
A Synthesis Algorithm for Modular Design of 
Pipelined Circuits 

Maria-Cristill:.\ Marinescu 

and Martin llillard 

L<tbomto1"!1 f07' C(lmp·ateT Science 

Ma.ssach·u,setts Institute (lf Techno/ug'!I 

Carnbridgc, MA 02139 

cristina@lcs.mit.edu,rinard@lcs.mit.edu 

Abstract: This paper presents a synthesis algorithm for pipelined 

circuits. Thc circuit is specified as a collection of independent, looscly

coupled modules connected by queues. The sYllthesis algorithm trans

fOrIns this asynchronous, modular specification iuto a synchronous, tightly

coupled, and fully pipelilled circuit in which queues are illlplelllented as 

finite buffers. Data is read frolll the buflers at the begining of each dock 

cycle, ncw values are cOlllputed, then the new results are written back 

into the buffers at the end of each dock cyde. 

We have illlplelIlented a prototype synthesizer that is capable of au

tomatically gcneratillg synchronous, fully pipelined implelllcntatiollS of 

modular specifications. This paper presents experimental results from 

this synthesizer. 

1. INTRODUCTION 

One succcssful way to manage the complexity of building very larg<-'

scale systems is to specify them as a collection of independent, 100se1y

coup1ed modules connccted by streams, queues or pipes. Our prescnt 

work describes a synthesis algorithm for arbitrari1y complex and general 

pipclined circuits, starting from a modular, compact high-level specifi

cation. 

The designer specifies the circuit as a set of modules connected by 

queues. Thc behavior of each module is specified using a set of rcwrite 

The original version of this chapter was revised: The copyright line was incorrect. This has been

corrected. The Erratum to this chapter is available at DOI: 

© IFIP International Federation for Information Processing 2000

L. M. Silveira et al. (eds.), VLSI: Systems on a Chip

10.1007/978-0-387-35498-9_57

http://dx.doi.org/10.1007/978-0-387-35498-9_57


621 Maria-Cristina Marinescu, Martin Rinard 

rules. Each rule reads data from one or more input queues, uses the 

data to compute new values, then writes the new values out to the 

output queues. Conceptually, each module executes independently and 

asynchronously with respect to the other modules. Because the queues 

insulate the modules from each other, the designer can use a modular 

design approach. He or she can first focus on developing each module 

in isolation, then use queues to connect the modules into a complete 

specification. 

A primary advantage of this approach is that it enables the designer 

to reason about the behavior and correctness of each module in isolation 

without worrying about the concurrent behavior of the entire system. 

This reduces human effort and makes specifications simple, compact, 

dear, less prone to mistakes, and more easily verified. It also prornotes 

the reuse of existing modules in new specifications. Finally, modular 

specifications are more suitable for automatie synthesis and simulation 

than non-modular ones and have good scalability characteristics. This 

model has proved to be useful in the Unix operating system and in 

various parallel programming models [Arvind and Nikhil, 1990; Gregory, 

1987; Newton and Browne, 1992]. More recently it has been used to 

successfully model complicated hardware designs, where it has shown 

great pro mise in enabling very concise, dear specifications [Arvind and 

Shen, 1999; Poyneer et al. , 1998]. 

A straightforward synthesis algorithm would implement this model 

directly in hardware. The problem with this approach is the queue 

management overhead. If the queues are implemented as asynchronous 

connections between independently operating modules, the system as 

a whole suffers from synchronization overhead as modules dynamically 

handshake to transfer data. 

This paper presents an alternative approach: a synthesis algorithm 

that pro duces a tightly coupled, fully synchronous implementation of a 

set of modules connected with queues. The basie idea behind the syn

thesis algorithm is to automatieally compose the module definitions to 

derive, at the granularity of individual dock cycles, a global schedule for 

the operations of the entire system, induding the removal and insertion 

of queue elements. The resulting implement at ion executes in a com

pletely synchronous, pipelined manner. At the beginning of each dock 

cyde, the modules read their inputs from the input queues and compute 

the next result. At the end of the dock cyde, the results are written 

to the output queues, overwriting the inputs from the beginning of the 

dock cyde. This synthesis algorithm deli vers the best of both worlds: it 

allows the designer to use a modular, high-level specification and obtain 

an eflicient, fully synchronous circuit. 



A Synthesis Algorithm for Modular Design of Pipelined Circuits 622 

The remainder of the paper is organized as folIows. Section 2 presents 

an example illustrating our synthesis approach. Section 3 presents the 

synthesis algorithm and Section 4 presents the experimental results. Sec

tion 5 discusses related work; we conclude in Section 6. 

2. EXAMPLE 

We next present an example that shows how to use our approach 

to synthesize a simple pipelined processor. We use a processor as our 

example because we expect it will be familiar to a wide audience. Our 

approach and synthesis algorithms are, of course, generally applicable 

to wide range of circuits, not just processors. 

Our example processor has an instruction memory, a program counter 

and a register file. Figure 1.1 presents the simplified pipeline that we 

use to implement the processor. The instruction fetch stage fetches 

instructions from the instruction memory into the instruction buffer; 

the register fetch stage moves the instruction from the instruction buffer 

to the register buffer, replacing the register names in the instruction with 

the contents of the corresponding registers. The compute and writeback 

phase computes the results and writes them back into the register file. 

Compute and 

Instruction Register Writeback 

Fetch Fetch 

LJ----.pc 

Figure 1.1 Simple Pipeline for Example 

2.1 PROCESSOR STATE 

Figure 1.2 presents the declaration of the processor state, which con

sists of the program counter pe, the instruction memory im, the register 

file rf, and two queues, iq and rq. Lines 4 and 5 declare the state as 

a set of state variables; lines 1 through 3 contain the type declarations 

for these variables. The type declarations include a 3 bit register name 

type reg, an 8 bit integer type val, an 8 bit integer type loe which 

represents the locations of instructions in the instruction memory, an 

instruction type ins, and a type irf for instructions whose register 

operands have been fetched from the register file. The instruction type 

is a tagged union type, similar to those found in ML [Milner et al., 1990] 



623 Maria-Cristina Marinescu, Martin Rinard 

and Haskell [Hudak et al., 1992]. Each instruction can be either an INC 

instruction, which increments the value in its single register argument, 

or a JRZ instruction, which tests the value in its register argument and, 

if the value is zero, jumps to the location in its location argument. 

1 type reg = int(3), val = int(8), loc = int(8); 

2 type ins = <INC reg> I <JRZ reg loe>; 

3 type irf = <INC reg val> I <JRZ val loe>; 

4 var pe : loe, im : ins[N], rf : val[8]; 

5 var iq = queue(ins), rq = queue(irf); 

Figure 1.2 State Variables and Type Declarations for Example 

2.2 QUEUES 

Queues provide buffered, first-in, first-out connections between mod

ules. There are several operations that modules can perform on a queue 

q: 

• head(q): Retrieves the first element in the queue. 

• tail (q): The rest of the queue q after the first element. Usually 

used to specify the new value of the queue after removing the first 

element. 

• insert (q, e): The queue q after inserting the element e at the 

tail of the queue q. Usually used to specify the new value of the 

queue after inserting a new element. 

• notin(q,e): Tests if the element e is not in the queue q. 

Our specification models the pipeline buffers iq and rq in our example 

as queues. 

2.3 UPDATE RULES 

Figure 1.3 presents the code that implements the modules in our ex

ample. There are three modules, one for each pipeline stage. Each mod

ule is implemented by a set of update rotes. Each rule has an enabling 

condition and a set of updates to the state. When the enabling condition 

evaluates to true, the rule is enabled and can execute, in which case its 

updates are atomically applied to the state. Conceptually, the execu

tion of the system repeatedly chooses an enabled rule and executes it. 



A Synthesis Aigorithm for Modular Desing of Pipelinded Circuits 624 

This is a standard model of asynchronous execution found, for example, 

in systems such as Unity [Chandy and Misra, 1988] and term rewriting 

systems [Baader and Nipkow, 1998]. 

// Instruetion Feteh Stage 

1: if true then iq = insert(iq,im[pe]); pe = pe+1; 

// Register Operand Feteh Stage 

2: if <INC r> = head(iq) and notin(rq, <INC r _» then 

iq = tail(iq); rq = insert(rq, <INC r rf[r]»; 

3: if <JRZ r 1> = head(iq) and notin(rq, <INC r _» then 

iq = tail(iq); rq = insert (rq, <INC rf[r] 1»; 

// Compute and Writebaek Stage 

4: if <INC r v> = head(rq) then 

rf = rf[r->v+1]; rq = tail(rq); 

5: if <JRZ v 1> = head(rq) and v = 0 then 

pe = 1; iq = nil; rq = nil; 

6: if <JRZ v 1> = head(rq) and !(v = 0) then 

rq = tail(rq); 

Figure 1.3 Update Rules für Example 

We illustrate the execution of the system by going through the set 

of rules. The condition for the instruction fetch rule, rule 1, is true, 

which means that it is always enabled. When it executes, it fetches an 

instruction from the instruction memory and inserts it into the instruc

tion queue iq. It also increments the program counter pe to set up the 

next fetch. 

The two rules in the operand fetch stage, rules 2 and 3, remove instruc

tions from the instruction queue, fetch the register operands, and insert 

them into the rq. Rule 2 processes INC instructions, and rule 3 processes 

JRZ instructions. Both rules use a form of pattern matching similar to 

that found in ML and Haskell. Consider rule 2. The enabling condition 

is <INC r> = head(iq) and notin(rq, <INC r _». The first clause 

of this condition, <INC r> = head (iq), is true if an INC instruction is 

the first instruction in the instruction queue iq. Furthermore, if there is 

such an instruction, the clause matches and binds the variable r to the 

register name argument of the INC instruction. The variable r can then 

be used later in the rule to refer to this operand. 



625 Maria-Cristina Marinescu, Martin Rinard 

The second dause, notin(rq, <INC r _» uses the binding to check 

for a read before write hazard. If there is a pending instruction waiting 

to execute that will write the register r, the machine must delay the 

operand fetch so that it fetches the value after the write. If there is a 

pending instruction that will write the register r, the instruction is in 

the rq queue. The dause notin(rq, <INC r _» checks to make sure 

that there is no such instruction in rq, and the rule as a whole is enabled 

and can execute only if there is no hazard. 

If the rule is enabled, it fetches the register operand and inserts the 

instruction, along with this operand, into the next queue in the pipeline, 

the rq queue. It also removes the instruction from the instruction 

queue. The other rules perform similar activities, removing elements 

from queues, processing the data in the elements to generate results, 

then inserting the results into the next queue or writing the result back 

into the register file. In particular, the update rf = rf [r->v+1] from 

the first rule in the compute and writeback stage, rule 4, sets element r 

of the register file rf to be v+1. 

2.4 SYNTHESIS 

In the abstract model of computation described above, the modules 

execute in a completely decoupled way. The rules execute whenever they 

are enabled, with the queues carrying results between modules. In effect, 

the queues decouple the modules, enabling the designer to focus on each 

module in turn. This design methodology scales to very large systems, 

induding systems with hierarchically defined modules. The only prob

lem is that an efiicient hardware implementation must be tightly coupled 

and synchronous. Ideally, the stages of the processor would execute in 

a strict pipeline, with the queues implemented as hardware buffers and 

each stage reading the value from the previous stage in the same dock 

cyde as the new value is written into the register. The next section 

presents a synthesis algorithm that accomplishes this goal. 

3. ALGORITHM 

Given a system specification, the synthesis algorithm combines the op

erations in the rules first into aglobai schedule, then into a synchronous 

circuit that implements the specification. The basic approach is, at each 

dock cyde, to give each rule an opportunity to execute. If a rule is 

enabled at that cyde, it will execute. The challenge with this approach 

is to ensure that the final result at the end of the cyde correctly reflects 

the atomic execution of all of the rules that executed in that cyde. We 

meet this challenge by symbolically executing the rules in sequence, with 



A Synthesis Algorithm for Modular Design of Pipelined Circuits 626 

each rule operating on the output of the previous rule. The final result 

is an expression for each state variable. This expression is the new value 

of the state variable in the next dock cyde, and reflects the combined 

updates of all the rules that executed in the previous dock cyde. 

To avoid the problem of an excessively long dock cyde, the algorithm, 

when possible, relaxes the enabling condition at each rule so that it is 

evaluated in the initial state, at the beginning of the dock cyde, rat her 

than in the state produced by the previously executed rule. In particular, 

this technique ensures that data from state variables moves through at 

most one module in each dock cyde, which in turn ensures that the 

critical path of the circuit does not cross module boundaries. The dock 

cyde time of the system is therefore determined by the modules, not how 

they are connected together. The algorithm consists of the following 

phases: 

• Rule Numbering: The algorithm numbers rules for symbolic ex

ecution, determining the intermediate state in which each rule will 

be evaluated. Figure 1.4 illustrates the numbering of all different 

versions of the state variables for all the rules in our previous ex

ample. As this example shows, the numbering is set up so that 

each rule reads the version of the state variables produced by the 

previous rule. 

• Relaxation: When possible, the algorithm relaxes the calculation 

of the enabling condition for each rule so that it is evaluated in 

the initial state, not the intermediate state from the previous rule. 

This transformation has the effect of limiting the critical path that 

determines the length of the dock cyde. 

• Queue Finitization: In the initial specification, the queues have 

unbounded length. Based on input from the designer, the algo

rithm chooses a finite length for each queue. It then modifies the 

rules to ensure that no queue ever exceeds its finite length. The 

key issue is to ensure that no rule ever executes if there will be 

no room for its result in the output queues. This is more difficult 

than it may sound, because each rule must take into account the 

number of items in the queue at the beginning of the dock cyde, 

the number of elements inserted and removed by rules before it in 

the evaluation order, and the number removed by rules after it in 

the evaluation order. 

• Symbolic Execution: The algorithm symbolically executes the 

rules in sequence to obtain an expression for each state variable. 



627 Maria-Cristina Marinescu, Martin Rinard 

The expression is the value of the variable in the next dock cy

de. Because rules may not be enabled in a given state and may 

therefore not execute, the expressions contain conditionals. 

• Optimizations: The algorithm optimizes the representation by 

performing common sub-expression elimination to eliminate any 

duplication, and mutual exdusion testing to eliminate executions 

that can never actually occur (i.e. false paths in the circuit) . 

• Verilog Generation: The algorithm generates one or more hard

ware registers for each state variable, depending on its type. For 

each state variable, the value in the next dock cyde is determined 

by the combinational logic implementing the corresponding deter

mined expression. 

We next discuss the more complicated phases of the synthesis algo

rithm. 

if true then iql= pc1= pCo+l; 
if <INC r> = head(iql) and notin(rql' <INC r _» then 

iq2= tai1(iql); rQ2=insert(rQl' <INC r rf 1 [r]»; 
if <JRZ r 1> = and <INC r _» then 

= <INC rf2[r] 1»; 
if <INC r v> = then 

rf4= rf3[r->v+l]; 
if <JRZ v 1> = and v = 0 then 

pc5= 1; i%= nil; r% = nil; 
if <JRZ v 1> = head(r%) and !(v = 0) then 

rClt;= tail(rClt;); 

Figure 1.4 Numbered Rules for Example 

3.1 RELAXATION 

The rule numbering in Figure 1.4 suffers from an excessively long dock 

cyde. Consider, for example, the system starting out with not hing in 

any of the queues. The last version of the state variables reflects the 

entire fetch and execution of the next instruction. Obviously, we would 

like the fetch and execution to be pipelined over multiple dock cydes. 

We achieve this goal by relaxing the vers ions tested in the enabling 

conditions of each rule - we replace each version of each state variable 

with the earliest safe version. An earlier version of Vj, name Vk, is safe 

if the following property holds: 



A Synthesis Algorithm for Modular Design of Pipelined Circuits 628 

If the rule's enabling condition, C is true with Vj replaced by Vk, 

then it is also true with vJ , i.e. C[Vk/Vj] implies C. 

This transformation is valid for two reasons: 

• Safety: After the transformation, each rule is enabled in a subset 

of the states in which it was enabled before the transformation, 

and, if enabled, pro duces the same result as before the transfor

mation. So each execution of the transformed system is also an 

execution of the original system. 

• Liveness: The transformation never completely disables a rule 

- the transformed enabling condition tests the original state, and 

the rule executes if it is enabled in this state. 

Figure 1.5 presents the transformed system in our example. A key 

property that enables this transformation is that if a rule that tests the 

element at the head of a queue is enabled, it remains enabled if additional 

elements are inserted at the tail of the queue. This property makes it 

possible to relax the rules in the example so that they test the initial 

version of each queue instead of the version produced by earlier rules. 

In many cases, the algorithm can order the rules to perform queue 

operations in the following order: first checks of the form notin(q,e) 

that test that an element is not in a queue, then insert ions into the 

tail of the queue, then tests that the head of the queue satisfies a given 

property, then removals from the head of the queue. Being able to put 

the rules in this order is sufficient (but not necessary) to ensure that the 

algorithm will be able to relax the enabling conditions so that they all 

test the initial version of each queue. 

if true then iql= pc l = pco+l; 

if <INC r> = and <INC r _» then 

iq2= tail(iql); rq2=insert(rql' <INC r rfl[r]»; 

if <JRZ r 1> = and <INC r _» then 

tail(iq2); = <INC rf2[r] 1»; 

if <INC r v> = then 

rf4= rf3[r->v+l]; rq4= tail(rqg); 

if <JRZ v 1> = and v = 0 then 

pCs= 1; nil; = nil; 

if <JRZ v 1> = and !(v = 0) then 

rq6= tail ; 

Figure 1.5 Relaxed Rules for Example 

The relaxation algorithm proceeds as follows. It processes the rules 

of the system in the order in which they are numbered. At each rule, 



6?9 Maria-Crisitina Marinescu, Martin Rinard 

it repeatedly attempts to replace the current version of the state vari

ables in the enabling condition with the previous version. This attempt 

succeeds if the enabling condition with the previous version of the state 

variables implies the enabling condition with the current version or if 

the enabling conditions are mutually exclusive. The implication test 

and mutual exdusion tests are performed using a combination of reso

lution [Ballantyne, 1982] and a set of simplification and reduction rules, 

and operate on the enabling conditions once they have been transformed 

into conjunctive normal form. 

3.2 QUEUE FINITIZATION 

When the queues are implemented in hardware, there is a specific 

number of entries allocated for the queue, and the synthesis algorithm 

must generate a circuit that does not exceed that length. The algo

rithm therefore analyzes the rules to determine the circumstances under 

which a queue may grow beyond its hardware limit. It then modifies the 

enabling conditions to ensure that the queues never exceed the limit. 

Conceptually, the generated circuit maintains several counters for each 

queue: a counter Lq that contains the number of elements in q at the 

beginning of the dock cyde, a counter I q that maintains, for each rule, 

the net number of elements that preceding rules insert into q (this num

ber is the number of elements inserted minus the number removed), and 

a counter Rq that maintains, for each rule, the number of elements that 

succeeding rules remove from q. Both of these counters are dynamically 

generated using combinational logic, and count only insert ions and re

movals from rules that are enabled in the current dock cyde. There is 

also the hardware limit Nq of the maximum number of queue entries. 

The basic idea is to augment the enabling condition for each rule that 

inserts an element into q so that it does not execute unless a subsequent 

rule dears the queue or Lq + Iq - Rq < Nq• Because the values of the 

counts depend directly on the enabling conditions, it may be more ef

ficient to simply test combinations of enabling conditions rat her than 

computing the counts explicitly. Figure 1.6 presents our example af

ter the application of the queue finitization algorithm. In this figure, 

length(q) = Lq + Iq • 

Note that because the values of Iq and Rq affect the enabling con

ditions, it is possible for there to be a cycle of dependences between 

the different values of these counters. This occurs, for example, when 

there is a cyde of rules waiting for each other to remove elements from 

queues. In the worst case, there may simply be no way to avoid dead

lock without changing the hardware to add more space in the queues. 



A Synthesis Algorithm for Modular Design of Pipelined Circuits 630 

if 1ength(iClo) < Niq or 
«INC r> = head(iClo) and notin(rClo, <INC r _») or 

«JRZ r 1> = head(iClo) and notin(rClo, <INC r _») or 

«JRZ v 1> = head(rClo) and v = 0) and 

1ength(rClo) < Nrq or 1ength(iClo) < Niq or 

<INC s _> = head(rClo) or 

«JRZ v 1> = head(rClo) and v = 0) or 

«JRZ v 1> = head(rClo) and !(v = 0) then 

iql = insert(iClo,im[pco]); pC1 = pco+l; 
if <INC r> = head(iClo) and 

notin(rClo, <INC r _» and 

1ength(rClo) < Nrq or 
<INC s _> = head(rClo) or 

«JRZ v 1> = head(rClo) and v = 0) or 

«JRZ v 1> = head(rClo) and !(v = 0) then 

iq2 = tai1(iql); rQ2=insert(rql' <INC r rf1[r]»; 
if <JRZ r 1> = head(iClo) and 

notin(rClo, <INC r _» and 

1ength(rClo) < Nrq or 

<INC s _> = head(rClo) or 

«JRZ v 1> = head(rClo) and v = 0) or 

«JRZ v 1> = head(rClo) and !(v = 0) then 

= = <INC rf2[r] 1»; 

if <INC r v> = head(rClo) then 

rf4 = rf3[r->v+l]; rQ4 = 

if <JRZ v 1> = head(rClo) and v = 0 then 

pC5 = 1; i% = nil; r% = nil; 
if <JRZ v 1> = head(rClo) and !(v = 0) then 

rQ6 = 

Figure 1.6 Rules in Example After Queue Finitization 



631 Maria-Cristina Marinescu, Martin Rinard 

But even if there are cycles of rules waiting for each other to remove 

elements, it may still be possible for the synthesis algorithm to generate 

a deadlock-free circuit without increasing the queue length. 

The key insight in this case is that finitization will not introduce 

deadlock if there is a way for existing elements to be removed from all of 

the queues so that there is room for new elements. Assurne the sequence 

of rules RjRj+l ... Rj+m with enabling conditions CjCj+l ... Cj+m creates 

a cycle for the current rule with queue q, where length(q) = Nq+Rq. 

If Ci implies 'v'0 I m, Cj+I, then all of the rules in the cycle can 

execute. Otherwise, none of them can. 

3.3 SYMBOLIC EXECUTION 

Symbolic execution determines a new value for each state variable at 

the end of the clock cycle in terms of the values at the start of the clock 

cycle. It does this by substituting out the intermediate versions of each 

state variable. The result is an expression, in the original versions of the 

state variables, for each use of each state variable in the system. The 

versions at the last rule are latched back into the state variables at the 

end of the clock cycle, and provide the initial values for the start of the 

next clock cycle. 

3.4 OPTIMIZATIONS 

To improve the quality of the synthesized circuit, the compiler op

timizes the expressions, using common sub-expression elimination and 

mutual exclusion testing. If an expression contains a value that will 

never actually occur in practice because the conditions required to ob

tain the value are mutually exclusive, the computation of that value is 

eliminated from the expression. A typical example is a value obtained 

if both a JRZ and an INC instruction is at the head of the instruction 

queue. Obviously, the instruction must be either a JRZ instruction or an 

INC instruction, but not both. So such a value will never be computed 

in the actual circuit. The mutual exclusion testing is implemented using 

resolution, simplification, and reduction. 

We illustrate the symbolic execution and optimizations principle by 

presenting the final value of the instruction queue iq. If there is a taken 

branch, the instruction queue is cleared. If there is already an instruction 

at the head of the instruction queue that can go through the register fetch 

stage, the final result is obtained by inserting the new instruction into 

the tail of the queue and removing the instruction from the head of the 

queue. Otherwise, the circuit checks to see if there is an empty entry 



A Synthesis Algorithm for Modular Design of Pipelined Circuits 632 

in the instruction queue. If so, it fetches another instruction; if not, the 

instruction queue does not change. 

Figure 1.7 presents the result of the expression evaluation; note the in

troduction ofthe temporary variables tl, t2, t3, and t4. These variables 

will turn directly into combinationallogic in the final implementation of 

the circuit. 

let 

t1 

t2 

t3 

t4 

iq6 = 

= 
= 
= 
= 

<INC r> = and <INC r _» 
<JRZ r 1> = and <INC r _» 

im[pco]) 

tail(t3) 

if <JRZ v 1> = and v = 0 then nil 

else if tl then t4 

else if t2 then t4 

else if < Niq ) then t3 

else 

Figure 1.7 Result of Symbolic Execution for iq 

3.5 VERILOG GENERATION 

The final step is to generate synthesizable Verilog for the circuit. The 

basic approach is that each state variable is implemented as one or more 

hardware registers, with the expressions generated during the symbolic 

execution providing the new values for the state variables at the end of 

each dock cyde. 

The Verilog generation is straightforward. The algorithm generates 

combinational logic that computes the value of each expression, then 

connects the computed values to the inputs of the hardware registers 

that implement the corresponding state variables. In the future we may 

explore implementations that use more complicated synthesis algorithms 

for operations that are expensive to implement in combinational logic. 

The compiler currently uses Verilog arrays to implement memories 

such as the instruction memory in our example. Current memory im

plementations are single ported, but we are exploring ways to obtain 

multi-ported memories, either under the control of the designer or au

tomatically as part of the synthesis algorithm. We are also exploring 

the use of SRAM or DRAM to implement larger memories. Queues are 

implemented as registers. 



633 Maria-Cristina Marinescu, Martin Rinard 

Benchmark Cycle Time Area (N AND2 gates) Map Effort Constraints 

Bubblesort 9.59ns ::::: 5121 medium Clk = 10 

Butterfly 9.61ns ::::: 5170 medium Clk = 10 

Processor 1O.48ns ::::: 4830 low none 

Table 1.1 Benchmark Characteristics 

4. EXPERIMENTAL RESULTS 

We have implemented a prototype synthesis system based on the algo

rithm presented in this paper. We have used this algorithm to generate 

synthesizable Verilog implementations for the benchmarks described be

low. These Verilog implementations were tested using the NCVerilog by 

Cadence, then synthesized using the Synopsys Design Compiler to an 

industry standard .25 micron standard cell process. 

The first benchmark implements Bubblesort for eight 8-bit numbers. 

The second benchmark implements a butterfly network similar to the 

ones used in bitonic sorting networks and in FFTs. The last bench

mark is an 8-bit pipelined processor specification. The synthesized, gate 

level model of the processor was then regression tested using the ASIC 

vendor's simulation libraries in order to confirm correct synthesized func

tionality. Table 1.1 presents several benchmark characteristics. 

5. RELATED WORK 

The synthesis of hardware from various description languages has been 

and continues to be an active area of research [Micheli, 1994]. In this 

section we discuss systems for specifying custom microprocessors, syn

chronous datafiow languages, and recent work using term rewriting sys

tems. 

There is a large market for embedded processors customized for a 

specific application. Researchers have proposed to support the develop

ment of such systems by providing languages that allow the designer to 

quickly describe a customized architecture [Pyo et al. , 1992; Park and 

Walker, 1988]. The research presented in our paper, on the other hand, 

is designed to support the development of arbitrary circuits, not just 

microprocessors. 

Other researchers have proposed a design methodology based on syn

chronous datafiow [Ho et al. , 1998]. While the resulting specifications 

contain modules, the connections between modules are synchronous, 

which forces the designer to understand the global timing of the cir

cuit when designing each module. The research presented in our paper 

uses asynchronous queues to connect modules. The synthesis algorithm 



A Synthesis Algorithm for Modular Design of Pipelined Circuits 634 

automatically derives the global schedule of operations in the circuit, 

freeing the designer from the need to understand the global timing. 

The research most closely related to ours is the work of James Hoe 

and Arvind on the synthesis of circuits specified as term rewriting sys

tems [Hoe and Arvind, 1999; Hoe et al. , 1997]. The basic goal is the 

same: to synthesize synchronous implement at ions of modular, queue

based specifications. There are differences, however, in the synthesis 

algorithms. In particular, their approach executes multiple rewrite rules 

in the same cyde only if they are completely independent. In our ap

proach, multiple dependent rules may execute in the same dock cyde, 

with the final result reflecting the combined effect. 

6. CONCLUSION 

U nderstanding how to manage the complexity of building large-scale 

systems is a difficult, challenging, and important problem. This paper 

presents an approach based on specifying the system as a set of indepen

dent, parallel modules connected by queues. This approach enables the 

designer to control the complexity of the design process by first develop

ing each module in isolation, then using queues to combine the modules 

and specify the complete system. 

The successful use of this design methodology for circuits requires a 

synthesis algorithm that can translate the asynchronous, loosely-coupled 

specification into a synchronous, fully pipelined circuit. This paper 

presents such an algorithm. Our initial experimental results from an 

implementation of this algorithm provide encouraging evidence that it 

can be used to deli ver efficient pipelined implement at ions of modular 

specifications that use queues. 

References 

Arvind and Nikhil, R. (1990). Executing a program on the MIT tagged

token datafiow architecture. IEEE Transactions on Computers, 39(3). 

Arvind and Shen, X. (1999). Design and verification of proeessors using 

term rewriting systems. Technical Report CSG Memo 419, Labora

tory for Computer Science, Massaehusetts Institute of Teehnology, 

Cambridge, MA. 

Baader, F. and Nipkow, T. (1998). Term Rewriting and All That. Cam

bridge U niversity Press. 

Ballantyne, M. (1982). Automatie deduetion. Technical Report STAN

CS-82-937, Dept. of Computer Seience, Stanford Univ., Stanford, Calif. 

Chandy, K. M. and Misra, J. (1988). Parallel Program Design: A Foun

dation. Addison-Wesley, Reading, Mass. 



635 Maria-Cristina Marinescu, Martin Rinard 

Gregory, S. (1987). Parallel Logic Programming in PARLOG: The Lan

guage and Its Implementation. Addison-Wesley, Reading, Mass. 

Ho, W., Lee, E., and Messerschmitt, D. (1998). High level data fiow 

programming for digital signal processing. VLSI Signal Processing, 

III, pages 385-395. 

Hoe, J. and Arvind (1999). Hardware synthesis from term rewriting 

systems. Technical report, Laboratory for Computer Science, Mas

sachusetts Institute of Technology. 

Hoe, J., Rinard, M., and Arvind (1997). An exercise in high-level archi

tectural descriptions using a synthesizable sub set of term rewriting 

systems. Technical Report CSG Memo 403, Laboratory for Computer 

Science, Massachusetts Institute of Technology, Cambridge, MA. 

Hudak, P., Peyton-Jones, S., WadIer, P., Boutel, B., Fairbairn, J., Fasel, 

J., Guzman, M., Hammond, K., Hughes, J., Johnsson, T., Kieburtz, 

D., Nikhil, R, Partain, W., and Peterson, J. (1992). Report on the 

programming language Haskell: a non-strict, purely functional lan

guage (version 1.2). SIGPLAN Notices, 27(5). 
Micheli, G. D. (1994). Synthesis and Optimization 0/ Digital Gircuits. 

McGraw-Hill. 

Milner, R, Tofte, M., and Harper, R (1990). The Definition 0/ Standard 

ML. The MIT Press, Cambridge, Mass., Cambridge, MA. 

Newton, P. and Browne, J. C. (1992). The CODE 2.0 graphical parallel 

programming language. In Proceedings 0/ the 1992 A GM International 

Gon/erence on Supercomputing, Washington, DC. 

Park, N. and Walker, A. (1988). Sehwa: A software package for synthe

sis of pipelines from behavioral specifications. IEEE Transactions on 

Gomputer-Aided Design, 7(3). 

Poyneer, L., Hoe, J., and Arvind (1998). A TRS model for a modern pro

cessor. Technical Report 408, Computation Structures Group, MIT 

Laboratory for Computer Science. 

Pyo, I., Su, C., Huang, I., Pan, K., Koh, Y., Tsui, C., Chen, H., Cheng, 

G., Liu, S., Wu, S., and Despain, A. M. (1992). Application-driven 

design automation for microprocessor design. In Proceedings 0/ 29th 

Design Automation Gon/erence. 


	A Synthesis Algorithm for Modular Design ofPipelined Circuits
	1. INTRODUCTION
	2. EXAMPLE
	2.1 PROCESSOR STATE
	2.2 QUEUES
	2.3 UPDATE RULES
	2.4 SYNTHESIS
	3. ALGORITHM
	3.1 RELAXATION
	3.2 QUEUE FINITIZATION
	3.3 SYMBOLIC EXECUTION
	3.4 OPTIMIZATIONS
	3.5 VERILOG GENERATION
	4. EXPERIMENTAL RESULTS
	5. RELATED WORK
	6. CONCLUSION
	References


