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Abstract. A number of techniques currently in use for predicting solar activity 
on a solar cycle timescale are tested with historical data. Some techniques, e.g., 
regression and curve fitting, work well as solar activity approaches maximum 
and provide a month~by-month description of future activity, while others, e.g., 

geomagnetic precursors, work well near solar minimum but only provide an estimate 
of the amplitude of the cycle. A synthesis of different techniques is shown to provide 

a more accurate and useful forecast of solar cycle activity levels. A combination 
of two uncorrelated geomagnetic precursor techniques provides a more accurate 
prediction for the amplitude of a solar activity cycle at a time well before activity 
minimum. This combined precursor method gives a smoothed sunspot number 

maximum of 154 ± 21 at the 95% level of confidence for the next cycle maximum. 
A mathematical function dependent on the time of cycle initiation and the cycle 
amplitude is used to describe the level of solar activity month by month for the 
next cycle. As the time of cycle maximum approaches a better estimate of the cycle 
activity is obtained by Induding the fit between previous activity levels and this 
function. This Combined Solar Cycle Activity Forecast gives, as of January 1999, a 
smoothed sunspot maximum of 146 ± 20 at the 95% level of confidence for the next 
cycle maximum. 

1. Introduction 

Accurate predictions of the levels of solar activity are 
increasingly important as we become more reliant upon 
satellites in low-Earth orbits. Such satellites often pro­
vide crucial links in communications and national de­
fense and are also often the source of important sci­
entific information. Their orbits, however, may place 
them in jeopardy at times of high solar activity. The in­

creased ultraviolet emission from the Sun at such times 
heats the Earth's upper atmosphere causing it to ex­
pand and increase the drag on these satellites, thereby 
leading to early reentry into the Earth's atmosphere. 
Long-term predictions of solar activity are therefore es­
sential to help plan missions and to design satellites that 

will survive for their useful lifetimes. 
Ideally, we would like to predict solar activity using 

a model of the Sun's magnetic dynamo along with ob­

servations of current and past conditions to initialize 
that model. Unfortunately, both the model and many 
of the important observations do not exist at present. 
We recognize that solar magnetism is the key to under­
standing the processes involved. We believe that the 
Sun's differential rotation, meridional circulation, and 
large-scale convective motions all play important roles 
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in producing the cyclic magnetic behavior that we ob­
serve. We have not yet, however, produced a theory 
that fully incorporates these mechanisms in a model 
that provides any predictive power. 

Given this state of the art, we are forced to predict 
solar activity by statistical methods that rely on deter­
mining correlations between past and future behavior. 
It is not surprising that these attempts at solar cycle 

prediction are often looked upon as something less than 
scientific and only slightly better than "astrology." This 
has become painfully clear in our survey of the various 
prediction techniques. Many fine papers on this topic 
have only appeared as technical notes, memos, reports 
to granting institutions, or papers in conference pro­

ceedings (apparently unable to pass muster in the ref­
ereed literature). 

Here we will show that we can make more reliable 
predictions of solar cycle activity by combining different 
prediction methods. A fairly extensive, and well repre­
sentative, series of techniques are examined in sufficient 
detail to reproduce those techniques for testing with 
historical data. Some techniques were discarded simply 
because they provided too little predictive power. Oth­
ers were examined and found promising but were not 
considered due to our inability to test the techniques 
over the last four cycles. In the process of examin­

ing these techniques we found several interesting results 
that may, in fact, point toward new physical processeS 
that contribute to producing the Sun's ll-year activity 
cycle. 
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In this study, our goal is to synthesize a prediction 
technique that will provide more reliable estimates of 
the levels of solar activity several years into the fu­

ture. In the next section we present the various datasets 

that best describe the solar activity cycle. One funda­

mental problem associated with solar cycle predictions 
is the small number of solar cycles that ar(l well ob­

served. Complete daily sunspot observations go back 

only to 1849 and geomagnetic observations only to 1868. 
Therefore most of our efforts at predicting solar cycle 

activity levels are faced with the statistics of small num­

bers: 10 to 20 cycles. In section 3 we present a number 

of prediction techniques based largely on correlations 

extracted from these data sets. In section 4 we test 
these techniques by using them to predict the behav­

ior of the last four complete cycles (cycles 19-22 in the 

Zurich numbering system). Our synthesis of a better 

prediction method is then given in section 5, and it is 

followed by our conclusions in the final section. 

2. The Data 

2.1. Solar Activity Indicators 

Sunspot numbers provide perhaps the most useful 

data for solar cycle predictions. While sunspot observa­

tions extend back to the time of Galileo, regular obser­

vations of use in characterizing the solar cycle did not 

begin until about 1750. The relative sunspot number 

R is derived from a formula due to Wolf [1852] that 
is heavily weighted by the number of sunspot groups 
observed: 

R = k(10g + n), (1) 

where 9 is the number of spot groups, n is the number 
of individual spots, and k is a factor that accounts for 

observer, telescope, and observing conditions. This for­

mula has the advantage of being relatively insensitive to 

the uncertainties in identifying small individual spots. 

The International Sunspot Number (formerly known as 
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the Zurich or Wolf Number) is now compiled and re­

ported by the Sunspot Index Data Center in Brussels, 
Belgium and is the one recognized as the standard. Ad­

ditionally, there is the Boulder Sunspot Number, com­
piled and reported by the U.S. National Oceanic and At­

mospheric Administration (NOAA) Space Environment 
Center in Boulder, Colorado, and the American Num­

ber, compiled by the American Association of Variable 
Star Observers. Generally speaking, the timing and 
amplitudes of these measures agree remarkably well, al­

though the International Number tends to be the more 

conservative estimate. Monthly averages of the Inter­
national Sunspot Number are shown in Figure 1 for the 
years 1750 through 1998. Figure 1 shows both the cyclic 

behavior and variations in amplitude, shape, and dura­

tion from cycle to cycle. It is these variations, of course, 
that make predictions difficult. 

Geomagnetic indices constitute another source of use­
ful datasets indicating solar activity levels. Solar flares, 

prominence eruptions, and coronal mass ejections pro­

duce variations in the solar wind that; in turn, cause 
fluctuations in the Earth's magnetic field. Continuous 

observations of these fluctuations extend back to 1868. 

Several different indices are used to quantify the level 
of geomagnetic activity, [cf. Mayaud, 1980]. The K 

indices give the amplitude of the irregular variations 

over 3-hour intervals on a quasi-logarithmic scale. The 

K p index is a "planetary" K index derived from ob­

servations taken globally by a network of stations and 
reported for 3-hour intervals since 1932. The ap index is 

equivalent to the K p index but uses a linear scale that 

makes averaging easier. The two most frequently used 
indices for solar cycle predictions are the Ap index and 

the aa index. The Ap index is a daily average of the ap 

indices and is available from 1932. The aa index is a 

daily index with a linear scale from two nearly antipo­

dal observing stations (presently Hartland Observatory 

in the United Kingdom and Canberra Observatory in 

Australia) and is available from 1868. The monthly 
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Figure 1. Monthly averaged International Sunspot Number as a function of time. The 
individual sunspot cycles (numbered along the bottom) vary in amplitude, duration, and shape. 
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Figure 2. Monthly averaged geomagnetic index aa 
as a function of time. The solar activity cycle is not as 
obvious here although peaks in geomagnetic activity do 
tend to coinCide with solar activity peaks (identified by 
the cycle numbers along the bottom). 

value~ of the aa index are plotted in Figure 2 for the 

years 1868 through 1998. 

2.2. Data Preparation 

All indicators of solar activity are inherently noisy. 

The solar phenomena that produce the activity are 

noisy themselves. In addition, these signals are often 

measured in ways that introduce additional variations. 

Some signal processing is required to isolate the com­

ponent associated with the solar activity cycle and its 

characteristic timescale of 11 years. Most indicators 

originate as daily vaJues but are averaged monthly to 

remove variations associated with the Sun's 27-day syn­

odiG rotation period. The monthly values require addi­

tional averaging to produce a signal without wild oscil­

lations from month to month. A commonly used av­

erage is the "12-month moving average" or "13-month 

running mean" as it is now more commonly referred 

to. If Rn is the monthly averaged sunspot number for 

month 1i, then the 13-month running mean is given by 

_ 1 5 1 6 

Rn = 24 L Rn+i + 24 L R n+i. (2) 
i=-6 i=-5 

This filtering smoothes out most variations with periods 

less than.a year and it is centered on month n. Although 

it is widely used (references to "smoothed" sunspot 

numbers usually indicate the use of this filter), it is 

not the best filter for isolating solar cycle timescales. 

The monthly values that it uses are themselves averages 

of elifferent length and the triangular tapering at both 

ends of the l3-month average still allows some high­

freQl1ency signals to pass. Gaussian-shaped filters with 

widths of a year or more are more suitable for studies of 

solar cycle characteristics. A Gaussian-shaped filter has 

the important property of having a Gaussian-shaped 

frequency response. It attenuates high-frequEincy com-

ponents with monotonically increasing efficiency as the 

frequency increases. One example of such a filter is 

given with relative weights 

where t is the time difference from the center of the 

filter and a is a parameter that gives the width of the 

filter. The full-width at half-maximum (FWHM) is 2a, 

and the filter weight and its first derivative both vanish 

at t = ±2a. 
Smoothed sunspot numbers are plotted in Figure 3 

using both the 13-month running mean and the Gaussian­

shaped filter with a FWHM of 24 months. The 13-

month filter leaves variations with periods considerably 

less than 1 year while the 24-month filter effectively re­

moves these high-frequency components. The disadvan­

tage with the 24-month filter is that it requires data 23 

months on either side of its central point. Another dis­

advantage of the 24-month Gaussian filter is its inability 

to follow the rapid change in slope at the start of the 

cycles. While an l8~month Gaussian does better in fol­

lowing this bend it also passes shorter-period variations. 

We prefer the 24-month Gaussian for determining solar 

cycle statistics such as maximum, minimum, and pe­

riod. The commonly used l3-month running mean can 

be both ambiguous (by providing multiple extrema) and 

misleading in determining these solar cycle statistics. 

3. Prediction Techniques 

Numerous techniques have been devised to predict 

solar cycle activity levels. In particular, Vitinskii [1965) 

discusses several techniques that were available at the 

time of his writing, 1962. Here we divide the techniques 
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Figure 3. Smoothed sunspot numbers. The thin 
line gives the monthly sunspot numbers smoothed with 
the standard l3-month running mean. The thick line 
gives the monthly sunspot numbers smoothed with a 
Gaussian-shaped filter having a FWHM of 24 months. 
The l3-month running mean retains variations with 
time-scales as short as 6 months. The wider, Gaus­
sian, filter removes these high-frequency oscillations and 
gives lower maxima and higher minima. 
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into two categories: regression techniques and precursor 
techniques. The regression techniques use observed val­

ues of solar activity from, the recent past to extrapolate 

into the near future. These techniques include standard 

regression and autoregression, curve-fitting, and neural 
networks. They usually provide forecasts of future ac­

tivity levels as a function of time at monthly or yearly 

intervals and often extend for a complete solar cycle or 

more irito the future. The precursor techniques provide 

an estimate of the amplitude for the next solar cycle. 
As the name implies, precursor techniques provide such 
estimates well before the sunspot cycle has "officially" 
started. 

3.1. Regression Techniques 

A variety of models are used to describe the behav­

ior of a sunspot cycle. They can be separated into two 

categories using the form of the model: an average cy­
cle shape or a mathematical function that mimics that 

shape. An average sunspot cycle shape is used explic­

itly in the methods based on the work of McNish and 

Lincoln [1949], while implicit average cycle shape mod­

els are used in neural network techniques [Calvo et al., 

1995; Conway et al., 1998]. Mathematical functions for 

the shape of the cycle have been proposed by Stewart 

and Panofsky [1938], Elling and Schwentek [1992], and 
Hathaway et al. [1994]. 

McNish and Lincoln [1949] proposed a regression 

technique for predicting solar activity levels one year 

into the future. They used an average sunspot cycle 

constructed from smoothed sunspot numbers starting 
with cycle 8 in February 1834. They found that the 

sunspot numbers from the earlier cycles (1-7) are statis­

tically different and thus chose to exclude them from the 

average. First, the monthly averaged sunspot numbers 

are smoothed with the 13-month running mean. Next, 

the average cycle is constructed by sampling this run­
ning mean at 12-month intervals starting at the month 

of minimum for each cycle and· averaging the results 

for cycles 8 through the last complete cycle at years 0 

through 1l. Deviations from the average for each cycle 
are then used to find regression coefficients that predict 

the smoothed sunspot number for the next year. They 

concluded that the most useful regression only uses the 
deviation from the mean for the current year. Thus, for 

year n + 1 into the cycle the predicted sunspot number 

will be 

R~+1 = Rn+l + knDoRn, (4) 

where Rn+1 is the smoothed sunspot number for year 

n + 1 a~eraged over the previous cycles starting with cy­

cle 8, kn is the regression coefficient for year n, and DoRn 
is the deviation from the average smoothed sunspot 

number for the current year. The regression coefficients 
are determined by minimizing the sum of the RMS dif­

ferences between the predicted and observed variations 

from the mean cycle at year n. This minimization gives 

M M 

kn = 2: DoRn,mDoRn+1,m/ 2: DoR;,m, (5) 

m=8 m=8 

where the index m identifies the sunspot cycle number 

and M is the last complete cycle. Certain drawbacks 
with this technique exist however, including the fact 

that it provides predictions only one year in advance 

and that the temporal sampling is at yearly intervals. 

Several modifications have been employed to make 
the McNish-Lincoln method more accurate and use­
ful. For example, the technique can be used recursively 

to give predictions for a complete solar cycle by using 

the predicted value to project the prediction year by 

year into the future. Another modification has been .to 
shorten the sampling interval to single months. WhIle 

the technique has been improved, a basic problem re­

mains; namely, relying on the average cycle to serve as 

the base prediction. The average cycle does not ade­

quately account for systematic changes in cycle shape. 

For example, W~ldmeier [1935, 1939] haS noted that 

large-amplitude cycles tend to take less time to reach 

their maxima than do small-amplitude cycles. This 

"Waldmeier effect" produces systematic errors in pre­

dicting both the timing of maximum and the level of 

solar activity during the declining phase of a solar cy­
cle. Efforts to remedy this problem include using an 

average aligned at minimum for the rising phase and a 
second average aligned at maximum for the declining 

phase [Greer, 1993; Niehuss et al., 1996]. 

We examined two variations on the technique of Mc­
Nish and Lincoln. The first is a Modified McNish­

Lincoln method that uses data from cycle 9 onward 

to calculate the mean cycle and the regression coeffi­

cients. It is used recursively to predict monthly val­
ues for the remainder of a cycle using equation (5) to 

evaluate the regression coefficients at monthly intervals. 
This is a method previously used by the Space Environ­

ment Services Center in Boulder, Colorado. The second 
method, the Marshall Solar Activity Future Estimation 

(MSAFE) method, has been described by Niehu~s et 

al. [1996] and is currently used by the Space EnVIron­
ment and Effects Program at NASA's Marshall Space 

Flight Center. This method uses the technique of H 01-

land and Vaughan [1984] to calculate mean cycles using 
data from cycle 1 to the present. Holland and Vaughn 
suggest using a' Lagrangian technique which stretches 
and contracts each cycle to the average cycle length be­
fore averaging the results. During the riSing phase of 

solar activity the MSAFE method uses a mean cycle 

that extends from minimum to minimum. For the de­

clining phase of the cycle it uses an average cycle that 
extends from maximum to maximum. The cycle pre­

diction method is a recursive McNish-Lincoln method 

that uses monthly deviations from the mean cycle to cal­

culate the regression coefficients that predict the next 

month's value throughout the cycle. 
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The problem of systematic variations in cycle shape 
that are unaccounted for by the mean cycle shape is eas­

ily addressed using parametric equations for a determi­

nation of the shape of the solar activity cycle. Stewart 

and Panofsky [1938] proposed a function for the shape 

of the cycle with ,the form 

R(t) = a(t - to)be-c(t-to) , (6) 

where a, b, c, and to are parameters that vary from 

cycle to cycle. This gives a power law for the rising 

phase of the cycle and an exponential for the declin­

ing phase. They used several methods. to determine 

these parameters for cycles 1-16 employing cycle statis­

tics such as time of minimum, time of maximum, size 

of maximum, and integrated sunspot number. They 

found a substantial scatter in the results from the var­

ious methods, finding that some cycles could not be fit 

using some statistic combinations and that some cycles 

were poorly fit, at best. However, some of this scat­

ter might be attributed to their methods of fitting the 

function to the data, since these methods were limited 

by the computational resources of that era. They con­

cluded, nonetheless, that such functions could provide a 

good description of the level of solar activity over a solar 

cycle. They also noted that the parameters appeared to 

depend upon each other in a way which indicated that 
fewer parameters might be required. 

Elling and Schwentek [1992] offered another fit using 

a modified F-distribution density function requiring five 

parameters. Although this may seem like a step in the 

wrong direction, their results showed that some param­
eters did not vary while others varied in unison. More 

importantly, they found that reliable forecasts could be 

made for the remainder of a cycle after 3 years had 

elapsed from the time of minimum. 

More recently, Hathaway et ai, [1994] found a simi­

larly shaped function that only requires two parameters 
for each solar cycle: a starting time to and an amplitude 

a with 

R(t) == a(t - to)3 /[e(t-to)2 /b
2 

- 0.71]. (7) 

The dependent parameter b is given by 

b(a) == 27.12 + 25.15/(a x 1000)1/4 (8) 

and is directly related to the number of months between 

minimum and maximum (time is mee,sured in units of 

months for equations (7) and (8». This dependence of b 
upon the amplitude a is indicative of the Waldmeier ef­

fect. It produces cycles with different shapes depending 

'upon their amplitudes. Hathaway et al. found that this 

simple function of two parameters fits the behavior of 

cycles 10-21 as well or better than the five-parameter 

function of Elling and Schwentek [1992]. They too, 

found that the fit to a cycle was well determined within 
3 years of minimum. 

A common drawback to these regression techniques 

is the length of time required to find a good estimate 

for the behavior of a solar cycle. It usually takes about 

3 years from minimum before the cycle is well charac­

terized. Alternate techniques are obviously needed to 

characterize a cycle near, or even before, sunspot mini­

mum. 

3.2. Precursor Techniques 

A number of features of the solar activity cycle pro­

vide advance information on the amplitude of the cy­

cle. Some of these features are found in the record of 
sunspot numbers and some in the geomagnetic indices. 

While we classify methods using any of these features 

as precursor methods, it should be noted that many 

researchers in this field reserve the precursor classifica­

tion for the methods that employ only the geomagnetic 

indicators. Given this distinction, we separate the tech­
niques according to the dataset they employ. 

3.2.1. Sunspot number indicators. A number 

of patterns have been perceived in the sunspot record 

[Vitinskii, 1965; Wilson et al., 1998a]. These patterns 

are usually surmised from cycle statistics such as cy­

cle maximum, minimum, and period. The original dis­

covery, and subsequent rediscoveries, of these patterns 

usually used either yearly averages of sunspot numbers 

or the 13-month running mean. In reexamining these 

patterns we will use the 24-month Gaussian mean. Ta­

ble 1 gives the cycle statistics derived from International 

Sunspot Number smoothed using the 24-month FWHM 

Gaussian filter. The cycle number is given by n. The 

sunspot number minimum at the start of the cycle is 

Rmin and the month in which this minimum occurred 

is E min . The cycle maximum is Rmax and the month 
in which it occurred is Emax. The period of the cycle 

in months from minimum to minimum is Per. 
The average cycle gives the simplest of the precursor 

prediction techniques and provides a point of compari­

son for the other prediction techniques. The amplitude 

of the next cycle is simply taken to be the average of 

the amplitudes of previous cycles. The form of this av­

erage remains a point of controversy nonetheless. Some 

propose using aU available data, cycles 1-22, while oth­

ers argue for excluding the early cycles and only using 

cycles 8-22 or 10-22. The Average. Cycle Method for 

cycles 1-22 gives 

Rmax == 102.6 ± 38.0 (9) 

where the uncertainty represents one standard devia­
tion from the mean. 

The next simplest prediction technique is to look for 

linear secular trends and predict that the next cycle will 

follow that trend. The Secular Trend Method for cycles 
1-22 gives 

Rmax(n) = 74.8 + 2.42n ± 34.6. (10) 

This provides only a marginal improvement over using 

the average cycle as judged by the slight decrease in the 

standard deviation. The relationship between cycle am-
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Table 1. Sunspot Cycle Statistics Using Monthly Sunspot Numbers Smoothed With a 24-month FWHM 
Gaussian Filter 

n Rmin Emin RmaOJ EmaOJ Per 

1 10.7 1755/08 72.3 1761/06 127 
2 18.6 1766/03 99.8 1770/03 113 
3 14.4 1775/08 136.2 1778/09 106 
4 15.5 1784/06 130.1 1788/04 168 
5 5.5 1798/06 45.5 1804/06 147 
6 0.8 1810/09 43.4 1816/08 147 
7 3.4 1822/12 66.9 1829/10 130 
8 12.2 1833/10 128.7 1837/05 119 
9 15.6 1843/09 114.6 1848/06 150 

10 7.3 1856/03 91.6 1860/03 - 131 
11 12.9 1867/02 120.7 1870/12 139 
12 5.8 1878/09 64.3 1883/12 129 

plitude and cycle number gives a rather low correlation 
coefficient (r = 0.414) with a substantial probability 

(P = 0.324) that this may occur purely by chance. The 

mean cycle and the secular trend are both shown in 

Figure 4. 

The next logical step for using trends in cycle ampli­

tudes is to look for periodicities. Two different cyclic 

variations in cycle amplitude are widely discussed in the 

literature. One is the "Gleissberg," or "long-period," 

cycle with a period of 80 to 90 years [Gleissberg, 1942]. 

The second is the Even-Odd effect, which has a pe­

riod of two cycles in which the odd-numbered cycles 

have comparable or larger amplitude than the preced­

ing even-numbered cycles [Gnevyskev and Okl, 1948; 

,vitinskii, 1965, Wilson, 1992]. The Gleissberg cycle is 

most apparent prior to cycle 19. The more recent cycles, 
however, do not appear to conform to the periodicity as 
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Figure 4. Cycle amplitude versuS cycle number. The 
mean cycle amplitude is represented by the thick hori­
zontal line. The standard deviation about this mean is 
shown by the dotted lines. The secular trend is shown 
by the thin line and the standard deviation about this 
trend is shown with the dashed lines. The secular trend 
over the 22 cycles provides little improvement over the 
mean cycle for predicting cycle amplitudes. 

n Rmin Emin RmaOJ EmaOJ Per 

13 6.4 1889/06 81.0 1893/09 147 
14 4.7 1901/09 59.5 1906/05 135 
15 3.0 1912/12 87.8 1917/12 125 
16 9.5 1923/05 71.5 1927/12 124 
17 7.7 1933/09 107.9 1937/12 124 
18 14.2 1944/01 141.5 1948/03 121 
19 11.6 1954/02 187.2 1958/03 128 
20 15.5 1964/10 106.5 1969/03 137 
21 16.1 1976/03 151.4 1980/06 120 
22 16,6 1986/03 149.0 1990/03 123 
23 12.7 1996/06 

seen in the earlier cycles but instead suggest a longer 

period variation. On the other hand, the Even-Oddef­

fect is most apparent in the recent cycles, particularly 

from cycle 10 onward. 
The -Gleissberg cycle is used as a predictive tool by 

removing the secular trend and then finding the best fit 

between the residual amplitudes and a cyclic variation 

with a period between 77 and 99 years (7 to 9 sunspot 

cycles). The Gleissberg Cycle Method for cycles 1-22 

gives 

Rmare{n) = 74.8+2.42n+27.4sin[21l'(n-0.0)/8.4]±28.3 

(n) 

This yields a period of about 92 years for the Gleissberg 

cycle and a slight improvement over using the mean or 
the secular trend for predicting cycle amplitudes. The 

correlation between the predicted and observed ampli­

tudes gives r = 0.670 and the probability that this cor­

relation is due to chance is small (P = 0.018). The 
Gleissberg cycle variation is shown in Figure 5. 
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Figure 5. Gleissberg cycle variations in cycle ampli­
tude. The Gleissberg cycle as given by equation (11) 
is shown with the solid line. The standard deviation 
about these values is shown with the dashed lines. 
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Figure 6. The Even-Odd Method for cycles 8-21. 
The odd-numbered cycles tend to have maximum am­
plitudes 30 sunspot numbers higher than the amplitudes 
of the preceding even-numbered cycles. This relation­
ship is shown with the solid line. The standard devia­
tion about this line is shown with the dashed lines. 

The Even-Odd Method is explicitly only useful for 

predicting the amplitude of odd-numbered cycles. To 

predict the amplitude of an odd-numbered cycle we 
must determine the ,relationship between the ampli­

tudes of the even and odd numbered cycles and ap­

ply that relationship to the next odd-numbered cycle. 
For cycles 1-22, only the cycle pair 4/5 appears to be 

anomalous. If we only include the cycles with nearly 

continuous daily observations (cycles 8-21) the Even­

Odd Method gives 

Rma:IJ(n) = 30.8 + 0.96Rma:IJ(n - 1) ± 20.6 (12) 

with a correlation coefficient r = 0.831 and a probability 

P = 0.146 that this correlation is due to chance. We 

Figure 7. The Amplitude-Period Method for cycles 
2-22. The maximum amplitude of a cycle is inversely 
proportional to the period of the preceding cycle. This 
relationship is shown with the solid line. The standard 
deviation about this line is shown with the dashed lines. 

illustrate this method in Figure 6 and note that it gives 

a significant reduction in the variations as compared to . 
those obtained with the mean cycle. 

Two other methods based on sunspot numbers are the 

Amplitude-Period Method and the Maximum-Minimum 
Method [Wilson et al., 1998a).With the Amplitude­

Period Method the amplitude of the next cycle max­

imum is inversely proportional to the period of the 

previous cycle. For cycles 2-22 the Amplitude-Period 
Method gives . 

Rma:IJ(n) = 346.9 - 1.84Per(n - 1) ± 27.8, (13) 

where Per(n - 1) is the period of the previous cycle 
in months. This relationship between amplitude and 

period has a correlation coefficient of r = -0.687 with 

a probability P = 0.007 that it is due to chance and it 
is found to provide a modest reduction in the prediction 

errors. The Amplitude-Period Method is illustrated in 

Figure 7. 
With the Maximum-Minimum Method the amplitude 

of the cycle maximum is proportional to its amplitude 
at minimum. For cycle 1-22 the Maximum-Minimum 

Method gives 

Rma:IJ(n) = 47.7 + 5.29Rmin(n) ± 26.2 (14) 

The correlation coefficient between these two parame­

ters is r = 0.723 with a probability P = 0.002 that 
it is due to chance. This method, likewise, offers an 

improvement over using the mean cycle amplitude that 

is similar to that obtained using the Amplitude-Period 
Method. This relationship is shown in Figure 8. 

3.2.2. Geomagnetic indicators. Geomagnetic 
indices, have also been used to predict the amplitude 

of future cycles. Ohl (1966), for example, found that 

the minimum of the aa index is directly related to the 
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Figure 8. The Maximum-Minimum Method for cy­
cles l-22. The maximum amplitude of a cycle is propor­
tional to the sunspot number at the minimum preceding 
it. This relationship is shown with the solid line. The 
standard deviation about this line is shown with the 
dashed lines. 
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Figure 9. The smoothed aa index and sunspot num­
bers for cycles 11-22. The aa index at minima are iden­
tified with arrows. The heights of these minima appear 
to foreshadow the heights of the following sunspot max­
ima. 

maximum sunspot number for the following cycle. This 

method is similar to the Maximum-Minimum Method 

but uses the aa index at its minimum. The method 

is illustrated in Figure 9 using the 24-month Gaussian 

filtered aa index and International Sunspot Number. 

The minima of each cycle's aa index are identified with 

arrows. 
The relationship between the minimum of the aa in­

dex and the maximum sunspot number for cycles 12-22, 

the cycles for which we have geomagnetic data, gives the 

Ohl's Method prediction with 

Rmaa:(n) = 8.9 + 7.20aamin(n) ± 17.6 (15) 

This relationship is shown in Figure 10. The two quan­

tities are highly correlated with a correlation coefficient 

r = 0.908 and a probability P = 0.002 that this is 

due to chance. The standard deviation between the ob-
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Figure 10. Ohl's Method for cycles 12-22. The max­
imum amplitude of a cycle is proportional to the aa 
index at the minimum preceding it. This relationship 
is shown with the solid line. The standard deviation 
about this line is shown with the dashed lines. 
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Figure 11. Our version of Feynman's Method for 
determining the dependence of the aa index upon the 
current sunspot number. A line is fit through the lowest 
values of the smoothed monthly aa index from each of 
20 bins in smoothed monthly sunspot number. 

served sunspot maxima and those obtained from this 

relationship is less than half that given using a mean 

cycle. 

An alternative prediction method using the aa index 

was devised by Feynman [1982]. She noted that the 

aa index could be separated into two components - a 

component directly related to the current sunspot num­

ber and a second component she identified as an "in­

terplanetary component." The sunspot number com­

ponent is identified with the base level of the aa in­

dex as shown in Figure 11. As the sunspot number 

increases the aa index remains above some base level 

that increases linearly with sunspot number. Feynman 

used yearly averages of both aa and sunspot number 

and fit a line through the lowest points. This gives 

undue emphasis to the two lowermost points that de­

fine this line. Here we choose to alter the method by 

using the smoothed monthly values and binning the 

data into 20 bins according to the sunspot number (e.g. 

R = [0 - 10, 10 - 20, ... 190 - 200]) and then fitting a 

straight line through the lowest aa index values in those 

bins. This gives 

aaR(t) = 6.8+ O.l1R(t), (16) 

. where the subscript R identifies this as the component 

that varies with the sunspot number. The relationship 

given by equation (16) is represented by the diagonal 

line in Figure 11. 

The "interplanetary" component, aaI, is constructed 

by subtracting the smoothed sunspot number compo­

nent from the smoothed aa index. These two com­

ponents are plotted as functions of time in Figure 12. 

Feynman noted that aaI pre-shadowed the sunspot cy­

cle. The size of the aaI maxima are well correlated 

with the sunspot number maxima and occur several 
years prior to the sunspot maxima, in fact, they often 

OCcur well before sunspot minimum. The relationship 

,J 
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Figure 12. The two components of the aa index. 
The solid line represents the sunspot number compo­
nent aaR while the dotted line represents the interplan­
etary component aaI. The interplanetary component 
mimics the sunspot number component but leads it in 
time by several years. 

between these maxima in aaI and R is shown in Fig­

ure 13. This relationship gives Feynman's Method for 

predicting the cyCle amplitude as 

Rmax(n) = 7.8 + 9.26aalmax(n) ± 13.2 (17) 

having a correlation coefficient r = 0.950 with a negli­

gible probability that it is due to chance. The standard 

deviation for the sunspot maxima using this method is 

about one-third that given using the mean cycle ampli­

tude. 

A third method of sunspot cycle prediction using the 

geomagnetic indices is due to Thompson [1993]. He 

found that the number of geomagnetically disturbed 

days (defined as Ap ~ 25) that occurred during a 

sunspot cycle was proportional to the sum of the sunspot 
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Figure 13. Feynman's Method for sunspot cycles 12-
22. The maximum amplitude of a cycle is proportional 
to the maximum in aaI near the minimum preceding 
it. This relationship is shown with the solid line. The 
standard deviation about this line is shown with the 
dashed lines. 
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Figure 14. Thompson's Method for cycles 12-22. 
The maximum amplitude of a cycle is proportional to 
the number of geomagnetically disturbed days in the 
cycle preceding it. This relationship is shown with the 
solid line. The standard deviation about this line is 
shown with the dashed lines. 

number amplitudes of that cycle and the following cycle. 

This is illustrated in Figure 14. The sum of the ampli­

tudes for two consecutive cycles is plotted against the 

total number of geomagnetiC ally disturbed days for the 

first of the cycle pairs. The relationship between these 

quantities gives Thompson's Method for predicting the 

cycle amplitude as 

Rmax(n) = 19.8+0.452DD(n-1) -Rmax(n-1)±16.8, 

(18) 

where DD(n) is the number of geomagnetically dis­

turbed days in cycle n. This relationship has a corre­

lation coefficient r = 0.971 and a negligible probability 

that it is due to chance. (The Ap index itself is used 

from 1932 onward while the number of disturbed days 

for cycles 11-16 was determined from the aa index by 

Thompson.) 

The quantities deriv~d for use with these geomagnetic 

precursor methods are given in Table 2. The cycle num-

Table 2. Geomagnetic Precursors Derived With the 
24-Month FWHM Gaussian Filter 

n aamin Date aalmax Date DD Rmax 

11 348 120.7 
12 7.3 1878/12 5.37 1873/02 287 64.3 
13 12.3 1890/01 9.05 1887/03 313 81.0 
14 6.2 1901/09 4.92 1898/08 225 59.5 
15 9.1 1913/03 7.98 1910/10 348 87.8 
16 10.6 1924/04 8.03 1921/12 399 71.5 
17 14.5 1934/08 11.66 1930/11 482 107.9 
18 18.9 1945/02 14.19 1943/07 683 141.5 
19 18.4 1954/11 15.93 1952/04 634 187.2 
20 15.2 1965/07 11.13 1963/06 478 106.5 
21 21.5 1976/12 17.29 1974/08 596 151.4 
22 19.9 1987/03 15.56 1984/10 624 149.0 
23 17.5 1997/05 15.77 1994/06 
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ber is given in the first column. The minimum in the 

aa index is given in the second column and the epoch of 
this minimum is given in the third column. The maxi­

mum in the "Interplanetary" component of the aa index 

and the epoch of its occurrence is given in the fourth 
and fifth columns. The number of disturbed days dur­

ing the cycle is given in the sixth column and the final 

column gives the observed sunspot maximum. 
The prediction t.echniques based on geomagnetic in­

dices appear to be quite reliable as judged by the size of 

the standard deviations from the observed values and 

the strength of the correlations between the future max­
imum amplitude and the indices used. The method of 

Ohl [1966], however, has a disadvantage in the timing of 
its prediction. The years in which the minima in the aa 

index occur often coincide with sunspot minimum but 
can occur a year later. Since minimum is not identified 

until a rise is seen, this means that a prediction is not 
available until about a year or two following sunspot 
minimum. With the method of Feynman [1982], how­
ever, the maximum in the interplanetary component, 

aa[, often occurs 2 years before sunspot minimum and 

thus provides a prediction well in advance of that given 

using OhI's method. The method of Thompson [1993] 

also gives an early pr~diction. Although it does not pro­

vide a final prediction until sunspot minimum is iden­

tified, it does give an estimate for the size of the next 

sunspot maximum that changes very little as sunspot 

minimum is approached and represents a lower limit. 

This is due to the fact that the number of disturbed 
days per month decreases dramatically near the time of 

sunspot minimum. 

4. Testing Performance 

The solar cycle prediction techniques described in the 

previous section can be tested using historical records of 

the sunspot cycle. For each technique we step backward 
in time and recalculate the relationships involved in the 
prediction technique using data from yet earlier times. 

This is done for cycles 19 through 22, which includes 

three large cycles and an average sized cycle (cycle 20). 

Testing with more cycles would obviously be advanta­

geous but using earlier cycles decreases the number of 
cycles us~d in "calibrating" the prediction techniques. 

The regression and curve-fitting techniques are tested 

at 6-month inter~ls starting 18 months after sunspot 
minimum. Predict~d sunspot numbers for the remain­

der of the sunspot cycle are calculated at monthly inter­
vals and compared to the observed (13-month running 

mean) values. 
The precursor methods are tested at or near the time 

of sunspot minimum for each of the four test cycles. 

The relationships (equ/:1.tions (9)-(18)), involved in each 

of these techniques are redetermined using data from 
earlier times. These equations are then used to predict 

the size of the next cycle maximum and this prediction 

is compared to the observed value. 
The results of testing the precursor methods are 

Table s. Precursor Prediction Method Errors (Pre-
diction - Observed) for Cycles 19-22 

Prediction Method 19 20 21 22 RMS 

Mean cycle -94.8 -9.1 -53.5 -48.6 59.8 
Secular trend -91.6 8.7 -36.2 -25.3 1)1.0 

Gleissberg cycle -80,4 18.5 -51.6 -51.1 55.0 
Even-odd -59.3 -22.3 44.8 

Amplitude-period -74.1 0.3 -61.2 -25.3 49.7 
Maximum-minimum -83.9 21.6 -22.9 -15.0 45.4 

Ohl's method -55.4 19.1 21.8 4,4 31.3 
Feynman's method -42.8 9.6 26.9 3.6 25.8 

Thompson's method -17.8 8.7 -26.5 -13.6 17.9 

shown in Table 3. Columns 2-5 give the errors (pre­
dicted maximum - observed maximum) for each of the 

last four cycles. The last column gives the RMS of these 

errors for each of the prediction methods. This table 
shows that the geomagnetic precursor techniques (Ohl's 

Method, Feynman's Method, and Thompson's Method) 
give the most reliable predictions. Among these meth­
ods, Thompson's appears to be the best, but this is 

largely due to its accuracy in predicting the amplitude 
of cycle 19. 

In the process of testing these methods we also noted 

how stable the prediction methods were. For example, 
the relationship given by equation (10) for the Secular 

Trend Method changes quite dramatically from cycle to 

cycle. The parameters of the Gleissberg cycle in equa­

tion (11) also change in that the best fit for the cycle 

period increases monotonically from 7.5 cycles to 8.4 

cycles from pre cycle 19 to the present. The Even-Odd 

Method also changes dramatically after cycle 19 is in­

cluded in the statistics. The slope of the relationship 

between the odd cycle and the even cycle changes by 

a factor of 2 between the cycle 19 and cycle 21 predic­

tions. The last five methods in Table 3 are considerably 
more stable than the first five. Most of the coefficients 

determined for these methods do not vary by more than 
10% from one cycle to the next. Feynman's Method and 

Thompson's Method stand out as the most stable. 

Three of the regression and curve-fitting techniques 

were tested: the Hathaway et al. [1994] cycle-shape 

function, the Modified McNish-Lin~oln method, and the 
MSAFE method described in section 3.1. The mathe­

matical function of Stewart and Panofsky [1938] was 
found to give very poor results for some cycles (cycles 

1, 5, 7, 12, and 20). The function offered by Elling 

and Schwentek [1994] required more parameters with no 

improvement over the fit given with the function pro­

posed by Hathaway et al. These three techniques were 
tested on each of the last four cycles at 6-month inter­

vals. Each method was used to predict the remainder of 

the cycle at· monthly intervals. The standard deviation 

of the difference between the predicted sunspot num­
bers and the 13-month running mean of the observed 
numbers was calculated for each prediction method at 
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Figure 15. The standard deviation between the observed (13-month running mean) sunspot 
numbers and those predicted by the MSAFE, Modified McNish-Lincoln, and Hathaway-Wilson-
Reichmann methods for cycles (a) 19, (b) 20, (c) 21, and (d) 22. ' 

each. point within these cycles. The Modified McNish­

Lincoln Method and the MSAFE Method use the 13-
month running of the sunspot number to predict future 

values (using unsmoothed monthly numbers is quite un­
stable with these methods). The best fit parameters for 
the function of Hathaway et al. were determined using 

the nonlinear least-squares fittiilg method of Marquardt 

and Levenberg as described by Press et al. [1986]. With 
this method the individual monthly averaged sunspot 

numbers ate used. 
The results of this testing of the regression techniqlles 

are shown in the four panels of Figure 15. The stan­
dard deviations between the predicted and observed 

(13-month runI1ing mean) sunspot numbers for the r,e-
, ' 

mainder of each cycle are plotted for the three methods 
(MSAFE, Modified McNish-Lincoln, and Hathaway­

Wilson-Reichmann) as functions of the time since sun­

spot minimum. Cycle 19 is shown in Figure 15a, cycle 

20 in Figure 15h, cycle 21 in Figure 15c, and cycle 22 in 

Figure 15d. In general, the deviations drop to lower lev­

els near the time of sunspot maximllm (48 months from 

minimum). For three of the four cycles the curve-fitting 

of Hathaway et al. outperforms the MSAFE or Modi­
fied McNish-Lincoln Methods. For cycle 20, the average 

sized cycle, the MSAFE and Modified McNish-Lincoln 

methods performed better. 

5. Synthesis: Improving Performance 
, ' 

A synthesis of these methods may yield an improved 

predictio~ method. An obvious choice is to use some 
combination of the precursor methods in order to pre­

dict cycle maximum and to use a cycle-shape formula 

for the month-by-month predictions. As the cycle pro­

gresses, the regression techniques ultimately become 

more accurate than the precursor techniques and the 

prediction technique should revert to these more a~cu­

rate methods. We begin by finding a linear combina~ 
tion of precursor techniques that provides an improved 

early prediction of cycle maJI:ima. We then determ~ne 
how to transition from precursor estimates of the cycle 

to the cycle-shape fitting method as cycle maximum is 

approached. 
It is apparent from the last section that some of the 

precursor techniques provide little improvement over 
using the mean cycle amplitude as a prediction for 

the next maximum. Three methods were found to be 

both ineffective and unstable. ' These include the Sec­

ular Trend, Gleissberg Cycle, <¥1d Even-Odd methods; 

so, for these reasons we drop ~hem from further con­

sideration. Some linear combination of the last five 
methods in Table 3 may provide an improved predic­

tion. This will only be true, however, if they offer dif-
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Table 4. Correlations between Precursor Method 
Errors (Prediction - Observed) for Cycles 12-22 

F T 0 M A 

Feynman 0.08 0.96 0.50 0.35 

Thompson 0.08 0.16 0.21 0.48 

Ohl 0.96 0.16 0.67 0.47 

Max-Min 0.50 0.21 0.67 0.57 
Amp-Per 0.35 0.48 0.47 0.57 

ferent predictions for each cycle. Ideally we would like 
to combine methods whose prediction errors are anticor­
related. The correlation coefficients between the predic­
tion errors for these methods are given in Table 4 for 
cycles 12-22, the cycles for which geomagnetic indices 
are available. 

Table 4 shows that all five methods are positively 
correlated. In particular, Feynman's Method and Ohl's 
Method are highly correlated (r = 0.96) so little would 
be gained from a combination of these two methods. On 
the other hand, Feynman's Method and Thompson's 
Method are uncorrelated (r = 0.08). A combination 
of these two methods should therefore give improved 
predictions. Using weights that are inversely propor­
tional to the variance (standard deviation squared) of 
their prediction errors, we give a Combined Precursor 
Method with 

Rmax(n) = 12.4 + 5.72aalmax(n) + 0.173DD(n -1) 

-0.382Rmax(n - 1) ± 10.7, (19) 

which gives a smaller standard deviation for the predic­
tion errors than either of the two parent methods (10.7 
versus 16.8 and 13.2). We drop Ohl's Method from fur­
ther consideration for three reasons: (1) its prediction 

errors are highly correlated with those from Feynman's 
Method, (2) its prediction errors are larger than those 

from Feynman's Method and, (3) its prediction is not 

available until much later in time than with :f'eynman's 

Method. Our attempts to .incorporate the Maximum­
Minimum Method and Amplitude-Period Method in­
creased the standard deviation of the predictions due 

to the size of their errors (standard deviations of 26.2 
and 28.7 respectively). Consequently, these two meth­
ods were also excluded from the Combined Precursor 

Method. 
This Combined Precursor Method caIi be tested in 

the same manner as the other precursor methods by 
recalculating the method prior to each of cycles 19-22. 
We find that the method is stable in that the derived 
relationships and the calculated weights do not vary 
substantially from cycle to cycle. The prediction errors 
for cycles 19-22 are -38.4, 9.3, 5.3, and -3.2, respectively, 
with an RMS error of 20.0. Comparing these errors with 

those given in Table 3 shows that we attain a dramatic 
improvement in the predictions for cycles 21 and 22 and 
good performance for cycle 19 and 20. This method 

gives a predicted maximum of 154 ± 21 for cycle 23, 

where this error estimate represents the 95% confidence 
limits (twice the standard deviation). 

The amplitude determined from the Combined Pre­
cursor Method can be used with either a rescaled mean 
cycle or the cycle-shape function of Hathaway et al. to 
predict the sunspot numbers over the next solar cycle. 

-We prefer the cycle-shape function (equations (7) and 
(8)) because of its superior performance in three of the 
last four cycles and its ability to adjust its shape for 

changes associated with cycle amplitude. 
A final synthesis of prediction techniques is achieved 

by using the Combined Precursor Method to determine 
the cycle amplitude at the start of the cycle and then 
switching over to using the fit to the cycle-shape func­
tion as the cycle progresses. As with the formulation 
of the Combined Precursor Method, this "Combined 
Solar Cycle Activity Forecast" uses weights that are in­
versely proportional to the variance (standard deviation 
squared) of the errors from each method. The weights 
are determined by computing the average of the stan­

dard deviations between the observed sunspot numbers 
and those predicted using either the Combined Pre­
cursor Method with the cycle-shape function or the fit 
to the cycle-shape function. These average deviations, 
along with those obtained with the Combined Solar Cy­
cle Activity Forecast Method, are shown in Figure 16 

for the last 11 cycles-(the cycles for which the geomag­
netic indices are available). 

The weights determined from Figure 16 for this Com­
bined Solar Cycle Activity Forecast Method are well­
approximated by 

W(t) = 1.0 - 0.6(1- e-
t2

/
40

\ (20) 

where this weight W is for the Combined Precursor 

Method and its complement, 1 - W, is the weight of 
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Figure 16. The standard deviation between the ob­
served (24-month FWHM Gaussian filtered) sunspot 
numbers and those predicted by the Combined Precur­
sor, the Hathaway- Wilson-Reichmann method, and the 
Combined Solar Cycle Activity Forecast Method. The 
Combined Solar Cycle Activity Forecast Method pro­
vides the best estimate of future sunspot numbers. 
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the Hathaway et aI. Method. Time t is measured in 
months from minimum in equation (20). This can be 

used as early as 18 months into a cycle. The Com­

bined Precursor Method alone should suffice prior to 

that time. It is somewhat surprising, in fact, how well 

the Combined Precursor Method alone does throughout 

the cycle. 

The prediction for cycle 23 using this Combined So­
lar Cycle Activity Forecast Method in January 1999 is 
shown in Figure 17. The thick line in Figure 17 gives 

the predicted monthly values for the remainder of cycle 
23. The dotted lines are placed at plus and minus two 

standard deviations as estimated from the solid line in 
Figure 16 at 30 months into the cycle. The Combined 

Precursor Method alone gives a cycle amplitude of 154 

for cycle 23. When this prediction is combined with the 

fit to cycle 23 using the weights from equation (20) we 
find that the maximum falls slightly to 146. 

6. Conclusions 

In this study we have examined and tested several 
methods for the prediction of solar cycle variations in 

solar activity. We suggest that solar activity indices 

(sunspot number, 10.7-cm radio flux, etc.) should be fil­

tered with the 24-month Gaussian-shaped filter to pro­

vide a better estimate of the solar activity variations on 
a solar cycle time scale. The traditional 13-month run­

ning means exhibit variations on timescales as short as 
6 months and thus do not faithfully represent the solar 

cycle behavior. The short-term variations, with typi­

cal timescales from 27 days to 6 months to 2 years, are 

subjects of other studies and other prediction methods. 
The solar cycle prediction methods were separated 

into two groups: precursor methods and regression 

methods. The precursor methods provide an estimate 

of the size 'of the maximum of the next cycle, while the 

regression methods provide a month-by-month estimate 
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Figure 17. The prediction for cycle 23 obtained with 
the Combined Solar Cycle Activity Forecast Method. 
The thick line shows the predicted sunspot numbers. 
The dotted lines show the expected 5 and 95 per­
centile levels. The thin line shows the monthly averaged 
sunspot numbers through December 1998. 

of the cycle's activity levels. We found that although 

several precursor methods were statistically significant, 

only two, Thompson's Method [Thompson, 1993} and 

Feynman's Method [Feynman, 1982], are needed to pro­

vide a better early estimate for the amplitude of the 
. next cycle. Fortunately, the errors in the predictions by 

these two methods are uncorrelated so that an average 

of the two predictions as given by equation (19) is more 

accurate than either of the two alone. We found that the 
curve-fitting method of Hathaway et al. [1994] provides 

a reliable method for predicting the month-to-month 
variations in solar activity and that this method out­

performs the Combined Precursor Method as the time 

of cycle maximum nears (Figure 16). The Combined 

Solar Cycle Activity Forecast Method uses a weighted 

average (equation (20» of the Combined Precursor pre­

diction and the Hathaway, Wilson, and Reichmann pre­

diction to provide a better forecast of future solar cycle 

activity levels. 

Our Combined Precursor Method alone is found to 

work especially well. In fact, it seems to work so well 

that the prediction provided by the Combined Solar Cy­
cle Activity Forecast Method gives only a modest im­

provement. It should be noted that for cycle 23 NOAA 

now uses an amplitude prediction [Joselyn et al., 1997] 
that is based largely on the geomagnetic precursors and 

then rescales the average-cycle shape to this maximum 
(160 ± 30) to predict the level of activity over the next 

cycle (J. Joselyn, private communication, 1998). 

The varying success of these prediction methods sug­

gests several interesting properties of the solar cycle. 

For example, although the Amplitude-Period Method 
and the Maximum-Minimum Method were both found 

to be less precise predictors of the next cycle's maximum 

amplitude, the fact that the relationships were statis­

tically significant indicates that large-amplitude cycles 

start early and have high levels of activity at minimum. 

These relations suggest that the overlap of the cycles at 
the time of minimum is an important aspect of the solar 

cycle. The success of the precursor methods based on 

the geomagnetic indices, [Ohl, 1966; Feynman, 1982; 
Thompson, 1993] suggests a more substantial overlap 

between cycles. Thompson's Method uses the number 
of geomagnetic ally disturbed days throughout the en­
tire previous cycle to predict cycle amplitudes well be­
fore the time of minimum. Likewise, Feynman's Method 
also provides a prediction for the amplitude of the cycle 

well before minimum. The surprising success of these 
precursor methods suggests that magnetic activity at 

latitudes above those populated by the sunspots of the 

current cycle may be the source of the solar wind dis­

turbances that give rise to these precursor disturbances. 

This idea of an extended or two-component solar cycle 

[Simon and Legmnd, 1992] needs further investigation. 

The solar cycle prediction methods developed in the 

course of this study provide forecasts of future solar 

activity that are significantly better than those given 

by the mean cycle (equation (9». These methods still 
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lack, however, a physical foundation based on dynamo 

theory .. Efforts to invoke dynamo theory by including 

observations of the sun's polar magnetic field [Schatten 

et al., 1978, Schatten and Pesnell, 1993, Schatten et al., 
1996] are noteworthy and promising but are based on 

only two solar cycles of magnetic data. Efforts were 

made by Schatten et al. [1978] to extend this data to 

earlier cycles using proxies for the polar magnetic field. 

However, these proxies were shown to be unreliable by 

Layden et al. [1991]. With reliable data for only the 

two most recent (and very similar) cycles, this technique 

could not be tested with any confidence. Such efforts 

are also somewhat premature in that a comprehensive 

and self-consistent dynamo model for the sun has not 

been produced. Development of a dynamo based predic­

tion technique is, however, another key area for further 

investigation. 

Finally, on the basis of our analysis presented here, 

we predict that cycle 23 will have a maximum ampli­

tude near 150 (slightly higher if expressed as a 13-month 

running mean) with the maximum occurring midway 

through the year 2000. Activity for the next 3-4 years 

(1999-2002) should be typical of the maximum phase 

condition [cf. Wilson et al., 1998b]. Although this pre­

diction should not change much as the cycle progresses, 

we update the prediction every month as new data be­

comes available and post it on a world wide web site at 

http://science.nasa.gov/ssljpad/solar /predict.htm. 
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