of the rules 
(RI-RIO) disappears depends on the size and scope of curvature at 
the points under consideration. 

Fig. 3. Reduction of curve code in the pyramid. 

111. DIGITAL REPRESENTATION OF CURVES AND CORNER DETECTION 

In this study, the curve code [I21 is used for encoding curves. A 
digital image is overlaid with a grid. Curves are represented by their 
intersections with the sides of the square grid cells. This information 
about intersections is stored in the cells. 

By merging the contents of the cells, and producing in this way a 
stack of images of different cell sizes and different resolutions, the 
curve pyramid is obtained. In this representation, the cells' areas 
at each resolution are twice as large as those at the next lower 
resolution. The lattices are rotated by 45" from level to level [12]. In 
the first step, the squares are divided by a diagonal into two triangles 
(operation split); and in the second step, groups of four triangles are 
merged and their contents are reduced to the content of one cell at 
the lower resolution (operation merge) [ I  11 (Fig. 3). 

This syntactic method of reducing the resolution offers an al- 
ternative to one- and two-dimensional smoothing. As mentioned 
earlier, both of these methods have disadvantages: two-dimensional 
smoothing does not necessarily maintain the topological properties; 
and one-dimensional scale-space descriptions, such as the analytical 
one described above, perform less well with spike-like, highly convex 
or concave features [15]. With the proposed method, these problems 
can be overcome because the reduction used is a smoothing of curves 
in both dimensions, which take into account I - D  context information. 

In the curve, pyramid comers are detected with a simple, local 
method. The curve code elements of neighboring picture elements 
are checked for whether they possibly could originate from a straight 
line. The method considers just three or five connected code elements. 
If they cannot be due to a straight line, the sequence of code elements 
is recognized as originating from curvature, and the central element is 
recognized as a comer. In this way, two types of curvature points are 
considered: M a r +  and Min- . Curvatures whose estimation need 
more than five pixels will not be detected in this step. We call the 
procedure using only three elements the three-element method and 
the one using five elements the five-element method. 

Iv. DETECTABILITY OF CORNERS 

A. Necessary Corner Conditions 
The particular choice of the curve code out is determined by its 

position in the pyramid. Since the description should be independent 
of the specific reduction, the size of the angles in the comer sequences 
and the distance between two neighboring comers are examined and 
necessary corner conditions are developed. These conditions have to 
be satisfied by comers in order for them to be detectable under all 
possible reductions. 

For the three-element method (five-element method), the straight 
lines forming a comer must enclose an angle of 63.4" (108.3'), and 
two neighboring comers have to be at one receptive field (a receptive 
region of three code-elements) distance. A receptive field of a cell 
at a level I ;  in the pyramid is defined as the region from which 
this cell obtains its information; and a receptive region is the union 
of receptive fields corresponding to neighboring cells. If we detect 
comers with the three- or five-element method, and exclude those 
that do not satisfy the necessary comer conditions, we detect only 
comers which are detectable under all reductions. 
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Fig. 4. Comers of a closed curve in the pyramid: * indicates comers that 
satisfy the necessary comer conditions; @ indicates comers which do not 
satisfy the distance condition; A indicates comers not satisfying the condition 
of the angle's size, but satisfying the distance condition. 

B. Corner Detection in the Pyramid 
Since the description is a discrete one, the problems caused by 

undersampling have to be considered. It will be shown how this 
might affect the description, and a remedy will be presented. 

In comparison to an analytical description of curves, where all 
curvature points that appear at a low resolution must also be detected 
at a high resolution, in pyramids curvature points may appear for the 
first time at a low resolution. These points correspond to curvatures 
which cannot be detected with the proposed parallel method because 
of the angle's size (for example, comer 15 or 18 in Fig. 4). Because 
of discrete sampling, comers may appear at level E,-1 and E,+1, 
but not at level E, (e.g., comer 3 is not detected at level 3 in Fig. 4). 
Furthermore, it is possible for a comer to be detected as two adjoining 
comers at the level above; but in these cases, the necessary comer 
conditions are not satisfied. However, the proposed algorithm does 
not suffer from such problems because information about comers 
is complemented with knowledge about the scale-space behavior of 
curves. 

C.  Robustness Measurements 
Measures that reflect the size and scope of the curvature in the 

pyramid are defined next. 
Three properties are important, namely, the lowest and highest 

levels at which a comer is detected, and at how many levels it is 
detected. 

The last appearance (moving from the bottom to the top) of a comer 
in the pyramid gives information about the scope of the curvature; 
we therefore call it the measure of scope ( S ) .  The first appearance 
reflects the size of curvature; it is called the measure of curvature- 

Fig. 5.  Results of curve partitioning method by Fischler and Bolles. 

approximation ( C ) .  The sharper the enclosed angle, the earlier the 
curvature point will be detected. The number of levels at which 
a comer is detected is called the measure of importance ( I ) .  For 
individual comers, it was proved that they must be detected when they 
satisfy the comer conditions. The measure of importance describes 
the possibility of the appearance of a comer in the pyramid. It is 
introduced to make the description usable for more comers. 

The three measurements stabilize the description in the sense that 
small changes in the input result in small changes in the description. 

V. EXPERIMENTAL RESULTS 
The results of applying our method to a curve (which was also 

used by Fischler et al. [6]) are shown in Fig. 4. The curve is plotted 
at eight successive levels of resolution. At every level, comers are 
extracted using the three-element method and classified in relation to 
size of angle and distance to the next comer. 

The method of Fischler et al. for curve partitioning is based on 
the arc-chord distance. For every point on the curve, they decided 
whether the arc stays close to the chord or makes excursions away 
from it, and partitioned the curve at the points of single excursion 
that were farthest away from the chord. Points must be at least a 
predefined distance apart in order to be detected as different points. 
They chose one-quarter of a chord length as the threshold. In their 
paper, they showed the partitioning of the curve at one resolution; 
their results are shown in Fig. 5. Comparisons to our method show 
that with their relatively large threshold, they did not extract small 
comers (6, 11, 12, 17). They also did not detect point 2 and none of 
the points between 8 and 13. 

The advantage of our method lies in the fact that not only comers 
at different resolutions are detected, but the descriptions at different 
resolutions are combined into one description. Therefore, comers can 
be differentiated by adding attributes to them. 

VI. CONCLUSION 

A multiresolution description of planar curves using comers and 
the curve pyramid bas been presented. Continuous curves under 
smoothing have been examined, and the results used to define 
measures that stabilize the description. A method has been developed 
for detecting comers of digital curves in parallel. This local method 
has been analyzed; it was found that comers are detected in all cases 
when the straight lines enclose an angle of at least 63.4" (106.9") 
and the distance from one comer to the next is a receptive field (a 
receptive region of three cells). 

A possible application of this description is multiple-resolution 
contour matching. Starting at a low resolution, the description can 
gradually be refined by adding the information stored at the next 
higher level of resolution of the pyramid. 
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Object Identification from Multiple Images Based on 
Point Matching Under a General Transformation 

Mark C. K. Yang and Jong-Sen Lee 

Abstract-This work is motivated by ship identification from a sequence 
of ISAR images. Maximum likelihood classification, based on point 
matching, is formulated when the observed images are subject to missing 
points and phantoms. The 3-D to 2-D transformation is assumed to 
be known only in a certain parametric form. Proper weights, based 
on the noise levels for all images, are derived for the classification 
formula. The new formulation simplifies the computation of matching and 
makes its extension to object identification from multiple images feasible. 
Moreover, some theoretical properties of the identification procedure can 
now be investigated. Guidelines on which groups of objects are easier 
to distinguish are found from statistical theory followed by intuitive 
explanation. This method is then applied to ship identification with 
simulated ISAR images. 

Index Terms-Bayes rule, pattern recognition, point matching, multiple 
image information combination. 

I. INTRODUCTION 
Point matching plays an important role in pattem recognition. The 

work presented in this paper is to use salient points of objects to 
identify them from a sequence of pictures. The transformation from 
the 3-D points to a 2-D image is known only in a parametric form, and 
the unknown parameters may not be the same for different pictures. 
Moreover, the pictures are subject to noise so that some of the salient 
points may be missing and some false salient points, called phantoms, 
may be present in the pictures. If the viewing angle from the camera 
to the object is known, then we can consider this as a 2-D to 2- 
D point matching problem. Solution of this type of problem can be 
found in [1]-[3], where the basic idea is to examine all possible 
matchings by a fast algorithm which takes advantage of the relative 
distance between points. However, this method fails if the viewing 
angle between the camera and the object is unknown. Not only the 
profile of the object may change, but also the distance relation may no 
longer be preserved. Moreover, if the scaling is not the same along the 
s- and the y-axes, matching based on distance is more unworkable. 

Flick and Jones [4] give a very general formulation of a d- 
dimension (d-D) to d-D mapping problem with the possibility of 
omission, phantom, and unknown transformation. Their basic idea 
is to write down the likelihood equation for the image based on 
a given object by all the possible matchings, and then to find the 
best parameters and the best matching using the maximum likelihood 
principle. However, due to the large number of parameters in the 
equation and the computational complexity in doing all the possible 
matchings, a solution is generally intractable unless the number of 
points is small. The single picture version of our problem can then 
be considered as a special case of the general setting in [4], but our 
formulation simplifies the computation and makes its extension to 
object identification from multiple images easier. Moreover, some 
theoretical properties of the identification procedure can now be 
investigated. 
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