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Abstract- In this paper we introduce a general, extensible 
diagrammatic syntax for expressing software architectures based 
on typed nodes and connections and formalized using set theory. 
The syntax provides a notion of abstraction corresponding to the 
concept of a subsystem, and exploits this notion in a general mech- 
anism for pattern matching over architectures. We demonstrate 
these ideas using a small example architecture language with a 
limited number of types of nodes and connectors, and a small 
taxonomy of architectures characterized zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas sets of patterns in the 
language. 

Index Terms- Software architecture, software structure, pat- 
tern matching. 

I. INTRODUCTION 

ARLAN AND SHAW 171, [lo] argue that larger sys- 

tems require a higher level of abstraction. Larger and 

more complex systems are not easily handled using current 
techniques. They claim that simple identification of system 

structures and types is not sufficient; in order to facilitate 
meaningful analysis and comparison, they must be expressed 

using a uniform notation. Our work provides a first, syntactic 

level approach to addressing this software architecture level. 
The motivation for our work is to provide a formal syntax 

that will serve as a framework within which we can discuss 

other issues, such as component and system behavior, and 

to compare and contrast different architectural styles. We use 
a diagrammatic representation in order to be consistent with 
traditional practice. 

Our syntax must be useful at several levels. The first is 

to expose the architectural structure of individual systems. At 
this level it provides a foundation on which the semantics 
of individual components and the system as a whole may be 

based. To be general, it is important that the syntax should not 

bias the expression of a system to any particular paradigm of 
system organization. 

At the second level, the framework must abstract details of 
particular components, and provide a means of categorizing 

architectural paradigms. Since our framework is syntactic, the 

architectural paradigms we classify are syntactic paradigms. 
To serve as a framework for an architectural theory, the 

mechanism must be open. That is, it must provide a means 
of including constraints on system classification based on 
semantics introduced at the first level. 
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At the third level, the framework must provide some means 

of expressing architectural paradigms. It is not enough simply 

to be able to state that a given system description is a 
member of a particular architectural class, it must also be 
possible to describe each paradigm in a manner that allows 

new systems to be instantiated from the paradigm. We believe 

that the approach presented in this paper provides a syntactic 
framework that works at all of these levels. 

A. Outline 

We approach the problem in three steps. We begin by 
identifying those Characteristics of an architectural syntax 
necessary to our approach and present a simple diagrammatic 

language that illustrates these characteristics in an informal 

manner in Section 11. The example language is intentionally 

incomplete-it lacks semantics, and features have been kept 
to a minimum in order to focus the readers attention on the 

approach rather than the details. Section I11 formalizes the 

example notation and defines several operations, including 
interface, abstraction and equivalence. 

The second step is to provide a syntactic pattern matching 
mechanism that exploits the characteristics of the notation. 

The pattem mechanism is not tied to the example language, 
but will work with any architectural language with similar 
characteristics. It can be easily extended to take semantics into 

account. The pattern mechanism is described in Section IV. 
The third step is to show how the pattern mechanism can 

be used to construct a taxonomy of architectural styles. For 
any given architectural language, the taxonomy will reflect 

those elements that can be distinguished in the language. Since 
only the syntax of the language is described, the taxonomy is 
limited to the syntactic structures that may be distinguished 
by the language. We show an example taxonomy expressed 

as patterns of our simple example language. Surprisingly, 

even with the limited syntax of our example language, a rich 
taxonomy can be built encompassing most of the common 
architectural paradigms. The taxonomy is described in Section 
V. 

Section VI provides some conclusions and directions for 
future research. 

11. ARCHITECTURAL SYNTAX AND AN EXAMPLE NOTATION 

The essential characteristics of an architectural syntax upon 
which our method depends are: the use of syntactic types to 

characterize the major kinds of components and connections 
in a system; a structural definition for interfaces of systems; 

and a notion of equivalence based on the structural interfaces. 
These characteristics form the basis of the pattem matching 
mechanism which is at the foundation of our work. 
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Fig. 1. Canonical compiler structure. 

This section describes types, interfaces and abstraction in 

an informal manner through the introduction of an example 

architecture language. The notation is formalized in the next 
section, where equivalence is also defined. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A. Types 

The pattern mechanism relies on the use of syntactic types 

to distinguish between the elements of a system. Types abstract 

some aspect of a component or connections intended function 
or behavior in much the same way as data types abstract 

function and behavior in programming languages. Types may 
also impose syntactic constraints on the permissible relations 

between elements of the system. For the purposes of under- 
standing system structure paradigms, we are interested only in 

the form of the system, not in its function. 

The choice of types in the example language introduced 

below is intentionally limited. This was done to emphasize 

the method rather than the particular types chosen. Other 
realizations of our approach may have more types of elements, 

either as separate types, or as subtypes of the existing element 
types. These alternate notations may also provide stricter 

interpretations of the types. That is, the semantics of the new 

types may impose more restrictions on the properties common 

to instances of the types. 

B. An Example Architecture Language 

The syntax of our example language is based on typed, 
directed multigraphs. A typed, directed multigraph provides 

typed nodes and typed edges and permits more than one edge 
of a given type between nodes. We extend the multigraph 

to allow edges with arbitrary arity: these may connect any 
number of nodes. 

We introduce our example language using example systems 

that motivate the choice of the types. Fig. 1 shows our 

architectural representation of the canonical compiler structure 

typically used in undergraduate compiler courses. It is not 

a complete representation of a real compiler since the error 
stream is not represented, nor are multiple input files. 

Rectangles represent memory elements of the system. Sim- 

ple rectangles are Files. Files are malleable data repositories 

that are intended to be accessed sequentially. The symbol com- 
posed of nested rectangles is a Random Access Repository-or 
simply, Repository. The repository type models memories 

that may be modified and accessed at random (e.g., shared 

memory and databases). In the example, it models the symbol 

table that is shared between the parser, semantic analyzer and 
code generator. Circles represent Tasks, which are the active 

Fig. 2. Possible shell characterization 

components of the system. At present, tasks are the only active 

component type. 
The types of the connections are indicated by the graphi- 

cal characteristics of the arrows. Fig. 1 shows two types of 

connectors, Streams and Memory Access Connectors. Streams 

are represented as solid arrows and are binary connections 

between tasks. They represent the direct exchange of data 

between tasks and may be unidirectional or bidirectional. As 
with all of the connectors, the implementation or the protocol 

is not represented. The stream may be implemented over 
a network, and the protocol may involve message passing. 

Our notation only shows the type of the connection between 

the two tasks. In the example, all of the streams are uni- 

directional. The arrows with short dashes represent memory 

access connections. They are binary connections between a 

task and a memory component. As with streams, they may be 

unidirectional or bidirectional. 

Fig. 2 shows the possible characterization of a Unix shell 

creating a sed (stream editor) process. The task in‘the upper 

center of the diagram represents the shell. It has a single 

read stream and two write streams to the task that represents 

the terminal driver. The two write streams are distinct and 

represent sdout and stderr. 
The dotted arrow between the shell task and the sed task is 

an invocation connector. It represents one process starting an- 

other process. This connection and the production connection 
are used to model dynamic changes to the system structure. 

The production connection models the creating of a task by 
another and is represented by a curved arrow. An example 

of production is the link phase of a compiler, or a task that 

produces another custom task for a problem. 

The rectangle with the grid in Fig. 2 represents a ruble. 
Tables are intended to model long term data that undergoes few 

if any changes, such as static system data. The name “table” 

is not intended to imply any particular intemal structure or 
format. For example, the table in Fig. 2 represents the script 

file that contains the edit commands for the stream editor. 

Fig. 3 shows a characterization of several tasks commu- 

nicating over a network. The arrows with the double heads 

are procedure connections. These represent the connections in 
layered systems. In the example, the two tasks at the bottom of 

the figure represent the kernel layer. The other tasks represent 

tasks using the kemel layer to communicate over the network. 

The network is represented by a message connector, de- 

picted as a line with two double bodied arrows connecting the 

tasks to the line. The message connector is the one type in 
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connection is an indication that a connector of that type may be 
used to connect the partial system to other systems. Expected-- 
connections are shown in gray. A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApartial system is one that 
contains incomplete connections or expected connections. 

Expected connections of a partial system may be thought 
of as variable connections. That is, they are place holders that 
may be bound to a connector to incorporate the subsystem 
into another system. Incomplete connectors may be thought 

of as connecting one or more variable nodes. An incomplete 
connector may be used to connect two or more partial systems 

by binding the expected connections of the systems to the 
incomplete connector, and binding the variable nodes of the 

Fig. 3. Procedure and message connectors. 
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Fig. 4. Summary of notation symbols. 

our example types that may connect an arbitrary number of 
tasks. Each task may have one or more read and write sites 

on the connector, represented by the double bodied mows. In 
the example, the tasks on the left may only send data to the 

tasks on the right, since the kemel process on the left has only 
a write site on the message connection. 

As with all connectors, the message connector is not re- 

stricted to networks. All of the tasks may be on the same 
machine. The message connection models a software structure 
where a task may use a single connection to send information 
to one or more other tasks, either singly, or as a group. The 

purpose of the message connector in our example notation is 
to show that architectural languages should not be restricted to 
binary, or even fixed arity connectors. Architectural languages 
should allow the representation of a wide variety of structures, 

and not limit the user to a particular set of paradigms. 
Fig. 4 provides a summary of the symbol types used in our 

simple example architecture language. 

C. Partial Systems 

If we are to be able to analyze larger system architectures, it 
must be possible to describe the parts of a system separately. 
One such part of a system is an incomplete connection. An 
incomplete connection is a connection that is part of a system, 
but is missing a node. An example is a memory access 
connector connected to a task, but not connected to a memory 
node. Since a message connector may connect an arbitrary 
number of nodes, it can not be an incomplete connection. 
It may, however, be an expected connection. An expected 

incomplete connector to nodes ofthe subsystems. 
Although any partial system could be described, our notation 

distinguishes two types of partial systems: connector subsys- 
tems, which fulfill the role of connectors and nodal subsystems, 
which play the role of nodes. The two types of partial systems 
correspond to the two types of abstraction provided by the 

notation, which are described next. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
D. System Interface and Abstraction 

Individual elements of a given system may represent entire 
systems. This idea is not new and has been used in more than 

one approach including that of Abowd, Allen, and Garlan [l], 
[2]. An important nontraditional aspect of our notation is that 

it supports encapsulation of subsystems as connectors as well 
as components. 

The concepts of interface and abstraction are tightly coupled 
in our approach. The interface of an element and the subsystem 
it represents (or abstracts) must match. Although this idea 

not new, it forms one of the cornerstones of our pattern 

matching mechanism. It also provides the means to incorporate 
semantic information into pattern matching. Pattem matching 
is explained in Section IV. 

Our interface function transforms a partial system into the 
minimum system that may be used in the same way as the 
original system. In our example notation we use a simple 
rule: when a single primitive can replace a partial system, we 
use the symbol for that primitive to represent the abstraction 
of that subsystem. This special case is called homogeneous 
abstraction. The general case, heterogeneous abstraction, is 
handled separately. We discuss both these types of abstraction 
for both nodal and connector subsystems. 

E. Homogeneous and Heterogeneous Abstraction 

When the only nodes inside an abstracted subsystem that 
have connections outside the group are of the same type, 

the abstraction is said to be homogeneous, and the symbol 
used for the group is the symbol of the type. Fig. 5 shows 
an example use of homogeneous abstraction to abstract a 

task and table subsystem into a task abstraction. The figure 
represents a possible characterization of the lexer phase of 

a canonical compiler, where the table is used to dnve some 
skeleton algorithm. 

For heterogeneous abstraction, a group of nodes and the 
connections between the nodes is replaced by a single node, the 
type of which is heterogeneous node. The new node assumes 
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Fig. 7. Homogeneous abstraction for connectors. 

all of the external connections of the group and preserves the 

types of the connections. The symbol for heterogeneous nodes 
is the hexagon. Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 shows an example of heterogeneous 

abstraction. Several memory nodes and a task are abstracted. 

The small diagram of a repository is shown next to the junction 
of the memory access connector and the hexagon representing 

the group to indicate that the connector involves a repository. If 

the node was a file or table, then a small file or table would be 
shown next to the junction of the connector and the hexagon. 

As with abstraction for nodes, there is a homogeneous 

case for connector abstraction. When there are two connectors 
involving nodes outside the system, and both connectors zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare 
the same type and direction, the new abstract connector is 
represented by a single arrow of the type. (Since a message 

connector can connect an arbitrary number of nodes, there is 
no concept of an incomplete message connector. Hence, there 
is no homogeneous abstraction for message connectors.) Fig. 7 
shows an example of homogeneous connector abstraction. In 

this example, the message connector, the tasks connected to 
it, and the streams are replaced by a stream. 

Fig. 8 shows two examples of heterogeneous abstraction for 
cminectors. The first is a connection that translates a stream 

into a file. The other shows that heterogeneous abstraction is 

not limited to binary connectors. In both cases, the connector 

subsystem outlined by the dashed polygon on the left is 
replaced by a composite connector on the right. The composite 

connector is treated as a single connector. 

111. FORMALIZATION 

This section presents a mathematical model of the example 
notation and types which will be used to define operations, 
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Fig. 8. Heterogeneous abstraction for connectors. 

one of which is pattern matching. We define several basic 

operations in this section. Pattern matching is deferred until 
the next section. The model is not limited to the types we have 

chosen, and may be augmented with other types, provided that 

the definitions of the operations are also augmented. 

This particular formalization is specific to our example lan- 

guage, although it can easily be extended to richer languages. 
It does not support any fixed arity connectors other than binary, 

and the arbitrary arity of the message connector requires 

some special handling. The main purpose of the formalization 
is to precisely define the operations interface , equivalence, 
and specialization. Any formalization that defines these three 
operations may be used in our pattem matching approach. 

Our model is based on set theory. Elements of the graph 

are represented using sets and relations. The primitives of the 

notation are represented using the following sets: 

N 
C 
M S  
V 

the set of nodes in the system; 
the set of connectors in the system; 
the set of message sites in the system; 
the set of variables in the system. 

The nodes are the tasks and memory elements of the 

system. The set of message sites is used to model the arbitrary 

arity of the message connectors. Message Sites link message 
connectors and the tasks they connect. 

Variable elements are used to handle partial systems. Vari- 

able nodes are used to model incomplete connections and 
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variable connectors represent expected connections. The set 

V identifies the variable elements of N and C. We define the 
tuple EL zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( N ,  C, M S ,  V) as the elements of the system. 

The elements of N ,  C, M S ,  and V are given types using 

the tuple Types = (Task, File , Repository, Tbl , Hetero, 
MetaMorph , Message, Stream , FileAcc, TblAcc , RepAcc, 
Proc , Prod, Invoke , Read, Write , Bidir, MRead , MWrite). 
The sets Task, File, Repository, Tbl, Hetero, and MetaMorph 
partition the set N .  The sets Message, Stream, FileAcc, TblAcc, 
RepAcc, Proc, Prod, and Invoke partition the set C. The set 

Read, Write, Bidir, MRead, and MWrite are used to provide 
additional attributes of the elements. The Zjpes tuple is used 
to refer to these sets as a group when discussing operations 
on systems. The examples of systems shown in this paper 

enumerate the nonempty sets explicitly. The unspecified sets 

are assumed to be empty and the Types tuple will be assumed 
to be the list of explicit and assumed sets. 

Four binary relations model the connections between ele- 

ments. These are the following: 

src zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC N x C 

dst C N x C 

has C N x MS 
msg zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG MS x C  

Nodes that are the source of 

binary connectors. 
Nodes that are the destination of 
binary connectors. 
Nodes that have message sites. 
Message sites associated with 

message connectors. 

The relations src and dst are used to model the source and 
destination of binary connections. In the example notation, the 

source of a connection is always a task. Since the notation may 

be changed to include more types, we use the more general 
set N as the domain of the src relation. 

The has and msg relations model message connections. The 

has relation associates message sites with tasks, and the msg 
relation associates the message sites with message connectors. 

We define the tuple Connections = (src, dst, has,  msg) as the 
connections of the system. A system is then defined as the 

tuple System = (EL, Types, Connections ). 
Fig. 9 shows an example of a system and its model. The 

expected connectors are represented by variables. A variable 
connector is a member of the range of at most one of the src or 
dst relations. As mentioned previously, the source of binary 

connections is always a task, thus the tuple (BB2,BBA4) is 

part of the dst relation. 

A. Well-Formedness 

Restrictions on the sets and relations define well- 

formedness. A system is a well-formed system if and only 
if these restrictions hold for the model of the system. These 
restrictions fall into three categories. The first group describes 
subset restrictions between sets and domain restrictions for 

the relations. For example, only a member of the File subset 
of N may be related to the FileAcc subset of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC by the dst 
relation. There are fourteen of this kind of restriction. 

The second category of restrictions, of which there are ten, 
limits the cardinality of the relations. As an example, only one 

BB3 

N = [ Al, BBl, 882, BB3 1 V = I BBA4, BBAS 1 
C = [ BBAl, BBA2, BBA3, BBA4, BBA5 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATask = [ A1 ) 
RepAcc = [ BBAl, BBA2, BBA3, BBA4, BBAS ) Repository = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 BBLBB2, 883 1 
Bidir = ( BBA1, BBA2, BBA3, BBA4 } Write = [ BBAS ) 
src = [ <Al,BBAl>, 4 1 ,  BBA2>, <Al, BBA3> 1 
dest = [ <BBl,BBAl>,<BB2,BBA2>, <BB2,BBA4>, <BW,BBAA3>, <BW,BBA5> 1 

Example translation of a subsystem Fig. 9. 

node of a system may be the source of a binary connector. 

The last category of restrictions are general restrictions that 
involve arbitrary relations between elements. One example is 

that V is a subset of N or C, but not both. This represents the 

restriction that a partial system is either a nodal subsystem or a 
connector subsystem (since we have no meaningful abstraction 
for a mixed subsystem). Another example of this kind is the 
restriction that all connector subsystems must have at least 

two variable nodes. There are four of these restrictions. The 

complete set of well-formedness restrictions is given in [4]. 

B. Interjiace and Equivalence 

We define several operations on the semantic model. The 
interface operation is the formal equivalent of the interface 
function described informally in the previous section. The 

interface of a complete system is always a single task. The 
interface of a nodal subsystem is a single node with the 
same expected connections. The type of the node is given 

by the abstraction rules for nodes. Similarly, the interface of 
a connector subsystem is a connection whose type is given 

by the abstraction rules for connectors given in the previous 
section. 

The interface operation produces a system with a new 

nonvariable node or connector and all of the variable elements 

of the argument system. The resulting system relations (src, 
dst, has, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmsg) contain only the entries involving the variable 
elements, with nonvariable elements replaced by the newly 

created nonvariable element. The formal definition of this 
function is provided in [4]. 

Fig. 10 gives the interface of the system shown in Fig. 9. 

The nonvariable elements of the system have been replaced 
by a single node, n l .  The variable elements remain the same, 

but are connected to the new node. 
The interface of a system is used to define system equiv- 

alence. System equivalence, in turn, is used to define pattem 
matching. A related concept, specialization, is also based on 

the interface of a system. System specialization is used to 
define subpattem matching. 

Two systems are equivalent if and only if they have the 
same interface. That is, two systems are equivalent if we can 
construct a bijection between their interfaces as follows: 
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N = [ n l )  
Repository zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= [ nl zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 
RepAcc = ( BBA1, BBA2, BBA3, BBA4, BBA5 1 
Bidir = I BBA4 

C = [ BBA4, BBAS 1 
V = [ BBA4, BBAS ) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Fig. 11. Example pattern match. Write = [ BBA5 1 
dest = ( <nl,BBA4>, <nl,BBA5> 

Fig. IO. Interface of Fig. 9. 

the types of all the related elements are the same and, 
all instances of the connection relations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(src, dst, has, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
msg) between elements of one interface hold between the 
related elements of the other interface. 

We use the form A = B if the system A is equivalent to 
the system B.  

A system A is a specialization of a system B if and only if 

there exists an injection from the element of the interface of 

A to the elements of the interface of B that preserves types 

and connection. We define generalization as the converse of 

specialization. That is, system B is a generalization of system 
A if and only if system A is a specialization of system B. 

This definition of equivalence and specialization relies on 

the syntactic definition of interface. If semantics are incor- 
porated into the notation, they may also be used to refine 

the definition of equivalence and specialization. This will 

also implicitly refine the pattem matching mechanism. The 

semantics incorporated into the refined definitions must be 
limited to the semantics of the types, not the semantics of 

individual elements. 

Iv. PATTERN MATCHING 

The definitions of the previous section form the basis of our 
pattern matching mechanism. We present pattern matching in 

three steps. The first defines simple pattern matching using 

only the rules of abstraction. The second step extends pattern 
matching with constructs similar to regular expressions in 

string languages. This step is defined in Section IV-A. The last 
step adds the equivalent of context free grammars to express 

recursive patterns. It is presented in Section IV-B. Section IV- 
C presents one possible way of evaluating the best match when 

more than one pattern matches a given system. 
Two definitions needed for simple pattern matching are 

minor systems and singular minor systems. System B is a minor 
system of system A if and only if its elements and relations 

are a subset of those of system A. A singular minor system 
is a minor system that contains a single nonvariable element. 

Heterogeneous connector subsystems are treated as a single 

element. 

A system is a simple pattern for another system (the target) 
if, and only if, the target system can be partitioned into a set 

of minor systems corresponding to the elements of the pattern. 
Thus, a system P is a simple pattern for a system Q if, and 

only if, P = Q and there exists an injection 4 from the set of 
singular minor systems of P to the set of minor systems of Q 
and an injection p from the message connectors of P to the 
message connectors of Q such as follows. 

For all +-related minor systems A of P and B of Q, A 

The range of 4 partitions Q. 
The range of 4 are connected systems. 

The &related minor systems of Q are connected in the 

The systems chosen to be the range of + must partition Q. 
That is, all elements of Q must be an element of one of the 
minor systems in the range of 4. Each of these minor systems 

of Q must also be connected, preventing the abstraction of 

several unrelated elements. For example, several repositories 
could not be grouped into a single repository unless some 

subsystem joining them was also included. 

The final restriction on the two injections is that the chosen 
minor systems of Q must be connected in the’same way 

as the singular minor systems of P. That is, if a connector 

subsystem and a nodal subsystem of P are joined (say a task 

and a stream), then the corresponding connector subsystem and 

nodal subsystem of Q must also be joined. The injection p is 

used to map message connectors in P to message connectors 
in Q since they may not be connector subsystems. 

Fig. 11 shows two systems, one of which is a pattern for 
the other. The pattern system is the system on the left and the 

matched system is the system on the right. The letters indicate 
the elements associated by the injection. The only nonsingular 

minor subsystem matched in the target system is formed by 
the two repositories and the task that connects them zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(h’). It is 

enclosed in dashed lines to identify the matched components. 

The bidirectional memory access indicated by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg’ in the target 

system is not part of the subsystem h’ since it crosses the 

boundary. 
In practice, most systems will not be matched in their 

entirety by the taxonomy patterns. For example, the canonical 
compiler contains components that can be characterized as a 

pipe and filter system. It also has overlapping components 

that can be characterized as a shared memory system. Any 

useful method of characterizing system structures should be 
able to handle structures embedded within systems. We define 

a subpattern match as a matching of a pattern system to a 

system embedded within another system. Thus, we can view 
the compiler as either an instance of a pipe and filter system 

or of a shared memory system. The definition is identical 

to pattern match except that specialization is used instead of 

equivalence, and the range of the pattern match injection does 

not have to partition the target system. That is, not all elements 

of the target system must be matched. 

Although pattern and subpattern matching are useful, more 
expressive patterns are required. If, in the example in Fig. 1,  
a bidirectional memory access connection was added between 

the repository h’, and the task zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf’, the pattem would no longer zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

E B. 

same way as the singular minor systems of P. 
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Fig. 12. Central repository pattem and an example matched system. 

match. There is no element in the pattern to correspond to 
the extra connection, and no way to repartition the target 
system to produce a match that includes the new connector. To 

handle this problem we augment the pattems with symbols that 

indicate families of patterns. The augmented pattern matches 
a system if any of the pattems generated from the augmented 
pattem match the system. There are two complimentary ap- 

proaches. The first, based on regular expressions uses simple 
altemation and repetition operators. The second is based on 

graph grammars [5] and is used to express more complex 
repetitive structures. 

A. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARegular Expressions 

Fig. 12 shows the pattern for the central repository class 

of system architectures and a system matched by the pattern. 

The rectangle around the repository access connectors with 
dividing lines provides altemation. The "+" symbol is used to 

indicate one or more repetitions of a pattern element. In the 
example, the "+" next to the altemation means one or more 
memory access connections between the repository and a task. 

The operator has a higher precedence when applied to a 

node than to a connector. In the example, the "+" applied to 
the task is expanded before the "+" applied to the connection 

element. Therefore, the systems recognized by the pattem 
are systems composed of a single repository (or system that 
abstracts to a repository) and several tasks (or systems that 

abstract to tasks), and each task is connected to the repository 

by one or more memory access connectors. 
The regular expression operator binds to the closest element. 

When the operator is near the point where a connection joins 

to a node, the operator applies to the node. 
Fig. 13 gives the pattem for a distributed repository and 

an example of a system that is matched by the pattern. The 

difference between this pattern and the previous one is that 
the repository is also modified by the "+" repetition operator 

and the altemation for the memory access connectors is now 
modified by the "*" repetition operator. This pattem matches 
one or more repositories that are connected to one or more 
tasks. Not all pairs of repositories and tasks need be connected 

("*" means zero or more). 
Two other operators are provided, the '?" and "!" operators. 

As in regular expressions for strings, the "?" operator indicates 
an optional element. In all of the cases presented so far, an 
element of the system matches if there is a minor system with 
the same interface. The "!" operator restricts the match to 
be a singular minor system. This operator may be applied to 

Fig. 13. Distributed repository pattern and example matched system. 

2.++ ::= 

Fig. 14. Simple pipe and filter system without feedback 

connectors and to any grammatical construct. It may also be 

combined with the "+ ," "?," and "+" operators. 

These repetition operators provide parallel repetition in the 

patterns. That is, the repetition of elements connected to 
the same element or group of elements. Two examples of 

parallel repetition are multiple streams between two filters, 

and multiple transaction programs accessing a single database. 

Recursive repetition involves an element that will connect, in 
tum, to the elements generated by the pattem. An example 

is the pattem for a pipe and filter system. The next section 
describes a method to specify recursive pattems. 

B. Grammar Productions 

To handle recursive repetition, we extend the pattem mech- 
anism to provide the equivalent of context free grammars. 
This is done using a limited version of graph grammars zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 5 ] .  
The full power of unrestricted graph grammars is not required 
for specifying the patterns we are interested in. Unrestricted 
graph grammars provide arbitrary rewriting of graphs. We are 
interested only in the subset of graph grammars that provides 

syntactic recognition. 

Fig. 14 shows a pattem that matches simple pipe and filter 
systems with no feedback between the filters. The rounded 

rectangle is used to represent nonterminal nodes. A simple pipe 
and filter system without feedback is a task with two multiple 

stream connections, or a task connected by a multiple stream 
connection to a simple pipe and filter system without feedback. 

All rules have a single nonterminal element on the left 

hand side. The nonterminal has a context that consists of 
primitive elements of the notation. This context consists only 
of the primitive elements that may directly connect to the 
nonterminal element. The right hand side is an arbitrary system 
that may contain nonterminal elements. The interface of the 
right hand side must be identical to the context of the left 
hand side. 
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Fig. 15. Pipe and filter system with feedback 

There may be more than one rule for a given nonterminal. 

and rules may have different contexts. Fig. 14 shows a short 

form for multiple rules with the same context. Each of the 

alternate right hand sides is separated by a vertical bar. 

Rules may only be applied if the context of the embedded 

nonterminal matches the context of the rule. 
When more than one element of the context is of the same 

type and has the same attributes then the context elements must 

be labeled. These labels are local to the rule and cannot be used 
to govern the application of subsequent rules to nonterminals 

embedded within the right hand side. All possible bindings 

of ambiguous context elements are tried when generating a 

pattern system. 

When a production is applied to a nonterminal node, only 
the ends of the connectors connected to the nonterminal node 

are changed (to the new nodes introduced by the production). 

The other ends of the connections remain connected to the 

same nodes. 

As with conventional grammars, more than one rule may 

be provided for a given nonterminal. The same nonterminal 

node may be defined for more than one context. However, 

only those productions which have the same context as the 

nonterminal node may be applied. 

Although the capabilities of the regular expression operators 

may be provided by the grammar mechanism, we believe that 

the regular expression operators provide a concise representa- 

tion of some structures. The grammar version of the structures 

would not be as clear. Instead, we show how they may be 

combined. 

The system matched by applying the “?,” “+,” or “*” 
operators to a nonterminal is equivalent to replicating the 

nonterminal before expanding it. That is, not all of the systems 

matched by the nonterminal must be matched by the same 

parse. 

The addition of repetition operators requires some changes 

to the rules governing the context of left and right hand 
sides of grammar productions. Context elements that have 

been modified with the regular expression operators may be 

combined by labeling them with the same label. That is, 

a single context element from the left hand side may be 

represented by more than one context element on the right- 
hand side subject to the following rules. 

n 

Fig. 16. Example pipe and filter system. 

Elements with the “*” operator may be split into multiple 

elements of the same type, each modified with the “*” 
operator. 

Elements with the “+” operator may be split into multiple 

elements of the same type, each modified with the “+” 
operator. 

Two cases must be explained. The first is matching the 

context of the left- and right-hand sides. This is done by 

combining those elements on the right hand side with the 

same label (subject to the rules above) and checking to make 
sure that the contexts match. The second case is determining 

the contexts of embedded nonterminals to decide which rule 

to apply. The context of the embedded symbols may also be 

labeled and a similar procedure is followed. The elements with 

the same labels are merged and the rule with the same context 

is selected. Fig. 15 shows an example. 

The figure shows the pattern for a pipe and filter system with 

feedback. To do this, the system generated by a nonterminal 

must be ablz to communicate with all of the filters generated 

by previous grammar rules. Examples of both types of context 
merges are given in the fourth rule. The context of the left hand 

and right hand sides match since the two streams modified with 

the ‘‘ *” operator are both given the label “b.” The second set 

of rules is used for subsequent grammar productions of the 
nested nonterminal, because both streams modified by the ‘‘* 
” operator have the label “b.” zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
C. Strength zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof Pattem Match 

Some systems may be matched by more than one pattern. 

For example, the pattern given in Fig. 14 only matches a 

pipe and filter system composed of a single sequence of 
tasks without feedback. If we modify the pattern, adding “+” 
operators to the tasks, we get a pattern that matches pipe and 

filter systems that are comprised of stages of tasks. Fig. 16 
shows an example system matched by the new pattern. This 

pattern also matches the same systems matched by the pattern 

in Fig. 14. Thus, it is advantageous to have some metric of 
the strength of the match. The ideal definition of the strongest 

match is the pattem that matches the fewest systems, although 

it still might match an infinite number of systems. In this 

section we define an approximation. 

Suppose we have two pattern systems that match a given 

target system. We start by defining a partial order between 

corresponding elements of the two patterns that match the 

same minor system of the target system. The partial order 
is defined based on how the elements have been modified 
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+ 5 -  - 5 !- !+ 5 !- 
?I ”  * s o  

Fig. 15. Partial order for regular expressions. 

by the regular expression operators, and the “!” operator. This 

relation, for which we use the ‘‘I” symbol, is given in Fig. 17. 

For elements a of one pattern and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb of another, a 5 b, if b is a 
better match than a. The symbol ‘‘-” is used to represent an 
unmodified element and the symbol “ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO” is used to represent 

an element missing from the pattern. Since a partial order is 

transitive and reflexive, the transitive and reflexive closures 
of Fig. 17 are also defined. We extend the partial order from 
individual elements of the two patterns to the entire patterns in 

the obvious way. One pattern match is stronger than the other 

if the partial order holds for all elements of the two patterns. 

V. A TAXONOMY OF SYSTEM ARCHITECTURES 

This section describes a small taxonomy of software archi- 

tectures based on our example architectural language. Since 
it is based on the example notation, it is limited to syntactic 
differences in the topology and types of system descriptions. 

Even so, it provides a variety of structure classes, and can 

represent many of the types of architecture described in the 
literature. The purpose of such a taxonomy is to provide a 
syllabus of useful system structures. The next step, discussed 

in the section on future work, is to evaluate the taxonomy 

against real systems and add information on the applicability 
of each class to different types of problems. 

Each class of any taxonomy developed using our approach 

is described as a set of patterns. A given system is a member of 

the class if it is matched by one of the pattems in the set. The 
classes of our taxonomy are derived from two sources, Garlan 

and Shaws paper on higher level abstractions [7] and the book zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Coordinated Systems [6]. The taxonomy currently contains six 

classes, two of which have several subclasses. Some of these 

patterns have already been shown in figures. Fig. 18 gives an 

outline of the taxonomy. 
The pipe and filter system with nonoverlapping feedback 

is similar to that with general feedback, but the feedback 

connectors may not overlap. They may be between successive 
sets of the filters, or nested. The bidirectional pipe and 

filter system is similar to the unidirectional case without 

feedback, but the streams may be bidirectional, or they may 
be unidirectional in either direction. The message network is 
a set of tasks that are connected by one or more message 

connectors. There are no restrictions on the number of message 
connectors, or the number of tasks. 

The pattern for the layered system is shown in Fig. 19. It 
consists of two productions and is similar to the simple pipe 
and filter system. The difference is that the procedure call 
communication primitive is used, and the nonterminal node is 
replicated. The layered random repository pattern is similar to 

Class Notes 
Pipe and Filter 

Unidirectional 
Without Feedback 

Simple Fig. 14 
With Feedback Fig. 15 

Non-overlapping Feedback 
Bidirectional 

Simple 
Random Repository 

Central 
Layered 
Distributed 

Message Network 
Layered 
Knowledge Interpreter 
Client-Server 

Fig, 18. Taxonomy outline. 

Fig. 12 

Fig. 13 

Fig. 19 
Fig. 11, add ’+’ to connectors 
Fig. 12, Task instead of Repository 

+ 
Fig. 19. Layered system pattern 

the pipe and filter pattern. It may be described as a sequence 

of repositories where each repository is connected to the next 
by one or more tasks and memory access connections. 

The client server pattern is similar to the central repository 
pattern, but the central entity is a task instead of a repository. 

The distinction between these two structures is impossible 

without the types provided by our notation or behavioral 

information for the central component. 

VI. CONCLUSIONS AND FUTURE WORK 

We have presented a formal, syntactic theory of software 

architecture based on typed nodes and connections. There 

are several reasons we believe this to be an appropriate 
representation for system structure. The first is that it uses a 
syntactic technique analogous to that used to express program- 

ming language structure: regular expressions and context free 

grammars. It is essentially a diagrammatic form of extended 
BNF notation, and handling of attributes and semantics can 
be added using techniques analogous to attribute grammars 

and denotational semantics for programming languages. The 

second advantage of the notation is that it is easily extensible 
to include new primitive element types. 

We have shown how types and abstraction can be used 
to represent system structure and to categorize architectural 
styles. Even though the technique we use is syntactic, the 

types allow us to model the intended semantic roles that are 
important to the structural architecture of the system. Our 

technique works with any graph-based notation that uses types 
in this way. This paper presented an example notation that 
illustrates some of advantages of types, and a taxonomy based 
on the notation and our pattern matching technique. Practical 
applications of our approach would likely use a richer set of 

types, and with a more precise characterization of the semantic 
properties each type represents. 

I 
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This paper makes two contributions to the field of software 

architecture. The first is the pattern matching mechanism, 

which provides a general means of describing and recognizing 

classes of software architecture. The other is an initial nota- 
tidn and taxonomy that illustrates these characteristics while 

remaining open to the addition of other language features. 

A taxonomy based on a more general architectural language 
that includes semantics would provide a means of comparing 

system structure classes, of classifying the structure of existing 

systems, and of understanding software architecture in general. 

The taxonomy can provide a syllabus that may be used to 
design new systems. Instead of emphasizing a single structure 

class, designers may choose to use different structures in 
different parts of a system. The classification of the structure 

in existing systems may assist in analyzing those systems for 

the purpose of software maintenance. But most importantly, 

a taxonomy of system structures may provide a better un- 

derstanding of the roles of components and their interaction 
in much the same way that current data structure taxonomies 

enhance the understanding of procedural programs. We believe 

our classification framework to be a first step toward this goal. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A. Future Work 

We envision several ways in which this research may be 

extended. Among them are extending the number and scope 

of element types, attributes, modeling dynamic systems, and 
providing a reasoning framework. 

B. A Richer Set of Types 

While the types we have used to motivate our pattem mech- 

anism are capable of describing the connection architecture of 
a range of systems described in the literature, the notation is 

by no means complete. In addition, the interpretation given for 
each of the types was incomplete and informal. For the purpose 

of our pattem matching mechanism, the existence of separate 

types is more important than the particular interpretation of the 
types. Two obvious extensions to the research are to provide 

a formal definition for each type, and to add new types of 
nodes and connections. The new definitions of the types would 

restrict the interpretation of the type, specifying in more detail 

the properties common to instances of the types. New types 
of elements may be added as distinct types, or as subtypes of 

the existing types. 

If the new types are added as distinct types, the taxonomy 

must be expanded to use the new types. This may involve 

new structure classes, or the additional patterns for existing 
structure classes to include the new types. With more types, 

the interpretation of the existing types (i.e., mapping to real 

world design or implementation artifacts) may be narrowed. 

The existing types may be completely replaced by a new set of 
types, particularly if the application domain provides its own 

element types. 
If the new types are added as subtypes of existing types, then 

the taxonomy needs no modification for the existing classes. 
Subclasses of the taxonomy may be refined to use the subtypes. 

For example, a subtype of the central repository structure 
class may be refined to use a database subtype of repository. 

While the properties of each subtype must be consistent 
with the properties of the parent type, the subtype will add 

additional constraints on the properties of its instances. Thus, 
the subtypes will provide stricter interpretations of the parent 

types. 

C. Attributes 

Adding attributes to the elements of the notation may be 

useful in specifying design or implementation information. The 

attributes can be treated as orthogonal to adding new types, 

and may provide a means of specifying stricter interpretations. 

Examples of attributes are the buffer size of a stream or 

the locking protocol for a repository that represents shared 

memory. If the attributes are incorporated into the definitions 

of interface, equality and specialization, then they can also be 

used to refine the taxonomy. 

D. Dynamic Architectures 

We view the dynamic changes to the structure of a system 

as orthogonal to the structure of the system. In this way, 

we may model systems whose dynamic behavior changes its 
classification within the taxonomy. 

A possible approach is to model each singular minor system 

that can change its interface as a finite state machine. Each 

interface configuration is a state, and the allowable changes 
between configurations determine the transitions of the state 

machine. The model of a Unix shell would have two states. 

The first is a task that reads from a stream and writes to 

two streams. The second state is a task with the same stream 
characteristics but also invoking another task. The transition 

function simply moves between the two states. 

This simple model has some advantages. We can extend the 

power of the model by substituting push down automata or 
Turing machines for the finite state machines. Another way is 

to provide a means of specifying the events that trigger the 

transitions. Systems can be modeled as compositions of these 

automata into a single automaton. 

E. A Framework for  Reasoning 

There are two ways in which the notation may be used as a 

framework for reasoning about systems. The first is to use it as 
a framework for specifying the behavior of the systems. The 

notation describes the structure of the system and a notation 

such as CCS [9] or CSP [SI is used to specify the behavior 

of elements or groups of elements. For example, a repository 

may be modeled as a process in these notations, and locking 

mechanisms and protocols could be defined. Another model 

that may be used is provided by Allen and Garlan [3]. This 

method specifies connections as a set of roles and glue logic 

that specifies the relationship between the roles. Components 
have ports that may be associated with roles of connectors. 

CSP is used to specify the ports, roles, and glue logic. A 
slightly different approach taken by Abowd, Allen, and Garlan 

[ l ]  uses the Z language [ l l ]  to specify the ports, roles, and 
glue logic. 

The other way the notation may be used as a framework for 
reasoning about systems is the attribute mechanism discussed 
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Fig. 20. Prolog representation of Fig. 9. 

previously. Since this information can be incorporated into 

the equivalence and specialization relations, we can use these 
relations to define equivalence preserving transformations. 

These transformations can be used to reason about dynamics, 
or about relations between different classes of system structure. 

Another important application of the extended notation is a 
maintenance theory for systems. 

Garlan and Shaw 171 show an example of a system with dif- 
ferent architectural interpretations. The system is the Hearsay- 
I1 speech understanding system. By changing the interpretation 

of different components, the system may be viewed as a 
blackboard model (Central Repository in our taxonomy) or 

an interpreter (Knowledge Interpreter in our taxonomy). In 

our current notation, this requires a change in the element 

types to reflect the new interpretation. However, with the 
addition of semantic interpretations of the symbols, and some 

set of semantic preserving transformations, the types of views 
advocated by Garlan and Shaw may be possible. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
F. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPrototype Implementation 

A prototype implementation of the pattern matching algo- 
rithm has been built using Prolog. The system is represented 
as a predicate named system with four parameters: the name 

of the system, and three lists representing the three elements 
of the System tuple from Section 111. Tuples and sets are 
represented as lists. The relations are lists of ordered pairs, 

each of which is represented as a two element list. Fig. 20 
shows an example Prolog encoding of the system from Fig. 9. 

The system name isfig9. The “76” characters indicate the start 
of Prolog comments, which are terminated by the end of a line. 

This representation allows more than one system to be 
loaded in the database at a time. It also permits temporary 

systems to be generated and held in variables without adding 

them to the Prolog factbase. For convenience, rules are pro- 
vided for each of the element type subsets. These rules take 
a system as one argument and a Prolog symbol as the other 

argument and are satisfied if the symbol is part of the relation. 
As an example, the predicate task(Sys,aZ) is satisfied if Sys is 

bound to the system in Fig. 20. 
We have predicates that check that the well-formedness of 

a system, compute the interface of a system, and evaluate 
equivalence and specialization. These predicates are used to 

implement simple pattern matching and subpattern matching. 
We have an interface for the visual notation which is able to 

interact with the Prolog engine. 

G. Limitations of the Technique 

It is currently not known if our pattern mechanism is 

sufficient to describe all of the interesting structure classes. 

It does, however, handle a reasonable number of them. We 

are a little concerned about controlling the complexity of 
the descriptions. The graph grammars necessary to describe 

some involved structures may not be easy to understand. This 
may simply be a consequence of a complex structure and any 
representation of the structure would be just as complex. 

The technique we have described is entirely syntactic. 

However, the syntax approach uses the types of the elements to 
abstract semantics common to instances of the type. We have 
also shown several ways in which more semantic information 

may be incorporated into our pattern matching approach. 
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