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Abstract. Global climate models suggest that Antarctic

snowfall should increase in a warming climate and miti-

gate rises in the sea level. Several processes affect surface

mass balance (SMB), introducing large uncertainties in past,

present and future ice sheet mass balance. To provide an ex-

tended perspective on the past SMB of Antarctica, we used

67 firn/ice core records to reconstruct the temporal variability

in the SMB over the past 800 yr and, in greater detail, over

the last 200 yr.

Our SMB reconstructions indicate that the SMB changes

over most of Antarctica are statistically negligible and that

the current SMB is not exceptionally high compared to the

last 800 yr. High-accumulation periods have occurred in the

past, specifically during the 1370s and 1610s. However, a

clear increase in accumulation of more than 10 % has oc-

curred in high SMB coastal regions and over the highest part

of the East Antarctic ice divide since the 1960s. To explain

the differences in behaviour between the coastal/ice divide

sites and the rest of Antarctica, we suggest that a higher fre-

quency of blocking anticyclones increases the precipitation at

coastal sites, leading to the advection of moist air in the high-

est areas, whereas blowing snow and/or erosion have signifi-

cant negative impacts on the SMB at windy sites. Eight hun-

dred years of stacked records of the SMB mimic the total so-

lar irradiance during the 13th and 18th centuries. The link be-

tween those two variables is probably indirect and linked to

a teleconnection in atmospheric circulation that forces com-

plex feedback between the tropical Pacific and Antarctica via

the generation and propagation of a large-scale atmospheric

wave train.

1 Introduction

The rise in global mean sea level is one of the major long-

term consequences of climate change. Determining the fu-

ture contribution of the Antarctic Ice Sheet (AIS) to the

global sea level rise is likely to be a complex task. The AIS

constantly adjusts its mass in response to changes in snow

accumulation on its surface. These changes occur on annual

to millennial time scales, with a concomitant effect on global

sea levels.

The surface mass balance (SMB) results from precipita-

tion in the form of snow (snowfall and diamond dust/clear-

sky precipitation), which is then modified by surface sub-

limation, the erosion/deposition of snowdrift transport, the

sublimation of drifting/blowing snow particles (wind-driven

sublimation) and melting. Wind erosion, wind redistribution

and sublimation as well as other processes during or after a

precipitation event lead to deposition at the surface that is

spatially much less homogeneous than the original precipita-

tion (e.g., Eisen et al., 2008).

The SMB of the grounded AIS is approximately

2100 Gt yr−1, with a large interannual variability. Those

changes can be as large as 300 Gt yr−1 and represent approx-

imately 6 % of the 1989–2009 average (Van den Broeke et

al., 2011). Moreover, although modern altimetry and gravi-

metric technologies are strongly improving the possibilities

for mass balance detection, the SMB uncertainty is estimated

to be more than 10 % (equivalent to nearly 0.6 mm yr−1 of

sea level rise), which is at least equal to the ice discharge

uncertainty (Frezzotti et al., 2007; Magand et al., 2007).
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Climate model projections based on increasing green-

house gas concentrations predict a warmer atmosphere con-

taining higher levels of water vapour, suggesting that the

Antarctic snowfall is expected to increase. Thus, the SMB

of the AIS will negatively contribute to sea level rise (Mon-

aghan et al., 2008; Gregory and Huybrechts, 2006; Krinner

et al., 2007; Uotila et al., 2007). However, snow precipi-

tation reflects not only air temperature/warmer atmosphere

variations, but also conditions at the ocean surface, the at-

mospheric teleconnection, and circulation patterns. Approx-

imately 75 % of the predicted precipitation increase will fall

in peripheral areas with surface elevations below 2250 m

(Genthon et al., 2009). Recent satellite observations indicate

an accelerating ice loss in these peripheral areas due to on-

going and past glacier acceleration, implying that the con-

tribution of ice sheets to sea level rise increases over time

(Velicogna, 2009; Rignot et al., 2008; Pritchard et al., 2009).

Information on the temporal and spatial variability of the

SMB is essential for determining the input term of the mass

balance (component approach: SMB minus ice discharge at

the grounding line), but also for interpreting the surface el-

evation/mass change signals from satellites (integrated ap-

proach, elevation, or mass change) and making improve-

ments in climate and meteorological models (ISMASS Com-

mittee, 2004).

The combination of satellite-derived temperature data with

meteorological observations reveals a significant increase

of near-surface temperatures across the Antarctic Peninsula

(AP) and, to a lesser extent, in the West Antarctic Ice Sheet

(WAIS) since the early 1950s, with minimal changes across

the rest of the East Antarctic Ice Sheet (EAIS, Steig et al.,

2009). The warming rate since the 1950s has been approxi-

mately 0.080 ◦C per decade, which is considered as the mean

value for all of Antarctica (Chapman and Walsh, 2007; Steig

et al., 2009). However, the magnitude and significance of the

temperature trends in Antarctica is still a debated issue, and

the results are highly dependent on seasons and their peri-

odicity. In the troposphere above the surface of Antarctica,

a fairly strong winter (June-July-August) warming has oc-

curred since the early 1970s (Turner et al., 2006). Much of

Antarctica receives its maximum snowfall in winter (Mar-

shall, 2009). There is evidence of a warming and freshening

trend in the waters of the Southern Ocean and a reduction

of the sea ice extent during the 1950s and 1960s (Curran et

al., 2003; Abram et al., 2010). However, firn cores coupled

with an atmospheric reanalysis model of the AIS indicate sta-

tistically insignificant or slightly negative SMB changes in

the AIS since the 1950s (Monaghan et al., 2006). SMB re-

search based on firn/ice core records from recent decades re-

veals a variety of changes and trends, ranging from slight in-

creases (Thompson et al., 1994; Morgan et al., 1991; Mosley-

Thompson et al., 1999; Frezzotti et al., 2005; Goodwin et

al., 2003; Stenni et al., 2002; Urbini et al., 2008; Igarashi

et al., 2011; Fujita et al., 2011) to doublings (Thomas et al.,

2008), to decreases (Spikes et al., 2004; Kaspari et al., 2004;

Schlosser and Oerter, 2002; Kaczmarska et al., 2004; Ren et

al., 1999), or to no significant trend in the SMB (Frezzotti

et al., 2007; Ruth et al., 2004; Anschütz et al., 2009, 2011;

Sommer et al., 2000; Karlöf et al., 2005; Stenni et al., 1999).

The main purpose of this study is to evaluate how the SMB

has affected the mass of the AIS at the centennial scale and

to provide an extended past perspective. For this purpose, we

used seven new firn/ice records from northern Victoria Land

and Wilkes Land (WILKES) together with the 60 existing

firn/ice records to reconstruct the temporal variability of the

SMB over the past 800 yr and, in greater detail, over the last

200 yr. In Sect. 2, we describe the various methods applied

to evaluate the SMB values and its temporal variability from

firn and ice core measurements. In Sect. 3, we present the re-

sults obtained by comparing the average SMB values in three

different time windows, namely, the last 40 yr, the last 150 yr,

and the last 800 yr, to elucidate the temporal and spatial vari-

ability of the SMB at the continental and regional scales. Fi-

nally, in Sect. 4, we discuss the possible causes of the SMB

temporal variability and spatial distribution.

2 Data and methods

The available dataset (67 records; Fig. 1; Table 1) spans one

century and is spatially representative of the entire Antarc-

tic continent, with approximately 3 records in the AP, 14

records in the WAIS, and the other records in the EAIS. SMB

time series records exist for the WAIS that extend more than

500 yr, and four and two records are available for the Dron-

ning Maud Land (DML) and WILKES, respectively, that ex-

tend back further than 800 yr.

The SMB temporal variability is evaluated in firn and ice

cores (from annual to centennial scales) by counting the sea-

sonal cycles of various parameters (physical, chemical and

isotopic) and by identifying prominent horizons of known

ages, such as the fallout of acid layers from dated volcanic

eruptions (e.g., 1964, Agung; 1887, Krakatua; 1816–1809,

Tambora-Unknown; 1601, Huaynaputina; 1460, Kuwae; and

1259, Unknown) or radioactive fallout (e.g., 1955 and 1966)

from atmospheric thermonuclear bomb tests (Eisen et al.,

2008). Most recently, the SMB has been evaluated at selected

sites using stake farms (Frezzotti et al., 2007; Urbini et al.,

2008; Kameda et al., 2008; Ding et al., 2011a). In general,

however, seasonal cycles are difficult to observe at sites with

low accumulations (below approximately 70 kg m−2 yr−1),

such as the polar plateau of the EAIS and windy sites, be-

cause the seasonally deposited chemical or physical signals

are frequently erased or changed by the action of the near-

surface wind (Eisen et al., 2008). In the entire record, the

two most valid reference horizons in the 1960s (the atomic

bomb and Agung eruption reference layers), the Tambora-

Unknown volcanic eruptions at the beginning of the 19th

century and the oldest dated volcanic eruptions (e.g., 1460,

Kuwae eruption; and 1259, Unknown eruption) are used
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Table 1. Site information and snow accumulation values.

Site name Latitude

(◦)

Longitude

(◦)

Elevation

(m)

Entire Record

(kg m−2 yr−1)

Tambora– present

(kg m−2 yr−1)

1960s–

present

(kg m−2 yr−1)

Present

(kg m−2 yr−1)

References

SIPLE DOME

(�, �TIME)

81.65 −149.00 620 120

(1890–1994)

118

(1922–91)

Kaspari et al. (2004)

ITASE00-5

(�, �TIME)

77.68 −124.00 1828 140

(1716–2000)

141

(1922–91)

Kaspari et al. (2004);

Spike et al. (2004)

ITASE99-1

(�, �TIME)

80.62 −122.63 1350 139

(1724–1998)

146

(1922–91)

Kaspari et al. (2004)

ITASE00-4

(�, �TIME)

78.08 −120.08 1697 189

(1799–2000)

193

(1922–91)

Kaspari et al. (2004);

Spike et al. (2004)

RIDS A

(�, �TIME)

78.73 −116.33 1740 235

(1831–1995)

234

(1922–91)

Kaspari et al. (2004)

WDC05A

(�, �TIME)

79.46 −112.13 1759 200±34

(1775–2005)

Banta et al. (2008)

WDC05Q

(�, �TIME)

79.47 −112.09 1759 204±35

(1521–2005)

Banta et al. (2008)

ITASE00-1

(�, �TIME)

79.38 −111.24 1791 220

(1653–2001)

222

(1922–91)

Kaspari et al. (2004)

ITASE01-2 77.84 −102.91 1353 427

(1890–2001)

436

(1922–91)

Kaspari et al. (2004)

ITASE01-3

(�, �TIME)

78.12 −95.65 1633 325

(1859–2001)

331

(1922–91)

Kaspari et al. (2004)

ITASE1-5

(�, �TIME)

77.06 −89.14 1246 388

(1780–2001)

342

(1922–91)

Kaspari et al. (2004)

GOMEZ 73.59 −70.36 1400 720

(1855–2006)

655

(1855–1970s)

925

(1970s–2006)

Thomas et al. (2008)

DRYER PLATEAU

(�)

70.67 −64.89 2002 440

(1500–1989)

460 iea 540 iea Thompson et al. (1994);

Raymond et al. (1996)

JAMES ROSS

ISLAND

(�)

64.22 −57.68 1640 443

(1847–1980)

578

(1964–1990)

Aristarain et al. (2004)

BERKNER

B25

(�, �TIME)

79.57 −45.72 890 130±40

(1080–1994)

131

(1815–1965)

141

(1965–1994)

Ruth et al. (2004)

CV

(�, �TIME)

76.00 −8.05 2400 60

(1452–1997)

62

(1816–1997)

68±2

(1965–1997)

70

(1992–1997)

Karlöf et al. (2000)

B31

(locality DML07)

(�, �TIME)

75.58 −3.43 2669 63

(1259–1997)

58.4

(1816–1997)

59.8

(1960–1996)

Sommer et al. (2000);

Oerter et al. (2000)

NUS08-2

(�)

87.85 −1.80 2583 67.4±2.6

(1815–2007/8)

67.4±2.6

(1815–2007/8)

63.4±4.2

(1963–2007/8)

Anschutz et al. (2011)

SOUTH POLE

(�, �TIME)

90.00 0.00 2850 78.0±2.2

(1801–1991)

76.5

(1816–1956)

84.8±3.3

(1965–1994)

84.5±8.9

(1992–1997)

Mosley-Thompson (1999);

van der Veen et al. (1999a);

Kaspari et al. (2004)

B32

(locality DML05)

(�, �TIME)

75.00 0.01 2882 60.9

(1259–1997)

63

(1816–1997)

80

(1966–1997)

Sommer et al. (2000);

Oerter et al. (2000)

AMUNDSENISEN

(�)

75.00 2.00 2900 77

(1865–1991)

78

(1865–1965)

76

(1966–1991)

Isaksson et al. (1996)

S100

(�, �TIME)

70.23 4.80 48 290±90

(1737–2000)

292

(1816–2000)

284

(1956–2000)

260±80

(1991–2000)

Kaczmarska et al. (2004)

B33

(locality DML17)

(�, �TIME)

75.16 6.50 3160 44.4

(1259–1997)

45.9

(1816–1997)

55

(1966–1989)

Sommer et al. (2000);

Oerter et al. (2000)

NUS07-1

(�)

74.72 7.98 3174 52±2

(1815–2007/8)

52±2

(1815–2007/8)

55.9±3.9

(1963–2007/08)

Anschutz et al. (2009,

2011)

SITE I

(�)

73.72 7.98 3174 52.0±1.3

(1816–2007)

56.0±4.7

(1963–2007)

Anschutz et al. (2009)

NUS08-6

(�)

81.70 8.57 2447 39.2±1.5

(1815–2007/8)

39.2±1.5

(1815–2007/8)

49.2±3.4

(1963–2007/8)

Anschutz et al. (2011)

M150

(�)

74.99 15.00 3470 43 43

(1816)

45±4

(1965–1996)

Isaksoon et al. (1999)

M, MA, MB, MC,

MD

(�)

75.00 15.00 3470 41.0±0.7

(1816–1884)

41.0±0.5

(1955–2000)

Karlöf et al. (2005)

NUS08-5

(�)

82.63 17.87 2544 35.5±0.8

(1259–2007/8)

35.0±0.8

(1815–2007/8)

37.6±2.3

(1963–2007/8)

Anschutz et al. (2011)

NUS08-4

(�)

82.82 18.90 2552 37.2±1.3

(1622–2007/8)

36.7±0.9

(1815–2007/8)

36.1±2.1

(1963–2007/8)

Anschutz et al. (2011)
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Table 1. Continued.

Site name Latitude

(◦)

Longitude

(◦)

Elevation

(m)

Entire Record

(kg m−2 yr−1)

Tambora– present

(kg m−2 yr−1)

1960s–

present

(kg m−2 yr−1)

Present

(kg m−2 yr−1)

References

NUS08-3

(�)

84.13 22.00 2625 38.8±1.4

(1641–2007/8)

40.1±1

(1815–2007/8)

45.3±3.1

(1963–2007/8)

Anschutz et al. (2011)

NUS07-2

(�)

76.07 22.47 3582 33.3±1.2

(1259–2007/8)

33.0±0.7

(1815–2007/8)

28±2

(1963–2007/8)

Anschutz et al. (2011)

MP 75.89 25.83 3661 33.1±1.0

(1286–2008)

38.7±0.9

(1964–2008)

Fujita et al. (2011)

NUS07-3

(�)

77.00 26.01 3589 27.8±1

(1600–2007/8)

22.0±0.5

(1815–2007/8)

23.7±1.7

(1963–2007/8)

Anschutz et al. (2009,

2011)

NUS07-4

(�)

78.22 32.85 3595 20.9±0.8

(1622–2007/8)

19.0±0.5

(1815–2007/8)

17.5±1.2

(1963–2007/8)

Anschutz et al. (2009,

2011)

NUS07-5

(�)

78.65 35.63 3619 26.0±0.9

(1259–2007/8)

24±0.5

(1815–2007/8)

20.1±1.4

(1963–2007/8)

Anschutz et al. (2011)

DOME FUJI

(�)

77.32 39.70 3810 25.5±0.3

(1260–2001)

26.3

(1816–2001)

28.8±0.7

(1964–2008)

27.3±0.3

(1995–2006)

Kameda et al. (2008);

Fujita et al. (2011);

Igarashi et al. (2011)

YM85 71.58 40.63 2246 97

(1260–2002)

140

(1816–2002)

135

(1965–2002)

Takahashi et al. (2009)

H 72 69.20 41.08 1214 311

(1831–1998)

311

(1831–1998)

307 307

(1973–1998)

Nishio et al. (2002)

PR-B

(PLATEAU RE-

MOTE)

84.00 43.00 3330 37.7

(1816–1986)

37.5

(1816–1986)

37

(1986–1968)

Cole-Dai et al. (2000)

NUS07-6

(�)

80.78 44.85 3672 21.1±0.7

(1600–2007/8)

16.0±0.4

(1815–2007/8)

Anschutz et al. (2009,

2011)

G15 71.20 45.98 2544 130

(1210–1984)

86

(1816–1964)

116

(1964–1984)

Moore et al. (1991)

NUS07-8

(�, �TIME)

84.18 53.53 3452 32.0±1.2

(1815–2007/8)

32.0±1.2

(1815–2007/8)

30±2.1

(1963–2007/8)

Anschutz et al. (2009,

2011)

NUS07-8

(�)

84.18 53.53 3452 32±1.2

(1816–2007)

30±2.1

(1963–2007)

Anschutz et al. (2009)

NUS07-7

(�)

82.07 54.55 3725 29.5±1

(1259–2007/8)

29.4±0.6

(1815–2007/8)

26.1±1.9

(1963–2007/8)

Anschutz et al. (2011)

DT401 79.02 77.00 3760 29

(1999–186)

19

(1999–1816)

24

(1999–1963)

25±16

(1999–2005)

Ren et al. (2010);

Ding et al. (2011a)

DT001

(�)

70.83 77.07 2325 127

(1745–1996)

131

(1810–1959)

131

(1959–1996)

Zhang et al. (2006)

Dome A

(�)

80.36 77.36 4092 23

(1260–1998)

23

(1815–1998)

23

(1963–1998)

Hou et al. (2007);

Jiang et al. (2012)

LGB65 71.85 77.92 1850 127 131 131 Xiao et al. (2004)

VOSTOK

(�)

78.45 106.83 3488 20.6±0.3

(1816–present)

21.5±0.5

(1955–present)

20.8

(1958–2010)

Ekaykin et al. (2004)

http://south.aari.nw.ru/

stations/vostok/vostok en.

html

LAW DOME

(�, �TIME)

66.77 112.98 1370 680 687

(1966–1816)

742

(1966–2005)

Morgan et al. (1991);

Van Ommen (2010)

DOME C

(�)

75.12 123.31 3233 < 25

(1259–1998)

25.3

(1816–1998)

28.3

(1965–1998)

28

(2004–2011)

Urbini et al. (2008); Frez-

zotti et al. (2005); Castel-

lano et al. (2005); http:

//www-lgge.ujf-grenoble.

fr/ServiceObs/

SiteWebAntarc/dc.php

D6 A

(�, �TIME)

75.44 129.81 3027 36.0±1.8

(1816–1998)

29.0±1.4

(1966–1998)

39

(1998–2002)

Frezzotti et al. (2005)

D66 68.94 136.94 2333 196

(1966–1864)

213±13

(1965–2001)

197

(2001–2003)

Magand et al. (2004);

This paper

D2 A

(�)

75.62 140.63 2479 20.0±1.0

(1816–1998)

31.0±1.6

(1966–1998)

30

(1998–2002)

Frezzotti et al. (2005)

GV1

(�)

70.87 141.38 2244 114

(1816–2001)

117±7

(1965–2001)

96

(2001–2003)

Magand et al. (2004);

this paper

GV2

(�)

71.71 145.26 2143 112

(1816–2001)

112±7

(1965–2001)

92

(2001–2003)

Magand et al. (2004);

this paper

MDPT A

(�)

75.53 145.86 2454 36.0±1.8

(1816–1998)

45.0±2.7

(1966–1998)

47

(1998–2010)

Frezzotti et al. (2005);

this paper

GV3

(�)

72.63 150.17 2137 81

(1816–2001)

84 ±5

(1965–2001)

73

(2001–2003)

Magand et al. (2004);

this paper

M2 A 74.80 151.27 2278 17.0±0.8

(1816–1998)

15.0±7.5

(1966–1998)

8.5

(1998–2002)

Frezzotti et al. (2005)
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Table 1. Continued.

Site name Latitude

(◦)

Longitude

(◦)

Elevation

(m)

Entire Record

(kg m−2 yr−1)

Tambora– present

(kg m−2 yr−1)

1960s–

present

(kg m−2 yr−1)

Present

(kg m−2 yr−1)

References

GV4

(�)

72.39 154.48 2126 119

(1816–2001)

100±6

(1965–2001)

96

(2001–2003)

Magand et al. (2004);

this paper

31DPT A

(�, �TIME)

74.03 155.96 2069 98.0±4.9

(1816–1998)

112.0±5.6

(1966–1998)

98

(1998–2002)

Frezzotti et al. (2005)

GPS2A 74.64 157.502 1804 102

(1745–1998)

60.0±3.0

(1816–1998)

54.0±2.7

(1966–1998)

55

(1993–2000)

Frezzotti et al. (2005)

GV5

(�, �TIME)

71.89 158.54 2184 129

(1816–2001)

129±7

(1965–2001)

135

(2001–2004)

Magand et al. (2004);

Frezzotti et al. (2007)

GV7

(�, �TIME)

70.68 158.86 1947 237

(1854–2001)

241±13

(1965–2001)

252

(2001–2004)

Magand et al. (2004);

Frezzotti et al. (2007)

TALOS DOME

(�, �TIME)

72.77 159.08 2316 80

(1259–1996)

83.6

(1816–2001)

86.6

(1966–1996)

68

(2001–2010)

Magand et al. (2004);

Frezzotti et al. (2007);

this paper

HERCULES

NEVE

(�, �TIME)

73.10 165.40 2960 119

(1770–1992)

118

(1816–1966)

129

(1966–1992)

Stenni et al. (1999)

a i.e., ice equivalent; � site member of the verified dataset (see text for details); �TIME site member of the verified dataset for which an annually time-resolved SMB time series

exists.

when the seasonal stratigraphy is unavailable or uncertain.

When available, stake farm measurements are used to com-

plete the most recent record (from the 1990s to the present)

of previous firn/ice core measurements.

The snow redistribution process and relative surface

roughness (e.g., sastrugi formations) have a strong impact on

the annual variability of the SMB at the annual/metre scale

(i.e., noise in ice cores). The accumulation/ablation pattern

emerging from the stake farm measurements makes it pos-

sible to survey the accumulation values and noise on an an-

nual scale by comparing the variations in the accumulation

at each stake with the average across the stake farm. The

detected “noise”, represented by the standard deviation of

the measured values, largely reflects the snow surface rough-

ness (sastrugi) and limits the degree to which a single annual

SMB value may be considered representative (Frezzotti et

al., 2007; Kameda et al., 2008; Ding et al., 2011a).

The stake farm measurements demonstrate that accumu-

lation hiatuses and/or erosion can occur at sites with accu-

mulation rates below 120 kg m−2 yr−1 (Frezzotti et al., 2005,

2007; Ding et al., 2011a). The differences between the cores

and stakes can lead to the statistical misidentification of an-

nual layers determined from seasonal signals at sites with

SMB rates below 200 kg m−2 yr−1 due to the inability to

detect higher and lower values. With an average roughness

height of 20–40 cm, achieving ±10 % accuracy in the recon-

struction of the SMB from single cores requires high accu-

mulations (> 700 kg m−2 yr−1). Low-accumulation sites are

representative if their cumulative rates are computed over

several years. Variations in the multi-year averages of the an-

nual SMB decrease with the square root of the number of ob-

servation years (McConnell et al., 1997; van der Veen et al.,

1999b; Goodwin et al., 2003; Frezzotti et al., 2007; Kameda

et al., 2008; Banta et al., 2008). SMB records have been com-

puted using cumulative rates over several years to reach an

approximate 700 kg m−2 yr−1 threshold, allowing the esti-

mation of the annual SMB at ±10 % accuracy, which is com-

parable to the accuracy obtained with instrumental measure-

ments (e.g., those measuring rain precipitation).

The snow radar survey shows that the spatial variability

of the SMB at the kilometre scale is one order of mag-

nitude higher than the temporal variability at the multi-

decadal/centennial scale. Depending on the study area, the

distributions can be homogeneous over hundreds of kilo-

metres on the polar plateau, particularly at ice divides and

domes, or they can vary considerably at locations with high

spatial accumulation variability due to strong wind erosion

(e.g., Eisen et al., 2008; Frezzotti et al., 2005, 2007; Anschütz

et al., 2008, 2011; Fujita et al., 2011). Therefore, the recon-

struction of past climates based on firn/ice cores drilled in ar-

eas with spatial variability in SMB is a complicated process

(Eisen et al., 2008). Several authors have noted the impor-

tance of conducting ancillary spatial SMB measurements as

part of ice-coring programs to allow topographic effects to

be deconvolved from potential climate signals (e.g., Hamil-

ton, 2004; Frezzotti et al., 2005, 2007; Anschütz et al., 2008;

Spike et al., 2004; Kaspari et al., 2004). To avoid such mis-

leading results it is important that SMB records of insuffi-

cient or unassessed reliability (high variability or unknown

SMB upstream of the core site) be discarded, even at the cost

of a strong reduction in spatial and temporal coverage (Ma-

gand et al., 2007). To disregard artificial results, most of the

analyses presented in this paper are applied to both the en-

tire dataset (67 ice cores) and a restricted ensemble of 52

ice cores, hereinafter called the verified dataset (�), which

is unaffected by upstream topographic/wind erosion effects

(Fig. 1 and Table 1).

The entire dataset (67 ice cores) and the restricted group

of 52 ice cores (�) were used to compare the present SMB

(approximately the last 40 yr) with the SMB of previous
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Fig. 1. Geographical distribution of firn/ice core records used in

this study along with Surface Mass Balance (SMB) values (kg m−2

yr−1) and their reliability of the annually resolved time series used

for stacked records; triangle: verified data (�) without a tempo-

ral series at the annual scale; square: verified data (�TIME) with

a temporal series at annual scale; circle: unverified data with un-

known SMB conditions upstream of the core site or sites affected

by high SMB spatial variability. Blue lines and symbols highlight

the SPQMLT route, Dome Fuji, Dome A, Gomez, South Pole, Ta-

los Dome, and Dome C sites respectively. Ice divide positions and

altitude isolines are shown in grey and green, respectively.

centuries. These datasets were analysed by comparing the

average values from the 2000s to the 1960s (β40) with two

previous time windows: from the 1960s to 1815 (β150) and

from the 1960s through approximately the last 800 yr (βtot).

The variations between the last two periods were also stud-

ied.

To understand the temporal variability of the SMB at the

decadal scale, we used the annually resolved SMB records

to create different stacked records that are representative of

the continental and regional scales. The dataset used (�TIME)

is a subsample of the � dataset; it contains 21 cores in

which it is possible to obtain an annually resolved time se-

ries record because the accumulation mean value at the site

is higher than approximately 70 kg m−2 yr−1. To homogenise

the dataset and disregard noise caused by post depositional

effects, the SMB records were smoothed using 15-yr back-

ward averaging. The 15-yr smoothing window was chosen

because it is the minimum number of years necessary for

the core with the smallest accumulation (Talos Dome, B31,

B32, B33) to reach the threshold accumulation value of ap-

proximately 700 kg m−2 yr−1, ensuring that the accumula-

tion variability will be within ±10 % of its mean value. In the

second step, the cores were normalised (the anomaly from

the mean divided by the standard deviation) to allow com-

parisons between sites with very different accumulation val-

ues. Finally, the mean continental values were determined by

averaging all of the available data for each single year from

1200 to 2010. Using the same methodology, three regional

patterns were also created by averaging the WAIS (Siple

Dome, ITASE00 5, ITASE00 4, RIDSA, DC05A, DC05Q,

ITASE00 1, and ITASE01 3), DML (South Pole, Berkner

B25, B31, B32, B33, and S100) and WILKES (Hercules

Nèvè, 31Dpt, Talos Dome, GV5, GV7, D66, and Law Dome)

site records.

The spatial and temporal representativeness of ice core av-

erage can be a very difficult task. The methodology used is

very simple, but considering the available dataset and the

temporal scale analysed in this study, it is not possible to ap-

ply a more complex methodology.

A continental stacked record obtained by averaging the re-

gional stacked series instead of averaging the entire record

was tested to minimise the possible presence of biases due to

an excessively high record density in particular areas (data

not shown). However, the identified differences are very

small (< 1 %) and are not statistically significant. A Kruskal-

Wallis H-Test ensures that the 21 cores of �TIME have the

same mean of distribution and that differs within a confi-

dence level of 95. Moreover, the longest ice core time se-

ries results are within one standard deviation for 87 % (1980–

1918) of the entire continent time series, 85 % (1980–1918)

of the WAIS, 75 % (1980–1766) of the DML, and 78 %

(1990–1882) of the WILKES. These time windows represent

the periods with the maximum number of available ice cores

for each average record.

Monaghan et al. (2006) developed an innovative technique

for the study of snowfall over the last 5 decades (1955–2005).

The novel methodology utilises a predictor function based

on the simulated precipitation from the European Centre for

Medium Range Weather Forecast – European Re-Analysis

40 (ECMWF ERA-40) snowfall field, from 1960 to 2000,

and is used to interpolate various instrumental measurements

(e.g., ice core and snow pit data and daily observations).

Monaghan et al. (2006) chose 1985–1994 as the reference

decade, which allows the ERA-40 precipitation to be both

calibrated against the instrumental record and adjusted for

biases. Unfortunately, this technique is unusable in this study

because the Reanalysis ERA-40 dataset ends at 1958. For this

reason, it is not possible to calculate the predictor function

prior to that year. Furthermore, it is not possible to interpo-

late �TIME data using the model predictor based on one of the

last five decades because this analysis method would imply

that the atmospheric dynamics have not changed over the last

800 yr, which is a highly questionable assumption. The dis-

tribution of the SMB dataset is not completely balanced, with

inadequate SMB records in coastal and slope areas with high

accumulation, particularly in the WAIS and in the Indian Sec-

tor of the EAIS between 30◦ E and 110◦ E (Fig. 1). However,
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Fig. 2. Relative frequency (left side axis) of the ECMWF ERA IN-

TERIM snowfall field over the Antarctica (NECMWF, grey-filled

vertical bars) and SMB measurements for the � (N�) and �time

(N�time) datasets (red and green lines, respectively) occurring in

bins 50 kg m−2 yr−1 wide. The blue line represents the contribu-

tion (relative frequency, right side axis) of each bin to total snowfall

over Antarctica calculated from ECMWF ERA INTERIM snowfall

field (SFECMWF).

a comparison between the ECMWF ERA INTERIM snow-

fall and the SMB distribution densities (Fig. 2) shows that

the entire dataset (67 records) is representative of the entire

snowfall spectrum of the model at the continental scale (0.05

significance level). Otherwise, the dataset �TIME (21 cores)

is representative of only the medium/high accumulation site

of Antarctica, which represents approximately 50 % of the

snowfall (Fig. 2) and 50 % of the AIS surface (not shown).

The snowfall frequency spectrum, discussed above, is

presumably modulated by the variability of cyclonic/anti-

cyclonic pressure systems that characterise weather patterns

over the Southern Ocean and around Antarctica. Indeed, in-

termittent blocking anticyclone events in the Southern Ocean

cause significant precipitation events over the AIS by con-

veying warm and moist air masses along the coast and the

slope of the continent and even into the continental interior

(e.g., Scarchilli et al., 2011; Schlosser et al., 2011). Thus, we

also examine the connection between blocking phenomena

and snow accumulation at annual and decadal time scales,

calculating the numbers of blocked days for each longitu-

dinal sector of 5◦ in width and correlating them with the

snowfall amounts. The blocking highs were calculated from

the ECMWF ERA INTERIM Re-Analysis of Geopotential

height at a 500-hPa field on a regular grid of 1◦ × 1◦ (Sim-

mons et al., 2006). The procedure is described by Scarchilli

et al. (2011). To ensure that features formed at higher lati-

tudes than normal are included in the analysis, snowfall time

series were created from the +24 h forecast of the ERA IN-

TERIM snowfall field on a regular grid of 1◦ × 1◦. Both

the blocking index and snowfall fields represent the annual

cumulative values from daily values over the period 1980–

2011.

3 Results

Figure 3a presents the geographical distribution of the dif-

ferences between β40 and β150 (a similar pattern is also

visible between β40 and βtot, not shown). No clear increas-

ing/decreasing features were observed on the Antarctic con-

tinent; however, the figure highlights variations reaching ap-

proximately ±50 % of the SMB in nearby areas. A general

increase is visible on boundaries of the WILKES area, par-

ticularly in higher plateau sites in the direction of DC, in ac-

cordance with the increase from 1960 to 1970 and during the

1990s reported by other authors (Morgan et al., 1991; Good-

win et al., 2003; Stenni et al., 2002; Frezzotti et al., 2005).

In contrast, a slight decrease is apparent in the sites inland

to Victoria Land, such as Talos Dome (Fig. 1). Additionally,

in the WAIS region, Fig. 3a depicts an SMB increase in the

Bellingshausen Sea area and a decrease in the Amundsen Sea

area, which is in accordance with the SMB variations since

the 1970s observed by Kaspari et al. (2004). On the other

hand, only a positive increase in the SMB is present in the AP.

In particular, the Gomez site (73.59◦ S, 70.36◦ W) exhibited

the second-greatest increase in the entire dataset. This result

is in agreement with the findings of Thomas et al. (2008),

who presented evidence for a unique SMB doubling since

1850 with acceleration in recent decades at this site, com-

pared with a much smaller rate of increase in the SMB ob-

served since the 1930s at other AP high sites (Aristrarain et

al., 2004; Raymond et al., 1996).

Over the Norway–US traverse South Pole Queen Maud

Land traverse (SPQMLT), and south of the ice divide of East

Antarctica (IDEA), the differences between β40 and β150

do not present a clear overall trend. In the westerly part and

at lower elevations (< 3450 m) along the traverse, a slight in-

crease in the SMB during β40 is in accordance with other

data on the European Project for Ice Coring in Antarctica in

Dronning Maud Land (EDML ice core, Mosley-Thompson

et al., 1999; Oerter et al., 2000; Hofstede et al., 2004). On

the leeward sides of the ice divide with respect to the mois-

ture source, there is a decrease or no significant change in

the SMB from the southern part of the ice divide Dome Fuji-

EDML, as described by Anschütz et al. (2009, 2011) and

Fujita et al. (2011). The most significant changes appear to

have occurred in the most recent decades at the highest site

and along the ice divide, with SMB increases of approxi-

mately 10–30 % (Fig. 3a). Fujita et al. (2011) noted that the

accumulation rate in the second half of the 20th century was

approximately 15 % higher than the average rate taken over

the longer periods of 722 yr Before Present (BP) and 7900 yr

BP along the highest part (> 3450 m) of the IDEA from the

Dome Fuji and EDML cores.

The Dome C area (Frezzotti et al., 2005; Urbini et al.,

2008) has exhibited similarly high accumulations since the

1960s, as observed at the highest part of the IDEA (Fig. 3a),

whereas no significant changes have been apparent at Dome

A (Fig. 1) since 1260 (Ding et al., 2011a; Hou et al., 2009;

www.the-cryosphere.net/7/303/2013/ The Cryosphere, 7, 303–319, 2013
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Fig. 3. (A) Geographical distribution of SMB temporal variability. Data were obtained from the ratios (expressed as percentages) of differ-

ences in the SMB values between 1960–present (β40) and Tambora–1960s (β150) with respect to the SMB values of the entire ice core

length (βtot); sites with SMBs greater than 300 kg m−2 yr−1 and lower than 300 kg m−2 yr−1 are represented with triangles and filled cir-

cles, respectively. Larger symbols indicate sites included in the verified (�) dataset. (B) Relationships in SMB temporal variability of the last

two century. Data were obtained from the values for all sites in the datasets between the 1960s–present (β40) and Tambora–1960s (β150);

filled colour represents ratios (expressed as percentages) of differences in the SMB values between 1960–present (β40) and Tambora–

1960s (β150) with respect to the SMB values of the entire ice core length (βtot). Sites with SMBs greater than 300 kg m−2 yr−1 and lower

than 300 kg m−2 yr−1 are represented with triangles and filled circles, respectively. Larger symbols indicate sites included in the verified

(�) dataset. Linear relation between β150 and β40 values using the entire verified (�) dataset, only values greater than and lower than

300 kg m−2 yr−1 are represented in black, red and blue lines, respectively.

Jiang et al., 2012). The SMB variation map also shows a

slight increase in the β40 time window at the South Pole,

in accordance with the findings of Mosley-Thompson et

al. (1999), who suggested an increase in the SMB between

1965 and 1997 based on stake farm measurements. However,

Hamilton (2004) described a topographic control of the re-

gional accumulation rate variability at the South Pole.

Figure 3b shows an increase in accumulation of approxi-

mately 9 % (R2 0.99; significance level > 99 %, n = 52) dur-

ing β40 with respect to β150 and an increase of approxi-

mately 6 % (R2 0.98; significance level > 99 %, n = 52) with

respect to βtot (not shown), considering only the � dataset

(52 records). The variability observed in the � dataset is rep-

resentative of the variability in the entire dataset (not shown),

but with higher values (13 and 10 % for the differences of

β40 respect to β150 and βtot, respectively). The general

SMB spatial overview observed in Fig. 3a and b emphasise

that increases in the SMB occur mainly in sites with high

SMB values of > 300 kg m−2 yr−1 (+9 % β40/βtot; +15 %

β40/β150) and along the IDEA traverse, whereas sites with

values of < 300 kg m−2 yr−1 do not exhibit significant vari-

ations in the SMB (+2 % β40/βtot; +1 % β40/β150). In-

creases in the absolute value trend for sites with SMB values

> 300 kg m−2 yr−1 (+12 % β40/βtot; +18 % β40/β150,

Fig. 3a) are only observed when the entire dataset is con-

sidered.

An analysis of the continental time series created by aver-

aging the 21 ice cores contained in the �TIME dataset re-

veals a coherent pattern at the centennial scale with three

periods of low accumulation (1250–1300, 1420–1550, and

1660–1790), interrupted by periods of high accumulation

that reached maximum levels in approximately the 1370s

and 1610s (Fig. 4b). We observed values that are close to

the average value during the 19th century and the first part

of the 20th century, an increase in accumulation is apparent

from the 1950s to the 1990s, which seems to be primarily

driven by the WILKES stacked record (Fig. 4c). However, a

decrease in the SMB has been measured during the last 10 yr,

with values that are approximately equal to the long-period

average. This decrease is, in part, due to the low SMB of

the DML (Fig. 4d). The WAIS records reveal a decrease in

the SMB between 1650 and 1725 (Fig. 4e); after 1725 until

the beginning of the 20th century, a slight increase occurs,

and a stable condition is maintained throughout most of the

20th century. Similar observations were previously noted by

Banta et al. (2008). The regional patterns (WAIS, WILKES,

and DML) show anti-phasing/phasing between the different

regions, primarily before the 19th century, but clear and com-

mon recurring patterns are not apparent.

The continental stacked record was correlated with

the Total Solar Irradiance time series (TSI; Steinhilber

et al., 2009, data available at ftp://ftp.ncdc.noaa.gov/pub/

data/paleo/climate forcing/) to better understand the SMB
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potential forcing at the decadal and centennial time scales.

The calculated accumulation record was smoothed with a 40-

yr central running average and resampled every five years to

ensure that it is comparable to the TSI dataset. A comparison

of the TSI and the continental stacked SMB records (Fig. 5a)

reveals low accumulations during low solar activity, particu-

larly during the Wolf minimum (1280–1359) and the Spörer

minimum (1420–1540). A raw correlation (R) between the

TSI and accumulation (Fig. 5c) over the period of 1200–2005

yielded a value that is not particularly high (+0.5, significant

at the 95 % level), with a periodic recurrence every 100 yr.

The accumulation appears to lead the TSI by a slight interval

(approximately 10 yr); this result is in contrast to the model

predictions (Schwartz et al., 2007), which described a lag of

0/+20 yr due to the thermal inertia of the climate system.

However, we believe that this small lag in R is not signifi-

cant due to the low sampling rate and the various smoothing

procedures applied. On the other hand, a running correlation

over various time windows (100, 200, and 300 yr) between

the TSI and the continental stacked SMB series is shown in

Fig. 5b. The plot depicts a very high, significant correlation

for the middle period (1400–1650 AD), especially for the

200- and 300-yr windows, but a general decrease in corre-

lation values in the period between 1650 and 1850 AD. The

100-yr running window exhibits more scattered correlation

values in periods where the two variables have the same os-

cillation, followed by a strong anti-correlated trend.

Intermittent blocking anticyclone events in the Southern

Ocean have caused significant precipitation events over the

AIS by conveying warm and moist air masses along the coast

and slope of the continent, even into the continental interior.

The formation of the blocking ridge is associated with the

wave activity propagation of quasi stationary Rossby waves

from the lower latitudes (Noone at al., 1999; Hirasawa et al.,

2000; Goodwin et al., 2003; Massom et al., 2004; Scarchilli

et al., 2011; Schlosser et al., 2011). The majority of the high

blocking phenomena in the Southern Hemisphere generally

occur in the latitude band of 35–55◦ (Tibaldi et al., 1994), but

they also occur at even higher latitudes (60–70◦; Scarchilli

et al., 2011) over the oceans. Figure 6a shows that on an an-

nual basis, most of these events continue between 150◦ E and

90◦ W, in accordance with various previous studies (Marques

and Rao, 2000; Renwick, 1998; Gibson et al., 1995) that have

stated that the Eastern Pacific Basin and, with a lower fre-

quency and in different seasons, the Tasman Sea are the most

important areas in which blocking anticyclones occur. The

calculated trends for each longitudinal sector in each time

series (Fig. 6b) highlight a strong, but not statistically sig-

nificant increase in the Atlantic region (30◦ W–20◦ E), while

a moderate, but statistically significant increase is apparent

in the Tasman Sea (150–180◦ E) and in the Western Pacific

basin (120–60◦ W).

When an anticyclone high forms, it blocks the zonal flow,

splitting it into two branches and creating anomalous snow-

fall conditions up- and downstream. Figure 7 depicts the cor-

Fig. 4. Mean normalised anomalies of the annually resolved SMB

time series at continental and regional scales obtained from the

�time ice core dataset, as described in the text. (A) Number of

records from each year in the period from 1200 to 2000 used to

calculate the continental (black line, left y-axis), WILKES, DML,

and WAIS stacked records (black, blue, green and red lines, respec-

tively, right y-axis). (B) Mean normalised anomalies of the SMB

time series at the continental scale. (C) The DML mean normalised

anomalies stacked record. (D) The WAIS mean normalised anoma-

lies stacked record. (E) The WAIS mean normalised anomalies

stacked record along with the ±1σ uncertainty standard deviation

(grey-filled contour around each stacked record). The blue- and red-

filled rectangles represent periods with negative and positive SMBs

at the continental scale, respectively, as described in the text.

relation between the number of blocking events at a specific

longitudinal sector and snowfall precipitation. Shifting atten-

tion to the continent, it can be noted that positive correlation

values are apparent and statistically significant over Eastern

Antarctica; anti-correlated areas are found downstream with

much lower modulus values that are not statistically signifi-

cant. Statistically significant anti-correlated areas are appar-

ent only over the oceans downstream the block. Over West

Antarctica, the presence of a blocking high causes a larger

and more apparent dipole effect in the correlation field. In

particular, the positive area values are spread over the Eastern

Ross Ice Shelf and part of Marie Byrd Land, while the anti-

correlated area encloses only the AP, with an anti-correlation

maximum at its base.

4 Discussion

Knowledge of the complex mechanisms that control snow

accumulation at different time scales is one of the most
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Fig. 5. (A) Mean normalised stacked SMB anomaly time series at

the continental scale, calculated as described in the text (black line

with positive and negative values filled in with red and blue con-

tours, respectively) and the 40-yr central running average smoothing

(orange line). The green line represents the normalised TSI anoma-

lies, and the corresponding ±1σ uncertainties are indicated by the

green vertical bars. (B) Running correlations in 100-, 200-, and 300-

yr time windows (red, green, and blue solid lines, respectively) be-

tween the normalised TSI anomaly and the continental accumula-

tion record, smoothed as described in the text. The red, green, and

blue dashed lines represent the threshold values corresponding to

the 95 % statistically significant level based on a two-tailed Student

t-test (100-, 200-, and 300-yr time running windows, respectively).

The filled grey areas represent the Wolf, Spörer, and Maunder min-

imums in solar activity. (C) Correlations at different time lags be-

tween the normalised TSI anomaly and the continental accumula-

tion record, smoothed as described in the text. The red line rep-

resents the threshold value corresponding to the 95 % statistically

significant level based on a two-tailed Student t-test.

important challenges in the field of polar science. Our 800-yr

SMB reconstruction reveals a better correlation of accumu-

lation variation with altimetry than with regional basin ac-

cumulation. This result is in accordance with the findings of

Genthon et al. (2009), who stated that approximately 75 %

of the predicted increase in precipitation will occur in the

peripheral areas at surface elevations below 2250 m. To ex-

plain the different behaviours exhibited between the high-

accumulation coastal areas/highest IDEA site and the rest of

Antarctica at different (inter-annual to decadal) time scales,

we suggest that the higher frequency of blocking-anticyclone

events increases the precipitation at coastal sites and leads to

the advection of moist air at the highest area of the IDEA site.

However, blowing snow and/or erosion have significantly

negative impacts on the SMBs of windy sites when kata-

Fig. 6. (A) Contour of the annual number of blocked days for each

longitude sector (5◦ wide) from 1980 to 2011. Blocked days are

calculated from. ECMWF ERA INTERIM Re-Analysis of Geopo-

tential height at a 500-hPa field on a regular grid of 1◦ × 1◦ (Sim-

mons et al., 2006), following the procedure described in Scarchilli

et al. (2011). (B) Trend of the annual number of blocked daytime

series for each longitude sector (5◦ wide), expressed as the ratio be-

tween the trend per decade and the average of the time series over

the entire period (1980–2011).

batic strong wind events are enhanced by deepening pressure

off the coast and increasing pressure inland (Frezzotti et al.,

2007).

Snow precipitation in Antarctica is driven by several fac-

tors (e.g., atmospheric circulation patterns and ocean surface

conditions), which exhibit differences between the coastal

and inland plateaus. In the interior of the high plateau

(> 2500 m), the majority of precipitation fell in the form

of “diamond dust” (ice crystals) from clear skies and ac-

counted for half of the annual total precipitation (Fujita

and Abe, 2006). At these sites, it is impossible to deter-

mine the annual layer, and the past accumulation rates are

believed to be proportionate to temperature reconstructions

derived from the stable water isotope composition. In in-

terpretations of the paleo-climate, it is assumed that all

changes in the source temperature/location are negligible

and that changes in the stable water isotope composition

of ice primarily reflect changes in temperature at the ice

core site (see Masson-Delmotte et al., 2008). Accordingly,

the paleo-accumulation is assumed to be thermodynamically

controlled by the change in saturation water vapour pressure

at the inversion layer, which is a function of temperature. The

stable isotopic composition of snow precipitation (δO18/δD)

is the closest proxy of air temperature. The ratio of heavy

(δO18) to light (δO16) water molecules in precipitation is in-

fluenced by the source temperature, the isotopic composition

where the evaporation occurs, the moisture pathway toward

the site and the temperature at the site when the precipitation

occurs (Masson-Delmotte et al., 2008). The error in the accu-

mulation as determined based on the stable isotope variation

is estimated to be as high as 30 % or higher (see Supplement

The Cryosphere, 7, 303–319, 2013 www.the-cryosphere.net/7/303/2013/



M. Frezzotti et al.: Antarctic surface mass balance during the last 800 yr 313

Fig. 7. Spatial correlation between the cumulative annual ERA INTERIM snowfall and cumulative annual blocked days, calculated as in

Scarchilli et al. (2011), for different longitudinal sectors (blue vertical lines and numbers represent the sectors involved in the correlation).

The black lines enclose correlation values significant larger than 95 %.

of EPICA Community Members, 2004; Schwander et al.,

2001).

Indeed, the available seasonal to annual δO18/δD ratio and

SMB records (> 70 kg m−2 yr−1) over the last centuries do

not demonstrate a clear correlation between a “warm/cold”

isotope and “high/low” levels of snow accumulation (e.g.,

Thompson et al., 1994; Stenni et al., 2002; Oerter et al., 1999;

Abram et al., 2011; Fernandoy et al., 2010; Graf et al., 2002;

Mulvaney et al., 2002; Divine at al., 2009).

As shown above, the three periods of lowest accumulation

(1250–1300, 1420–1550 and 1660–1790) observed revealed

in the continental stacked record correspond to periods of low

solar activity (Fig. 5a). If a relationship between those two

variables is present, it is indirect and almost certainly linked

to a teleconnection in the atmospheric circulation forcing

through complex feedback. Eichler et al. (2009) analysed the

importance of solar forcing based on an isotopic record from

continental Siberian Altai and noted the importance of the

indirect sun-climate mechanisms involving ocean-induced

changes in atmospheric circulation. Several authors have re-

ported a link between the solar minimum and changes in

atmospheric circulation, with a shift of the southern west-

erly wind positions during the past millennia (e.g., Swinge-

douw et al., 2011; Verschuren et al., 2000; Thresher, 2002;

Varma et al., 2011; Ineson et al., 2011; Martin-Puertas et al.,

2012). Delaygue and Bard (2010) noted that the lowest so-

lar activity occurred during the Spörer minimum at the South

Pole and Dome Fuji sites based on stacked records of Beryl-

lium (10Be), a proxy of solar activity. Sachs et al. (2009)

provided strong evidence that during the past millennium,

the Pacific Inter-tropical Convergence Zone was in its south-

ernmost position during the Spörer minimum. The central

tropical Pacific is a critical region with a significant influ-

ence on atmospheric circulation in the Southern Hemisphere

through the generation and propagation of a large-scale at-

mospheric wave train during winter (Lachlan-Cope and Con-

nolley, 2006) that can, in turn, enhance/inhibit blocking high

phenomena. Tropical climate signals are primarily commu-

nicated to Antarctica via the Pacific–South America pattern

and the Southern Annular Mode, driven by Rossby wave

trains (Fogt and Bromwich, 2006; Schneider et al., 2012). In-

deed, over the past 30 yr, anomalous sea surface temperatures

in the central tropical Pacific have generated an atmospheric

Rossby wave response influencing the atmospheric circula-

tion over the Amundsen Sea and causing increased advection

of warm air to the WAIS and AP (Ding et al., 2011b).

However, at a shorter time scale, other forcing factors,

such as volcanic aerosols and greenhouse gas concentrations,
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have changed over time, and they could be overlapping and

obscuring the solar fingerprint. From this perspective, the

abrupt decreases in the correlation between TSI and SMB

over the running windows can be viewed as the signatures of

this obscuring effect on solar forcing. In a recent paper on

TSI reconstruction from ice cores and tree rings, Steinhilber

et al. (2012) provided evidence for a generally good correla-

tion between solar forcing and the Asian climate. However,

they also noted periods without any coherence in which other

types of forcing, such as volcanoes and greenhouse gas con-

centrations (and their corresponding feedback), deeply influ-

enced the climate.

Previous studies have shown a correlation between

blocking-anticyclones and snow accumulation in most parts

of Antarctica (e.g., Massom et al., 2004; Goodwin et al.,

2003; Schlosser et al., 2011; Hirasawa et al., 2000). Snow-

fall events have been found to be highly episodic; they can

occur in connection with (blocking) anticyclones and, corre-

spondingly, amplified Rossby waves, which lead to the ad-

vection of warm and moist air from relatively low latitudes.

When a blocking event occurs, the moisture-rich air masses

in the southern branch of the split flow are forced to be adi-

abatically uplifted to a colder environment, producing more

precipitation than normal over the Antarctic coast upstream

of the block. On the other hand, downstream of the block,

the anomalous drying effect is primarily observed over the

sea in areas of reduced zonal flow, with small and negligi-

ble consequences over the Antarctic (Fig. 7). The amount of

snowfall associated with blocking conditions can be twice as

great at high-accumulation coastal sites (40 % at Law Dome)

than at inland sites (20 % at Dome C and Taylor Dome, 25 %

at Talos Dome; Scarchilli et al., 2011). Moreover, Sodemann

and Stohl (2009) noted that the highest altitudes of the EAIS

exhibit mean moisture source latitudes that are further north

(45–40◦ S) than those of the coastal and slope areas (55–

60◦ S). Finally, the accumulation increase along the IDEA

over the last few decades is consistent with the positive trend

in the number of blocked days at longitudes between 30◦ W

and 60◦ E, as well as with the positive effect of blocking

events in the longitudinal arc on the precipitation in that area

(Fig. 6b and a, respectively).

Wind-driven ablation strongly affects the SMB, and one

of the largest areas of uncertainty regarding present and fu-

ture SMB calculations is the role of wind-driven sublimation.

Field and satellite observations demonstrate that wind-driven

sublimation rates are lower than 50 kg m−2 yr−1 in plateau

areas but very large in slope areas (up to 260 kg m−2 yr−1),

accounting for 20–75 % of the precipitation (e.g., Frez-

zotti et al, 2004, 2007; Eisen et al., 2008; Scarchilli et al.,

2010). Scambos et al. (2012) suggested that all of the cur-

rent SMB models of the EAIS overestimate the mass in-

put to the ice sheet by 46 to 82 Gt yr−1 of the total in-

ferred accumulation for the regions above 1500 m in eleva-

tion. This overestimation is primarily due to the weak abil-

ity of the atmospheric model to reproduce the high speed

of katabatic wind and the correlated wind-driven sublima-

tion. However, based on data obtained from a regional at-

mospheric climate model, RAMCO 2.1/ANT, with a spatial

resolution of approximately 27 km, a recently published pa-

per by Lenaerts et al. (2012a) showed that the inter-annual

variability of drifting snow sublimation integrated over the

ice sheet is small (approximately 12 Gt yr−1) at only ap-

proximately 0.5 % of the total accumulation. Conversely,

Lenaerts et al. (2012b) demonstrated that the increase in the

RAMCO2.1/ANT model resolution from 27 to 5.5 km can

improve the model’s ability to forecast the wind speed max-

ima in Adélie Land. As a result, the SMB exhibits a much

greater local spatial variability at a 5.5 km resolution, an ef-

fect controlled by drifting snow erosion, and the blowing

snow sublimation is > 100 kg m−2 yr−1 in regions with high

wind speeds.

Spatial variations in accumulation are well correlated with

surface slope changes along the wind direction, and windy

areas represent 90 % of the Antarctic surface (Frezzotti et al.,

2004). The SMB records with verified reliability are from

relatively low wind speed areas and are, therefore, not repre-

sentative of windy areas such as the coastal and slope conflu-

ences areas. Those areas are strongly influenced by wind that

erodes snow and blows it toward ocean. On the other hand,

the highest IDEA site represents less than a few percentage

points of the lowest SMB of the EAIS (< 30 kg m−2 yr−1),

while the region with a SMB > 300 kg m−2 yr−1 represents

less than 15 % of the area, but more than 25 % of the precip-

itation occurring over the entire continent.

Turner et al. (2005, 2009) reported that all of the con-

tinental stations have exhibited a negative trend in mean

sea level pressure during the last 50 yr, most coastal sta-

tions have recorded increasing mean wind speeds in recent

decades, and some EAIS and AP sites have exhibited a sig-

nificant increase in strong wind events during the last 50 yr.

These changes have been correlated with the shift of South-

ern Annular Mode (SAM) to a more positive phase (Mar-

shall, 2003). This shift has resulted in a decrease in mean

sea level pressure over the Antarctic/Southern Ocean with a

consequent increase in the westerly winds over the South-

ern Ocean. Similarly, Simmonds et al. (2003) noted that

the intensity of the mean cyclone activity has increased in

the Southern Ocean since the 1990s. Around the slope and

coastal area of EAIS, the significant majority of strong wind

events are associated with the enhancement of the downslope

katabatic flow by broad-scale synoptic circulation involving

a deepening of pressure off the coast and an increase in pres-

sure inland (Turner et al., 2009).

The Cryosphere, 7, 303–319, 2013 www.the-cryosphere.net/7/303/2013/



M. Frezzotti et al.: Antarctic surface mass balance during the last 800 yr 315

5 Conclusions

A total of 67 SMB records from the AIS over the last 800 yr

were analysed to assess the temporal variability of accu-

mulation rates. The temporal and spatial variability of the

SMB over the previous 800 yr indicates that SMB changes

over most of Antarctica are statistically negligible and do not

exhibit an overall clear trend. This result is in accordance

with the results presented by Monaghan et al. (2006), which

demonstrate statistically insignificant changes in the SMB

over the past 50 yr. However, a clear increase in accumulation

of more than 10 % (> 300 kg m−2 yr−1) has occurred in high-

SMB coastal regions and over the highest part of the East

Antarctic ice divide since the 1960s. The decadal records of

previous centuries show that the observed increase in accu-

mulation is not anomalous at the continental scale, that high-

accumulation periods also occurred during the 1370s and

1610s, and that the current SMB is not significantly differ-

ent from that over the last 800 yr.

The differences in behaviour between the coastal/ice di-

vide sites and the rest of Antarctica could be explained by the

higher frequency of blocking anticyclones, which increase

precipitation at coastal sites and lead to the advection of

moist air at the highest areas, while blowing snow and/or

erosion have reduced the SMB at windy sites. Eight hundred

years of stacked SMB records mimic the total solar irradi-

ance during the 13th and 18th centuries, suggesting a link

between the southern Tropical Pacific and the atmospheric

circulation in Antarctica through the generation and propa-

gation of a large-scale atmospheric wave train.

Minor changes in the earth’s radiation budget may pro-

foundly affect the atmospheric circulation and SMB of

Antarctica. To predict future trends in the ice sheet mass bal-

ance, models must reliably reproduce the SMB patterns of

the 2000s and the recent past (at the year-long and millennial

scales). Future scenarios provided by global climate models

suggest that Antarctic snow precipitation should increase in

a warming climate but that snow accumulation is primarily

driven by atmospheric circulation; these increases could be

offset by enhanced loss due to wind blowing ablation.
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L. E., Sugiyama, S., Surdyk, S., Ström, J., Uemura, R., and Wil-

helms, F.: Spatial and temporal variability of snow accumula-

tion rate on the East Antarctic ice divide between Dome Fuji and

EPICA DML, The Cryosphere, 5, 1057–1081, doi:10.5194/tc-5-

1057-2011, 2011.

Genthon, C., Krinner, G., and Castebrunet, H.: Antarctic precipi-

tation and climate change prediction: horizontal resolution and

margin vs plateau issues, Ann. Glaciol., 50, 55–60, 2009.

Gibson, T. T.: Atmospheric blocking in the Southern Hemisphere

1982–1992. Proc. APOC and AMOS Joint Conf., Lorne, Aus-

tralia, Australian Meteorological and Oceanographic Society, 40,

1995.

Goodwin, I., de Angelis, M., Pook, M., and Young, N. W.: Snow

accumulation variability in Wilkes Land, East Antarctica, and

the relationship to atmospheric ridging in the 130◦–170◦ E since

1930, J. Geophys. Res., 108, 4673, doi:10.1029/2002JD002995,

2003.

Graf, W., Oerter, H., Reinwarth, O., Stichler, W., Wilhelms, F.,

Miller, H., and Mulvaney, R.: Stable isotope records from Dron-

ning Maud Land, Antarctica, Ann. Glaciol., 35, 195–201, 2002.

Gregory, J. M. and Huybrechts, P.: Ice-sheet contributions to fu-

ture sea-level change, Philos. Trans. R. Soc. A, 364, 1709–1731,

doi:10.1098/rsta.2006.1796, 2006.

Hamilton, G. S.: Topographic control of regional accumu-

lation rate variability at South Pole and implications

for ice-core interpretation, Ann. Glaciol., 39, 214–218,

doi:10.3189/172756404781814050, 2004.

Hirasawa, N., Nakamura, H., and Yamanouchi, T.: Abrupt changes

in meteorological conditions observed at an inland Antarctic

Station in association with wintertime blocking, Geophys. Res.

Lett., 27, 1911–1914, doi:10.1029/1999GL011039, 2000.

Hofstede, C. M, van de Wal, R. S. W., Kaspers, K. A., van den
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Karlöf, L., Isakson, E., Winther, J. G., Gundestrup, N., Meijer, H.

A. J., Mulvaney, R., Pourcher, M., Hofstede, C., Lappegard, G.,

Petterson, R., van den Broecke, M. R., and van de Wal, R. S.

W.: Accumulation variability over a small area in east Dronning

Maud Land, Antarctica, as determined from shallow firn cores

and snow pits: some implications for ice, J. Glaciol., 51, 343–

352, doi:10.3189/172756505781829232, 2005.

Kaspari, S., Mayewski, P. A., Dixon, D. A., Spikes, V. B., Sneed,

S. B., Handley, M. J., and Hamilton, G. S.: Climate variabil-

ity in west Antarctica derived from annual accumulation-rate

records from ITASE firn/ice cores, Ann. Glaciol., 39, 585–594,

doi:10.3189/172756404781814447, 2004.

Krinner, G., Magand, O., Simmonds, I., Genthon, C., and Dufresne,

J. L.: Simulated Antarctic precipitation and surface mass balance

at the end of the 20th and 21th centuries, Clim. Dynam. 28, 215–

230, doi:10.1007/s00382-006-0177-x, 2007.

Lachlan-Cope, T. and Connolley, W.: Teleconnections between

the tropical Pacific and the Amundsen-Bellinghausens Sea: role

of the El Niño/Southern Oscillation, J. Geophys. Res., 111,

D23101, doi:10.1029/2005JD006386, 2006.

Lenaerts, J. T. M., van den Broeke, M. R., van den Berg, W. J.,

van Meijgaard, E., and Munneke, P. K.: A new, high resolu-

tion surface mass balance map of Antarctica (1979–2010) based

on regional climate modeling, Geophys. Res. Lett., 39, L04501,

doi:10.1029/2011GL050713, 2012a.

Lenaerts, J. T. M., van den Broeke, M. R., Scarchilli, C., and Agosta,

C.: Impact of model resolution on simulated wind, drifting snow

and surface mass balance in Adélie Land, East Antarctica, J.
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